Pattern Matching for Scheme

Andrew K. Wright

March 1996

Department of Computer Science — MS 132
Rice University

6100 Main Street

Houston, Texas 77005-1892

Contents

1 Match

1.1 Definition

1.1.1 Patterns

1.1.2 Match Failure

1.2 Code Generation

1.3 Examples

CONTENTS

CONTENTS

ii

1. Match

1.1 Definition

The complete syntax of the pattern matching expressions follows:

exp ::= (match exp clause ...)
(match-lambda clause ...)
(match-lambda* clause ...)
(match-let ([pat exp] ...) Dbody)
(match-let* ([pat exp]l ...) body)
(match-letrec ([pat exp] ...) body)
(match-let var ([pat exp] ...) Dbody)
(match-define pat exp)

clause ::= [pat body] | [pat (=> identifier) body]
Figure 1.1 gives the full syntax for patterns. The next subsection describes the various patterns.

The match-lambda and match-lambda* forms are convenient combinations of match and lambda, and
can be explained as follows:

(match-lambda [pat body] ...) = (lambda (x) (match x [pat body] ...))
(match-lambda* [pat body] ...) = (lambda x (match x [pat body] ...))

where x is a unique variable. The match-lambda form is convenient when defining a single argument
function that immediately destructures its argument. The match-lambda* form constructs a function that
accepts any number of arguments; the patterns of match-lambda* should be lists.

The match-let, match-let*, match-letrec, and match-define forms generalize Scheme’s let, let*, letrec,
and define expressions to allow patterns in the binding position rather than just variables. For example,
the following expression:

(match-let ([(x y z) (list 1 2 3)]) $body$)

binds z to 1, y to 2, and z to 3 in body. These forms are convenient for destructuring the result of a function
that returns multiple values. As usual for letrec and define, pattern variables bound by match-letrec and
match-define should not be used in computing the bound value.

The match, match-lambda, and match-lambda* forms allow the optional syntax (=> identifier)
between the pattern and the body of a clause. When the pattern match for such a clause succeeds, the
identifier is bound to a failure procedure of zero arguments within the body. If this procedure is invoked,
it jumps back to the pattern matching expression, and resumes the matching process as if the pattern had
failed to match. The body must not mutate the object being matched, otherwise unpredictable behavior may
result.

1.1. Definition

1. Match

pat

qap

Pattern :
identifier

0

#t

#f

string
number
character
’s-expression
"symbol

paty ...pat,)

(

(paty ...pat, . pat,)
(pat, ...pat, pat, ; ...)
(pat, ...pat, pat, | ..

#(paty ... pat,)
#&pat

($ struct pat; ...paty,)

and pat; ... pat,)
or paty ...pat,)
not pat, ...pat,)

set! identifier)
get! identifier)
qp

Quasipattern:

0

#t

#f

string

number

character

identifier
(qpy---qp,,)

(qpy - qPp - @Pry1)

(
(
(
(? predicate paty . ..pat,)
(
(

(gpy - qPy Py --)

(gpy -+ @0y QPria
#(qpy - - - apy)
#&qp

,pat

,@pat

k)

Matches :

anything, and binds identifier as a variable
anything

itself (the empty list)

itself

itself

an equal? string

an equal? number

an equal? character

an equal? s-expression

an equal? symbol (special case of s-expression)
a proper list of n elements

a list of n or more elements

a proper list of n or more elements!

a proper list of n + k or more elements

a vector of n elements

a box

a structure

if all of pat, through pat, match

if any of pat; through pat,, match

if none of pat; through pat, match

if predicate true and pat; through pat,, all match
anything, and binds identifier as a setter
anything, and binds identifier as a getter

a quasipattern

Matches :

itself (the empty list)

itself

itself

an equal? string

an equal? number

an equal? character

an equal? symbol

a proper list of n elements

a list of n or more elements

a proper list of n or more elements
a proper list of n + k or more elements
a vector of n elements

a box

a pattern

a pattern, spliced

Figure 1.1: Pattern Syntax

1. Match 1.1. Definition

1.1.1 Patterns

Figure 1.1 gives the full syntax for patterns. Explanations of these patterns follow.

o identifier (excluding the reserved names 7, §, _, and, or, not, set!, get!, ..., and ..k for non-negative
integers k): matches anything, and binds a variable of this name to the matching value in the body.

e _: matches anything, without binding any variables.

o (), #t, #f, string, number, character, ’s-expression: These constant patterns match themselves, ie.,
the corresponding value must be equal? to the pattern.

e (pat, ...pat,): matches a proper list of n elements that match pat; through pat,,.

e (pat,...pat, .pat, ;): matches a (possibly improper) list of at least n elements that ends in something
matching pat,, ;.

e (pat,...pat, pat, ; ...): matches a proper list of n or more elements, where each element of the
tail matches pat, . Each pattern variable in pat,; is bound to a list of the matching values. For
example, the expression:

(match ’(let ([x 1]1[y 21) 2)
[(’let ((binding values) ...) exp) bodyl)

binds binding to the list > (x y), values to the list (1 2), and exp to ’z in the body of the match-
expression. For the special case where pat,, | is a pattern variable, the list bound to that variable may
share with the matched value.

e (pat,...pat, pat, , ..k): This pattern is similar to the previous pattern, but the tail must be at least
k elements long. The pattern keywords ..0 and ... are equivalent.

e #(pat, ...pat,): matches a vector of length n, whose elements match pat; through pat,,.
e #&pat: matches a box containing something matching pat.

o ($ struct pat;...pat,): matches a structure declared with define-structure or define-const-
structure.

e (and pat, ...pat,): matches if all of the subpatterns match. This pattern is often used as (and z pat)
to bind z to to the entire value that matches pat (cf. “as-patterns” in ML or Haskell).

e (or pat, ...pat,): matches if any of the subpatterns match. At least one subpattern must be present.
All subpatterns must bind the same set of pattern variables.

e (not pat, ...pat,): matches if none of the subpatterns match. The subpatterns may not bind any
pattern variables.

e (? predicate pat, ...pat,): In this pattern, predicate must be an expression evaluating to a single
argument function. This pattern matches if predicate applied to the corresponding value is true, and the
subpatterns pat; ...pat, all match. The predicate should not have side effects, as the code generated
by the pattern matcher may invoke predicates repeatedly in any order. The predicate expression is
bound in the same scope as the match expression, ie., free variables in predicate are not bound by
pattern variables.

o (set! identifier): matches anything, and binds identifier to a procedure of one argument that mutates
the corresponding field of the matching value. This pattern must be nested within a pair, vector, box,
or structure pattern. For example, the expression:

1.2. Code Generation 1. Match

(define x (list 1 (list 2 3)))
(match x [(_ (_ (set! setit))) (setit 4)])

mutates the cadadr of x to 4, so that x is > (1 (2 4)).

o (get! identifier): matches anything, and binds identifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement to set!. As
with set!, this pattern must be nested within a pair, vector, box, or structure pattern.

e Quasipatterns: Quasiquote introduces a quasipattern, in which identifiers are considered to be sym-
bolic constants. Like Scheme’s quasiquote for data, unquote (,) and unquote-splicing (,@) escape
back to normal patterns.

1.1.2 Match Failure

If no clause matches the value, the default action is to invoke the procedure match:error with the value that
did not match. The default definition of match:error calls error with an appropriate message:

> (match 1 [2 2])
Error: no clause matched 1.

For most situations, this behavior is adequate, but it can be changed either by redefining match:error, or by
altering the value of the variable match:error-control. Valid values for match:error-control are:

match:error-control: error action:

error (default) call (match:error unmatched-value)

’match call (match:error unmatched-value ’(match expression ...))
’fail call match:error or die in car, cdr, ...

’unspecified return unspecified value

Setting match:error-control to ’match causes the entire match expression to be quoted and passed as a
second argument to match:error. The default definition of match:error then prints the match expression
before calling error; this can help identify which expression failed to match. This option causes the macros
to generate somewhat larger code, since each match expression includes a quoted representation of itself.

Setting match:error-control to >fail permits the macros to generate faster and more compact code than
’error or ’match. The generated code omits pair? tests when the consequence is to fail in car or cdr rather
than call match:error.

Finally, if match:error-control is set to ’unspecified, non-matching expressions will either fail in car or
cdr, or return an unspecified value. This results in still more compact code, but is unsafe.

1.2 Code Generation

Pattern matching macros are compiled into if-expressions that decompose the value being matched with
standard Scheme procedures, and test the components with standard predicates. Rebinding or lexically
shadowing the names of any of these procedures will change the semantics of the match macros. The names
that should not be rebound or shadowed are:

1. Match 1.3. Examples

null? pair? number? string? symbol? boolean? char? procedure? vector? box? list?
equal?

car cdr cadr cdddr ...

vector-length vector-ref

unbox

reverse length call/cc

Additionally, the code generated to match a structure pattern like ($ Foo pat; .. .pat,) refers to the names
Foo?, Foo-1 through Foo-n, and set-Foo-1! through set-Foo-n!. These names also should not be shadowed.

1.3 Examples

This section illustrates the convenience of pattern matching with some examples. The following function
recognizes some s-expressions that represent the standard Y operator:
(define Y?
(match-lambda
[(’lambda (f1)
(’lambda (y1)
(((C’lambda (x1) (£f2 (’lambda (z1) ((x2 x3) z2))))
(’lambda (a1) (£3 (’lambda (b1) ((a2 a3) b2)))))
y2)))
(and (symbol? f1) (symbol? y1) (symbol? x1) (symbol? zl1) (symbol? al) (symbol? bl)
(eq? £1 £2) (eq? f1 £3) (eq? yl y2)
(eq? x1 x2) (eq? x1 x3) (eq? zl1 z2)
(eq? al a2) (eq? al a3) (eq? bl b2))]
[_ #£1)

Writing an equivalent piece of code in raw Scheme is tedious.

The following code defines abstract syntax for a subset of Scheme, a parser into this abstract syntax, and
an unparser.

(define-structure (Lam args body))

(define-structure (Var s))

(define-structure (Const n))

(define-structure (App fun args))

(define parse
(match-lambda
[(and s (? symbol?) (not ’lambda))
(make-Var s)]
[(? number? n)
(make-Const n)]
[(’lambda (and args ((? symbol?) ...) (not (? repeats?))) body)
(make-Lam args (parse body))]
[(f args ...)
(make-App
(parse f)
(map parse args))]
[x (error ’syntax "invalid expression")]))

(define repeats?
(lambda (1)

1.3. Ezamples 1. Match

(and (not (null? 1))
(or (memq (car 1) (cdr 1)) (repeats? (cdr 1))))))

(define unparse
(match-lambda
[($\$$ Var s) s]
[($\$$ Const n) n]
[($\$$ Lam args body) ‘(lambda ,args ,(unparse body))]
[($\$$ App f args) ‘(,(unparse f) ,@(map unparse args))]))

With pattern matching, it is easy to ensure that the parser rejects all incorrectly formed inputs with an
error message.

With match-define, it is easy to define several procedures that share a hidden variable. The following code
defines three procedures, inc, value, and reset, that manipulate a hidden counter variable:
(match-define (inc value reset)
(let ([val 0])
(1ist

(lambda () (set! val (addl val)))

(lambda () val)

(lambda () (set! val 0)))))

Although this example is not recursive, the bodies could recursively refer to each other.

The following code is taken from the macro package itself. The procedure validate-match-pattern checks the
syntax of match patterns, and converts quasipatterns into ordinary patterns.

1. Match 1.3. Examples

(define validate-match-pattern
(lambda (p)
(letrec
([name?
(lambda (x)
(and (symbol? x)
(not (dot-dot-k? x))
(not (memq x ’(quasiquote quote unquote unquote-splicing

7 _ $\$$ and or not set! get! ...)))))]
[simple?
(lambda (x)
(or (string? x) (boolean? x) (char? x) (number? x) (null? x)))]
[ordinary

(match-lambda
[(? simple? p) pl
[(? name? p) pl
r_ 1
[(’quasiquote p) (quasi p)]
[(and p (’quote _)) pl
[(°? pred ps ...) ‘(and (7 ,pred) ,@(map ordinary ps))]
[(’and ps ...) ‘(and ,@(map ordinary ps))]
[(Cor ps ...) ‘(or ,@(map ordinary ps))]
[(not ps ...) ‘(not (or ,@(map ordinary ps)))]
[C(°$\$$ (? name? r) ps ...) ‘($\$$,r ,0(map ordinary ps))]
[(and p (’set! (7 name?))) p]
[(and p (’get! (? name?))) pl
[(p >...) “(,(ordinary p) ..0)]
[(p (? dot-dot-k? ddk)) ‘(,(ordinary p) ,ddk)]
[(x . y) (cons (ordinary x) (ordinary y))]
[(? vector? p) (apply vector (map ordinary (vector->list p)))]
[#&p (box (ordinary p))]
[p (err "invalid pattern at ~a" p)])]

[quasi

(match-lambda
[(? simple? p) pl
[(? symbol? p) ‘(quote ,p)]
[(’unquote p) (ordinary p)]
[((’unquote-splicing p) . ()) (ordinary p)]
[((’unquote-splicing p) . y) (append (ordlist p) (quasi y))]
[(p’...) ‘(,(quasi p) ..0)]
[(p (? dot-dot-k? ddk)) ‘(,(quasi p) ,ddk)]
[(x . y) (cons (quasi x) (quasi y))]
[(? vector? p) (apply vector (map quasi (vector->list p)))]
[#&p (box (quasi p))]
[p (err "invalid quasipattern at ~a" p)]1)]

[ordlist

(match-lambda
[O O1
[(x . y) (cons (ordinary x) (ordlist y))]
[p (err "invalid unquote-splicing at ~a" p)1)1)

(ordinary p))))

