PLT MzLib: Libraries Manual

PLT (scheme®@plt-scheme.org)

Version 202
August 2002

Copyright notice
Copyright ©1996-2002 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the
fact on some Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.oryg.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Contributors to MzLib include Dorai Sitaram, Gann Bierner, and Kurt Howard (working from Steve Moshier’s
Cephes library). Publicly available packages have been assimilated from others, including Andrew Wright
(match) and Marc Feeley (original pretty-printing implementation).

This manual was typest using ITEX, SETEX, and tex2page. Some typesetting macros were originally taken
from Julian Smart’s Reference Manual for wrWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on August 27, 2002.

Contents

1 MzLib
2 awk.ss: Awk-like Syntax

3 class.ss: Classes and Objects

3.1 Object Example o e
3.2 Creating Interfaces e
3.3 Creating Classes o o i i e
3.3.1 Imitialization Variables oL
3.3.2 Fields o e e e
3.3.3 Methods L
3.4 Creating Objects o o i i e e
3.5 Field and Method Access« . . e e
3.5.1 Methods L
3.5.2 Fields e
3.5.3 Generics e e
3.6 Object Utilities o e e e

4 class100.ss: Version-100-Style Classes

5 class-old.ss: Version-100 Classes

6 cm.ss: Compilation Manager

7 cmdline.ss: Command-line Parsing

8 compat.ss: Compatibility

9 compile.ss: Compiling Files

16

18

19

20

24

26

CONTENTS

CONTENTS

10 contract.ss: Contracts

10.1 Flat Contracts o v v v it it e et e
10.2 Function Contracts L.
10.3 Attaching Contracts to Scheme Values

10.4 Contract Utility

11 date.ss: Dates

12 deflate.ss: Deflating (Compressing) Data

13 defmacro.ss: Non-Hygienic Macros

14 etc.ss: Useful Procedures and Syntax

15 file.ss: Filesystem Utilities

16 include.ss: Textually Including Source

17 inflate.ss: Inflating Compressed Data

18 list.ss: List Utilities

19 match.ss: Pattern Matching

19.1 Patterns e e e

19.2 Exampleso

20 math.ss: Math

21 pconvert.ss: Converted Printing

22 pregexp.ss: Perl-Style Regular Expressions

22.1 Introduction Lo
22.2 Regexp procedureso
2221 pregexpo
22.2.2 pregexp-match-positions

22.2.3 pregexp-match

ii

33

34

35

36

40

43

44

45

48

................. 50

................. 51

53

54

57

CONTENTS CONTENTS
22.2.4 pregexp—split L e 59

22.2.5 pregexp-replace 59

22.2.6 pregexp-replace® e 60

22.3 The regexp pattern language L L L e 60
22.3.1 Basic assertions oL L e e e e e e 60

22.3.2 Characters and character classes L L L 60

22.3.3 Quantifiers L. e 62

22.3.4 Clusters e e e 63

22.3.5 Alternation L e 66

22.3.6 Backtracking 67

22.3.7 Looking ahead and behindo oo 68

22.4 An extended example L L e e e 69

23 pretty.ss: Pretty Printing 71
24 process.ss: Process and Shell-Command Execution 74
25 restart.ss: Simulating Stand-alone MzScheme 76
26 sendevent.ss: AppleEvents s
26.1 AppleEvents oL e 77
27 shared.ss: Graph Constructor Syntax 79
28 spidey.ss: MrSpidey Annotations 80
29 string.ss: String Utilities 81
30 thread.ss: Thread Utilities 83
31 trace.ss: Tracing Top-level Procedure Calls 85
32 traceld.ss: Tracing File Loads 86
33 transcr.ss: Transcripts 87

iii

CONTENTS

CONTENTS

34 unit.ss: Core Units
34.1 Creating Units
34.2 Invoking Units
34.3 Linking Units and Creating Compound Units

34.4 Unit Utilities

35 unitsig.ss: Units with Signatures
35.1 Importing and Exporting with Signatures
35.2 Signatures
35.3 Signed Units
35.4 Linking with Signatures
35.5 Restricting Signatures
35.6 Embedded Units
35.7 Signed Compound Units
35.8 Invoking Signed Units
35.9 Extracting a Primitive Unit from a Signed Unit
35.10Adding a Signature to Primitive Units

35.11Expanding Signed Unit Expressions

Index

iv

1. MzLib

The MzLib collection consists of several libraries, each of which provides a set of procedures and syntax.

To use a MzLib library, either at the top-level or within a module, import it with
(require (1ib lLibname))

For example, to use the list.ss library:
(require (1ib "list.ss"))

The MzLib collection provides the following libraries:

awk.ss — AWK-like syntax

class.ss — object system

cm.ss — compilation manager

cmdline.ss — command-line parsing
compat.ss — compatibility procedures and syntax
compile.ss — bytecode compilation
contract.ss — programming by contract
date.ss — date-processing procedures
deflate.ss — gzip

defmacro.ss — define-macro and defmacro
etc.ss — semi-standard procedures and syntax
file.ss — file-processing procedures

include.ss — textual source inclusion
inflate.ss — gunzip

list.ss — list-processing procedures

match.ss — pattern matching

math.ss — arithmetic procedures and constants
pconvert.ss — print values as expressions
pregexp.ss — Perl-style regular expressions
pretty.ss — pretty-printer

restart.ss — stand-alone MzScheme emulator
sendevent.ss — AppleEvents

shared.ss — graph constructor syntax
spidey.ss — MrSpidey annotation syntax
string.ss — string-processing procedures
thread.ss — thread utilities

trace.ss — function tracing

traceld.ss — file-load tracing

transcr.ss — transcripts

unit.ss — component system

unitsig.ss — component system with signatures

2. awk.ss: Awk-like Syntax

This library defines the awk macro from Scsh:

(awk next-record-expr
(record field-variable - -)
counter-variable/optional
((state-variable init-expr) - - -)
continue-variable/optional
clause - - -)

counter-variable/optional is either empty or
variable

continue-variable/optional is either empty or
variable

clause is one of
(test body-expr - --1)
(test => procedure-expr)
(/ regexp-str / (variable-or-false - - -1) body-expr - - -1)
(range exclusive-start-test exclusive-stop-test body-expr - - -1)
(:range inclusive-start-test exclusive-stop-test body-expr - - -1)
(range: ezclusive-start-test inclusive-stop-test body-expr - - 1)
(:range: inclusive-start-test inclusive-inclusive-stop-test body-expr - - -1)
(else body-expr - - 1)
(after body-expr - - 1)

test is one of
integer
regexp-str
expr

variable-or-false is one of
variable

#f

For detailed information about awk, see Olin Shivers’s Scsh Reference Manual. In addition to awk, the
Scsh-compatible procedures match:start, match:end, match:substring, and regexp-exec are defined.
These match: procedures must be used to extract match information in a regular expression clause when
using the => form.

3. class.ss: Classes and Objects

A class specifies

a collection of fields;

a collection of methods;

initial value expressions for the fields; and

initialization variables that are bound to initialization arguments.

An object is a collection of bindings for fields that are instantiated according to a class description.

The primary role of the object system is ability to define a new class (a derived class) in terms of an existing
class (the superclass) using inheritance and overriding:

e inheritance: An object of a derived class supports methods and instantiates fields declared by the
derived class’s superclass, as well as methods and fields declared in the derived class expression.

e overriding: A method declared in a superclass can be redeclared in the derived class. References to
the overridden method in the superclass use the implementation in the derived class.

An interface is a collection of method names to be implemented by a class, combined with a derivation
requirement. A class implements an interface when it

e declares (or inherits) a public method for each variable in the interface;
e is derived from the class required by the interface, if any; and

e specifically declares its intention to implement the interface.

A class can implement any number of interfaces. A derived class automatically implements any interface that
its superclass implements. Each class also implements an implicitly-defined interface that is associated with
the class. The implicitly-defined interface contains all of the class’s public method namess, and it requires
that all other implementations of the interface are derived from the class.

A new interface can extend one or more interfaces with additional method names; each class that implements
the extended interface also implements the original interfaces. The derivation requirements of the original
interface must be consistent, and the extended interface inherits the most specific derivation requirement
from the original interfaces.

Classes, objects, and interfaces are all first-class Scheme values. However, a MzScheme class or interface is
not a MzScheme object (i.e., there are no “meta-classes” or “meta-interfaces”).

3.1. Object Example

3. class.ss: Classes and Objects

3.1 Object Example

The following example converys the object system’s basic style.

(define stack< %> (interface () push! pop! none?))

(define stack%
(class* object% (stack< %>)
; Declare public methods:
(public push! pop! none? print-name)

(define stack null) ; A private field
(init-field (name ’stack)) ; A public field

; Method implementations:
(define (push! v) (set! stack (cons v stack)))
(define (pop!)
(let ([v (car stack)])
(set! stack (cdr stack))
v))
(define (none?) (null? stack))
(define (print-name) (display name) (newline))

; Call superclass initializer:
(super-instantiate ())))

(define fancy-stack%
(class stack%
; Declare override
(override print-name)

; Add inherited field to local environment
(inherit-field name)

(define (print-name)
(display name)
(display ", Esq.")
(newline))

(super-instantiate ())))

(define double-stack%
(class stack%
(inherit push!)

(public double-push!)
(define (double-push! v) (push! v) (push! v))

; Always supply name
(super-instantiate () (name ’double-stack))))

(define-values (make-safe-stack-class is-safe-stack?)
(let ([safe-stack< %> (interface (stack<%>))])
(values

3. class.ss: Classes and Objects 3.1. Object Example

(lambda (super%)
(class* super% (safe-stack<%>)
(inherit none?)
(rename [std-pop! pop!])
(override pop!)
(define (pop!) (if (none?) #f (std-pop!)))
(super-instantiate ())))
(lambda (obyj)
(is-a? obj safe-stack<%>)))))

(define safe-stack% (make-safe-stack-class stack%))

The interface stack< %>' defines the ever-popular stack interface with the methods push!, pop!, and none?.
Since it has no superinterfaces, the only derivation requirement of stack< %> is that its classes are derived
from the built-in empty class, object¥. The class stack%? is derived from object’% and implements the
stack< %> interface. Three additional classes are derived from the basic stack% implementation:

)

e The class fancy-stack% defines a stack that overrides print-name to add an “Esq.” suffix.
e The class double-stack% extends the functionality stack% with a new method, double-push!. It also
supplies a specific name to stack%.

e The class safe-stack% overrides the pop! method of stack%, ensuring that #f is returned whenever the
stack is empty.

In each derived class, the call (super-instantiate ...) causes the superclass portion of the object to be
initialized, including the initialization of its fields.

The creation of safe-stack% illustrates the use of classes as first-class values. Applying make-safe-stack-class
to named-stack% or double-stack% — indeed, any class with push, pop!, and none? methods — creates a
“safe” version of the class. A stack object can be recognized as a safe stack by testing it with is-safe-stack?;
this predicate returns #t only for instances of a class created with make-safe-stack-class (because only those
classes implement the safe-stack< %> interface).

In each of the example classes, the field name contains the name of the class. The name instance variable
is introduced as a new instance variable in stack%, and it is declared there with the init-field keyword,
which means that an instantiation of the class can specify the initial value, but it defaults to ’stack. The
double-stack% class provides name when initializing the stack% part of the object, so a name cannot be
supplied when instantiating double-stack%. When the print-name method of an object from double-stack%
is invoked, the name printed to the screen is always “double-stack”.

While all of named-stack%, double-stack% , and safe-stack% inherit the push! method of stack%, it is declared
with inherit only in double-stack% ; new declarations in named-stack% and safe-stack% do not need to refer
to push!, so the inheritance does not need to be declared. Similarly, only safe-stack% needs to declare
(inherit none?).

The safe-stack% class overrides pop! to extend the implementation of pop!. The new definition of pop!
must access the original pop! method that is defined in stack%. The rename declaration binds a new name,
std-pop! to the original pop!. Then, std-pop! is used in the overriding pop!. Variables declared with rename
cannot be overridden, so std-pop! will always refer to the superclass’s pop!.

LA bracketed percent sign (“<%>”) is used by convention in MzScheme to indicate that a variable’s value is a interface.
2A percent sign (“%”) is used by convention in MzScheme to indicate that a variable’s value is a class.

3.2. Creating Interfaces 3. class.ss: Classes and Objects

The instantiate form and make-object procedure both create an object from a class. The instantiate
form supports initialization arguments by both position and name, while make-object supports initialization
arguments by position only. The following examples create objects using the classes above:

(define stack (make-object stack%))

(define fred (make-object stack% ’Fred))

(define joe (instantiate stack% () (name ’Joe)))

(define double-stack (make-object double-stack%))

(define safe-stack (instantiate safe-stack% () (name ’safe)))

The send form calls a method on an object, finding the method by name. The following example uses the
objects created above:

(send stack push! fred)
(send stack push! double-stack)
(let loop ()
(if (not (send stack none?))
(begin
(send (send stack pop!) print-name)

(loop))))

This loop displays 'double-stack and 'Fred to the standard output port.

3.2 Creating Interfaces

The interface form creates a new interface:

(interface (super-interface-expr - - -) variable - - -)

All of the variables must be distinct.

Each super-interface-expr is evaluated (in order) when the interface expression is evaluated. The result
of each super-interface-expr must be an interface value, otherwise the exn:object exception is raised. The
interfaces returned by the super-interface-erprs are the new interface’s superinterfaces, which are all extended
by the new interface. Any class that implements the new interface also implements all of the superinterfaces.

The result of an interface expression is an interface that includes all of the specified variables, plus all
variables from the superinterfaces. Duplicate variable names among the superinterfaces are ignored, but if a
superinteface contains one of the variables in the interface expression, the exn:object exception is raised.

If no super-interface-exprs are provided, then the derivation requirement of the resulting interface is trivial:
any class that implements the interface must be derived from object’%. Otherwise, the implementation
requirement of the resulting interface is the most specific requirement from its superinterfaces. If the super-
interfaces specify inconsistent derivation requirements, the exn:object exception is raised.

3.3 Creating Classes

The built-in class object’% has no methods fields, implements only its own interface, (class->interface
object%). All other classes are derived from object¥.
The class*/names form creates a new class:

(classx/names local-names superclass-expr (interface-expr - -)
class-clause

3. class.ss: Classes and Objects 8.8. Creating Classes

local-names is one of
(this-variable)
(this-variable super-instantiate-variable)
(this-variable super-instantiate-variable super-make-object-variable)

class-clause is one of

(init inét-declaration - - -)
init-field init-declaration - - -)
field field-declaration - - -)
inherit-field variable - - -)
init-rest variable)
init-rest)
public optionally-renamed-variable - -)
override optionally-renamed-variable - - -)
public-final optionally-renamed-variable - - -)
override-final optionally-renamed-variable - - -)
private wvariable - - -)
inherit optionally-renamed-variable - - -)
rename renamed-variable - -)
method-definition
definition
expr
(begin class-clause - - -)

(
(
(
(
(
(
(
(
(
(
(
(

init-declaration is one of
variable
(variable default-value-expr)

field-declaration is
(variable default-value-expr)

optionally-renamed-variable is one of
variable
renamed-variable

renamed-variable is
(internal-variable external-variable)

method-definition is
(define-values (variable) method-procedure)

method-procedure is
(lambda formals expr - - -!)
(case-lambda (formals expr ---1) --+)
(let-values (((variable) method-procedure) - - -) method-procedure)
(letrec-values (((variable) method-procedure) - - -) method-procedure)
(let-values (((variable) method-procedure) - - ') variable)
(letrec-values (((variable) method-procedure) - - -) variable)

The this-variable, super-instantiate-variable, and super-make-object-variable variables (usually this, super-
instantiate, and super-make-object) are bound in the rest of the class*/names expression, excluding

3.8. Creating Classes 3. class.ss: Classes and Objects

superclass-expr and the interface-exprs. In instances of the new class, this-variable (i.e., this) is bound to
the object itself; super-instantiate-variable (i.e., super-instantiate) is bound to a form that must be used
(once) to initialize fileds in the superclass (see §3.4); super-make-object-variable (i.e., super-make-object)
can be used instead of super-instantiate-variable to initialize superclass fields. See §3.4 for more information
about super-instantiate-variable and super-make-object-variable.

The superclass-expr expression is evaluated when the class*/names expression is evaluated. The result
must be a class value (possibly object’), otherwise the exn:object exception is raised. The result of the
superclass-expr expression is the new class’s superclass.

The interface-expr expressions are also evaluated when the class*/names expression is evaluated, after
superclass-expr is evaluated. The result of each interface-expr must be an interface value, otherwise the
exn:object exception is raised. The interfaces returned by the interface-exprs are all implemented by the
class. For each variable in each interface, the class (or one of its ancestors) must declare a public instance
variable with the same name, otherwise the exn:object exception is raised. The class’s superclass must
satisfy the implementation requirement of each interface, otherwise the exn:object exception is raised.

The class-clauses define initialization arguments, public and private fields, and public and private methods.
For each wariable or optionally-renamed-variable in a public, override, public-final, override-final, or
private clause, there must be one method-definition. All other definition class-clauses create private fields.
All remaining exprs are initialization expressions to be evaluated when the class is instantiated (see §3.4).

The result of a class*/names expression is a new class, derived from the specified superclass and implement-
ing the specified interfaces. Instances of the class are created with the instantiate form or make-object
procedure, as described in §3.4.

Each class-clause is (partially) macro-expanded to reveal its shapes. If a class-clause is a begin expression,
its sub-expressions are lifted out of the begin and treated as class-clauses, in the same way that begin is
flattened for top-level and embedded definitions.

The classx form is like classx/names, but omits local-names and always uses the name this, super-
instantiate, and super-make-object:

(class* superclass-expr (interface-expr - - -)
class-clause

The class form further omits the interface-exprs, for the case that none are needed:

(class superclass-expr
class-clause

The publicx, overridex, and privatex forms abbreviate a public, override, or private declaration and
a sequence of definitions:

(publick (name expr) - - -)
=expands=>

(begin

(public name - - -)

(define name expr) - -)

etc.

The define/public, define/override, and define/private forms similarly abbreviate a public, override,
or private declaration with a definition:

3. class.ss: Classes and Objects 8.8. Creating Classes

(define/public name expr)
=expands=>

(begin

(public name)

(define name expr))

(define/public (name . formals) expr)
=expands=>

(begin

(public name)

(define (name . formals) expr))

etc.

3.3.1 Initialization Variables

A class’s initialization variables, declared with init, init-field, and init-rest, are instantiated for each object
of a class. Initialization variables can be used in the initial value expressions of fields, default value expressions
for initialization arguments, and in initialization expressions. Only initialization variables declared with init-
field can be accessed from methods; accessing any other initialization variable from a method is a syntax
error.

The values bound to initialization variables are

e the arguments provided with instantiate or passed to make-object, if the object is created as a direct
instance of the class; or,

e the arguments passed to the superclass initialization form or procedure, if the object is created as an
instance of a derived class.

If an initialization argument is not provided for a initalization variable that has an associated default-value-
expr, then the default-value-expr expression is evaluated to obtain a value for the variable. A default-value-
expr is only evaluated when an argument is not provided for its variable. The environment of default-value-
expr includes all of the initialization variables, all of the fields, and all of the methods of the class. If
multiple default-value-exprs are evaluated, they are evaluated from left to right. Object creation and field
initialization are described in detail in §3.4.

If an initialization variable has no default-value-expr, then the object creation or superclass initialization call
must supply an argument for the variable, otherwise the exn:object exception is raised.

Initialization arguments can be provided by name or by position. The name of an initialization variable can
be used with instantiate or with the superclass initialization form. Those forms also accept by-position
arguments. The make-object procedure and the superclass initialization procedure accept only by-position
arguments.

Arguments provided by position are converted into by-name arguments using the order of init and init-field
clauses and the order of variables within each clause. When a instantiate form provides both by-position
and by-name arguments, the converted arguments are placed before by-name arguments. (The order can be
significant; see also §3.4.)

Unless a class contains an init-rest clause, when the number of by-position arguments exceeds the number
of declared initialization variables, the order of variables in the superclass (and so on, up the superclass
chain) determines the by-name conversion.

3.8. Creating Classes 3. class.ss: Classes and Objects

If a class expression contains an init-rest clause, there must be only one, and it must be last. If it declares
a variable, then the variable receives extra by-position initialization arguments as a list (similar to a dotted
“rest argument” in a procedure). An init-rest variable can receive by-position initialization arguments that
are left over from a by-name conversion for a derived class. When a derived class’s superclass initialization
provides even more by-position arguments, they are prefixed onto the by-position arguments accumulated
so far.

If too few or too many by-position initialization arguments are provided to an object creation or superclass
initialization, then the exn:object exception is raised. Similarly, if extra by-position arguments are provided
to a class with an init-rest clause, the exn:object exception is raised.

Unused (by-name) arguments are be propagated to the superclass, as described in §3.4. Multiple initialization
arguments can use the same name if the class derivation contains multiple declarations (in different classes)
of initialization variables with the name. See §3.4 for further details.

3.3.2 Fields

Each field, init-field, and non-method define-values clause in a class declares one or more new fields for
the class. Fields declared with field or init-field are public. Public fields can be access and mutated by
subclasses using inherit-field. Public fields are also accessible outside the class via class-field-accessor
and mutable via class-field-mutator (see §3.5). Fields declared with define-values are accessible only
within the class.

A field declared with init-field is both a public field an an initialization variable. See §3.3.1 for information
about initialization variables.

An inherit-field declaration makes a public field defined by a superclass directly accessible in the class
expression. If the indicated field is not defined in the superclass, the exn:object exception is raised when
the class expression is evaluated. Every field in a superclass is present in a derived class, even if it is not
declared with inherit-field in the derived class. The inherit-field clause does not control inheritance, but
merely controls lexical scope within a class expression.

When an object is first created, all of its fields have the undefined value (see §3.1 in PLT MzScheme: Language
Manual). The fields of a class are initialized at the same time that the class’s initialization expressions are
evaluated; see §3.4 for more information.

3.3.3 Methods
3.3.3.1 METHOD DEFINITIONS

Each public, override, public-final, override-final, and private clause in a class declares one or more
method names. Each method name must have a corresponding method-definition. The order of public,
override, public-final, override-final, private clauses and their corresponding definitions (among them-
selves, and with respect to other clauses in the class) does not matter.

As shown in §3.3, a method definition is syntactically restricted to certain procedure forms, as defined by
the grammar for method-procedure; in the last two forms of method-procedure, the body wvariable must be
one of the wvariables bound by let-values or letrec-values. A method-procedure expression is not evalated
directly. Instead, for each method, a class-specific method procedure is created; it takes an initial object
argument, in addition to the arguments the procedure would accept if the method-procedure expression were
evaluated directly. The body of the procedure is transformed to access methods and fields through the object
argument.

A method declared with public or public-final introduces a new method into a class. The method must not

10

3. class.ss: Classes and Objects 8.8. Creating Classes

be present already in the superclass, otherwise the exn:object exception is raised when the class expression
is evaluated. A method declared with public-final cannot be overridden in a subclass.

A method declared with override or override-final overrides a definition already present in the superclass.
If the method is not already present, the exn:object exception is raised when the class expression is
evaluated. A method declared with override-final cannot be overridden in a subclass.

A method declared with private is not accessible outside the class expression, cannot be overridden, and
never overrides a method in the superclass.

3.3.3.2 INHERITED AND SUPERCLASS METHODS

Each inherit and rename clause declares one or more methods that are not defined in the class, but must be
present in the superclass. Methods declared with inherit are subject to overriding, while methods declared
with rename are not. Methods that are present in the superclass but not declared with inherit or rename
are not directly accessible in the class (through they can be called with send).

Every public method in a superclass is present in a derived class, even if it is not declared with inherit in
the derived class. The inherit clause does not control inheritance, but merely controls lexical scope within
a class expression.

If a method declared with inherit is not present in the superclass, the exn:object exception is raised when
the class expression is evaluated.

3.3.3.3 INTERNAL AND EXTERNAL METHOD NAMES

Each method declared with public, override, public-final, override-final, inherit, and rename can
have separate internal and external names. The internal name is used to access the method directly within
the class expression, while the external name is used with send and generic (see §3.5). If a single variable
is provided for a method, it is used for both the internal and external names.

Method inheritance and overriding are based external names, only. Separate internal and external names
are required for rename, because its purpose is to provide access to the superclass’s version of an overridden
method.

An init variable or field declared with init, field, or init-field uses the same name internally and externally.?
An init variable name is used externally as a keyword for initialize, and a field name is used externally in
creating field accessors and mutators with class-field-accessor and class-field-mutator.

A single identifier can be used as an internal variable and an external variable, and it is possible to use the
same identifier as internal and external variables for different bindings (as long as all internal variables are
distinct and all external variables are distinct).

By default, external names have no lexical scope, which means, for example, that an external method name
matches the same syntactic symbol in all uses of send. The define-local-member-name form introduces
a set of scoped external names:

(define-local-member-name variable - - -)

This form binds each wvariable so that, within the scope of the definition, each use of each wvariable as an
external name is resolved to a hidden name generated by the define-local-member-name declaration.
Thus, methods and fields declared with such external-name variables are accessible only in the scope of the
define-local-member-name declaration.

3Future extensions to the syntax may support separate names.

11

3.4. Creating Objects 3. class.ss: Classes and Objects

The binding introduced by define-local-member-name is a syntax binding that can be exported and
imported with modules (see §5 in PLT MzScheme: Language Manual). Each execution of a define-local-
member-name declaration generates a distinct hidden name. The interface->method-names procedure
(see §3.6) does not expose hidden names.

Example:

(define o (let ()
(define-local-member-name m)
(define ¢% (class object’,
(define/public (m) 10)
(super-make-object))
(define o (make-object ¢%))

(send o m) ; = 10

0))

(send o m) ; = error: no method m

3.4 Creating Objects
The make-object procedure creates a new object with by-position initialization arguments:
(make-object class init-v - - -)

An instance of class is created, and the init-vs are passed as initialization arguments, bound to the ini-
tialization variables of class for the newly created object as described in §3.3.1. If class is not a class, the
exn:application:type exception is raised.

The instantiate form creates a new object with both by-position and by-name initialization arguments:

(instantiate class-expr (by-pos-expr - - -) (variable by-name-expr) - - -)

An instance of the value of class-expr is created, and the values of the by-pos-exprs are provided as by-
position initialization arguments. In addition, the value of each by-name-expr is provided as a by-name
argument for the corresponding variable.

All fields in the newly created object are initially bound to the special undefined value (see §3.1 in PLT
MzScheme: Language Manual). Initialization variables with default value expressions (and no provided
value) are also initialized to undefined. After argument values are assigned to initialization variables, expres-
sions in field clauses, init-field clauses with no provided argument, init clauses with no provided argument,
private field definitions, and other expressions are evaluated. Those expressions are evaluated as they appear
in the class expression, from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must be executed once
by invoking the form bound to super-instantiate-variable (usually super-instantiate):

(super-instantiate-variable (by-position-super-init-expr - - -) (variable by-name-super-init-expr - --) « -)

or by calling the procedure bound to super-make-object-variable (usually super-make-object):

(super-make-object-variable super-init-v - -)

The by-position-super-init-exprs, by-name-super-init-erps, and super-init-vs are mapped to initialization
variables in the same way as for instantiate and make-object.

12

3. class.ss: Classes and Objects 8.5. Field and Method Access

By-name initialization arguments to a class that have no matching initialization variable are implicitly added
as by-name arguments to a super-instantiate-variable or super-make-object-variable invocation, after the ex-
plicit arguments. If multiple initialization arguments are provided for the same name, the first (if any) is used,
and the unused arguments are propagated to the superclass. (Note that converted by-position arguments
are always placed before explicit by-name arguments.) The initialization procedure for the objecty class
accepts zero initialization arguments; if it receives any by-name initialization arguments, then exn:object
exception is raised.

Fields inherited from a superclass will not be initialized until the superclass’s initialization procedure is
invoked. In contrast, all methods are available for an object as soon as the object is created; the overriding
of methods is not affect by initialization (unlike objects in C++).

It is an error to reach the end of initialization for any class in the hierarchy without invoking superclasses
initialization; the exn:object exception is raised in such a case. Also, if superclass initialization is invoked
more than once, the exn:object exception is raised.

3.5 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of the class all part
of the environment, as are the names bound to super-instantiate-variable and super-make-object-variable.
Within a method body, only the fields and other methods of the class can be referenced; a reference to any
other class-introduced identifier is a syntax error. Elsewhere within the class, all class-introduced identifiers
are available, and fields and initialization variables can be mutated with set!.

3.5.1 Methods

Method names within a class can only be used in the procedure position of an application expression; any
other use is a syntax error. To allow methods to be applied to lists of arguments, a method application can
have the form

(method-variable arg-expr - - - . arg-list-expr)

which calls the method in a way analogous to (apply method-variable arg-expr - - - arg-list-expr). The arg-
list-expr must not be a parenthesized expression, otherwise the dot and the parentheses will cancel each
other.

Methods are called from outisde a class with the send and send/apply forms:

(send obj-expr method-name arg-expr - -)
(send obj-expr method-name arg-expr - - - . arg-list-expr)
(send/apply obj-expr method-name arg-expr - - - arg-list-expr)

where the last two forms apply the method to a list of argument values; in the second form, arg-list-expr
cannot be a parenthesized expression. For any send or send /apply, if obj-expr does not produce an object,
the exn:application:type exception is raised. If the object has no public method method-name, the
exn:object exception is raised.

The sendx* form calls multiple methods of an object in the specified order:
(sendx obj-expr msg - - -)
msg is one of

(method-name arg-expr - - -)
(method-name arg-expr - - - . arg-list-expr)

13

3.5. Field and Method Access 3. class.ss: Classes and Objects

where arg-list-expr is not a parenthesized expression.

Example:

(sendx edit (begin-edit-sequence)
(insert "Hello")
(insert #\newline)
(end-edit-sequence))

which is the same as
(let ([o edit])
(send o begin-edit-sequence)
(send o insert "Hello")
(send o insert #\newline)
(send o end-edit-sequence))

The with-method form extracts a method from an object and binds a local name that can be applied
directly (in the same way as declared methods within a class):

(with-method ((variable (object-expr method-name)) - - -)
expr -+ 1)

Example:
(let ([s (make-object stack%)])
(with-method ([push (s push!)]

[pop (s pop!)])
(push 10)
(push 9)

(pop)))

which is the same as

(let ([s (make-object stack%)])
(send s push! 10)
(send s push! 9)
(send s pop!))

3.5.2 Fields

Fields are accessed from outside an object through a field accessor or mutator procedure produced by class-
field-accessor or class-field-mutator:

e (class-field-accessor class-expr field-name) returns an accessor procedure that takes an instance of
the class produced by class-expr and returns the value of the object’s field-name field.

e (class-field-mutator class-expr field-name) returns an mutator procedure that takes an instance of
the class produced by class-expr and a new value for the field, mutates the field in the object named
by field-name, then returns void.

3.5.3 Generics

A generic can be used instead of a method name to avoid the cost of relocating a method by name within a
class. The make-generic procedure and generic form create generics:

14

3. class.ss: Classes and Objects 8.6. Object Utilities

e (make-generic class-or-interface symbol) returns a generic that works on instances of class-or-
interface (or an instance of a class/interface derived from class-or-interface) to call the method named
by symbol.

If class-or-interface does not contain a method with the (external and non-scoped) name symbol, the
exn:object exception is raised.

e (generic class-or-interface-expr name) is analogous to (make-generic class-or-interface-expr
’name), except that name can be a scoped method name declared by define-local-member-name
(see §3.3.3.3).

A generic is applied with send-generic:

(send-generic obj-expr generic-expr arg-expr - -)
(send-generic obj-expr generic-expr arg-expr - - - . arg-list-expr)

where the value of obj-expr is an object and the value of generic-expr is a generic.

3.6 Object Utilities

(object? v) returns #t if v is a object, #f otherwise.

(class? v) returns #t if v is a class, #f otherwise.

(interface? v) returns #t if v is an interface, #f otherwise.

(class—>interface class) returns the interface implicitly defined by class.

(object-interface object) returns the interface implicitly defined by the class of object.

(is-a? v interface) returns #t if v is an instance of a class that implements interface, #f otherwise.
(is-a? v class) returns #t if v is an instance of class (or of a class derived from class), #f otherwise.
(subclass? v class) returns #t if v is a class derived from (or equal to) class, #f otherwise.
(implementation? v interface) returns #t if v is a class that implements interface, #f otherwise.
(interface-extension? v interface) returns #t if v is an interface that extends interface, #f otherwise.

(method-in-interface? symbol interface) returns #t if interface (or any of its ancestor interfaces) defines
an instance variable with the name symbol, #f otherwise.

(interface->method-names interface) returns a list of symbols for the instance variable names in interface
(including instance variables inherited from superinterfaces).

15

4. class100.ss: Version-100-Style Classes

The class100, class100%, and class100%/names forms provide a syntax close to that of class, class*, and
class*/names in MzScheme versions 100 through 103, but with the semantics of the current class.ss system
(see Chapter 3).

The class100x/names form creates a new class:

(class100+«/names local-names superclass-expr (interface-expr - - -) initialization-variables
class100-clause

local-names is
(this-variable super-make-object-variable)

initialization-variables is one of

variable
(variable - - - variable-with-default - -)
(variable - - - variable-with-default - - - . variable)

variable-with-default is
(variable default-value-expr)

class100-clause is one of
(sequence ezpr - - -)
(public public-method-declaration - - -)
(override public-method-declaration - - -)
(private private-method-declaration - - -)
(private-field private-var-declaration - - -)
(inherit inherit-method-declaration - - -)
(rename rename-method-declaration - - -)

public-method-declaration is one of
((internal-variable external-variable) method-procedure)
(variable method-procedure)

private-method-declaration is one of
(variable method-procedure)

private-var-declaration is one of
(variable initial-value-expr)
(variable)
variable

inherit-method-declaration is one of
variable
(internal-instance-variable external-inherited-variable)

16

4. class100.ss: Version-100-Style Classes

rename-method-declaration is
(internal-variable external-variable)

The class100x macro avoids specifying local-names:

(class100% superclass-expr (interface-expr - - -) initialization-variables
class100-clause

The class100 macro omits both local-names and the interface-exprs:

(class100 superclass-expr initialization-variables
class100-clause

(class100-asi superclass instance-variable-clause - - -) SYNTAX

Like class100, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

(class100x-asi superclass interfaces instance-variable-clause - - -) SYNTAX

Like class100x, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

17

5. class-old.ss: Version-100 Classes

This library provides the class system of MzScheme version 103; consult old MzScheme documentation for
details.. It is not compatible with the newer class system implemented by class.ss and class100.ss.

18

6. cm.ss: Compilation Manager

(make-compilation-manager-load/use-compiled-handler) PROCEDURE

Returns a procedure suitable as a value for the current-load/use-compiled parameter (see §7.4.1.6 in PLT
MzScheme: Language Manual). The returned procedure automatically compiles source files to a .zo file if

e the file is expected to contain a module (i.e., the second argument to the handler is a symbol);

e the value of current-eval, current-load, and current-namespace is the same as when
make-compilation-manager-load/use-compiled-handler was called; and

e either the source file is newer than the .zo file in the compiled subdirectory, or no .dep file exists next
to the .zo file, or the version in the .dep does not match the result of (version), or one of the files
listed in the .dep file has a timestamp newer than the one recorded in the .dep file.

After the handler procedure compiles the .zo file, it creates a corresponding .dep file that lists the current
version, plus the timestamp for every file that is required by the module in the compiled file (including
require-for-syntaxes).

The handler caches timestamps when it checks .dep files, and the cache is maintained across calls to the
same handler. The cache is not consulted to compare the immediate source file to its .zo file, which means
that the caching behavior is consistent with the caching of the default module name resolver (see §5.4 in
PLT MzScheme: Language Manual).

(managed-compile-zo file) PROCEDURE

Compiles the given module source file to a .zo, installing a compilation-manager handler while the file is
compiled, and creating a .dep file to record the timestamps of immediate files used to compile the source
(i.e., files required in the source, including require-for-syntaxes).

(manager-trace-handler proc [procedure])

A parameter whose value is a procedure to return a trace string for compilation-manager actions. The
procedure receives a single string argument, and its result is ignored.

(trust-existing-zos on? [procedure])

A parameter that is intended for use by Setup PLT when installing with pre-built .zo files. It causes a
compilation-manager load/use-compiled handler to “touch” out-of-date .zo files instead of re-compiling from
source.

19

7. cmdline.ss: Command-line Parsing

(command-line program-name-expr argv-expr clause - - -) SYNTAX

Parses a command line according to the specification in the clauses. The program-name-expr should produce
a string to be used as the program name for reporting errors when the command-line is ill-formed. The argv-
expr must evaluate to a vector of strings; typically, it is (current-command-line-arguments).

The command-line is disassembled into flags (possibly with flag-specific arguments) followed by (non-flag)
arguments. Command-line strings starting with “-” or “4” are parsed as flags, but arguments to flags
are never parsed as flags, and integers and decimal numbers that start with “-” or “4+” are not treated as
flags. Non-flag arguments in the command-line must appear after all flags and the flags’ arguments. No
command-line string past the first non-flag argument is parsed as a flag. The built-in —-- flag signals the end
of command-line flags; any command-line string past the -- flag is parsed as a non-flag argument.

For defining the command line, each clause has one of the following forms:

(multi flag-spec - - -)

(once-each flag-spec - - +)

(once-any flag-spec - - -)

(final flag-spec - - -)

(help-labels string - - -)

(args arg-formals body-expr - - -1)

(=> finish-proc-expr arg-help-expr help-proc-expr unknown-proc-expr)

flag-spec is one of
(flags variable - - - help-str body-expr - - -1)
(flags => handler-expr help-expr)

flags is one of

flag-str

(flag-str - - 1)
arg-formals is one of

variable

(variable - - -)

(variable - - -1 . variable)

A multi, once-each, once-any, or final clause introduces a set of command-line flag specifications. The
clause tag indicates how many times the flag can appear on the command line:

e multi — Each flag specified in the set can be represented any number of times on the command line;
i.e., the flags in the set are independent and each flag can be used multiple times.

e once-each — Each flag specified in the set can be represented once on the command line; i.e., the
flags in the set are independent, but each flag should be specified at most once. If a flag specification
is represented in the command line more than once, the exn:user exception is raised.

20

7. emdline.ss: Command-line Parsing

e once-any — Only one flag specified in the set can be represented on the command line; i.e., the flags
in the set are mutually exclusive. If the set is represented in the command line more than once, the
exn:user exception is raised.

e final — Like multi, except that no other argument after the flag is treated as a flag.
A normal flag specification has four parts:

1. flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent.
Each flag string must be of the form "-z"” or "+z" for some character x, or "--z" or "+-+z" for some
sequence of characters . An x cannot contain only digits or digits plus a single decimal point, since
simple (signed) numbers are not treated as flags. In addition, the flags "--", "-h", and "--help” are
predefined and cannot be changed.

2. wvariables — variables that are bound to the flag’s arguments. The number of variables specified here
determines how many arguments can be provided on the command line with the flag, and the names of
these variables will appear in the help message describing the flag. The variables are bound to string
values in the body-exprs for handling the flag.

3. help-str — a string that describes the flag. This string is used in the help message generated by the
handler for the built-in ~h (or --help) flag.

4. body-exprs — expressions that are evaluated when one of the flags appears on the command line. The
flags are parsed left-to-right, and each sequence of body-exprs is evaluated as the corresponding flag is
encountered. When the body-exprs are evaluated, the variables are bound to the arguments provided
for the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and help strings.
In this case, the handler procedure and help string list returned by handler-expr and help-expr are embedded
directly in the table for parse-command-1line, the procedure used to implement command-line parsing.

A help-labels clause inserts text lines into the help table of command-line flags. Each string in the clause
provides a separate line of text.

An args clause can be specified as the last clause. The variables in arg-formals are bound to the leftover
command-line strings in the same way that variables are bound to the formals of a lambda expression.
Thus, specifying a single variable (without parentheses) collects all of the leftover arguments into a list. The
effective arity of the arg-formals specification determines the number of extra command-line arguments that
the user can provide, and the names of the variables in arg-formals are used in the help string. When the
command-line is parsed, if the number of provided arguments cannot be matched to variables in arg-formals,
the exn:user exception is raised. Otherwise, args clause’s body-exprs are evaluated to handle the leftover
arguments, and the result of the last body-expr is the result of the command-line expression.

Instead of an args clause, the => clause can be used to escape to a more general method of handling the
leftover arguments. In this case, the values of the expressions with => are passed on directly as arguments
to parse-command-line. The help-proc-expr and unknown-proc-expr expressions are optional.

Example:

(command-line "compile" (current-command-line-arguments)
(once-each
[("-v" "—verbose") "Compile with verbose messages"
(verbose-mode #t)]
"-p" "—profile") "Compile with profiling"
[("-p" "—p p profiling
(profiling-on #t)])

21

7. emdline.ss: Command-line Parsing

(once-any
[("-0" "—optimize-1") "Compile with optimization level 1"
(optimize-level 1)]
["-optimize-2" "Compile with optimization level 2"
(optimize-level 2)])
(multi
[("-I" "link-flags") If ; flag takes one argument
"Add a flag for the linker" "flag"
(link-flags (cons If (link-flags)))])
(args (filename) ; expects one command-line argument: a filename
filename)) ; return a single filename to compile

(parse-command-line progname argv table finish-proc arg-help [help-proc unknown-proc)) PROCEDURE

Parses a command-line using the specification in table. For an overview of command-line parsing, see the
command-line form. The table argument to this procedural form encodes the information in command-line’s
clauses, except for the args clause. Instead, arguments are handled by the finish-proc procedure, and
help information about non-flag arguments is provided in arg-help. In addition, the finish-proc procedure
receives information accumulated while parsing flags. The help-proc and unknown-proc arguments allow
customization that is not possible with command-1line.

When there are no more flags, the finish-proc procedure is called with a list of information accumulated for
command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity
of the finish-proc procedure determines the number of non-flag arguments accepted and required from the
command-line. For example, if finish-proc accepts either two or three arguments, then either one or two
non-flag arguments must be provided on the command-line. The finish-proc procedure can have any arity
(see §3.10.1 in PLT MzScheme: Language Manual) except 0 or a list of 0s (i.e., the procedure must at least
accept one or more arguments).

The arg-help argument is a list of strings identifying the expected (non-flag) command-line arguments, one
for each argument. (If an arbitrary number of arguments are allowed, the last string in arg-help represents
all of them.)

The help-proc procedure is called with a help string if the -h or ——help flag is included on the command line.
If an unknown flag is encountered, the unknown-proc procedure is called just like a flag-handling procedure
(as described below); it must at least accept one argument (the unknown flag), but it may also accept more
arguments. The default help-proc displays the string and exits and the default unknown-proc raises the
exn:user exception.

A table is a list of flag specification sets. Each set is represented as a list of two items: a mode symbol and a
list of either help strings or flag specifications. A mode symbol is one of 'once-each, 'once-any, 'multi, 'final, or
'help-labels, with the same meanings as the corresponding clause tags in command-1line. For the 'help-labels
mode, a list of help string is provided. For the other modes, a list of flag specifications is provided, where
each specification maps a number of flags to a single handler procedure. A specification is a list of three
items:

1. A list of strings for the flags defined by the spec. See command-1line for information about the format
of flag strings.

2. A procedure to handle the flag and its arguments when one of the flags is found on the command line.
The arity of this handler procedure determines the number of arguments consumed by the flag: the
handler procedure is called with a flag string plus the next few arguments from the command line to
match the arity of the handler procedure. The handler procedure must accept at least one argument
to receive the flag. If the handler accepts arbitrarily many arguments, all of the remaining arguments

22

7. emdline.ss: Command-line Parsing

are passed to the handler. A handler procedure’s arity must either be a number or an arity-at-least
value (see §3.10.1 in PLT MzScheme: Language Manual).

The return value from the handler is added to a list that is eventually passed to finish-proc. If the
handler returns void, no value is added onto this list. For all non-void values returned by handlers, the
order of the values in the list is the same as the order of the arguments on the command-line.

3. A non-empty list of strings used for constructing help information for the spec. The first string in the
list describes the flag, and additional strings name the expected arguments for the flag. The number
of extra help strings provided for a spec must match the number of arguments accepted by the spec’s
handler procedure.

The following example is the same as the example for command-line, translated to the procedural form:

(parse-command-line "compile" (current-command-line-arguments)
‘((once-each
[("-v" "—verbose")
,(lambda (flag) (verbose-mode #t))
("Compile with verbose messages")]
[("-p" "—profile")
,(lambda (flag) (profiling-on #t))
("Compile with profiling")])
(once-any
[("-0" "—optimize-1")
,(lambda (flag) (optimize-level 1))
("Compile with optimization level 1")]
[("—optimize-2")
,(lambda (flag) (optimize-level 2))
("Compile with optimization level 2")])
(multi
[("-I" "ink-flags")
,(lambda (flag If) (link-flags (cons If (link-flags))))
("Add a flag for the linker" "flag")]))
(lambda (flag-accum file) file) ; return a single filename to compile
’("filename")) ; expects one command-line argument: a filename

23

8. compat.ss: Compatibility

This library defines a number of procedures and syntactic forms that are commonly provided by other Scheme
implementations. Most of the procedures are aliases for built-in MzScheme procedures, as shown in the table
below. The remaining procedures and forms are described below.

Compatible MzScheme
=7 =
<7 <
>7 >
<=7 <=
>=7 >=
1+ add1
1- subl
gentemp gensym
flush-output-port flush-output
real-time current-milliseconds
(atom? v) PROCEDURE
Same as (not (pair? v)).
(define-structure (name-identifier field-identifier - - -)) SYNTAX

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields. A second
form of define-structure, below, supports initial-value expressions for fields.
(define-structure (name-identifier field-identifier - - -) ((init-field-identifier init-expr) - - -)) SYNTAX

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields, and additional
fields can be specified with initial-value expressions.

The init-field-identifiers do not have corresponding arguments for the make-name-identifier constructor.
Instead, the init-field-identifier’s init-expr is evaluated to obtain the field’s value when the constructor is
called. The field-identifiers are bound in init-exprs, but not the init-field-identifiers.

Example:

(define-structure (add left right) ([sum (+ left right)]))
(add-sum (make-add 3 6)) ; = 9

24

8. compat.ss: Compatibility

(getprop sym property default) PROCEDURE

Gets a property value associated with the symbol sym. The property argument is also a symbol that names
the property to be found. If the property is not found, default is returned. If the default argument is omitted,

#f is used as the default.

(new-cafe [eval-handler]) PROCEDURE
Emulates Chez Scheme’s new-cafe.
(putprop sym property value) PROCEDURE
Installs a value for property of the symbol sym. See getprop above.

PROCEDURE

(sort less-than?-proc list)

This is the same as mergesort (see §18) with the arguments reversed.

25

9. compile.ss: Compiling Files

(compile-file src [dest filter]) PROCEDURE

Compiles the Scheme file src and saves the compiled code to dest. If dest is not specified, a filename is
constructed by taking src’s directory path, adding a compiled subdirectory, and then adding src’s filename
with its suffix replaced by .zo. Also, if dest is not provided and the compiled subdirectory does not already
exist, the subdirectory is created. If the filter procedure is provided, it is applied to each source expression
and the result is compiled (otherwise, the identity function is used as the filter).

The compile-file function is designed for compiling modules files; each expression in src is compiled
independently. If src¢ does not contain a single module expression, then earlier expressions can affect the
compilation of later expressions when src is loaded directly. An appropriate filter can make compilation
behave like evaluation, but the problem is also solved (as much as possible) by the compile-zos function
provided by the compiler collection’s compiler.ss module.

26

10. contract.ss: Contracts

Mzlib’s contract.ss library defines new forms of expression that specify contracts and new forms of expression
that attach contracts to values.

This section describes two classes of contracts: contracts for flat values (described in section 10.1) and
contracts for functions (described in section 10.2).

In addition, this section describes two forms for establishing a contract on a value (described in section 10.3).

10.1 Flat Contracts

A contract for a flat value can be a predicate that accepts the value and returns a boolean indicating if the
contract holds.

(flat-named-contract type-name predicate) PROCEDURE

For better error reporting, a flat contract can be constructed with flat-named-contract, a procedure that
accepts two arguments. The first argument must be a string that describes the type that the predicate
checks for. The second argument is the predicate itself.

(flat-named-contract-type-name flat-named-contract) PROCEDURE

Extracts the type name from a flat-named-contract.

(flat-named-contract-predicate flat-named-contract) PROCEDURE
Extracts the predicate from a flat-named-contract.

In addition, this library provides many helper functions for constructing contracts.

(union contract ...) PROCEDURE

union accepts any number of predicates and at most one function contract and returns a contract that
corresponds to the union of them all.

(and/f predicate) PROCEDURE

and/f accepts a list of predicates and returns a predicate that is the conjunction of those predicates.

(or/f predicate ...) PROCEDURE

or/f accepts a list of predicates and returns a predicate that is the disjuction of those predicates.

27

10.1. Flat Contracts 10. contract.ss: Contracts

(>=/c number) PROCEDURE

>=/c accepts a number and returns a predicate that requires the input to be a number and greater than or
equal to the original input.

(<=/c number) PROCEDURE

<=/c accepts a number and returns a predicate that requires the input to be a number and less than or
equal to the original input.

(>/c number) PROCEDURE

> /c accepts a number and returns a predicate that requires the input to be a number and greater than the
original input.

(</c number) PROCEDURE

< /c accepts a number and returns a predicate that requires the input to be a number and less than the
original input.

natural-number? FLAT-CONTRACT

natural-number? returns #t if the input is a natural number and #f otherwise.

false? FLAT-CONTRACT

false? returns true if the input is #f and #t otherwise.

printable? FLAT-CONTRACT

printable? returns #t for any value that can be written out and read back in.

any? FLAT-CONTRACT

any? always returns #t.

(symbols symbol ...) PROCEDURE

symbols accepts any number of symbols and returns a predicate that checks for those symbols.

(is-a?/c class-or-interface) PROCEDURE

is-a?/c accepts a class or interface and returns a predicate that checks if objects are subclasses of the class
or implement the interface.

(implementation?/c interface) PROCEDURE

implementation?/c accepts an interface and returns a predicate that checks if classes are implement the
given interface.

28

10. contract.ss: Contracts 10.2. Function Contracts

(subclass?/c class) PROCEDURE

subclass?/c accepts a class and returns a predicate that checks if classes are subclasses of the original class.

(1istof flat-contract) FLAT-CONTRACT

listof accepts a flat contract and returns a predicate that checks for lists whose elements match the original
predicate.

(vectorof flat-contract) FLAT-CONTRACT

vectorof accepts a flat contract and returns a predicate that checks for vectors whose elements match the
original predicate.

(vector/p flat-contract ...) FLAT-CONTRACT

vector/p accepts any number of flat contract and returns a predicate that checks for vectors. The number
of elements in the vector must match the number of arguments supplied to vector/p and the elements of the
vector must match the corresponding flat contract.

(box/p flat-contract) FLAT-CONTRACT

boz/p accepts a flat contract and returns a flat contract that checks for boxes whose contents match boz/p’s
argument.

(cons/p flat-contract flat-contract) FLAT-CONTRACT

cons/p accepts two predicates and returns a predicate that checks for cons cells whose car and cdr correspond
to cons/p’s two arguments.

(1list/p flat-contract ...) PROCEDURE

list/p accepts an arbitrary number of arguments and returns a predicate that checks for lists whose length
is the same as the number of arguments to list/p and whose elements match those arguments.

mixin-contract CONTRACT

mixin-contract is a contract that matches mixins. It is a function contract. It guarantees that the input to
the function is a class and the result of the function is a subclass of the input.

(make-mixin-contract class-or-interface ...) PROCEDURE

make-mizin-contract is a function that constructs mixins contracts. It accepts any number of classes and
interfaces and returns a function contract. The function contract guarantees that the input to the function
implements the interfaces and is derived from the classes and that the result of the function is a subclass of
the input.

10.2 Function Contracts

This section describes the contract constructors for function contracts. This is their shape:

contract-expr ::==

29

10.2. Function Contracts 10. contract.ss: Contracts

| (case-> arrow-contract-expr ...)
| arrow-contract-expr

arrow-contract-expr ==
| (-> expr ... expr)
-> expr ... any)
->x (expr ...) expr (expr ...))
->x (expr ...) (expr ...))
->d expr ... expr)
->xd (expr ...) expr)
->xd (expr ...) expr expr)
opt-> (expr ...) (expr ...) expr)
opt->x (expr ...) (expr ...) (expr ...))

| (
| (
| (
| (
| (
| (
| (
| (

where expr is any Scheme expression.
(-> expr ...) SYNTAX

(=> expr ... any) SYNTAX

The -> contract is for functions that accept a fixed number of arguments and return a single result. The
last argument to -> is the contract on the result of the function and the other arguments are the contracts
on the arguments to the function. Each of the arguments to -> must be another contract expression or a
predicate. For example, this expression:

(integer? boolean? . -> . integer?)

is a contract on functions of two arguments. The first must be an integer and the second a boolean and the
function must return an integer. (This example uses MzScheme’s infix notation so that the -> appears in a
suggestive place; see §14.3 in PLT MzScheme: Language Manual).

If any is used as the last argument to ->, no contract checking is performed on the result of the function,
and tail-recursion is preserved.

(=>* (expr ...) (expr ...)) SYNTAX

(=>* (expr ...) expr (expr ...)) SYNTAX

The -># expression is for functions that return multiple results and/or have rest arguments. If two arguments
are supplied, the first is the contracts on the arguments to the function and the second is the contract on
the results of the function. If three arguments are supplied, the first argument contains the contracts on
the arguments to the function (excluding the rest argument), the second contains the contract on the rest
argument to the function and the final argument is the contracts on the results of the function.

(->d expr ...) SYNTAX
(=>*d (expr ...) expr)) SYNTAX
(=>*d (expr ...) expr expr) SYNTAX

The ->d and ->x*d contract constructors are like their d-less counterparts, except that the result portion is
a function that accepts the original arguments to the function and returns the range contracts. The range

30

10. contract.ss: Contracts 10.3. Attaching Contracts to Scheme Values

contract function for ->*d must return multiple values: one for each result of the original function. As an
example, this is the contract for sqrt:

(number?
.->d .
(lambda (in)
(lambda (out)
(and (number? out)
(abs (— (x out out) in) 0.01)))))

It says that the input must be a number and that the difference between the square of the result and the
original number is less than 0.01.

(case-> arrow-contract-expr ...) CONTRACT-CASE->

The case-> expression constructs a contract for case-\ function. It’s arguments must all be function con-
tracts, built by one of ->, ->d, ->*, or ->xd.

(opt=> (reg-contracts ...) (opt-contracts ...) res-contract)) SYNTAX

(opt=>* (reg-contracts ...) (opt-contracts ...) (res-contracts ...)) SYNTAX

The opt-> expression constructs a contract for an opt-lambda function. The first arguments are the
required parameters, the second arguments are the optional parameters and the final argument is the result.
Each opt-> expression expands into case->.

The opt->% expression constructs a contract for an opt-lambda function. The only difference between
opt-> and opt->x* is that multiple return values are permitted with opt->% and they are specified in the
last clause of an opt->#* expression.

10.3 Attaching Contracts to Scheme Values

(provide/contract (id expr) ...) SYNTAX

There are two special forms that add contract specifications, provide/contract and contract. A pro-
vide/contract form has this shape:

(provide/contract (id expr) ...)

and can only appear at the top-level of a module (see §5 in PLT MzScheme: Language Manual). As with
provide, each identifier is provided from the module. In addition, clients of the module must live up to the
contract specified by ezpr.

(contract contract-expr to-protect-expr positive-blame negative-blame) SYNTAX

(contract contract-expr to-protect-expr positive-blame negative-blame contract-source) SYNTAX

The contract special form is the primitive mechanism for attaching a contract to a value. Its purpose is as
a target for the expansion of some higher-level contract specifying form.

The contract form has this shape:

(contract expr to-protect-expr positive-blame negative-blame contract-source)

31

10.4. Contract Utility 10. contract.ss: Contracts

The contract expression adds the contract specified by the first argument to the value in the second
argument. The result of a contract expression is the result of the to-protect-expr expression, but with the
contract specified by contract-expr enforced on to-protect-expr. The expressions positive-blame and negative-
blame must be symbols indicating how to assign blame for positive and negative positions of the contract
specified by contract-expr. Finally, contract-source, if specified, indicates where the contract was assumed.
It must be a syntax object specifying the source location of the location where the contract was assumed.
If the syntax object wraps a symbol, the symbol is used as the name of the primitive whose contract was
assumed. If absent, it defaults to the source location of the contract expression.

10.4 Contract Utility

contract? PREDICATE

The procedure contract? returns #t if its argument was constructed with one of the arrow constructors
described earlier in this section, or if its argument is a procedure of arity 1.

32

11. date.ss: Dates

See also §15.1 in PLT MzScheme: Language Manual.

(date->string date [time?]) PROCEDURE

Converts a date structure value (such as returned by MzScheme’s seconds->date) to a string. The returned
string contains the time of day only if time? is a true value; the default is #f. See also date-display-format.

(date-display-format [format-symbol]) PROCEDURE

Parameter that determines the date display format, one of 'american, 'chinese, 'german, 'indian, 'irish, 'iso-
8601, or 'julian. The initial format is 'american.

(find-seconds second minute hour day month year) PROCEDURE

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of
the date structure. If the platform cannot represent the specified date, an error is signaled, otherwise an
integer is returned.

(date->julian/scalinger date) PROCEDURE

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is
not a strict Julian number, but rather Scalinger’s version, which is off by one for easier calculations.

(julian/scalinger->string date) PROCEDURE

Converts a Julian number (Scalinger’s off-by-one version) into a string.

33

12. deflate.ss: Deflating (Compressing) Data

(gzip in-filename [out-filename]) PROCEDURE

Compresses data to the same format as the GNU gzip utility, writing the compressed data directly to a file.
The in-filename argument is the name of the file to compress. The default output file name is in-filename
with .gz appended. If the file named by out-filename exists, it will be overwritten. The return value is void.

(gzip-through-ports in out orig-filename timestamp) PROCEDURE

Reads the port in for data and compresses it to out, outputting the same format as the GNU gzip utility.
The orig-filename string is embedded in this output; orig-filename can be #f to omit the filename from the
compressed stream. The timestamp number is also embedded in the output stream, as the modification date
of the original file (in Unix seconds, as file-or-directory-modify-seconds would report under Unix).
The return value is void.

(deflate in out) PROCEDURE

Writes pkzip-format “deflated” data to the port out, compressing data from the port in. The data in a file
created by gzip uses this format (preceded with some header information). The return value is void.

34

13. defmacro.ss: Non-Hygienic Macros

(define-macro identifier expr) SYNTAX

(define-macro (identifier . formals) expr ---1) SYNTAX

Defines a (non-hygienic) macro identifier as a procedure that manipulates S-expressions (as opposed to
syntax objects). In the first form, expr must produce a procedure. In the second form, formals determines
the formal arguments of the procedure, as in lambda, and the ezprs are the procedure body. In both cases,
the procedure is generated in the transformer environment, not the normal environment (see §12 in PLT
MzScheme: Language Manual).

In a use of the macro,

(identifier expr - -)

syntax-object->datum is applied to the expression (see §12.2.2 in PLT MzScheme: Language Manual), and
the macro procedure is applied to the cdr of the resulting list. If the number of ezprs does not match the
procedure’s arity (see §3.10.1 in PLT MzScheme: Language Manual) or if identifier is used in a context that
does not match the above pattern, then a syntax error is reported.

After the macro procedure returns, the result is compared to the procedure’s arguments. For each value
that appears exactly once within the arguments (or, more precisely, within the S-expression derived from the
original source syntax), if the same value appears in the result, it is replaced with a syntax object from the
original expression. This heuristic substitution preserves source location information in many cases, despite
the macro procedure’s operation on raw S-expressions.

After substituting syntax objects for preserved values, the entire macro result is converted to syntax with
datum->syntax-object (see §12.2.2 in PLT MzScheme: Language Manual). The original expression supplies
the lexical context and source location for converted elements.

(defmacro identifier formals expr - - 1) SYNTAX

Same as (define-macro (identifier . formals) expr ---1).

35

14. etc.ss: Useful Procedures and Syntax

(boolean=7 booll bool2) PROCEDURE
Returns #t if booll and bool2 are both #t or both #f, and returns #f otherwise. If either booll or bool2 is

not a Boolean, the exn:application:type exception is raised.

(build-list n f) PROCEDURE

Creates a list of n elements by applying f to the integers from 0 to n — 1 in order, where n is a non-negative
integer. The ith element of the resulting list is (f (- i 1)).

(build-string n f) PROCEDURE

Creates a string of length n by applying f to the integers from 0 to n — 1 in order, where n is a non-negative
integer and f returns a character for the n invocations. The ith character of the resulting string is (f (- ¢

).

(build-vector n f) PROCEDURE

Creates a vector of n elements by applying f to the integers from 0 to n—1 in order, where n is a non-negative
integer. The ith element of the resulting vector is (f (- 7 1)).

(compose f ¢g) PROCEDURE

Returns a procedure that takes x and returns (call-with-values (lambda () (g z)) f).

(define-syntax-set (identifier ---) defn - --) SYNTAX

This form is similar to define-syntaxes, but instead of a single body expression, a sequence of definitions
follows the sequence of defined identifiers. For each identifier, the defns should include a definition for
identifier /proc. The value for identifier/proc is used as the (expansion-time) value for identifier.

The define-syntax-set form is especially useful for defining a set of syntax transformers that share helper
functions.

Example:

(define-syntax-set (let-current-continuation let-current-escape-continuation)
(define (mk call-id)
(lambda (stz)
(syntax-case stz ()
[(- id bodyl body ...)
(with-syntax ([call call-id])
(syntax (call (lambda (id) bodyl body ...))))])))

36

14. etc.ss: Useful Procedures and Syntax

(define let-current-continuation/proc (mk (quote-syntax call/cc)))
(define let-current-escape-continuation/proc (mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr ---) ---1) SYNTAX

The evcase form is similar to case, except that expressions are provided in each clause instead of a sequence
of data. After key-expr is evaluated, each wvalue-expr is evaluated until a value is found that is eqv? to the
key value; when a matching value is found, the corresponding body-exprs are evaluated and the value(s) for
the last is the result of the entire evcase expression.

A walue-expr can be the special identifier else. This identifier is recognized as in case (see §2.3 in PLT
MzScheme: Language Manual).

false BOOLEAN

Boolean false.

(identity v) PROCEDURE
Returns v.
(let+ clause body-expr - - 1) SYNTAX

A new binding construct that specifies scoping on a per-binding basis instead of a per-expression basis. It
helps eliminate rightward-drift in programs. It looks similar to let, except each clause has an additional
keyword tag before the binding variables.

Each clause has one of the following forms:

e (val target expr) binds target non-recursively to expr.

e (rec target expr) binds target recursively to expr.

(vals (target expr) - --) the targets are bound to the exprs. The environment of the exprs is the
environment active before this clause.

(recs (variable expr) - - -) the targetss are bound to the exprs. The environment of the exprs includes
all of the targetss.

e (_expr ---) evaluates the exprs without binding any variables.

The clauses bind left-to-right. Each target above can either be an identifier or (values variable - - -). In the
latter case, multiple values returned by the corresponding expression are bound to the multiple variables.

Examples:
(let+ ([val (values z y) (values 1 2)])
(listz y)) ;= '(12)

(let ([z 1)
(let+ ([val z 3]
[val y z))

y)) ;=3

37

14. etc.ss: Useful Procedures and Syntax

(local (definition - - -) body-expr - --1) SYNTAX

This is a binding form similar to letrec, except that each definition is a define-values expression (after
partial macro expansion). The body-exprs are evaluated in the lexical scope of these definitions.

(loop-until start done? next f) PROCEDURE

Repeatedly invokes the f procedure until the done? procedure returns #t. The procedure is best described
by its implementation:

(define loop-until
(lambda (start done? next f)
(let loop ([i start])
(unless (done? 1)

(f 9)
(loop (next i))))))

(namespace-defined? symbol) PROCEDURE

Returns #t if namespace-variable-binding would return a value for symbol, #f otherwise. See §8.2 in
PLT MzScheme: Language Manual for further information.

(nand expr - --) SYNTAX

Returns (not (and expr - - -)).

(nor expr---) SYNTAX

Returns (not (or expr ---)).

(opt-lambda formals body-expr - - -1) SYNTAX

The opt-lambda form is like lambda, except that default values are assigned to arguments (C++-style). De-
fault values are defined in the formals list by replacing each variable by [variable default-value-expression].
If an variable has a default value expression, then all (non-aggregate) variables after it must have default
value expressions. A final aggregate variable can be used as in lambda, but it cannot be given a default
value. Each default value expression is evaluated only if it is needed. The environment of each default value
expression includes the preceding arguments.

For example:

(define f
(opt-lambda (a [b (addl a)] . ¢)

)

In the example, f is a procedure which takes at least one argument. If a second argument is specified, it is
the value of b, otherwise b is (addl a). If more than two arguments are specified, then the extra arguments
are placed in a new list that is the value of c.

(recur name bindings body-expr - - 1) SYNTAX

This is equivalent to a named let: (let name bindings body-expr - - -1).

38

14. etc.ss: Useful Procedures and Syntax

(rec name value-expr) SYNTAX

This is equivalent to a letrec expression that returns its binding: (letrec ((name value-expr)) name).

(symbol=7? symboll symbol2) PROCEDURE

Returns #t if symboll and symbol2 are equivalent (as determined by eq?), #f otherwise. If either symbol!
or symbol?2 is not a symbol, the exn:application:type exception is raised.

(this-expression-source-directory) SYNTAX
Expands to a string that names the directory of the file containing the source expression. The source
expression’s file is detemermined through source location information associated with the syntax if it is

present. Otherwise, current-load-relative-directory is used if it is not #f, and current-directory is
used if all else fails.

true BOOLEAN

Boolean true.

39

15. file.ss: Filesystem Utilities

See also §11.3 in PLT MzScheme: Language Manual.

(build-absolute-path base path - - -) PROCEDURE

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be an absolute
pathname. If base is not an absolute pathname, error is called.

(build-relative-path base path - - -) PROCEDURE

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be a relative
pathname. If base is not a relative pathname, error is called.

(call-with-input-file* pathname proc flag-symbol - - -) PROCEDURE

Like call-with-input-file, except that the opened port is closed if control escapes from the body of proc.

(call-with-output-filex pathname proc flag-symbol - - -) PROCEDURE

Like call-with-output-file, except that the opened port is closed if control escapes from the body of
proc.

(copy-directory/files src-path dest-path) PROCEDURE

Copies the file or directory src-path to dest-path, raising exn:i/o:filesysten if the file or directory cannot
be copied, possibly because dest-path exists already. If src-path is a directory, the copy applies recursively
to the directory’s content. If a source is a link, the target of the link is copied rather than the link itself.

(delete-directory/files path) PROCEDURE
Deletes the file or directory specified by path, raising exn:i/o:filesysten if the file or directory cannot be

deleted. If path is a directory, then delete-directory/files is first applied to each file and directory in
path before the directory is deleted. The return value is void.

(explode-path path) PROCEDURE

Returns the list of directories that constitute path. The path argument must be normalized (except for letter
case; see normalize-path below).

(file-name-from-path path) PROCEDURE

If path is a file pathname, returns just the file name part without the directory path.

40

15. file.ss: Filesystem Utilities

(filename-extension path) PROCEDURE

Returns a string that is the extension part of the filename in path. If path is (syntactically) a directory, #f
is returned.

(find-library name collection) PROCEDURE

Returns the path of the specified library (see Chapter 16 in PLT MzScheme: Language Manual), returning
#f if the specified library or collection cannot be found. The collection argument is optional, defaulting to
"mzlib".

(find-relative-path basepath path) PROCEDURE

Finds a relative pathname with respect to basepath that names the same file or directory as path. Both
basepath and path must be normalized (except for letter case; see normalize-path below). If path is not a
proper subpath of basepath (i.e., a subpath that is strictly longer), path is returned.

(get-preference name [failure-thunk flush-cache? filename]) PROCEDURE

Extracts a preference value from the file designated by (find-system-path ’pref-file) (see §11.3 in PLT
MzScheme: Language Manual), or by filename if it is provided and is not #f. In the former case, if the
preference file doesn’t exist, get-preferences attempts to read a plt-prefs.ss file in the defaults collection,
instead. If neither file exists, the preference set is empty.

The preference file should contain a symbol-keyed association list (written to the file with the default pa-
rameter settings). Keys starting with mzscheme:, mred:, and plt: in any letter case are reserved for use by
PLT.

The result of get-preference is the value associated with name if it exists in the association list, or the
result of calling failure-thunk otherwise. The default failure-thunk returns #.

Preference settings from the standard preference file are cached (weakly) across calls to get-preference; if
flush-cache? is provided as #f, the cache is used instead of the re-consulting the preferences file.

See also put-preferences. The framework collection supports a more elaborate preference system; see PLT
Framework: GUI Application Framework for details.

(make-directory* path) PROCEDURE

Creates directory specified by path, creating intermediate directories as necessary.

(make-temporary-file [format-string copy-from-filename]) PROCEDURE

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a
fresh file name, the file is actually created; this prevents other threads or processes from picking the same
temporary name; if copy-from-filename is provided as string, the temporary file is created as a copy of the
named file,. If copy-from-filename is #f or not provided, the temporary file is created as empty.

The temporary file is not opened for reading or writing when the pathname is returned. The client program
calling make-temporary-file is expected to open the file with the desired access and flags (probably using
the 'truncate flag; see §11.1.2 in PLT MzScheme: Language Manual) and to delete it when it is no longer
needed.

41

15. file.ss: Filesystem Utilities

If format-string is specified, it must be a format string suitable for use with format and one additional string
argument (where the string contains only digits). If the resulting string is a relative path, it is combined
with the result of (find-system-path 'temp-dir). The default format-string is "mztmp~a".

(normalize-path path wrt) PROCEDURE

Returns a normalized, complete version of path, expanding the path and resolving all soft links. If path is
relative, then the pathname wrt is used as the base path. The wrt argument is optional; if is omitted, then
the current directory is used as the base path.

Letter case is not normalized by normalize-path, so combine normalize-path with normal-case-path to
get strings for path comparison.

An error is signaled by normalize-path if the input path contains an embedded path for a non-existent
directory, or if an infinite cycle of soft-links is detected.

(path-only path) PROCEDURE

If path is a filename, the file’s path is returned. If path is syntactically a directory, #f is returned.

(put-preferences name-list val-list [locked-proc filename]) PROCEDURE
See also get-preference.

Installs a set of preference values and writes all current values to the preference file designated by
(find-system-path ’pref-file) (see §11.3 in PLT MzScheme: Language Manual), or fielname if it is sup-
plied and not #f. The name-list argument must be a list of symbols for the preference names, and val-list
must have the same length as name-list.

Current preference values are read from the preference file before updating, and an update “lock” is held
starting before the file read, and lasting until after the preferences file is updated. The lock is implemented
by the existence of a file in the same directory as the preference file.

If the update lock is already held (i.e., the lock file exists), then locked-proc is called with a single argument:
the path of the lock file. The default locked-proc reports an error; an alternative thunk might wait a while and
try again, or give the user the choice to delete the lock file (in case a previous update attempt encountered
disaster).

If filename is #f or not supplied, and the preference file does not already exist, then values read from the
defaults collection (if any) are written for preferences that are not mentioned in name-list.

42

16. include.ss: Textually Including Source

(include path-spec) SYNTAX
Inlines the syntax in the designated file in place of the include expression.

The path-spec can be either a literal string (parsed according to the platform’s conventions) or a path
construction of the form (build-path elem ---!) where build-path is module-identifier=7 either to
the build-path export from mzscheme or to the top-level build-path, and where each elem is a path string,
up (unquoted), or same (unquoted). The elems are combined in the same way as for the build-path
function (see §11.3.1 in PLT MzScheme: Language Manual).

If path-spec specifies a relative path, it is resolved relative to the source for the include expression, if that
source is a complete path string. If the source is not a complete path string, then path-spec i