
PLT Tools: DrScheme Extension Manual

Robert Bruce Findler (robby@cs.rice.edu)

Version 200
June 2002

Copyright notice

Copyright c©1996-2002 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the
fact on some Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Contents

1 This Manual 1

1.1 Thanks . 1

2 Implementing DrScheme Tools 2

2.1 Adding Languages to DrScheme . 3

2.1.1 Adding module-based Languages to DrScheme . 3

2.1.2 Adding Arbitrary Languages to DrScheme . 4

2.1.3 Language Extensions . 5

2.2 Graphical Expressions . 5

2.3 Creating new kinds of DrScheme frames . 5

2.4 Extending the Existing DrScheme Classes . 5

2.5 Expanding the User’s Program Text and Breaking . 6

3 Tools Reference 7

3.1 drscheme:debug:profile-definitions-text-mixin . 7

3.2 drscheme:debug:profile-interactions-text-mixin . 7

3.3 drscheme:debug:profile-unit-frame-mixin . 7

3.4 drscheme:frame:<%> . 8

3.5 drscheme:frame:basics<%> . 9

3.6 drscheme:frame:basics-mixin . 9

3.7 drscheme:frame:mixin . 11

3.8 drscheme:frame:name-message% . 11

3.9 drscheme:get/extend:base-definitions-canvas% = drscheme:unit:definitions-canvas% 12

3.10 drscheme:get/extend:base-definitions-text% = (drscheme:debug:profile-definitions-text-mixin
drscheme:unit:definitions-text%) . 13

3.11 drscheme:get/extend:base-interactions-canvas% = drscheme:unit:interactions-canvas% 13

i

CONTENTS CONTENTS

3.12 drscheme:get/extend:base-interactions-text% = (drscheme:debug:profile-interactions-text-mixin
drscheme:rep:text%) . 14

3.13 drscheme:get/extend:base-unit-frame% = (drscheme:debug:profile-unit-frame-mixin
drscheme:unit:frame%) . 14

3.14 drscheme:language:language<%> . 15

3.15 drscheme:language:module-based-language<%> . 19

3.16 drscheme:language:module-based-language->language-mixin 22

3.17 drscheme:language:simple-module-based-language<%> . 24

3.18 drscheme:language:simple-module-based-language% . 25

3.19 drscheme:language:simple-module-based-language->module-based-language-mixin . . 26

3.20 drscheme:rep:context<%> . 29

3.21 drscheme:rep:drs-bindings-keymap-mixin . 31

3.22 drscheme:rep:text<%> . 31

3.23 drscheme:rep:text% . 31

3.24 drscheme:snip:special<%> . 37

3.25 drscheme:unit:definitions-canvas% . 38

3.26 drscheme:unit:definitions-text<%> . 38

3.27 drscheme:unit:definitions-text% = (scheme:text-mixin (drscheme:rep:drs-bindings-keymap-mixin
(drscheme:unit:program-editor-mixin text:info%))) . 39

3.28 drscheme:unit:frame<%> . 40

3.29 drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin frame:searchable%)) 41

3.30 drscheme:unit:interactions-canvas% . 49

3.31 drscheme:unit:program-editor-mixin . 50

3.32 DrScheme Tools Functions . 51

Index 65

ii

1. This Manual

This manual describes DrScheme’s tools interface. It assumes familiarity with DrScheme, as described in
PLT DrScheme: Development Environment Manual , the Framework, as described in PLT Framework: GUI
Application Framework , MrEd as described in PLT MrEd: Graphical Toolbox Manual , and MzScheme as
described in PLT MzScheme: Language Manual .

1.1 Thanks

Thanks to Eli Barzilay, John Clements, Cormac Flanagan, Max Halipern, Philippe Meunier, and Christian
Queinnec, PLT at large, and many others for their feedback and help.

This manual was typest using LATEX, SLATEX, and tex2page. Some typesetting macros were originally taken
from Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on June 21, 2002.

1

2. Implementing DrScheme Tools

Tools are designed for major extensions in DrScheme’s functionality. To extend the appearance or the
functionality the DrScheme window (say, to annotate programs in certain ways, to add buttons to the
DrScheme frame or to add additional languages to DrScheme) use a tool. The Static Debugger, the Syntax
Checker, the Stepper, and the teaching languages are all implemented as tools.

Libraries are for extensions of DrScheme that only want to add new functions and other values bound in the
users namespace. See the DrScheme manual for more information on constructing libraries.

Tools rely heavily on MzScheme’s units. See units, §33 in PLT MzScheme: Language Manual for informa-
tion on how to construct units. They also require understanding of libraries and collections, §16 in PLT
MzScheme: Language Manual .

When DrScheme starts up, it looks for tools by reading fields in the info.ss file of each top-level collection.
DrScheme checks for these fields:

tools (listof (listof string [subcollection-name]))

tool-names (listof (union #f string))

tool-icons (listof (union #f (cons string [filename] (listof string [collection-name]))))

The tools field names a list of tools in this collection. Each tool is specified as a collection path, relative
to the collection where the info.ss file resides. As an example, if there is only one tool named tool.ss, this
sufficies:

(define tools (list (list "tool.ss")))

If the tool-icons or tool-names fields are present, they must be the same length as tool . They specify the path
to an icon for each tool and the name of each tool. This information shows up in the about box, Help Desk’s
bug report form, and the icon appears on the splash screen as the tool is loaded at DrScheme’s startup.

Each of tools files must contain a module that provides tool@ , which must be bound to a unit/sig, §33
in PLT MzLib: Libraries Manual The unit must import the drscheme:tool^ signature, which is provided
by the tool.ss library in the drscheme collection. The drscheme:tool^ signature contains all of the names
listed in this manual. The unit must export the drscheme:tool-exports^ signature.

The drscheme:tool-exports^ signature contains two names: phase1 and phase2 . These names must be
bound to thunks. After all of the tools are loaded, all of the phase1 functions are called and then all of the
phase2 functions are called. Certain primitives can only be called during the dynamic extent of those calls.

This mechanism is designed to support DrScheme’s drscheme:language:language<%> extension capabili-
ties. That is, this mechanism enables two tools to cooperate via new capabilities of languages. The first
phase is used for adding functionality that each language must support and the second is used for creating
instances of languages. As an example, a tool may require certain specialized language-specific information.

2

2. Implementing DrScheme Tools 2.1. Adding Languages to DrScheme

It uses phase1 to extend the drscheme:language:language<%> interface and supply a default implementa-
tion of the interface extension. Then, other languages that are aware of the extension can supply non-default
implementations of the additional functionality.

Phase 1 functions:

• drscheme:language:extend-language-interface

Phase 2 functions:

• drscheme:language-configuration:add-language

• drscheme:language:get-default-mixin

If the tools raises an error as it is loaded, invoked, or as the phase1 or phase2 thunks are called, DrScheme
catches the error and displays a message box. Then, DrScheme continues to start up, without the tool.

For example, if the info.ss file in a collection contains:

(module info (lib "infotab.ss" "setup")
(define name "Tool Name")
(define tools (list (list "tool.ss"))))

then the same collection would be expected to contain a tool.ss file. It might contain something like this:

(module tool mzscheme
(require (lib "tool.ss" "drscheme")

(lib "mred.ss" "mred")
(lib "unitsig.ss"))

(provide tool@)

(define tool@
(unit/sig drscheme:tool-exportsˆ

(import drscheme:toolˆ)
(define (phase1)

(message-box "tool example" "phase1"))
(define (phase2)

(message-box "tool example" "phase2")))))

This tool just opens a window to indicate that it has been loaded.

2.1 Adding Languages to DrScheme

2.1.1 Adding module-based Languages to DrScheme

If a language can be implemented as a module (see module for details) and the standard language settings are
sufficient, simply create an info.ss file in the collection where the module is saved. Include these definitions:

drscheme-language-modules This must be bound to a list of collection path specifications, one for each
language in the collection. Each collection path specification is the quoted form of what might appear
as an argument to require, using the lib argument.

3

2.1. Adding Languages to DrScheme 2. Implementing DrScheme Tools

drscheme-language-positions This must be bound to a list of language positions. Each language position
corresponds to the position of the language in language dialog. Each language position is a list of strings.

drscheme-language-numbers This is optional. If present, it must be a list of a list of numbers. Each
list corresponds to a single language from this collection. Each number indicates a sorting order in the
language dialog for the corresponding string in drscheme-language-positions.

drscheme-language-one-line-summaries This is optional. If present, it must be a list of strings. Each
string is displayed at the bottom of the language dialog when the corresponding language is selected.

drscheme-language-readers This is optional. If present, it must be bound to a quoted list of module spec-
ifications (that is, a quoted version of the argument to require, except not plain strings). Each spec-
ification must be a module that exports a function named read-syntax. Each of these read-syntax
functions must match MzScheme’s read-syntax primitive’s contract, but may read different concrete
syntax.

The lists must have the same length.

As an example, the Essentials of Programming Languages language specification’s info.ss looks like this:
(module info (lib "infotab.ss" "setup")
(define name "EoPL Support")
(define drscheme-language-modules
(list ’("eopl-lang.ss" "eopl")))

(define drscheme-language-positions
(list ’("Essentials of Programming Languages"))))

This info.ss file indicates that there is a single language in this collection. The module that implements
the language is the eopl-lang.ss file in the eopl collection. Additionally, the langauge dialog will contain
Essentials of Programming Languages as a potential language.

For collections that define multiple (related) languages, if the language-positions contain multiple strings,
the languages whose leading strings match are grouped together. That is, if two languages have strings:
’("My Text" "First Language")

and
’("My Text" "Second Language")

the two languages will be grouped together in the language dialog.

2.1.2 Adding Arbitrary Languages to DrScheme

With some additional work, any language that can be compiled to MzScheme’s language is supported by the
tools interface, not just those that use standard configurations and module.

Each language is a class that implement the drscheme:language:language<%> interface. DrScheme also pro-
vides two simpler interfaces: drscheme:language:module-based-language<%> and drscheme:language:simple-module-based-language<%>,
and mixins, §3.2 in PLT Framework: GUI Application Framework drscheme:language:simple-module-based-language->module-based-language-mixin
and drscheme:language:module-based-language->language-mixin that build implementations of
language^s from these simpler interfaces.

Once you have an implementation of the drscheme:language:language<%> interface, call drscheme:language-configuration:add-language
to add the language to DrScheme.

Each language comes with its own type, called settings. This can be any type the language designer chooses,
but to aid documentation, we call it settings here. The settings type is expected to contain parameters of

4

2. Implementing DrScheme Tools 2.2. Graphical Expressions

the language, such as case sensitivity, etc. The implementor of the language provides a GUI so the user can
configure the settings and all of the language’s operations accept a setting. DrScheme maintains the current
settings for each language.

2.1.3 Language Extensions

Some tools may require additional functionality from the drscheme:language:language<%> interface. The
drscheme:language:extend-language-interface function and the drscheme:language:get-default-mixin
mixin make this possible.

For example, the MrFlow tool expands programs, analyzes it and then displays sets of values for
each program point. These sets of values should be rendered in the syntax of the language that
MrFlow analyzes. Since MrFlow doesn’t apriori know which languages are available, it can call
drscheme:language:extend-language-interface to extend the drscheme:language:language<%> inter-
face with a method for rendering sets of values and provide a default implementation of that method. Tools
that know about MrFlow can then override the value rendering method to provide a language-specific im-
plementation of value rendering. Additionally, since the drscheme:language:get-default-mixin adds the
default implementation for the value-set rendering method, all languages at least have some form of value-set
rendering.

2.2 Graphical Expressions

In addition to normal, textual expressions, DrScheme supports expressions whose syntax can be arbi-
trary graphics. Any graphical syntax must be implemented as snip% objects. If the snip implements the
drscheme:snip:special<%> interface, the read-special method is used to convert it to a syntax object.
If the snip does not implement the drscheme:snip:special<%> interface, it is treated as a constant, like
numbers or quoted objects.

DrScheme graphical syntax is provided as part of the drscheme:language:open-input-text function
(used by the drscheme:language:module-based-language->language-mixin mixin and the built-in lan-
guages of DrScheme). If you are using the built-in languages or a language that implements this mixin,
you can use this interface. If not, you should probably use MzScheme’s \#\$ support directly, or call
drscheme:language:open-input-text.

As an example, this class, derived from snip% is a graphical small square that expands into a call to
make-square:

2.3 Creating new kinds of DrScheme frames

Each frame in DrScheme has certain menus and functionality, most of which is achieved by using
the framework. Additionally, there is one mixin that DrScheme provides to augment that. It is
drscheme:frame:basics-mixin. Be sure to mix it into any new frame class that you add to DrScheme.

2.4 Extending the Existing DrScheme Classes

Each of the names:

• drscheme:get/extend:extend-interactions-text

• drscheme:get/extend:extend-definitions-text

5

2.5. Expanding the User’s Program Text and Breaking 2. Implementing DrScheme Tools

• drscheme:get/extend:extend-interactions-canvas

• drscheme:get/extend:extend-definitions-canvas

• drscheme:get/extend:extend-unit-frame

is bound to an extender function. In order to change the behavior of drscheme, you can derive new classes
from the standard classes for the frame, texts, canvases. Each extender accepts a function as input. The
function it accepts must take a class as it’s argument and return a classes derived from that class as its
result. For example:
(drscheme:get/extend:extend-interactions-text
(lambda (super%

(class super%
(public method1)
(define (method1 x) ...)
...)))

extends the interactions text class with a method named
rawscmmethod1.

2.5 Expanding the User’s Program Text and Breaking

Macro-expanding a program may involve arbitrary computation and requires the setup of the correct lan-
guage. To aid this, DrScheme’s tool interface provides drscheme:eval:expand-program to help. Use this
method to extract the fully expanded program text in a particular language.

Because expanding the user’s program may require DrScheme to evaluate arbitrary code that the user
wrote, tools that expand the user’s program should also also the user to break the expansion. To help with
this, the tools interfaces provides these methods: enable-evaluation and disable-evaluation. Since
your tool will be expanding the program text, you should be both overriding enable-evaluation and
disable-evaluation to disable your tool and calling them to ensure that only one expansion is happening
at a time.

Finally, DrScheme provides the set-breakables, method. This method controls what behavior the Break
button has.

6

3. Tools Reference

3.1 drscheme:debug:profile-definitions-text-mixin

Domain: drscheme:unit:definitions-text<%>

Domain: (class->interface text%)

Implements: drscheme:unit:definitions-text<%>

- (instantiate drscheme:debug:profile-definitions-text-mixin% () [(line-spacing)] [(tab-
stops)] [(auto-wrap)]) ⇒ drscheme:debug:profile-definitions-text-mixin% object

line-spacing = 1.0 : non-negative real number
tab-stops = null : list of real numbers
auto-wrap = #f : boolean

The line-spacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed. This spacing is included in the reported height of each
line.

See set-tabs for information about tabstops.

If auto-wrap is true, then auto-wrapping is enabled via auto-wrap .

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

3.2 drscheme:debug:profile-interactions-text-mixin

Domain: drscheme:rep:text<%>

Implements: drscheme:rep:text<%>

3.3 drscheme:debug:profile-unit-frame-mixin

Domain: drscheme:unit:frame<%>

Domain: drscheme:frame:<%>

7

3.4. drscheme:frame:<%> 3. Tools Reference

Implements: drscheme:unit:frame<%>

Implements: drscheme:frame:<%>

3.4 drscheme:frame:<%>

Extends: frame:text-info<%>

Extends: drscheme:frame:basics<%>

Extends: frame:editor<%>

add-show-menu-items

This method is called during the construction of the show menu. This method is intended to be overridden.
It is expected to add other Show/Hide menu items to the show menu.

See also get-show-menu.

- (send a-drscheme:frame: add-show-menu-items show-menu) ⇒ void
show-menu : (is-a?/c menu%)

Does nothing.

get-show-menu

returns the show menu, for use by the update-shown method.

See also add-show-menu-items.

- (send a-drscheme:frame: get-show-menu) ⇒ (instanceof menu%)

not-running

updates the status pane at the bottom of the window to show that evaluation is not taking place in the
user’s program.

- (send a-drscheme:frame: not-running) ⇒ void

running

updates the status pane at the bottom of the window to show that evaluation is taking place in the user’s
program.

- (send a-drscheme:frame: running) ⇒ void

8

3. Tools Reference 3.5. drscheme:frame:basics<%>

update-shown

This method is intended to be overridden. It’s job is to update the "Show" menu to match the state of the
visible windows. In the case of the standard DrScheme window, it change the menu items to reflect the
visiblity of the definitions and interaction editor-canvas%s.

Call this method whenever the state of the show menu might need to change.

- (send a-drscheme:frame: update-shown) ⇒ void

Does nothing.

3.5 drscheme:frame:basics<%>

Extends: frame:standard-menus<%>

This interface is the result of the drscheme:frame:basics-mixin

3.6 drscheme:frame:basics-mixin

Domain: frame:standard-menus<%>

Implements: frame:standard-menus<%>

Implements: drscheme:frame:basics<%>

Use this mixin to establish some common menu items across various DrScheme windows.

edit-menu:between-find-and-preferences

This method is called between the addition of the find menu-item and before the addition of the preferences
menu-item to the edit-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:frame:basics-mixin edit-menu:between-find-and-preferences) ⇒ void

Adds the "Keybindings" menu item to the edit menu.

file-menu:between-open-and-revert

This method is called between the addition of the open menu-item and before the addition of the revert
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:frame:basics-mixin file-menu:between-open-and-revert file-menu) ⇒ void
file-menu : (instance menu%)

Adds an Open Url... menu item, which invokes help desk’s drscheme:help-desk:open-users-url
function.

9

3.6. drscheme:frame:basics-mixin 3. Tools Reference

file-menu:new-callback

This method is called when the new menu-item of the file-menu menu is selected.

- (send a-drscheme:frame:basics-mixin file-menu:new-callback item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens a new, empty DrScheme window.

file-menu:new-string

The result of this method is the name of this menu.

- (send a-drscheme:frame:basics-mixin file-menu:new-string) ⇒ string

Returns the empty string.

file-menu:open-callback

This method is called when the open menu-item of the file-menu menu is selected.

- (send a-drscheme:frame:basics-mixin file-menu:open-callback item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Calls handler:edit-file.

file-menu:open-string

The result of this method is the name of this menu.

- (send a-drscheme:frame:basics-mixin file-menu:open-string) ⇒ string

Returns the empty string.

help-menu:about-callback

This method is called when the about menu-item of the help-menu menu is selected.

- (send a-drscheme:frame:basics-mixin help-menu:about-callback item evt) ⇒ void
item : (instance (derived-from menu-item%))
evt : (instance control-event%)

Opens an about box for DrScheme.

help-menu:about-string

The result of this method is the name of this menu.

- (send a-drscheme:frame:basics-mixin help-menu:about-string) ⇒ string

Returns the string "DrScheme".

10

3. Tools Reference 3.7. drscheme:frame:mixin

help-menu:before-about

This method is called before the addition of the about menu-item to the help-menu menu. Override it to
add additional menus at that point.

- (send a-drscheme:frame:basics-mixin help-menu:before-about help-menu) ⇒ void
help-menu : (instance menu%)

Adds the Help Desk menu item and the Welcome to DrScheme menu item.

help-menu:create-about?

The result of this method determines if the corresponding menu-item is created. Override this to control the
creation of the menu-item.

- (send a-drscheme:frame:basics-mixin help-menu:create-about?) ⇒ boolean

Returns #t.

3.7 drscheme:frame:mixin

Domain: frame:text-info<%>

Domain: drscheme:frame:basics<%>

Domain: frame:editor<%>

Implements: frame:text-info<%>

Implements: frame:editor<%>

Implements: drscheme:frame:basics<%>

Implements: drscheme:frame:<%>

Provides an implementation of drscheme:frame:<%>

3.8 drscheme:frame:name-message%

Superclass: canvas%

This class implements the little filename button in the top-right hand side of drscheme’s frame.

- (make-object drscheme:frame:name-message% parent)⇒ drscheme:frame:name-message% object
parent : (instance (implements area-container<%>))

11

3.9. drscheme:get/extend:base-definitions-canvas% = drscheme:unit:definitions-canvas%3. Tools Reference

set-message

Sets the names that the button shows.

- (send a-drscheme:frame:name-message set-message name short-name) ⇒ void
name : (union string #f)
short-name : string

The string short-name is the name that is shown on the button and name is shown when the button
is clicked on, in a separate window. If name is #f, a message indicating that the file hasn’t been saved
is shown.

3.9 drscheme:get/extend:base-definitions-canvas% = drscheme:unit:definitions-canvas%

drscheme:get/extend:base-definitions-canvas% = drscheme:unit:definitions-canvas%

- (instantiate drscheme:get/extend:base-definitions-canvas% () (parent) [(editor)] [(style
)] [(scrolls-per-page)] [(label)] [(wheel-step)] [(line-count)] [(enabled)] [(vert-
margin)] [(horiz-margin)] [(min-width)] [(min-height)] [(stretchable-width)]
[(stretchable-height)]) ⇒ drscheme:get/extend:base-definitions-canvas% object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]
label = #f : string (up to 200 characters) or #f
wheel-step = 3 : exact integer in [1, 10000] or #f
line-count = #f : exact integer in [1, 1000] or #f
enabled = #t : boolean
vert-margin = 0 : exact integer in [0, 1000]
horiz-margin = 0 : exact integer in [0, 1000]
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

If a canvas is initialized with #f for editor , install an editor later with set-editor.

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrolls-per-page argument sets
this value.

If provided, the wheel-step argument is passed on to the wheel-step method. The default wheel step
can be overridden globally though the ’|MrEd:wheelStep| preference; see “Preferences” (section 12, page
319).

If line-count is not #f, it is passed on to the set-line-count method.

For information about the enabled argument, see window<%>. For information about the horiz-margin
and vert-margin arguments, see subarea<%>. For information about the min-width, min-height ,
stretchable-width, and stretchable-height arguments, see area<%>.

12

3. Tools Reference
3.10. drscheme:get/extend:base-definitions-text% =

(drscheme:debug:profile-definitions-text-mixin drscheme:unit:definitions-text%)

3.10 drscheme:get/extend:base-definitions-text% = (drscheme:debug:profile-definitions-text-mixin

drscheme:unit:definitions-text%)

drscheme:get/extend:base-definitions-text% = (drscheme:debug:profile-definitions-text-mixin
drscheme:unit:definitions-text%)

- (instantiate drscheme:get/extend:base-definitions-text% () [(line-spacing)] [(tab-stops
)] [(auto-wrap)]) ⇒ drscheme:get/extend:base-definitions-text% object

line-spacing = 1.0 : non-negative real number
tab-stops = null : list of real numbers
auto-wrap = #f : boolean

The line-spacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed. This spacing is included in the reported height of each
line.

See set-tabs for information about tabstops.

If auto-wrap is true, then auto-wrapping is enabled via auto-wrap .

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

3.11 drscheme:get/extend:base-interactions-canvas% = drscheme:unit:interactions-canvas%

drscheme:get/extend:base-interactions-canvas% = drscheme:unit:interactions-canvas%

- (instantiate drscheme:get/extend:base-interactions-canvas% () (parent) [(editor)] [(style
)] [(scrolls-per-page)] [(label)] [(wheel-step)] [(line-count)] [(enabled)] [(vert-
margin)] [(horiz-margin)] [(min-width)] [(min-height)] [(stretchable-width)]
[(stretchable-height)]) ⇒ drscheme:get/extend:base-interactions-canvas% object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]
label = #f : string (up to 200 characters) or #f
wheel-step = 3 : exact integer in [1, 10000] or #f
line-count = #f : exact integer in [1, 1000] or #f
enabled = #t : boolean
vert-margin = 0 : exact integer in [0, 1000]
horiz-margin = 0 : exact integer in [0, 1000]
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

If a canvas is initialized with #f for editor , install an editor later with set-editor.

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

13

3.12. drscheme:get/extend:base-interactions-text% =
(drscheme:debug:profile-interactions-text-mixin drscheme:rep:text%) 3. Tools Reference

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrolls-per-page argument sets
this value.

If provided, the wheel-step argument is passed on to the wheel-step method. The default wheel step
can be overridden globally though the ’|MrEd:wheelStep| preference; see “Preferences” (section 12, page
319).

If line-count is not #f, it is passed on to the set-line-count method.

For information about the enabled argument, see window<%>. For information about the horiz-margin
and vert-margin arguments, see subarea<%>. For information about the min-width, min-height ,
stretchable-width, and stretchable-height arguments, see area<%>.

3.12 drscheme:get/extend:base-interactions-text% = (drscheme:debug:profile-interactions-text-mixin

drscheme:rep:text%)

drscheme:get/extend:base-interactions-text% = (drscheme:debug:profile-interactions-text-mixin
drscheme:rep:text%)

- (make-object drscheme:get/extend:base-interactions-text% context)⇒ drscheme:get/extend:base-interactions-text%
object

context : (implements drscheme:rep:context<%>)

3.13 drscheme:get/extend:base-unit-frame% = (drscheme:debug:profile-unit-frame-mixin

drscheme:unit:frame%)

drscheme:get/extend:base-unit-frame% = (drscheme:debug:profile-unit-frame-mixin drscheme:unit:frame%)

- (instantiate drscheme:get/extend:base-unit-frame% () (label) [(parent)] [(width)]
[(height)] [(x)] [(y)] [(style)] [(enabled)] [(border)] [(spacing)] [(align-
ment)] [(min-width)] [(min-height)] [(stretchable-width)] [(stretchable-height
)]) ⇒ drscheme:get/extend:base-unit-frame% object

label : string (up to 200 characters)
parent = #f : frame% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f
y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-resize-border no-caption no-system-menu mdi-parent

mdi-child)
enabled = #t : boolean
border = 0 : exact integer in [0, 1000]
spacing = 0 : exact integer in [0, 1000]
alignment = ’(left top) : two-element list: ’left, ’center or ’right and ’top, ’center or ’bottom
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see set-label),
the title bar is updated.

The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new frame is always on top of its parent. Also, the parent frame may be an MDI parent frame

14

3. Tools Reference 3.14. drscheme:language:language<%>

from a new MDI child frame. Under Windows and X (for many window managers), a frame is iconized
when its parent is iconized.

If parent is #f, then the eventspace for the new frame is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new frame’s eventspace.

If the width or height argument is not #f, it specifies an initial size for the frame (in pixels) assuming
that it is larger than the minimum size, otherwise the minimum size is used.

If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

– ’no-resize-border — omits the resizeable border around the window (Windows, X MWM) or grow
box in the bottom right corner (Mac OS)

– ’no-caption — omits the title bar for the frame (Windows, X MWM)
(X Gnome, X KDE: the frame decoration is omitted completely when ’no-resize-border and ’no-
caption are combined.)

– ’no-system-menu — omits the system menu (Windows)
– ’mdi-child — creates the frame as a MDI (multiple document interface) child frame, mutually

exclusive with ’mdi-parent (Windows)
– ’mdi-parent — creates the frame as a MDI (multiple document interface) parent frame, mutually

exclusive with ’mdi-child (Windows)

If the ’mdi-child style is specified, the parent must be a frame with the ’mdi-parent style, otherwise an
exn:application:mismatch exception is raised.

Even if the frame is not shown, a few notification events may be queued for the frame on creation.
Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until some events are
handled, or the frame’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the border , spac-
ing , and alignment arguments, see area-container<%>. For information about the min-width, min-
height , stretchable-width, and stretchable-height arguments, see area<%>.

3.14 drscheme:language:language<%>

Implementations of this interface are languages that DrScheme supports.

See §2.1 for an overview of adding languages to DrScheme.

config-panel

This method used by the language configuration dialog to construct the ”details” panel for this language.
It accepts a parent panel and returns a get/set function that either updates the GUI to the argument or
returns the settings for the current GUI.

- (send a-drscheme:language:language config-panel parent)⇒ (case-¿ (-¿ settings) (settings -¿ void))
parent : (instanceof panel%)

create-executable

This method creates an executable in the given language. The program-filename is the name of the program
to store in the executable and exectuable-filename is the name of a file where the executable goes.

See also drscheme:language:create-module-based-stand-alone-executable and drscheme:language:create-module-based-launcher.

15

3.14. drscheme:language:language<%> 3. Tools Reference

- (send a-drscheme:language:language create-executable settings parent program-filename executable-
filename) ⇒ void

settings : settings
parent : (union (instanceof dialog%) (instanceof frame%))
program-filename : string
executable-filename : string

default-settings

Specifies the default settings for this language.

- (send a-drscheme:language:language default-settings) ⇒ settings

default-settings?

Return #t if the input settings matches the default settings obtained via default-settings.

- (send a-drscheme:language:language default-settings? settings) ⇒ boolean
settings : settings

front-end

front-end method reads, parses, and optionally compiles the language. The first argument to the
method specifies the location of the unparsed input program. If it is a string, the input program is
in the file named by the string. If it is a text/pos, the input program is in a text. The selector
drscheme:language:text/pos-text extracts the text% text and the drscheme:language:text/pos-start
and drscheme:language:text/pos-end selectors extract the range in the text that should be considered
program text. The second argument is the current settings for the language. The front-end method is
expected to return a thunk that is called repeatedly to get all of the expressions in the program. When all
expressions have been read, the thunk is expected to return eof.

This method is expected to raise an appropriate exception if the program is malformed.

This is called on the user’s thread, as is the thunk it returns.

Implementations of this method should not return fully expanded expressions, since there are two forms of
expansion, using either |expand—, §12.6.1 in PLT MzScheme: Language Manual or expand-top-level-with-
compile-time-evals and the use of the expanded code dictates which applies.

- (send a-drscheme:language:language front-end input settings eval-compile-time-part?) ⇒ (-¿
(union sexp syntax eof))

input : (union string text/pos)
settings : settings
eval-compile-time-part? : boolean

get-language-name

Returns the name of the language as shown in the REPL when executing programs in the language.

- (send a-drscheme:language:language get-language-name) ⇒ string

16

3. Tools Reference 3.14. drscheme:language:language<%>

get-language-numbers

This method is the same as get-language-numbers.

- (send a-drscheme:language:language get-language-numbers) ⇒ (cons number (listof number))

get-language-position

This method returns a list of strings that is used to organize this language with the other languages. Each
entry in that list is a category or subcategory of the language and the last entry in the list is the name of
the language itself. To see how this works, create a language and open the language configuration dialog.
Each element in the list will be a turn down triangle on the left of the dialog.

- (send a-drscheme:language:language get-language-position) ⇒ (cons string (listof string))

get-one-line-summary

The result of this method is shown in the language dialog when the user selects this language.

- (send a-drscheme:language:language get-one-line-summary) ⇒ string

get-style-delta

The style delta that this method returns is used in the language dialog and the DrScheme REPL when the
language’s name is printed.

When it is \#f, no styling is used.

If the result is a list, each element is expected to be a list of three items, a style-delta, and two numbers.
The style delta will be applied to the corresponding portion of the name.

- (send a-drscheme:language:language get-style-delta) ⇒ (union #f

(instanceof style-delta%) (listof (list (instanceof style-delta%) number number)))

marshall-settings

Translates an instance of the settings type into a scheme object that can be written out to disk.

- (send a-drscheme:language:language marshall-settings settings) ⇒ writable
settings : settings

on-execute

The on-execute method is called before any evaluation happens during execution. Use this method to
initialize MzScheme’s parameters, §7.4 in PLT MzScheme: Language Manual for the user. When this
function is called, the user’s thread has already been created, as has its custodian. These parameters have
been changed from the defaults in MzScheme:

• current-custodian is set to a new custodian.

17

3.14. drscheme:language:language<%> 3. Tools Reference

• current-namespace has been set to a newly created empty namespace.This namespace has the follow-
ing modules copied (with namespace-attach-module) from DrScheme’s original namespace:

– ’mzscheme
– ’(lib "mred.ss" "mred")

• break-enabled is #t

• read-curly-brace-as-paren is #t,

• read-square-bracket-as-paren is #t,

• The port-write-handler and port-display-handler have been set to procedures that call
pretty-print and pretty-display instead of write and display. When pretty-print and
pretty-display are called by these parameters, the pretty-print-columns parameter is set to
’infinity, so the output looks just like write and display. This is done so that special scheme
values can be displayed as snips.

• The current-print-covert-hook is to a procedure so that snip%s are just returned directly to be inserted
into the interactions text% object.

• The current-load parameter is set to a procedure calls the language’s front-end method, instead of
jus using read.

• The output and input ports are set to point to the interactions window with these parameters:
current-input-port, current-output-port, and current-error-port.

• The event-dispatch-handler is set so that DrScheme can perform some initial setup and close down
around the user’s code.

• The current-directory and current-load-relative-directory are set to the directory where the
definitions file is saved, or if it isn’t saved, to the initial directory where DrScheme started up.

• The snip-class-list, returned by get-the-snip-class-list is initialized with all of the snipclasses in
DrScheme’s eventspace’s snip-class-list.

• The error-print-source-location parameter is set to #f and the error-display-handler is set to a handler
that creates an error message from the exception record, with font and color information and inserts
that error message into the definitions window.

- (send a-drscheme:language:language on-execute settings run-in-user-thread) ⇒ vod
settings : settings
run-in-user-thread : ((-¿ void) -¿ void)

The settings

render-value

This method is just like render-value/format except that it is expected to put the entire value on a single
line with no newline after the value.

- (send a-drscheme:language:language render-value value settings port port-write) ⇒ void
value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%)-¿ void))

18

3. Tools Reference 3.15. drscheme:language:module-based-language<%>

render-value/format

This method is used to turn values into strings for displaying. The final argument is used because ports
aren’t enough to support the printing of snips into a text%. Calling the third argument with a snip inserts
the snip into an text% that corresponds to displaying something in the port. If the third argument is #f,
we are in a context that cannot display snips, so this methods are expected to flatten any snips into strings.
The final argument is a maximum width to use (in characters) when formatting the value.

This method is expected to format the value by inserting newlines in appropriate places and is expected to
render a newline after the vaue.

See also render-value.

- (send a-drscheme:language:language render-value/format value settings port port-write width)⇒
void

value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%) -¿ void))
width : (union #f number)

unmarshall-settings

Translates a Scheme value into a settings, returning #f if that is not possible.

- (send a-drscheme:language:language unmarshall-settings input) ⇒ (union settings #f)
input : writable

3.15 drscheme:language:module-based-language<%>

This interface is for languages that can be implemented with MzScheme modules.

Use the drscheme:language:module-based-language->language-mixin mixin to construct an implemen-
tation of drscheme:language:language<%> from an implementation of this interface.

config-panel

This method is the same as config-panel.

- (send a-drscheme:language:module-based-language config-panel parent) ⇒ (case-¿ (-¿ settings)
(settings -¿ void))

parent : (instanceof panel%)

default-settings

This method is the same as default-settings.

- (send a-drscheme:language:module-based-language default-settings) ⇒ settings

19

3.15. drscheme:language:module-based-language<%> 3. Tools Reference

default-settings?

This method is the same as default-settings?.

- (send a-drscheme:language:module-based-language default-settings? settings) ⇒ boolean
settings : settings

get-init-code

Returns a module in sexpression form that is used for creating executables. The module must provide a
thunk, called init-code.

When either a stand-alone executable or a launcher is created, the module is required, and init-code is
invoked. This procedure is expected to set up the environment, based on the settings.

- (send a-drscheme:language:module-based-language get-init-code settings) ⇒ sexp
settings : settings

get-language-numbers

This method is the same as get-language-numbers.

- (send a-drscheme:language:module-based-language get-language-numbers) ⇒ (cons number (listof
number))

get-language-position

This method is the same as get-language-position.

- (send a-drscheme:language:module-based-language get-language-position) ⇒ (cons string (listof
string))

get-module

This method specifies the module that defines the language. It is used to intialize the user’s namespace.

The result is expected to be the specification of a module except as value, ie quoted.

See also get-transformer-module.

- (send a-drscheme:language:module-based-language get-module) ⇒ s-expression

get-one-line-summary

The result of this method is shown in the language dialog when the user selects this language.

- (send a-drscheme:language:module-based-language get-one-line-summary) ⇒ string

20

3. Tools Reference 3.15. drscheme:language:module-based-language<%>

get-transformer-module

This method specifies the module that defines the transformation language. It is used to initialize the
transformer portion of the user’s namespace.

The result is expected to be the specification of a module except as value, ie quoted.

See also get-module.

- (send a-drscheme:language:module-based-language get-transformer-module) ⇒ s-expression

marshall-settings

This method is the same as marshall-settings.

- (send a-drscheme:language:module-based-language marshall-settings settings) ⇒ writable
settings : settings

on-execute

This method is the same as on-execute.

- (send a-drscheme:language:module-based-language on-execute settings run-in-user-thread) ⇒ vod
settings : settings
run-in-user-thread : ((-¿ void) -¿ void)

render-value

This method is the same as render-value.

- (send a-drscheme:language:module-based-language render-value value settings port port-write)⇒
void

value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%) -¿ void))

render-value/format

This method is the same as render-value/format.

- (send a-drscheme:language:module-based-language render-value/format value settings port port-
write) ⇒ void

value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%) -¿ void))

unmarshall-settings

This method is the same as unmarshall-settings.

21

3.16. drscheme:language:module-based-language->language-mixin 3. Tools Reference

- (send a-drscheme:language:module-based-language unmarshall-settings input) ⇒ (union settings
#f)

input : writable

use-mred-launcher?

This method is called when an executable is created to determine if the executable should use the mred or
the mzscheme binary.

- (send a-drscheme:language:module-based-language use-mred-launcher?) ⇒ boolean

use-namespace-require/copy?

The result of this method controls how the module is attached to the user’s namespace. If the method
returns #t, the mzscheme primitive namespace-require/copy is used and if it returns #f, namespace-require
is used.

- (send a-drscheme:language:module-based-language use-namespace-require/copy?) ⇒ boolean

Defaultly returns #f.

3.16 drscheme:language:module-based-language->language-mixin

Domain: drscheme:language:module-based-language<%>

Implements: drscheme:language:module-based-language<%>

Implements: drscheme:language:language<%>

front-end

front-end method reads, parses, and optionally compiles the language. The first argument to the
method specifies the location of the unparsed input program. If it is a string, the input program is
in the file named by the string. If it is a text/pos, the input program is in a text. The selector
drscheme:language:text/pos-text extracts the text% text and the drscheme:language:text/pos-start
and drscheme:language:text/pos-end selectors extract the range in the text that should be considered
program text. The second argument is the current settings for the language. The front-end method is
expected to return a thunk that is called repeatedly to get all of the expressions in the program. When all
expressions have been read, the thunk is expected to return eof.

This method is expected to raise an appropriate exception if the program is malformed.

This is called on the user’s thread, as is the thunk it returns.

Implementations of this method should not return fully expanded expressions, since there are two forms of
expansion, using either |expand—, §12.6.1 in PLT MzScheme: Language Manual or expand-top-level-with-
compile-time-evals and the use of the expanded code dictates which applies.

- (send a-drscheme:language:module-based-language-¿language-mixin front-end input settings eval-compile-

22

3. Tools Reference 3.16. drscheme:language:module-based-language->language-mixin

time-part?) ⇒ (-¿ (union sexp syntax eof))
input : (union string text/pos)
settings : settings
eval-compile-time-part? : boolean

Reads a syntax object, from input . Does not use settings.

get-language-name

Returns the name of the language as shown in the REPL when executing programs in the language.

- (send a-drscheme:language:module-based-language-¿language-mixin get-language-name) ⇒ string

Returns the last element of the list returned by get-language-position.

on-execute

The on-execute method is called before any evaluation happens during execution. Use this method to
initialize MzScheme’s parameters, §7.4 in PLT MzScheme: Language Manual for the user. When this
function is called, the user’s thread has already been created, as has its custodian. These parameters have
been changed from the defaults in MzScheme:

• current-custodian is set to a new custodian.

• current-namespace has been set to a newly created empty namespace.This namespace has the follow-
ing modules copied (with namespace-attach-module) from DrScheme’s original namespace:

– ’mzscheme
– ’(lib "mred.ss" "mred")

• break-enabled is #t

• read-curly-brace-as-paren is #t,

• read-square-bracket-as-paren is #t,

• The port-write-handler and port-display-handler have been set to procedures that call
pretty-print and pretty-display instead of write and display. When pretty-print and
pretty-display are called by these parameters, the pretty-print-columns parameter is set to
’infinity, so the output looks just like write and display. This is done so that special scheme
values can be displayed as snips.

• The current-print-covert-hook is to a procedure so that snip%s are just returned directly to be inserted
into the interactions text% object.

• The current-load parameter is set to a procedure calls the language’s front-end method, instead of
jus using read.

• The output and input ports are set to point to the interactions window with these parameters:
current-input-port, current-output-port, and current-error-port.

• The event-dispatch-handler is set so that DrScheme can perform some initial setup and close down
around the user’s code.

• The current-directory and current-load-relative-directory are set to the directory where the
definitions file is saved, or if it isn’t saved, to the initial directory where DrScheme started up.

23

3.17. drscheme:language:simple-module-based-language<%> 3. Tools Reference

• The snip-class-list, returned by get-the-snip-class-list is initialized with all of the snipclasses in
DrScheme’s eventspace’s snip-class-list.

• The error-print-source-location parameter is set to #f and the error-display-handler is set to a handler
that creates an error message from the exception record, with font and color information and inserts
that error message into the definitions window.

- (send a-drscheme:language:module-based-language-¿language-mixin on-execute settings run-in-user-
thread) ⇒ void

settings : settings
run-in-user-thread : ((-¿ void) -¿ void)

Calls the super method.

Uses namespace-require to installs the the result of get-module and Uses namespace-transformer-
require to install the result of get-transformer-module into the user’s namespace.

3.17 drscheme:language:simple-module-based-language<%>

This interface represents the bare essentials when defining a module-based language. Use the
drscheme:language:simple-module-based-language->module-based-language-mixin mixin to con-
struct an implementation of drscheme:language:module-based-language<%> from an implementation of
this interface.

The class drscheme:language:simple-module-based-language% provides an implementation of this inter-
face.

get-language-numbers

Returns a list of numbers, whose length must be the same as the result of get-language-position. Each
number indicates the sorted order of the language positions in the language dialog.

- (send a-drscheme:language:simple-module-based-language get-language-numbers) ⇒ (cons number
(listof number))

get-language-position

This method is the same as get-language-position.

- (send a-drscheme:language:simple-module-based-language get-language-position) ⇒ (cons string
(listof string))

get-module

This method specifies the module that defines the language.

This method replaces front-end.

The result is expected to be the specification of a module except as value, ie quoted.

- (send a-drscheme:language:simple-module-based-language get-module) ⇒ s-expression

24

3. Tools Reference 3.18. drscheme:language:simple-module-based-language%

get-one-line-summary

The result of this method is shown in the language dialog when the user selects this language.

- (send a-drscheme:language:simple-module-based-language get-one-line-summary) ⇒ string

3.18 drscheme:language:simple-module-based-language%

Implements: drscheme:language:simple-module-based-language<%>

- (make-object drscheme:language:simple-module-based-language% module language-position language-
numbers one-line-summary documentation-reference)⇒ drscheme:language:simple-module-based-language%
object

module : s-expression
language-position : (cons string (listof string))
language-numbers = (map (lambda (x) 0) language-position) : (cons number (listof number))
one-line-summary = ”” : string
documentation-reference = #f : (union #f something-else)

The init args are used as the results of the get-module and get-language-position methods

get-language-numbers

Returns a list of numbers, whose length must be the same as the result of get-language-position. Each
number indicates the sorted order of the language positions in the language dialog.

- (send a-drscheme:language:simple-module-based-language get-language-numbers) ⇒ (cons number
(listof number))

returns the corresponding init arg.

get-language-position

This method is the same as get-language-position.

- (send a-drscheme:language:simple-module-based-language get-language-position) ⇒ s-expression

returns the corresponding init arg.

get-module

This method specifies the module that defines the language.

This method replaces front-end.

The result is expected to be the specification of a module except as value, ie quoted.

- (send a-drscheme:language:simple-module-based-language get-module) ⇒ (cons string (listof string))

returns the corresponding init arg.

25

3.19. drscheme:language:simple-module-based-language->module-based-language-mixin3. Tools Reference

get-one-line-summary

The result of this method is shown in the language dialog when the user selects this language.

- (send a-drscheme:language:simple-module-based-language get-one-line-summary) ⇒ string

returns the corresponding initialization argument.

3.19 drscheme:language:simple-module-based-language->module-based-language-mixin

Domain: drscheme:language:simple-module-based-language<%>

Implements: drscheme:language:module-based-language<%>

Implements: drscheme:language:simple-module-based-language<%>

This mixin uses a struct definition for its settings:
(define-struct drscheme:language:simple-settings (case-sensitive printing-style fraction-style show-sharing insert-newlines debugging))
;; case-sensitive : boolean
;; printing-style : (union ’constructor ’quasiquote ’write)
;; fraction-style : (union ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
;; show-sharing : boolean
;; insert-newlines : boolean
;; debugging : boolean

The settings in this structure reflect the settings show in the language configuration dialog for languages
constructed with this mixin. The first controls the input for the language. The rest specify printing controls
for the language. The style ’write is the default style, used in the MzScheme REPL. The sharing field
determines if cycles and sharing in values are displayed when the value is rendered. The insert newlines
field determines if values in the repl are formatted with write style-line printouts, or with pretty-print
multi-line printouts.

config-panel

This method is the same as config-panel.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin config-panel
parent) ⇒ (case-¿ (-¿ settings) (settings -¿ void))

parent : (instanceof panel%)

Constructs a configuration panel that lets the user configure all of the settings for this language.
See also §3.19 for details of the simple-settings structure, this mixins settings type.

default-settings

This method is the same as default-settings.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin default-settings)
⇒ settings

26

3. Tools Reference3.19. drscheme:language:simple-module-based-language->module-based-language-mixin

The defaults for the settings are

– case-sensitive is #f
– printing-style is ’write
– show-sharing is #f
– insert-newlines is #t

See also §3.19 for details of the simple-settings structure, this mixins settings type.

default-settings?

This method is the same as default-settings?.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin default-settings?
settings) ⇒ boolean

settings : settings

get-init-code

Returns a module in sexpression form that is used for creating executables. The module must provide a
thunk, called init-code.

When either a stand-alone executable or a launcher is created, the module is required, and init-code is
invoked. This procedure is expected to set up the environment, based on the settings.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin get-init-code
settings) ⇒ sexpression

settings : settings

Creates an sexpression of a module that sets the current-inspector, read-case-sensitive, and
error-value->string parameters. Additionally, it may load errortrace, if debugging is enabled.

get-transformer-module

This method specifies the module that defines the transformation language. It is used to initialize the
transformer portion of the user’s namespace.

The result is expected to be the specification of a module except as value, ie quoted.

See also get-module.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin get-transformer-module)
⇒ s-expression

Returns ’mzscheme.

marshall-settings

This method is the same as marshall-settings.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin marshall-settings
settings) ⇒ writable

settings : settings

27

3.19. drscheme:language:simple-module-based-language->module-based-language-mixin3. Tools Reference

Constructs a vector from the structure.

See also §3.19 for details of the simple-settings structure, this mixins settings type.

on-execute

This method is the same as on-execute.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin on-execute
settings run-in-user-thread) ⇒ void

settings : settings
run-in-user-thread : ((-¿ void) -¿ void)

Sets the case sensitivity of the language.

Sets the structure inspector to a new inspector, saving the original inspector for use during printing.

If debugging is enabled, it sets the current-eval handler to one that annotates each evaluated program
with debugging annotations. Additionally, it sets the error-display-handler to show the debugging
annotations when an error is raised.

See also §3.19 for details of the simple-settings structure, this mixin’s settings type.

render-value

This method is the same as render-value.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin render-value
value settings port port-write) ⇒ void

value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%) -¿ void))

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-execute)

See also §3.19 for details of the simple-settings structure, this mixins settings type.

render-value/format

This method is the same as render-value/format.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin render-value/format
value settings port port-write) ⇒ void

value : TST
settings : settings
port : port
port-write : (union #f ((instanceof snip%) -¿ void))

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-execute)

See also §3.19 for details of the simple-settings structure, this mixins settings type.

28

3. Tools Reference 3.20. drscheme:rep:context<%>

unmarshall-settings

This method is the same as unmarshall-settings.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin unmarshall-settings
input) ⇒ (union #f settings)

input : writable

Builds a settings structure from the vector, or #f if the vector doesn’t match the types of the structure.

See also §3.19 for details of the simple-settings structure, this mixins settings type.

use-mred-launcher?

This method is called when an executable is created to determine if the executable should use the mred or
the mzscheme binary.

- (send a-drscheme:language:simple-module-based-language-¿module-based-language-mixin use-mred-launcher?)
⇒ boolean

Returns #t.

3.20 drscheme:rep:context<%>

Objects that match this interface provide all of the services that the drscheme:rep:text% class needs to
connect with it’s context.

disable-evaluation

Call this method to disable evaluation GUI evaluation while some evaluation (or expansion) is taking place
on another thread.

Override this method if you add a GUI-based mechanism for initiating evaluation in the frame.

See also enable-evaluation.

- (send a-drscheme:rep:context disable-evaluation) ⇒ void

enable-evaluation

This method must disable all user-sponsored evaluation. It is called once the user starts some evaluation to
ensure that only one evaluation proceeds at a time.

See also enable-evaluation.

- (send a-drscheme:rep:context enable-evaluation) ⇒ void

ensure-rep-shown

- (send a-drscheme:rep:context ensure-rep-shown) ⇒ void

This method is called to force the rep window to be visible when, for example, an error message is put
into the rep.

29

3.20. drscheme:rep:context<%> 3. Tools Reference

get-breakables

Returns the last values passed to set-breakables.

- (send a-drscheme:rep:context get-breakables) ⇒ (values (union thread #f) (union custodian #f))

get-directory

The result of this method is used as the initial directory for the user’s program to be evaluted in.

- (send a-drscheme:rep:context get-directory) ⇒ : (union string #f)

needs-execution?

This method should return #t when the state of the program that the repl reflects has changed.

- (send a-drscheme:rep:context needs-execution?) ⇒ boolean

not-running

- (send a-drscheme:rep:context not-running) ⇒ void

This method should update some display in the gui that indicates no evaluation is currently proceeding
in the user’s world.

reset-offer-kill

The break button typically offers to kill if it has been pushed twice in a row. If this method is called,
however, it ignores any prior clicks.

- (send a-drscheme:rep:context reset-offer-kill) ⇒ void

running

- (send a-drscheme:rep:context running) ⇒ void

This method should update some display in the gui that indicates evaluation is currently proceeding
in the user’s world.

set-breakables

Calling this method with a thread and a custodian means that the next time the break button is clicked, it
will either break the thread or shutdown the custodian.

See also get-breakables.

- (send a-drscheme:rep:context set-breakables thread custodian) ⇒ void
thread : (union thread #f)
custodian : (union custodian #f)

30

3. Tools Reference 3.21. drscheme:rep:drs-bindings-keymap-mixin

3.21 drscheme:rep:drs-bindings-keymap-mixin

Domain: editor:keymap<%>

Implements: editor:keymap<%>

This mixin adds some drscheme-specific keybindings to the editor it is mixed onto.

get-keymaps

The keymaps returned from this method are chained to this editor<%>’s keymap.

- (send a-drscheme:rep:drs-bindings-keymap-mixin get-keymaps) ⇒ (listof (instanceof keymap%))

Calls the super method and adds in a keymap with the drscheme-specific keybindings:
– f5 - execute
– c:x;o - toggles the focus between the definition and interactions windows.

3.22 drscheme:rep:text<%>

3.23 drscheme:rep:text%

Implements: drscheme:rep:text<%>

This class implements a read-eval-print loop for DrScheme. User submitted evaluations in DrScheme are
evaluated asynchronously, in an eventspace created for the user. No evaluations carried out by this class
affect the implementation that uses it.

- (make-object drscheme:rep:text% context) ⇒ drscheme:rep:text% object
context : (implements drscheme:rep:context<%>)

after-delete

Called after a given range is deleted from the editor (and after the display is refreshed; use on-delete and
begin-edit-sequence to avoid extra refreshes when after-delete modifies the editor).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-drscheme:rep:text after-delete start end) ⇒ void
start : exact non-negative integer
end : exact non-negative integer

Resets any error highlighting in this editor.

after-insert

Called after items are inserted into the editor (and after the display is refreshed; use on-insert and
begin-edit-sequence to avoid extra refreshes when after-insert modifies the editor).

31

3.23. drscheme:rep:text% 3. Tools Reference

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-drscheme:rep:text after-insert start len) ⇒ void
start : exact non-negative integer
len : exact non-negative integer

Resets any error highlighting in this editor.

cleanup-transparent-io

Resets the little I/O box so that the next I/O goes into a newly created box in the repl.

This method is called when a value is printed to the repl or a prompt is inserted into the repl.

This method expects to be called on DrScheme’s main eventspace thread.

- (send a-drscheme:rep:text cleanup-transparent-io) ⇒ void

display-results

- (send a-drscheme:rep:text display-results results) ⇒ void
results : (list-of TST)

This displays each of the elemnts of results in the interactions window, expect those elements of results
that are void. Those are just ignored.

do-many-evals

Use this function to evaluate code or run actions that should mimic the user’s interactions. For example,
DrScheme uses this function to evaluate expressions in the definitions window and expressions submitted at
the prompt.

- (send a-drscheme:rep:text do-many-evals run-loop) ⇒ void
run-loop : (((-¿ void) -¿ void) -¿ void)

The function run-loop is called. It is expected to loop, calling it’s argument with a thunk that cor-
responds to the user’s evaluation. It should call it’s argument once for each expression the user is
evaluating. It should pass a thunk to it’s argument that actually does the users’s evaluation.

do-many-text-evals

This function evaluates all of the expressions in a text.

- (send a-drscheme:rep:text do-many-text-evals text start end) ⇒ void
text : a text% object
start : int
end : int

It evaluates all of the expressions in text starting at start and ending at end , calling do-many-evals
to handle the evaluation.

32

3. Tools Reference 3.23. drscheme:rep:text%

get-error-range

Indicates the highlighted error range. The state for the error range is shared across all instances of this class,
so there can only be one highlighted error region at a time.

- (send a-drscheme:rep:text get-error-range) ⇒ (union #f (list (instanceof text:basic% number
number)))

If \#f, no region is highlighted. If a list, the first element is the editor where the range is highlighted
and the second and third are the beginning and ending regions, respectively.

get-this-err

This method returns the standard error port that prints in the repl.

- (send a-drscheme:rep:text get-this-err) ⇒ port

get-this-in

- (send a-drscheme:rep:text get-this-in) ⇒ input-port

returns the input port for this repl.

get-this-out

This method returns the standard output port that prints in the repl.

- (send a-drscheme:rep:text get-this-out) ⇒ port

get-this-result

This method returns a port used to write values that show up in the repl.

- (send a-drscheme:rep:text get-this-result) ⇒ port

get-user-custodian

This is the custodian controlling the user’s program.

- (send a-drscheme:rep:text get-user-custodian) ⇒ (union #f custodian)

get-user-eventspace

This is the user’s eventspace. The result of get-user-thread is the main thread of this eventspace.

- (send a-drscheme:rep:text get-user-eventspace) ⇒ (union #f eventspace)

get-user-namespace

Returns the user’s namespace. This method returns a new namespace each time execute is clicked.

33

3.23. drscheme:rep:text% 3. Tools Reference

- (send a-drscheme:rep:text get-user-namespace) ⇒ (union #f namespace)

get-user-thread

This method returns the thread that the users code runs in. It is returns a different result, each time the
user executes the program.

It is #f before the first time the user click on the Execute button or the evaluation has been killed.

This thread has all of its parameters initialized according to the settings of the current execution. See
parameters, §7.4 in PLT MzScheme: Language Manual for more information about parameters.

- (send a-drscheme:rep:text get-user-thread) ⇒ (union #f thread)

hide-eof-icon

- (send a-drscheme:rep:text hide-eof-icon) ⇒ void

Hides the eof icon for the input port in this repl. See also show-eof-icon.

highlight-error

Call this method to highlight an error associated with this repl. See also highlight-errors,
reset-highlighting, highlight-error/line-coland highlight-error/forward-sexp.

This method highlights a series of dis-contiguous ranges in the editor.

- (send a-drscheme:rep:text highlight-error text start end) ⇒ void
text : text:basic<%>
start : small-integer
end : small-integer

highlight-error/forward-sexp

Call this method to highlight an error associated with this repl. This method uses the paren matching library
in DrScheme to determine the end position of the error.

See also reset-highlighting and highlight-error.

- (send a-drscheme:rep:text highlight-error/forward-sexp text start-loc) ⇒ void
text : (instance (implements text:basic<%>))
start-loc : small-integer

highlight-error/line-col

Call this method to highlight an error associated with this repl. See also reset-highlighting,
highlight-errorand highlight-error/forward-sexp.

- (send a-drscheme:rep:text highlight-error/line-col text start-line start-col end-line end-col)⇒
void

text : (instance (implements text:basic<%>))

34

3. Tools Reference 3.23. drscheme:rep:text%

start-line : number
start-col : number
end-line : number
end-col : number

highlight-errors

Call this method to highlight an error associated with this repl. See also reset-highlighting,
highlight-error/line-coland highlight-error/forward-sexp.

This method highlights a series of dis-contiguous ranges in the editor.

It puts the caret at the location of the first error.

- (send a-drscheme:rep:text highlight-errors locs) ⇒ void
locs : (listof (list (instance (implements text:basic<%>)) small-integer small-integer))

initialize-console

- (send a-drscheme:rep:text initialize-console) ⇒ void

This inserts the “Welcome to DrScheme” message into the interactions buffer, calls reset-console,
insert-prompt, and clear-undos.

insert-prompt

- (send a-drscheme:rep:text insert-prompt) ⇒ void

Inserts a new prompt at the end of the text.

kill-evaluation

This method is called when the user chooses the kill menu item.

- (send a-drscheme:rep:text kill-evaluation) ⇒ void

on-close

This method is called when a frame that shows this buffer is closed.

- (send a-drscheme:rep:text on-close) ⇒ void

Calls shutdown.

Calls the super method.

queue-output

This method queues thunks for drscheme’s eventspace in a special output-related queue.

- (send a-drscheme:rep:text queue-output thnk) ⇒ void
thnk : (-¿ void?)

35

3.23. drscheme:rep:text% 3. Tools Reference

reset-console

- (send a-drscheme:rep:text reset-console) ⇒ void

Kills the old eventspace, and creates a new parameterization

reset-highlighting

This method resets the highlighting being displayed for this repl. See also: highlight-error,
highlight-error/line-col and highlight-error/forward-sexp.

- (send a-drscheme:rep:text reset-highlighting) ⇒ void

run-in-evaluation-thread

This function runs it’s arguments in the user evaluation thread. This thread is the same as the user’s
eventspace main thread.

See also do-many-evals.

- (send a-drscheme:rep:text run-in-evaluation-thread f) ⇒ void
f : (-¿ void)

Calls f , after switching to the user’s thread.

show-eof-icon

- (send a-drscheme:rep:text show-eof-icon) ⇒ void

Shows the eof icon for the input port in this repl. Clicking on the icon calls the submit-eof method.
See also hide-eof-icon.

shutdown

Shuts down the user’s program and all windows. Reclaims any resources the program allocated. It is expected
to be called from DrScheme’s main eventspace thread.

- (send a-drscheme:rep:text shutdown) ⇒ void

submit-eof

- (send a-drscheme:rep:text submit-eof) ⇒ void

submit-eof

- (send a-drscheme:rep:text submit-eof) ⇒ void

Submits an eof to the input port for this repl.

this-err-write

- (send a-drscheme:rep:text this-err-write to-display) ⇒ void
to-display : (union string (instanceof (derivedfrom snip%)))

36

3. Tools Reference 3.24. drscheme:snip:special<%>

displays to-display on the error port for this repl.

this-out-write

- (send a-drscheme:rep:text this-out-write to-display) ⇒ void
to-display : (union string (instanceof (derivedfrom snip%)))

displays to-display on the output port for this repl.

this-result-write

- (send a-drscheme:rep:text this-result-write to-display) ⇒ void
to-display : (union string (instanceof (derivedfrom snip%)))

displays to-display on the value display port for this repl.

wait-for-io-to-complete

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in DrScheme’s eventspace

- (send a-drscheme:rep:text wait-for-io-to-complete) ⇒ void

wait-for-io-to-complete/user

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in the user’s eventspace

- (send a-drscheme:rep:text wait-for-io-to-complete/user) ⇒ void

3.24 drscheme:snip:special<%>

Snips that implement this interface are treated specially by drscheme:language:open-input-text. See
drscheme:language:open-input-text for details.

read-special

This method determines the syntax object that corresponds to this snip and the number of cursor position
in the snip, for source location information.

The result of this method is used by drscheme:language:open-input-textas the result of the read-special,
§11.1.6 in PLT MzScheme: Language Manual argument to construct the custom port.

- (send a-drscheme:snip:special read-special file line col pos) ⇒ (values syntax number)
file : TST
line : number
col : number
pos : number

37

3.25. drscheme:unit:definitions-canvas% 3. Tools Reference

3.25 drscheme:unit:definitions-canvas%

Superclass: editor-canvas%

- (instantiate drscheme:unit:definitions-canvas% () (parent) [(editor)] [(style)] [(scrolls-
per-page)] [(label)] [(wheel-step)] [(line-count)] [(enabled)] [(vert-margin)]
[(horiz-margin)] [(min-width)] [(min-height)] [(stretchable-width)] [(stretchable-
height)]) ⇒ drscheme:unit:definitions-canvas% object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]
label = #f : string (up to 200 characters) or #f
wheel-step = 3 : exact integer in [1, 10000] or #f
line-count = #f : exact integer in [1, 1000] or #f
enabled = #t : boolean
vert-margin = 0 : exact integer in [0, 1000]
horiz-margin = 0 : exact integer in [0, 1000]
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

If a canvas is initialized with #f for editor , install an editor later with set-editor.

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrolls-per-page argument sets
this value.

If provided, the wheel-step argument is passed on to the wheel-step method. The default wheel step
can be overridden globally though the ’|MrEd:wheelStep| preference; see “Preferences” (section 12, page
319).

If line-count is not #f, it is passed on to the set-line-count method.

For information about the enabled argument, see window<%>. For information about the horiz-margin
and vert-margin arguments, see subarea<%>. For information about the min-width, min-height ,
stretchable-width, and stretchable-height arguments, see area<%>.

3.26 drscheme:unit:definitions-text<%>

This interface is implemented by the definitions text.

get-next-settings

This method returns the language-settings that will be used on the execute in this DrScheme window.

- (send a-drscheme:unit:definitions-text get-next-settings) ⇒ language-settings

38

3. Tools Reference
3.27. drscheme:unit:definitions-text% = (scheme:text-mixin

(drscheme:rep:drs-bindings-keymap-mixin (drscheme:unit:program-editor-mixin text:info%)))

3.27 drscheme:unit:definitions-text% = (scheme:text-mixin (drscheme:rep:drs-bindings-keymap-mixin

(drscheme:unit:program-editor-mixin text:info%)))

drscheme:unit:definitions-text% = (scheme:text-mixin (drscheme:rep:drs-bindings-keymap-mixin
(drscheme:unit:program-editor-mixin text:info%)))

Extends: drscheme:unit:definitions-text<%>

- (instantiate drscheme:unit:definitions-text% () [(line-spacing)] [(tab-stops)] [(auto-
wrap)]) ⇒ drscheme:unit:definitions-text% object

line-spacing = 1.0 : non-negative real number
tab-stops = null : list of real numbers
auto-wrap = #f : boolean

The line-spacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed. This spacing is included in the reported height of each
line.

See set-tabs for information about tabstops.

If auto-wrap is true, then auto-wrapping is enabled via auto-wrap .

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

set-filename

Set the path name for the file to be saved from or reloaded into this editor. This method is also called when
the filename changes through any method (such as load-file).

The filename of an editor can be changed by the system in response to file loading and saving method calls,
and such changes do not go through this method; use on-load-file and on-save-file to monitor such
filename changes.

- (send a-drscheme:unit:definitions-text set-filename filename temporary?) ⇒ void
filename : string or #f
temporary? = #f : boolean

Calls update-save-message.

set-modified

Sets the modified state of the editor. Usually, the state is changed automatically after an insertion, deletion,
or style change by calling this method. (This method is also called when the modification state changes
through any method.) This method is usually not called when the state of the flag is not changing.

See also is-modified?.

- (send a-drscheme:unit:definitions-text set-modified modified?) ⇒ void
modified? : boolean

Calls update-save-button.

39

3.28. drscheme:unit:frame<%> 3. Tools Reference

3.28 drscheme:unit:frame<%>

clear-annotations

Call this method to clear any annotations in the text before executing or analyzing or other such activities
that should process the program.

Tools that annotate the program text should override this method to clear annotations.

DrScheme call this method before a program is executed.

- (send a-drscheme:unit:frame clear-annotations) ⇒ void

Does nothing.

get-definitions-canvas

- (send a-drscheme:unit:frame get-definitions-canvas)⇒ (instanceof (derivedfrom drscheme:unit:definitions-canvas%))

This canvas is the canvas containing the get-definitions-text. It is initially the top half of the
drscheme window.

This canvas defaults to a drscheme:unit:definitions-canvas% object, but if you change the
drscheme:get/extend:extend-definitions-canvas procedure, it will use the class in the param-
eter to create the canvas.

get-definitions-text

- (send a-drscheme:unit:frame get-definitions-text)⇒ (instaceof (derivedfrom drscheme:unit:definitions-text%))

This text is initially the top half of the drscheme window and contains the users program.

This text defaults to a text% object, but if you change drscheme:get/extend:extend-definitions-text
procedure, it will use the extended class to create the text.

get-interactions-canvas

- (send a-drscheme:unit:frame get-interactions-canvas)⇒ (instanceof (derivedfrom drscheme:unit:interactions-canvas%))

This canvas is the canvas containing the get-interactions-text. It is initially the bottom half of
the drscheme window.

This canvas defaults to a drscheme:unit:interactions-canvas% object, but if you use the
drscheme:get/extend:extend-interactions-canvas procedure, it will use the extended class to
create the canvas.

get-interactions-text

- (send a-drscheme:unit:frame get-interactions-text)⇒ (instanceof (derivedfrom drscheme:rep:text%))

This text is initially the bottom half of the drscheme window and contains the users interactions with
the REPL.

This text defaults to a drscheme:rep:text% object, but if you use the drscheme:get/extend:extend-interactions-text
procedure, it will use the extended class to create the text.

40

3. Tools Reference
3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin

frame:searchable%))

get-special-menu

Returns the "Special" menu.

- (send a-drscheme:unit:frame get-special-menu) ⇒ (is-a?/c menu%)

3.29 drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin

frame:searchable%))

drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin frame:searchable%))

Extends: drscheme:rep:context<%>

Extends: drscheme:unit:frame<%>

This frame inserts the Scheme and Language menus into the menu bar as it is initialized.

- (instantiate drscheme:unit:frame% () (label) [(parent)] [(width)] [(height)] [(x
)] [(y)] [(style)] [(enabled)] [(border)] [(spacing)] [(alignment)] [(min-
width)] [(min-height)] [(stretchable-width)] [(stretchable-height)])⇒ drscheme:unit:frame%
object

label : string (up to 200 characters)
parent = #f : frame% object or #f
width = #f : exact integer in [0, 10000] or #f
height = #f : exact integer in [0, 10000] or #f
x = #f : exact integer in [0, 10000] or #f
y = #f : exact integer in [0, 10000] or #f
style = null : list of symbols in ’(no-resize-border no-caption no-system-menu mdi-parent

mdi-child)
enabled = #t : boolean
border = 0 : exact integer in [0, 1000]
spacing = 0 : exact integer in [0, 1000]
alignment = ’(left top) : two-element list: ’left, ’center or ’right and ’top, ’center or ’bottom
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see set-label),
the title bar is updated.
The parent argument can be #f or an existing frame. Under Windows, if parent is an existing frame,
the new frame is always on top of its parent. Also, the parent frame may be an MDI parent frame
from a new MDI child frame. Under Windows and X (for many window managers), a frame is iconized
when its parent is iconized.
If parent is #f, then the eventspace for the new frame is the current eventspace, as determined by
current-eventspace . Otherwise, parent ’s eventspace is the new frame’s eventspace.
If the width or height argument is not #f, it specifies an initial size for the frame (in pixels) assuming
that it is larger than the minimum size, otherwise the minimum size is used.
If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a location is
selected automatically (tiling frames and dialogs as they are created).

41

3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin
frame:searchable%)) 3. Tools Reference

The style flags adjust the appearance of the frame on some platforms:

– ’no-resize-border — omits the resizeable border around the window (Windows, X MWM) or grow
box in the bottom right corner (Mac OS)

– ’no-caption — omits the title bar for the frame (Windows, X MWM)
(X Gnome, X KDE: the frame decoration is omitted completely when ’no-resize-border and ’no-
caption are combined.)

– ’no-system-menu — omits the system menu (Windows)
– ’mdi-child — creates the frame as a MDI (multiple document interface) child frame, mutually

exclusive with ’mdi-parent (Windows)
– ’mdi-parent — creates the frame as a MDI (multiple document interface) parent frame, mutually

exclusive with ’mdi-child (Windows)

If the ’mdi-child style is specified, the parent must be a frame with the ’mdi-parent style, otherwise an
exn:application:mismatch exception is raised.

Even if the frame is not shown, a few notification events may be queued for the frame on creation.
Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until some events are
handled, or the frame’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the border , spac-
ing , and alignment arguments, see area-container<%>. For information about the min-width, min-
height , stretchable-width, and stretchable-height arguments, see area<%>.

add-show-menu-items

This method is called during the construction of the show menu. This method is intended to be overridden.
It is expected to add other Show/Hide menu items to the show menu.

See also get-show-menu.

- (send a-drscheme:unit:frame add-show-menu-items show-menu) ⇒ void
show-menu : (is-a?/c menu%)

Adds the “Show Definitions”, “Show Interactions” and “Show Contour” menu items.

break-callback

This method is called when the user clicks on the break button or chooses the break menu item.

- (send a-drscheme:unit:frame break-callback) ⇒ void

Breaks the user’s evaluation started by the Execute button (or possibly a queued callback in the user’s
eventspace).

change-to-file

- (send a-drscheme:unit:frame change-to-file file) ⇒ void
file : string

Loads this file into this already created frame. In normal DrScheme use, this method is only called if
this is the first frame opened and no editing has occurred. It should be safe to call this at anytime,
however.

42

3. Tools Reference
3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin

frame:searchable%))

clear-annotations

Call this method to clear any annotations in the text before executing or analyzing or other such activities
that should process the program.

Tools that annotate the program text should override this method to clear annotations.

DrScheme call this method before a program is executed.

- (send a-drscheme:unit:frame clear-annotations) ⇒ void

Clears any error highlighting.

- (send a-drscheme:unit:frame clear-annotations) ⇒ void

disable-evaluation

Call this method to disable evaluation GUI evaluation while some evaluation (or expansion) is taking place
on another thread.

Override this method if you add a GUI-based mechanism for initiating evaluation in the frame.

See also enable-evaluation.

- (send a-drscheme:unit:frame disable-evaluation) ⇒ void

disable-evaluation

Call this method to disable evaluation GUI evaluation while some evaluation (or expansion) is taking place
on another thread.

Override this method if you add a GUI-based mechanism for initiating evaluation in the frame.

See also enable-evaluation.

- (send a-drscheme:unit:frame disable-evaluation) ⇒ void

Disables the execute button, and the execute menu item and locks the interactions window, and the
definitions window.

edit-menu:between-select-all-and-find

This method is called between the addition of the select-all menu-item and before the addition of the find
menu-item to the edit-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:unit:frame edit-menu:between-select-all-and-find) ⇒ void

Adds the "Split" and "Collapse" menu items.

enable-evaluation

This method must disable all user-sponsored evaluation. It is called once the user starts some evaluation to
ensure that only one evaluation proceeds at a time.

See also enable-evaluation.

43

3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin
frame:searchable%)) 3. Tools Reference

- (send a-drscheme:unit:frame enable-evaluation) ⇒ void

Enables the execute button, and the execute menu item and locks the interactions window and the
definitions window.

ensure-defs-shown

Ensures that the definitions window is visible.

- (send a-drscheme:unit:frame ensure-defs-shown) ⇒ void

ensure-rep-shown

- (send a-drscheme:unit:frame ensure-rep-shown) ⇒ void

Shows the interactions window

execute-callback

This method is called when the user clicks on the execute button or chooses the execute menu item.

- (send a-drscheme:unit:frame execute-callback) ⇒ void

It calls ensure-rep-shown and then it calls do-many-text-evals passing in the result of
get-interactions-text and its entire range, unless the first two characters are ”#!” in which case,
it skips the first line.

file-menu:between-open-and-revert

This method is called between the addition of the open menu-item and before the addition of the revert
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:unit:frame file-menu:between-open-and-revert) ⇒ void

Calls the super method and adds a separator-menu-item% to the menu.

file-menu:between-print-and-close

This method is called between the addition of the print menu-item and before the addition of the close
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:unit:frame file-menu:between-print-and-close) ⇒ void

Adds a menu item for printing the interactions.

file-menu:between-save-as-and-print

This method is called between the addition of the save-as menu-item and before the addition of the print
menu-item to the file-menu menu. Override it to add additional menus at that point.

- (send a-drscheme:unit:frame file-menu:between-save-as-and-print) ⇒ void

Adds a submenu that contains various save options:

44

3. Tools Reference
3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin

frame:searchable%))

– save definitions as text
– save interactions
– save interactions as
– save interactions as text

and adds a separator item.

file-menu:print-string

The result of this method is the name of this menu.

- (send a-drscheme:unit:frame file-menu:print-string) ⇒ void

returns "Definitions"

file-menu:save-as-string

The result of this method is the name of this menu.

- (send a-drscheme:unit:frame file-menu:save-as-string) ⇒ void

Returns "Definitions".

file-menu:save-string

The result of this method is the name of this menu.

- (send a-drscheme:unit:frame file-menu:save-string) ⇒ void

Returns "Definitions".

get-break-button

Returns the break button. Mostly used for test suites.

- (send a-drscheme:unit:frame get-break-button) ⇒ (instanceof button%)

get-button-panel

This panel goes along the top of the drscheme window and has buttons for important actions the user
frequently executes.

A tool can add a button to this panel to make some new functionality easily accessible to the user.

See also drscheme:unit:make-bitmap.

- (send a-drscheme:unit:frame get-button-panel) ⇒ (instanceof horizontal-panel%)

get-canvas

Returns the canvas used to display the editor<%> in this frame.

45

3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin
frame:searchable%)) 3. Tools Reference

- (send a-drscheme:unit:frame get-canvas) ⇒ (instanceof editor-canvas%)

Returns the result of get-definitions-canvas.

get-canvas%

The result of this method is used to create the canvas for the editor<%> in this frame.

- (send a-drscheme:unit:frame get-canvas%) ⇒ (instanceof (derived-from canvas%))

Returns the result of drscheme:get/extend:get-definitions-canvas.

get-definitions/interactions-panel-parent

This method is provided so that tools can add area-container<%>s to the drscheme frame. Override this
method so that it returns a child of the super-classes’s result and insert new children inbetween.

- (send a-drscheme:unit:frame get-definitions/interactions-panel-parent)⇒ (instanceof vertical-panel%)

Returns the result of get-area-container

get-directory

The result of this method is used as the initial directory for the user’s program to be evaluted in.

- (send a-drscheme:unit:frame get-directory) ⇒ (union string #f)

This is the directory that the file is saved in, or the directory DrScheme started up in, if the file has
not been saved.

get-editor

Returns the editor in this frame.

- (send a-drscheme:unit:frame get-editor) ⇒ (instanceof editor<%>)

Returns the result of get-definitions-text.

get-editor%

The result of this class is used to create the editor<%> in this frame.

Override this method to specify a different editor class.

- (send a-drscheme:unit:frame get-editor%) ⇒ (instanceof (derived-from editor<%>))

Returns the result of drscheme:get/extend:get-definitions-text.

get-execute-button

Returns the execute button. Mostly used for test suites.

- (send a-drscheme:unit:frame get-execute-button) ⇒ (instanceof button%)

46

3. Tools Reference
3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin

frame:searchable%))

get-text-to-search

Override this method to specify which text to search.

- (send a-drscheme:unit:frame get-text-to-search) ⇒ a text:searching% object

returns the text that is active in the last canvas passed to make-searchable

make-searchable

- (send a-drscheme:unit:frame make-searchable canvas) ⇒ void
canvas : a drscheme:unit:interactions-canvas% object

stores the canvas, until get-text-to-search is called.

on-close

Called just before the window is closed (e.g., by the window manager). This method is not called by show .

See also can-close?.

- (send a-drscheme:unit:frame on-close) ⇒ void

Sends the result of get-interactions-text the shutdown and on-close methods.

Calls the super method.

on-size

Called when the window is resized. The window’s new size (in pixels) is provided to the method. The size
values are for the entire window, not just the client area.

- (send a-drscheme:unit:frame on-size width height) ⇒ void
width : exact integer in [0, 10000]
height : exact integer in [0, 10000]

Updates the preferences for the window width and height so next time a drscheme window is opened,
it will be this width and height.

reset-offer-kill

The break button typically offers to kill if it has been pushed twice in a row. If this method is called,
however, it ignores any prior clicks.

- (send a-drscheme:unit:frame reset-offer-kill) ⇒ void

set-breakables

Calling this method with a thread and a custodian means that the next time the break button is clicked, it
will either break the thread or shutdown the custodian.

See also get-breakables.

47

3.29. drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin
frame:searchable%)) 3. Tools Reference

- (send a-drscheme:unit:frame set-breakables thread custodian) ⇒ void
thread : (union thread #f)
custodian : (union custodian #f)

set-breakables

Calling this method with a thread and a custodian means that the next time the break button is clicked, it
will either break the thread or shutdown the custodian.

See also get-breakables.

- (send a-drscheme:unit:frame set-breakables) ⇒ (values (union thread #f) (union custodian #f))

still-untouched?

determines if the definitions window has not been modified. Used in conjunction with change-to-file.

- (send a-drscheme:unit:frame still-untouched?) ⇒ boolean

Returns #t if the buffer is empty, it has not been saved and it is unmodified.

update-save-button

- (send a-drscheme:unit:frame update-save-button modified?) ⇒ void
modified? : boolean

This method hides or shows the save button, based on the modified? argument.

If the save button has not been created yet, it remembers the modified? argument as an initial visiblity
for the save button.

This method is called by the set-modified method.

update-save-message

- (send a-drscheme:unit:frame update-save-message name) ⇒ void
name : string

Updates the save message on the drsceme frame. This method is called by the set-filename method.

update-shown

This method is intended to be overridden. It’s job is to update the "Show" menu to match the state of the
visible windows. In the case of the standard DrScheme window, it change the menu items to reflect the
visiblity of the definitions and interaction editor-canvas%s.

Call this method whenever the state of the show menu might need to change.

- (send a-drscheme:unit:frame update-shown) ⇒ void

Updates the interactions, definitions, and contour menu items based on the contents of the windows.

48

3. Tools Reference 3.30. drscheme:unit:interactions-canvas%

3.30 drscheme:unit:interactions-canvas%

- (instantiate drscheme:unit:interactions-canvas% () (parent) [(editor)] [(style)] [(scrolls-
per-page)] [(label)] [(wheel-step)] [(line-count)] [(enabled)] [(vert-margin)]
[(horiz-margin)] [(min-width)] [(min-height)] [(stretchable-width)] [(stretchable-
height)]) ⇒ drscheme:unit:interactions-canvas% object

parent : frame%, dialog%, panel%, or pane% object
editor = #f : text% or pasteboard% object or #f
style = null : list of symbols in ’(no-hscroll no-vscroll hide-hscroll hide-vscroll)
scrolls-per-page = 100 : exact integer in [1, 10000]
label = #f : string (up to 200 characters) or #f
wheel-step = 3 : exact integer in [1, 10000] or #f
line-count = #f : exact integer in [1, 1000] or #f
enabled = #t : boolean
vert-margin = 0 : exact integer in [0, 1000]
horiz-margin = 0 : exact integer in [0, 1000]
min-width = 0 : exact integer in [0, 10000]
min-height = 0 : exact integer in [0, 10000]
stretchable-width = #t : boolean
stretchable-height = #t : boolean

If a canvas is initialized with #f for editor , install an editor later with set-editor.

The style list can contain the following flags:

– ’no-hscroll — disallows horizontal scrolling
– ’no-vscroll — disallows vertical scrolling
– ’hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar
– ’hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard vertical
scrolling is based on a fixed number of steps per horizontal page. The scrolls-per-page argument sets
this value.

If provided, the wheel-step argument is passed on to the wheel-step method. The default wheel step
can be overridden globally though the ’|MrEd:wheelStep| preference; see “Preferences” (section 12, page
319).

If line-count is not #f, it is passed on to the set-line-count method.

For information about the enabled argument, see window<%>. For information about the horiz-margin
and vert-margin arguments, see subarea<%>. For information about the min-width, min-height ,
stretchable-width, and stretchable-height arguments, see area<%>.

on-focus

Called when a window receives or loses the keyboard focus. If the argument is #t, the keyboard focus was
received, otherwise it was lost.

Note that under X, keyboard focus can move to the menu bar when the user is selecting a menu item.

- (send a-drscheme:unit:interactions-canvas on-focus on?) ⇒ void
on? : boolean

When the focus is on, calls make-searchable with this.

49

3.31. drscheme:unit:program-editor-mixin 3. Tools Reference

3.31 drscheme:unit:program-editor-mixin

Domain: editor:basic<%>

Domain: (class->interface text%)

Implements: editor:basic<%>

This mixes in the ability to reset the highlighting for error message when the user modifies the buffer. Use
it for editors that have program text where errors can occur.

- (instantiate drscheme:unit:program-editor-mixin% () [(line-spacing)] [(tab-stops)] [(auto-
wrap)]) ⇒ drscheme:unit:program-editor-mixin% object

line-spacing = 1.0 : non-negative real number
tab-stops = null : list of real numbers
auto-wrap = #f : boolean

The line-spacing argument sets the additional amount of space (in DC units) inserted between each
line in the editor when the editor is displayed. This spacing is included in the reported height of each
line.

See set-tabs for information about tabstops.

If auto-wrap is true, then auto-wrapping is enabled via auto-wrap .

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

after-delete

Called after a given range is deleted from the editor (and after the display is refreshed; use on-delete and
begin-edit-sequence to avoid extra refreshes when after-delete modifies the editor).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

- (send a-drscheme:unit:program-editor-mixin after-delete start len) ⇒ void
start : number
len : number

Calls the super method.

Resets an error higlighting.

after-insert

Called after items are inserted into the editor (and after the display is refreshed; use on-insert and
begin-edit-sequence to avoid extra refreshes when after-insert modifies the editor).

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

50

3. Tools Reference 3.32. DrScheme Tools Functions

- (send a-drscheme:unit:program-editor-mixin after-insert start len) ⇒ void
start : number
len : number

Calls the super method.

Resets an error higlighting.

3.32 DrScheme Tools Functions

drscheme:debug:add-prefs-panel

- (drscheme:debug:add-prefs-panel) ⇒ void?

Adds the profiling preferences panel.

drscheme:debug:hide-backtrace-window

- (drscheme:debug:hide-backtrace-window) ⇒ void?

Hides the backtrace window.

drscheme:debug:make-debug-error-display-handler

- (drscheme:debug:make-debug-error-display-handler oedh) ⇒ (string? (union any? exn?) . -> .
any)

oedh : (string? (union any? exn?) . -> . any)

This function implements an error-display-handler in terms of another error-display-handler.

This function is designed to work in conjunction with drscheme:debug:make-debug-eval-handler.

See also MzScheme’s MzLinkmz:p:error-display-handlererror-display-handler parameter.

If the current-error-port is the definitions window in drscheme, this error handler inserts some debug-
ging annotations, calls oedh, and then highlights the source location of the runtime error.

drscheme:debug:make-debug-eval-handler

- (drscheme:debug:make-debug-eval-handler odeh) ⇒ (any? . -> . any?)
odeh : (any? . -> . any?)

This function implements an eval-handler in terms of another eval-handler.

This function is designed to work in conjunction with drscheme:debug:make-debug-error-display-handler.

See also MzScheme’s MzLinkmz:p:eval-handlereval-handler parameter.

The resulting eval-handler expands and annotates the input expression and then passes it to the input
eval-handler, unless the input expression is already compiled, in which case it just hands it directly to
the input eval-handler.

drscheme:debug:profiling-enabled

- (drscheme:debug:profiling-enabled enabled?) ⇒ void?
enabled? : boolean?

- (drscheme:debug:profiling-enabled) ⇒ boolean?

A parameter that controls if profiling information is recorded.

51

3.32. DrScheme Tools Functions 3. Tools Reference

Defaults to \#f.

Only applies if drscheme:debug:make-debug-eval-handler has been added to the eval handler.

drscheme:eval:build-user-eventspace/custodian

- (drscheme:eval:build-user-eventspace/custodian language-settings init kill-termination)⇒ (val-
ues eventspace? custodian?)

language-settings : drscheme:language-configuration:language-settings?
init : (. -> . void?)
kill-termination : (. -> . void?)

This function creates a custodian and an eventspace (on the new custodian) to expand the user’s
program. It does not kill this custodian, but it can safely be shutdown (with custodian-shutdown-all)
after the expansion is finished.

It initializes the user’s eventspace’s main thread with several parameters:

– current-custodian is set to a new custodian.
– In addition, it calls drscheme:eval:set-basic-parameters.

The language-settings argument is the current language and its settings. See drscheme:language-configuration:make-language-settings
for details on that structure.

If the program is associated with a DrScheme frame, get the frame’s language settings from
the get-next-settings method of drscheme:unit:definitions-text<%>. Also, the most re-
cently chosen language in the language dialog is saved via the framework’s preferences. Apply
preferences:get to drscheme:language-configuration:get-settings-preferences-symbol for
that language-settings.

The input argument specifies the source of the program.

The init argument is called after the user’s parameters are all set, but before the program is run. It is
called on the user’s thread. The current-directory and current-load-relative-directory parameters are
not set, so if there are appropriate directories, the init argument is a good place to set them.

The kill-termination argument is called when the main thread of the eventspace terminates, no matter
if the custodian was shutdown, or the thread was killed. This procedure is also called when the thread
terminates normally. This procedure is called from a new, dedicated thread (i. e., not the thread
created to do the expansion, nor the thread that drscheme:eval:build-user-eventspace/custodian
was called from.)

The iter argument is called for each expression in the expanded program and once more with eof, unless
an error is raised during expansion. It is called from the user’s thread. If an exception is raised during
expansion of the user’s program, iter is not called. Consider setting the exception-handler during init
to handle this situation.

If your tool only processes the syntax without evaluating it, you may need to call
eval-compile-time-part-of-top-level on the syntax object (on the user’s thread).

drscheme:eval:expand-program

- (drscheme:eval:expand-program input language-settings eval-compile-time-part? init kill-termination
iter) ⇒ void?

input : (union port? drscheme:language:text/pos?)
language-settings : drscheme:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (. -> . void?)
kill-termination : (. -> . void?)
iter : ((union eof-object? syntax? (cons/p string? any?)) (. -> . any) . -> . any)

52

3. Tools Reference 3.32. DrScheme Tools Functions

Use this function to expand the contents of the definitions window for use with external program
processing tools.
This function uses drscheme:eval:build-user-eventspace/custodian to build the user’s en-
vironment. The arguments language-settings, init , and kill-termination are passed to
drscheme:eval:build-user-eventspace/custodian.
The eval-compile-time-part? argument indicates if awscmexpand, §12.6.1 in PLT MzScheme: Lan-
guage Manual is called or if expand-top-level-with-compile-time-evals is called when the program is
expanded. Roughly speaking, if your tool will evaluate each expression itself by calling eval, §14.1 in
PLT MzScheme: Language Manual then pass #f. Otherwise, if your tool just processes the expanded
program, be sure to pass #t.
The first argument to iter is the expanded program (represented as syntax) or eof. The second argument
to iter is a thunk that continues expanding the rest of the contents of the definitions window. If the
first argument to iter was eof, this argument is just the primitive void.

drscheme:eval:get-snip-classes

- (drscheme:eval:get-snip-classes) ⇒ (listof (is-a?/c snip-class%))

Returns a list of all of the snipclasses in the current eventspace

drscheme:eval:set-basic-parameters

- (drscheme:eval:set-basic-parameters snipclasses) ⇒ void?
snipclasses : (listof (is-a?/c snip-class%))

sets the parameters that are shared between the repl’s initialization and drscheme:eval:build-user-eventspace/custodian

Specifically, it sets these parameters:
– current-namespace has been set to a newly created empty namespace. This namespace has the

following modules copied (with namespace-attach-module) from DrScheme’s original namespace:
∗ ’mzscheme
∗ ’(lib "mred.ss" "mred")

– read-curly-brace-as-paren is #t,
– read-square-bracket-as-paren is #t,
– break-enabled is #t
– error-print-width is set to 250.
– The current-load parameter is set to a procedure that calls the language’s front-end method,

instead of just using read.
– current-ps-setup is set to a newly created ps-setup% object.
– The exit-handler is set to a parameter that kills the user’s custodian.
– The snip-class-list, returned by get-the-snip-class-list is initialized with all of the snipclasses

in DrScheme’s eventspace’s snip-class-list.

drscheme:frame:calc-button-min-sizes

- (drscheme:frame:calc-button-min-sizes dc label) ⇒ (values number? number?)
dc : (is-a?/c dc<%>)
label : string?

Calculates the minimum width and height of a button label (when drawn with drscheme:frame:draw-button-label).

drscheme:frame:draw-button-label

- (drscheme:frame:draw-button-label dc label width height inverted) ⇒ void?

53

3.32. DrScheme Tools Functions 3. Tools Reference

dc : (is-a?/c dc<%>)
label : (union false? string?)
width : (>/c 5)
height : (>/c 5)
inverted : boolean?

Draws a button label like the one for the (define ...) and filename buttons in the top-left corner of the
DrScheme frame. Use this function to draw similar buttons. The basic idea is to create a canvas%
object whose on-paint method is overridden to call this function. The dc should be canvas’s dc<%>
object, the label should be the string to display on the button. The width and height arguments should
be the width and height of the button and inverted? should be #t when the button is being depressed.

See drscheme:frame:calc-button-min-sizes for help calculating the min sizes of the button.

drscheme:get/extend:extend-definitions-canvas

- (drscheme:get/extend:extend-definitions-canvas mixin) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-definitions-canvas%)

- (drscheme:get/extend:extend-definitions-canvas mixin before?) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-definitions-canvas%)
before? : boolean?

This canvas is used in the top window of drscheme frames. The argument, before, controls if the mixin
is applied before or after already installed mixins. If unsupplied, this is the same as supplying #f.

drscheme:get/extend:extend-definitions-text

- (drscheme:get/extend:extend-definitions-text mixin) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-definitions-text%)

- (drscheme:get/extend:extend-definitions-text mixin before?) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-definitions-text%)
before? : boolean?

This text is used in the top window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed mixins. If
unsupplied, this is the same as supplying #f.

drscheme:get/extend:extend-interactions-canvas

- (drscheme:get/extend:extend-interactions-canvas mixin) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-interactions-canvas%)

- (drscheme:get/extend:extend-interactions-canvas mixin before?) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-interactions-canvas%)
before? : boolean?

This canvas is used in the bottom window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed mixins. If
unsupplied, this is the same as supplying #f.

drscheme:get/extend:extend-interactions-text

- (drscheme:get/extend:extend-interactions-text mixin) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-interactions-text%)

54

3. Tools Reference 3.32. DrScheme Tools Functions

- (drscheme:get/extend:extend-interactions-text mixin before?) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-interactions-text%)
before? : boolean?

This text is used in the bottom window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed mixins. If
unsupplied, this is the same as supplying #t.

drscheme:get/extend:extend-unit-frame

- (drscheme:get/extend:extend-unit-frame mixin) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-unit-frame%)

- (drscheme:get/extend:extend-unit-frame mixin before?) ⇒ void?
mixin : (make-mixin-contract drscheme:get/extend:base-unit-frame%)
before? : boolean?

This is the frame that implements the main drscheme window.

The argument, before, controls if the mixin is applied before or after already installed mixins. If
unsupplied, this is the same as supplying #f.

drscheme:get/extend:get-definitions-canvas

- (drscheme:get/extend:get-definitions-canvas)⇒ (subclass?/c drscheme:unit:definitions-canvas%)

Once this function is called, drscheme:get/extend:extend-definitions-canvas raises an error, dis-
allowing any more extensions.

drscheme:get/extend:get-definitions-text

- (drscheme:get/extend:get-definitions-text) ⇒ (subclass?/c text:backup-autosave%)

Once this function is called, drscheme:get/extend:extend-definitions-text raises an error, disal-
lowing any more extensions.

drscheme:get/extend:get-interactions-canvas

- (drscheme:get/extend:get-interactions-canvas) ⇒ (subclass?/c canvas:wide-snip%)

Once this function is called, drscheme:get/extend:extend-interactions-canvas raises an error,
disallowing any more extensions.

drscheme:get/extend:get-interactions-text

- (drscheme:get/extend:get-interactions-text) ⇒ (subclass?/c drscheme:rep:text%)

Once this function is called, drscheme:get/extend:extend-interactions-text raises an error, dis-
allowing any more extensions.

drscheme:get/extend:get-unit-frame

- (drscheme:get/extend:get-unit-frame) ⇒ (subclass?/c drscheme:unit:frame%)

Once this function is called, drscheme:get/extend:extend-unit-frame raises an error, disallowing
any more extensions.

55

3.32. DrScheme Tools Functions 3. Tools Reference

drscheme:help-desk:help-desk

- (drscheme:help-desk:help-desk) ⇒ void?

- (drscheme:help-desk:help-desk key lucky? type mode) ⇒ void?
key : string?
lucky? : boolean?
type : (symbols ’keyword ’keyword+index ’all)
mode : (symbols ’exact ’contains ’regexp)

- (drscheme:help-desk:help-desk key lucky? type) ⇒ void?
key : string?
lucky? : boolean?
type : (symbols ’keyword ’keyword+index ’all)

- (drscheme:help-desk:help-desk key lucky?) ⇒ void?
key : string?
lucky? : boolean?

This function opens a help desk window, or brings an already open help desk window to the front. If
an argument is specified, that key is searched for.

If no arguments are supplied, this function opens a help-desk window to the starting page, or just
brings a help-desk window to the front (without changing what page it is viewing).

If any arguments are supplied, this function opens a help-desk window and searches for key , according to
lucky? , type, and mode. If the third and fourth arguments are omitted, they default to ’keyword+index
and ’exact, respectively.

drscheme:help-desk:open-url

- (drscheme:help-desk:open-url url) ⇒ void?
url : string?

Opens url in a new help desk window.

drscheme:help-desk:open-users-url

- (drscheme:help-desk:open-users-url frame) ⇒ void?
frame : (union false? (is-a?/c frame%))

Queries the user for a URL and opens it in a new help desk window. The frame argument is used as
a parent for the dialog box.

drscheme:language-configuration:add-language

- (drscheme:language-configuration:add-language language) ⇒ void?
language : (is-a?/c drscheme:language:language<%>)

This function can only be called in phase 2 (see section 2 for details).

Adds language to the languages offerend by DrScheme.

drscheme:language-configuration:get-settings-preferences-symbol

- (drscheme:language-configuration:get-settings-preferences-symbol) ⇒ symbol?

Returns the symbol that is used to store the user’s language settings. Use as an argument to either
preferences:get or preferences:set.

56

3. Tools Reference 3.32. DrScheme Tools Functions

drscheme:language-configuration:language-settings-language

- (drscheme:language-configuration:language-settings-language ls)⇒ (is-a?/c drscheme:language:language<%>)
ls : drscheme:language-configuration:language-settings?

Extracts the language field of a language-settings.

drscheme:language-configuration:language-settings-settings

- (drscheme:language-configuration:language-settings-settings ls) ⇒ any?
ls : drscheme:language-configuration:language-settings?

Extracts the settings field of a language-settings.

drscheme:language-configuration:language-settings?

- (drscheme:language-configuration:language-settings? val) ⇒ boolean?
val : any?

Determines if the argument is a langauge-settings or not.

drscheme:language-configuration:make-language-settings

- (drscheme:language-configuration:make-language-settings language settings)⇒ drscheme:language-
configuration:language-settings?

language : (implementation?/c drscheme:language:language<%>)
settings : any?

This is the constructor for a record consisting of two elements, a language and its settings.

The settings is a language-specific record that holds a value describing a parameterization of the
language.

It has two selectors, drscheme:language-configuration:language-settings-language and
drscheme:language-configuration:language-settings-settings, and a predicate, drscheme:language-configuration:language-settings?

drscheme:language:create-module-based-launcher

- (drscheme:language:create-module-based-launcher program-filename executable-filename module-
language-spec transformer-module-language-spec init-code gui? use-copy?) ⇒ void?

program-filename : string?
executable-filename : string?
module-language-spec : any?
transformer-module-language-spec : any?
init-code : any?
gui? : boolean?
use-copy? : boolean?

This procedure is identical to drscheme:language:create-module-based-stand-alone-executable,
except that it creates a launcher instead of a stand-alone executable.

drscheme:language:create-module-based-stand-alone-executable

- (drscheme:language:create-module-based-stand-alone-executable program-filename executable-
filename module-language-spec transformer-module-language-spec init-code gui? use-copy?) ⇒
void?

57

3.32. DrScheme Tools Functions 3. Tools Reference

program-filename : string?
executable-filename : string?
module-language-spec : any?
transformer-module-language-spec : any?
init-code : any?
gui? : boolean?
use-copy? : boolean?

This procedure creates a stand-alone executable in the file executable-filename that runs the program
program-filename.

The arguments module-language-spec and transformer-module-language-spec specify the settings of the
initial namespace, both the transformer portion and the regular portion.

The init-code argument is an s-expression representing the code for a module. This module is expected
to provide the identifer init-code, bound to a procedure of no arguments. That module is required
and the init-code procedure is executed to initialize language-specific settings before the code in
program-filename runs.

The gui? argument indicates if a MrEd or MzScheme stand-alone executable is created.

The use-copy? argument indicates if the initial namespace should be populated with
namespace-require/copy or namespace-require.

drscheme:language:extend-language-interface

- (drscheme:language:extend-language-interface interface default-implementation) ⇒ void?
interface : interface?
default-implementation : ((implementation?/c drscheme:language:language<%>) . ->d . (lambda (%) (sub-

class?/c %)))

This function can only be called in phase 1 (see section 2 for details).

Each language added passed to drscheme:language-configuration:add-language must implement
interface.

The default-implementation is a mixin that provides a default implementation of interface.
Languages that are unaware of the specifics of extension use default-implementation via
drscheme:language:get-default-mixin.

drscheme:language:get-default-mixin

- (drscheme:language:get-default-mixin)⇒ ((implementation?/c drscheme:language:language<%>)
. ->d . (lambda (%) (subclass?/c %)))

This function can only be called in phase 2 (see section 2 for details).

The result of this function is the composite of all of the default-implementation arguments passed to
drscheme:language:extend-language-interface.

drscheme:language:get-language-extensions

- (drscheme:language:get-language-extensions) ⇒ (listof interface?)

This function can only be called in phase 2 (see section 2 for details).

Returns a list of the interfaces passed to drscheme:language:extend-language-interface.

58

3. Tools Reference 3.32. DrScheme Tools Functions

drscheme:language:get-post-hash-bang-start

- (drscheme:language:get-post-hash-bang-start text) ⇒ (>=/c 0)
text : (is-a?/c text%)

Returns the starting position of this text, skipping over #! if there is one. If there is no #!, returns 0.

drscheme:language:make-simple-settings

- (drscheme:language:make-simple-settings case-sensitive printing-style fraction-style show-sharing
insert-newlines debugging) ⇒ drscheme:language:simple-settings?

case-sensitive : boolean?
printing-style : (symbols ’constructor ’quasiquote ’write)
fraction-style : (symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
show-sharing : boolean?
insert-newlines : boolean?
debugging : (symbols ’none ’debug ’debug/profile)

Constructs a simple settings.

drscheme:language:make-text/pos

- (drscheme:language:make-text/pos text start end) ⇒ drscheme:language:text/pos?
text : (is-a?/c text%)
start : number?
end : number?

Constructs a text/pos.

drscheme:language:open-input-text

- (drscheme:language:open-input-text text start end) ⇒ input-port?
text : (is-a?/c text%)
start : (>=/c 0)
end : (>=/c 0)

Returns a port that reads from the text , starting at position start and ending at position end .

If ignore-hash-bang? is #t, and the first line begins with the characters #!, then the first line is ignored.

Any non-string-snip% snips in the text that implement the drscheme:snip:special<%> interface
use the read-special method to extract a syntax object. Then, that object is returned from the
read-special function of the result port.

If a non-string-snip% snip is encountered that does not implement that interface, it is returned
directly from the read-special frunction for the resulting port. Thus, it is treated like a constant in
the program.

drscheme:language:simple-settings->vector

- (drscheme:language:simple-settings->vector simple-settings) ⇒ vector?
simple-settings : drscheme:language:simple-settings?

Constructs a vector whose first index is the symbol ’struct:simple-settings and the other elements
are the fields of simple-settings.

59

3.32. DrScheme Tools Functions 3. Tools Reference

drscheme:language:simple-settings-annotations

- (drscheme:language:simple-settings-annotations simple-settings) ⇒ (symbols ’none ’debug ’de-
bug/profile)

simple-settings : drscheme:language:simple-settings?

Extracts the debugging setting from a simple-settings.

drscheme:language:simple-settings-case-sensitive

- (drscheme:language:simple-settings-case-sensitive simple-settings) ⇒ boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the case-sensitive setting from a simple-settings.

drscheme:language:simple-settings-fraction-style

- (drscheme:language:simple-settings-fraction-style simple-settings)⇒ (symbols ’mixed-fraction
’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)

simple-settings : drscheme:language:simple-settings?

Extracts the fraction-style setting from a simple-settings.

drscheme:language:simple-settings-insert-newlines

- (drscheme:language:simple-settings-insert-newlines simple-settings) ⇒ boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the insert-newline setting from a simple-settings.

drscheme:language:simple-settings-printing-style

- (drscheme:language:simple-settings-printing-style simple-settings) ⇒ (symbols ’constructor
’quasiquote ’write)

simple-settings : drscheme:language:simple-settings?

Extracts the printing-style setting from a simple-settings.

drscheme:language:simple-settings-show-sharing

- (drscheme:language:simple-settings-show-sharing simple-settings) ⇒ boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the show-sharing setting from a simple-settings.

drscheme:language:simple-settings?

- (drscheme:language:simple-settings? val) ⇒ boolean?
val : any?

Determines if val is a simple-settings.

drscheme:language:text/pos-end

- (drscheme:language:text/pos-end text/pos) ⇒ number?
text/pos : drscheme:language:text/pos?

60

3. Tools Reference 3.32. DrScheme Tools Functions

Selects the ending position from a text/pos.

drscheme:language:text/pos-start

- (drscheme:language:text/pos-start text/pos) ⇒ number?
text/pos : drscheme:language:text/pos?

Selects the starting position from a text/pos.

drscheme:language:text/pos-text

- (drscheme:language:text/pos-text text/pos) ⇒ (is-a?/c text%)
text/pos : drscheme:language:text/pos?

Selects the text% from a text/pos.

drscheme:language:text/pos?

- (drscheme:language:text/pos? val) ⇒ boolean?
val : any?

Returns #t if val is a text/pos, and #f otherwise.

drscheme:language:use-stand-alone-executable?

- (drscheme:language:use-stand-alone-executable? parent) ⇒ boolean?
parent : (union false? (is-a?/c frame%) (is-a?/c dialog%))

Prompts the user, with an explanatory dialog, asking if they want to create a stand-alone executable
or a launcher. See also drscheme:language:create-module-based-stand-alone-executable and
drscheme:language:create-module-based-launcher.

Uses parent as the parent to the explanatory dialog.

drscheme:rep:current-rep

- (drscheme:rep:current-rep) ⇒ (is-a?/c drscheme:rep:text%)

This is a parameter whose value should not be set by tools. It is initialized to the repl that controls
this evaluation in the user’s thread

drscheme:rep:exn:locs-locs

- (drscheme:rep:exn:locs-locs loc) ⇒ (listof (list/p (is-a?/c text:basic<%>) number? number?))
loc : drscheme:rep:exn:locs?

Extracts the loc field from the exn.

drscheme:rep:exn:locs?

- (drscheme:rep:exn:locs? val) ⇒ boolean?
val : any?

Determines if val is an exn:loc or not.

61

3.32. DrScheme Tools Functions 3. Tools Reference

drscheme:rep:get-drs-bindings-keymap

- (drscheme:rep:get-drs-bindings-keymap) ⇒ (is-a?/c keymap%)

Returns a keymap that bindings various DrScheme-specific keybindings. This keymap is used in the
definitions and interactions window.

Defaultly binds C-x;o to a function that switches the focus between the definitions and interactions
windows. Also binds f5 to Execute.

drscheme:rep:make-exn:locs

- (drscheme:rep:make-exn:locs message continuation-mark-set locs) ⇒ drscheme:rep:exn:locs?
message : string?
continuation-mark-set : continuation-mark-set?
locs : (listof (list/p (is-a?/c text:basic<%>) number? number?))

Constructs an exn:loc. These exceptions are handled specially by DrScheme’s REPL. The source
locations inside them are highlighted by the default exception handler.

drscheme:rep:use-number-snip

- (drscheme:rep:use-number-snip) ⇒ (any? . -> . boolean?)

- (drscheme:rep:use-number-snip use-number-snip?) ⇒ void?
use-number-snip? : (any? . -> . boolean?)

This is a parameter whose value is a predicate determines if DrScheme uses a mixed fraction snip, a
repeating decimal snip, or a regular ASCII improper fraction for printing numbers.

If the value of the parameter returns #t, a mixed improper fraction snip is used. If it returns
’repeating-decimal, a repeating decimal snip is used. If it returns #f, an ASCII improper frac-
tion is used.

Its default value is:

(lambda (x)
(if (and (number? x)

(exact? x)
(real? x)
(not (integer? x)))

#t
#f))

The value of this parameter must not return #t more often than the above code, or else the snip
implementation will fail. It may, however, return #f more often.

drscheme:rep:which-number-snip

- (drscheme:rep:which-number-snip which-number-snip) ⇒ void?
which-number-snip : (number? . -> . (symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal

’repeating-decimal-e))

- (drscheme:rep:which-number-snip) ⇒ (number? . -> . (symbols ’mixed-fraction ’mixed-fraction-e
’repeating-decimal ’repeating-decimal-e))

This function is called if drscheme:rep:use-number-snip returns #t for some kind of snip. When
that happens, this parameter determines what kind of snip to use.

62

3. Tools Reference 3.32. DrScheme Tools Functions

The symbol ’mixed-fraction indicates a mixed fraction snip. The symbol ’repeating-decimal
indicates a decimal expansion, possibly with an overbar on a suffix of the decimal expansion indicating
that suffix is repeated forever. Either symbol suffixed with -e is the same, except that an #e is prefixed
to the number when viewed in decimal notation.

drscheme:snip:make-fraction-snip

- (drscheme:snip:make-fraction-snip num show-prefix-in-decimal-view?) ⇒ (is-a?/c snip%)
num : number?
show-prefix-in-decimal-view? : boolean?

Makes a number snip for DrScheme’s REPL that is in the fraction view state. The boolean indicates
if a #e prefix appears on the number in the decimal state

See also drscheme:snip:make-repeating-decimal-snip.

drscheme:snip:make-repeating-decimal-snip

- (drscheme:snip:make-repeating-decimal-snip num show-prefix?) ⇒ (is-a?/c snip%)
num : number?
show-prefix? : boolean?

Makes a number snip for DrScheme’s REPL that is in the decimal view state. The boolean indicates
if a #e prefix appears on the number.

See also drscheme:snip:make-fraction-snip.

drscheme:teachpack:install-teachpacks

- (drscheme:teachpack:install-teachpacks teachpack-cache) ⇒ void?
teachpack-cache : drscheme:teachpack:teachpack-cache?

Installs the teachpack cache in the current namespace. Passing ’drscheme:teachpacks to
preferences:get returns the user’s currently selected TeachPacks.

drscheme:teachpack:teachpack-cache-filenames

- (drscheme:teachpack:teachpack-cache-filenames teachpack-cache) ⇒ (listof string?)
teachpack-cache : drscheme:teachpack:teachpack-cache?

Returns the list of filenames for the teachpacks in teachpack-cache.

See also drscheme:teachpack:install-teachpacks.

drscheme:teachpack:teachpack-cache?

- (drscheme:teachpack:teachpack-cache? val) ⇒ boolean?
val : any?

Determines if val is a teachpack cache or not.

drscheme:unit:make-bitmap

- (drscheme:unit:make-bitmap button-name) ⇒ ((is-a?/c area-container<%>) . -> . (is-a?/c
bitmap%))

button-name : string?

63

3.32. DrScheme Tools Functions 3. Tools Reference

- (drscheme:unit:make-bitmap text filename) ⇒ ((is-a?/c area-container<%>) . -> . (is-a?/c
bitmap%))

text : string?
filename : string?

This function constructs a bitmap for a button label. It is used for the buttons on the top row of
DrScheme’s frame.

When one argument is supplied, this function constructs a button from the image in the icons collection
named by the button-name with .bmp added to the end of the name. The button’s label is also button-
name, but with the first letter capitalized.

When two arguments are supplied, constructs a button with text as the button’s label and where
filename specifies the full path to the bitmap

The area-container<%> argument is used to find the font for the label

drscheme:unit:open-drscheme-window

- (drscheme:unit:open-drscheme-window) ⇒ (is-a?/c drscheme:unit:frame%)

- (drscheme:unit:open-drscheme-window filename) ⇒ (is-a?/c drscheme:unit:frame%)
filename : (union string? false?)

Opens a drscheme frame that displays filename, or nothing if filename is #f or not supplied.

64

Index

add-show-menu-items, 8, 42
adding languages to DrScheme, 3
after-delete, 31, 50
after-insert, 31, 50
alignment, 14, 41
auto-wrap, 7, 13, 39, 50

border, 14, 41
break button, 6
break-callback, 42
breaking, 6

canvas
scroll bars, 12, 13, 38, 49

canvas%, 11
change-to-file, 42
cleanup-transparent-io, 32
clear-annotations, 40, 43
config-panel, 15, 19, 26
create-executable, 15

default-settings, 16, 19, 26
default-settings?, 16, 20, 27
disable-evaluation, 29, 43
display-results, 32
do-many-evals, 32
do-many-text-evals, 32
drscheme:debug:add-prefs-panel, 51
drscheme:debug:hide-backtrace-window, 51
drscheme:debug:make-debug-error-display-handler,

51
drscheme:debug:make-debug-eval-handler, 51
drscheme:debug:profile-definitions-text-mixin,

7
drscheme:debug:profile-interactions-text-mixin,

7
drscheme:debug:profile-unit-frame-mixin, 7
drscheme:debug:profiling-enabled, 51
drscheme:eval:build-user-eventspace/custodian,

52
drscheme:eval:expand-program, 52
drscheme:eval:get-snip-classes, 53
drscheme:eval:set-basic-parameters, 53
drscheme:frame:<%>, 8
drscheme:frame:basics-mixin, 9
drscheme:frame:basics<%>, 9
drscheme:frame:calc-button-min-sizes, 53
drscheme:frame:draw-button-label, 53
drscheme:frame:mixin, 11

drscheme:frame:name-message%, 11
drscheme:get/extend:base-definitions-canvas%,

12
drscheme:get/extend:base-definitions-text%,

13
drscheme:get/extend:base-interactions-canvas%,

13
drscheme:get/extend:base-interactions-text%,

14
drscheme:get/extend:base-unit-frame%, 14
drscheme:get/extend:extend-definitions-canvas,

54
drscheme:get/extend:extend-definitions-text,

54
drscheme:get/extend:extend-interactions-canvas,

54
drscheme:get/extend:extend-interactions-text,

54
drscheme:get/extend:extend-unit-frame, 55
drscheme:get/extend:get-definitions-canvas,

55
drscheme:get/extend:get-definitions-text, 55
drscheme:get/extend:get-interactions-canvas,

55
drscheme:get/extend:get-interactions-text,

55
drscheme:get/extend:get-unit-frame, 55
drscheme:help-desk:help-desk, 56
drscheme:help-desk:open-url, 56
drscheme:help-desk:open-users-url, 56
drscheme:language-configuration:add-language,

56
drscheme:language-configuration:get-settings-preferences-symbol,

56
drscheme:language-configuration:language-settings-language,

57
drscheme:language-configuration:language-settings-settings,

57
drscheme:language-configuration:language-settings?,

57
drscheme:language-configuration:make-language-settings,

57
drscheme:language:create-module-based-launcher,

57
drscheme:language:create-module-based-stand-alone-executable,

57
drscheme:language:extend-language-interface,

58
drscheme:language:get-default-mixin, 58

65

INDEX

drscheme:language:get-language-extensions,
58

drscheme:language:get-post-hash-bang-start,
59

drscheme:language:language<%>, 15
drscheme:language:make-simple-settings, 59
drscheme:language:make-text/pos, 59
drscheme:language:module-based-language->language-mixin,

22
drscheme:language:module-based-language<%>,

19
drscheme:language:open-input-text, 59
drscheme:language:simple-module-based-language->module-based-language-mixin,

26
drscheme:language:simple-module-based-language<%>,

24
drscheme:language:simple-module-based-language%,

25
drscheme:language:simple-settings->vector,

59
drscheme:language:simple-settings-annotations,

60
drscheme:language:simple-settings-case-sensitive,

60
drscheme:language:simple-settings-fraction-style,

60
drscheme:language:simple-settings-insert-newlines,

60
drscheme:language:simple-settings-printing-style,

60
drscheme:language:simple-settings-show-sharing,

60
drscheme:language:simple-settings?, 60
drscheme:language:text/pos-end, 60
drscheme:language:text/pos-start, 61
drscheme:language:text/pos-text, 61
drscheme:language:text/pos?, 61
drscheme:language:use-stand-alone-executable?,

61
drscheme:rep:context<%>, 29
drscheme:rep:current-rep, 61
drscheme:rep:drs-bindings-keymap-mixin, 31
drscheme:rep:exn:locs-locs, 61
drscheme:rep:exn:locs?, 61
drscheme:rep:get-drs-bindings-keymap, 62
drscheme:rep:make-exn:locs, 62
drscheme:rep:text<%>, 31
drscheme:rep:text%, 31
drscheme:rep:use-number-snip, 62
drscheme:rep:which-number-snip, 62
drscheme:snip:make-fraction-snip, 63
drscheme:snip:make-repeating-decimal-snip,

63

drscheme:snip:special<%>, 37
drscheme:teachpack:install-teachpacks, 63
drscheme:teachpack:teachpack-cache-filenames,

63
drscheme:teachpack:teachpack-cache?, 63
drscheme:tool^, 2
drscheme:unit:definitions-canvas%, 38
drscheme:unit:definitions-text<%>, 38
drscheme:unit:definitions-text%, 39
drscheme:unit:frame<%>, 40
drscheme:unit:frame%, 41
drscheme:unit:interactions-canvas%, 49
drscheme:unit:make-bitmap, 63
drscheme:unit:open-drscheme-window, 64
drscheme:unit:program-editor-mixin, 50

edit-menu:between-find-and-preferences, 9
edit-menu:between-select-all-and-find, 43
editor, 12, 13, 38, 49
editor-canvas%, 38
editors

hooks, 31, 50
modified, 39

enable-evaluation, 29, 43
enabled, 12–14, 38, 41, 49
ensure-defs-shown, 44
ensure-rep-shown, 29, 44
execute-callback, 44
expanding user programs, 6

file-menu:between-open-and-revert, 9, 44
file-menu:between-print-and-close, 44
file-menu:between-save-as-and-print, 44
file-menu:new-callback, 10
file-menu:new-string, 10
file-menu:open-callback, 10
file-menu:open-string, 10
file-menu:print-string, 45
file-menu:save-as-string, 45
file-menu:save-string, 45
files

names, 39
front-end, 16, 22

get-break-button, 45
get-breakables, 30
get-button-panel, 45
get-canvas, 45
get-canvas%, 46
get-definitions-canvas, 40
get-definitions-text, 40
get-definitions/interactions-panel-parent,

46
get-directory, 30, 46

66

INDEX

get-editor, 46
get-editor%, 46
get-error-range, 33
get-execute-button, 46
get-init-code, 20, 27
get-interactions-canvas, 40
get-interactions-text, 40
get-keymaps, 31
get-language-name, 16, 23
get-language-numbers, 17, 20, 24, 25
get-language-position, 17, 20, 24, 25
get-module, 20, 24, 25
get-next-settings, 38
get-one-line-summary, 17, 20, 25, 26
get-show-menu, 8
get-special-menu, 41
get-style-delta, 17
get-text-to-search, 47
get-this-err, 33
get-this-in, 33
get-this-out, 33
get-this-result, 33
get-transformer-module, 21, 27
get-user-custodian, 33
get-user-eventspace, 33
get-user-namespace, 33
get-user-thread, 34
graphical expressions, 5

height, 14, 41
help-menu:about-callback, 10
help-menu:about-string, 10
help-menu:before-about, 11
help-menu:create-about?, 11
hide-eof-icon, 34
’hide-hscroll, 12, 13, 38, 49
’hide-vscroll, 12, 13, 38, 49
highlight-error, 34
highlight-error/forward-sexp, 34
highlight-error/line-col, 34
highlight-errors, 35
horiz-margin, 12, 13, 38, 49

initialize-console, 35
insert-prompt, 35

keyboard focus
notification, 49

keymaps
in an editor, 7, 13, 39, 50

kill-evaluation, 35

label, 12–14, 38, 41, 49
line-count, 12, 13, 38, 49

line-spacing, 7, 13, 39, 50

make-searchable, 47
marshall-settings, 17, 21, 27
’mdi-child, 14, 41
’mdi-parent, 14, 41
min-height, 12–14, 38, 41, 49
min-width, 12–14, 38, 41, 49
’|MrEd:wheelStep|, 12, 14, 38, 49

needs-execution?, 30
’no-caption, 14, 41
’no-hscroll, 12, 13, 38, 49
’no-resize-border, 14, 41
’no-system-menu, 14, 41
’no-vscroll, 12, 13, 38, 49
not-running, 8, 30

on-close, 35, 47
on-execute, 17, 21, 23, 28
on-focus, 49
on-size, 47

parent, 12–14, 38, 41, 49
phase1, 2
phase2, 2

queue-output, 35

read-special, 37
render-value, 18, 21, 28
render-value/format, 19, 21, 28
reset-console, 36
reset-highlighting, 36
reset-offer-kill, 30, 47
run-in-evaluation-thread, 36
running, 8, 30

scrolls-per-page, 12, 13, 38, 49
set-breakables, 30, 47, 48
set-filename, 39
set-message, 12
set-modified, 39
show-eof-icon, 36
shutdown, 36
spacing, 14, 41
still-untouched?, 48
stretchable-height, 12–14, 38, 41, 49
stretchable-width, 12–14, 38, 41, 49
style, 12–14, 38, 41, 49
style lists

in an editor, 7, 13, 39, 50
submit-eof, 36

tab-stops, 7, 13, 39, 50

67

INDEX

this-err-write, 36
this-out-write, 37
this-result-write, 37
tool.ss, 2

unmarshall-settings, 19, 21, 29
update-save-button, 48
update-save-message, 48
update-shown, 9, 48
use-mred-launcher?, 22, 29
use-namespace-require/copy?, 22

vert-margin, 12, 13, 38, 49

wait-for-io-to-complete, 37
wait-for-io-to-complete/user, 37
wheel on mouse, 12, 14, 38, 49
wheel-step, 12, 13, 38, 49
width, 14, 41

x, 14, 41

y, 14, 41

68

	1 This Manual
	1.1 Thanks

	2 Implementing DrScheme Tools
	2.1 Adding Languages to DrScheme
	2.1.1 Adding module-based Languages to DrScheme
	2.1.2 Adding Arbitrary Languages to DrScheme
	2.1.3 Language Extensions

	2.2 Graphical Expressions
	2.3 Creating new kinds of DrScheme frames
	2.4 Extending the Existing DrScheme Classes
	2.5 Expanding the User's Program Text and Breaking

	3 Tools Reference
	3.1 drscheme:debug:profile-definitions-text-mixin
	3.2 drscheme:debug:profile-interactions-text-mixin
	3.3 drscheme:debug:profile-unit-frame-mixin
	3.4 drscheme:frame:<%>
	3.5 drscheme:frame:basics<%>
	3.6 drscheme:frame:basics-mixin
	3.7 drscheme:frame:mixin
	3.8 drscheme:frame:name-message%
	3.9 drscheme:get/extend:base-definitions-canvas% = drscheme:unit:definitions-canvas%
	3.10 drscheme:get/extend:base-definitions-text% = (drscheme:debug:profile-definitions-text-mixin drscheme:unit:definitions-text%)
	3.11 drscheme:get/extend:base-interactions-canvas% = drscheme:unit:interactions-canvas%
	3.12 drscheme:get/extend:base-interactions-text% = (drscheme:debug:profile-interactions-text-mixin drscheme:rep:text%)
	3.13 drscheme:get/extend:base-unit-frame% = (drscheme:debug:profile-unit-frame-mixin drscheme:unit:frame%)
	3.14 drscheme:language:language<%>
	3.15 drscheme:language:module-based-language<%>
	3.16 drscheme:language:module-based-language->language-mixin
	3.17 drscheme:language:simple-module-based-language<%>
	3.18 drscheme:language:simple-module-based-language%
	3.19 drscheme:language:simple-module-based-language->module-based-language-mixin
	3.20 drscheme:rep:context<%>
	3.21 drscheme:rep:drs-bindings-keymap-mixin
	3.22 drscheme:rep:text<%>
	3.23 drscheme:rep:text%
	3.24 drscheme:snip:special<%>
	3.25 drscheme:unit:definitions-canvas%
	3.26 drscheme:unit:definitions-text<%>
	3.27 drscheme:unit:definitions-text% = (drscheme:rep:drs-bindings-keymap-mixin (scheme:text-mixin (drscheme:unit:program-editor-mixin text:info%)))
	3.28 drscheme:unit:frame<%>
	3.29 drscheme:unit:frame% = (drscheme:frame:basics-mixin (drscheme:frame:mixin frame:searchable%))
	3.30 drscheme:unit:interactions-canvas%
	3.31 drscheme:unit:program-editor-mixin
	3.32 DrScheme Tools Functions

	Index

