
PLT MzLib: Libraries Manual

PLT (scheme@plt-scheme.org)

Version 202
August 2002

Copyright notice

Copyright c©1996-2002 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the
fact on some Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Contributors to MzLib include Dorai Sitaram, Gann Bierner, and Kurt Howard (working from Steve Moshier’s
Cephes library). Publicly available packages have been assimilated from others, including Andrew Wright
(match) and Marc Feeley (original pretty-printing implementation).

This manual was typest using LATEX, SLATEX, and tex2page. Some typesetting macros were originally taken
from Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on August 27, 2002.

Contents

1 MzLib 1

2 awk.ss: Awk-like Syntax 2

3 class.ss: Classes and Objects 3

3.1 Object Example . 4

3.2 Creating Interfaces . 6

3.3 Creating Classes . 6

3.3.1 Initialization Variables . 9

3.3.2 Fields . 10

3.3.3 Methods . 10

3.4 Creating Objects . 12

3.5 Field and Method Access . 13

3.5.1 Methods . 13

3.5.2 Fields . 14

3.5.3 Generics . 14

3.6 Object Utilities . 15

4 class100.ss: Version-100-Style Classes 16

5 class-old.ss: Version-100 Classes 18

6 cm.ss: Compilation Manager 19

7 cmdline.ss: Command-line Parsing 20

8 compat.ss: Compatibility 24

9 compile.ss: Compiling Files 26

i

CONTENTS CONTENTS

10 contract.ss: Contracts 27

10.1 Flat Contracts . 27

10.2 Function Contracts . 29

10.3 Attaching Contracts to Scheme Values . 31

10.4 Contract Utility . 32

11 date.ss: Dates 33

12 deflate.ss: Deflating (Compressing) Data 34

13 defmacro.ss: Non-Hygienic Macros 35

14 etc.ss: Useful Procedures and Syntax 36

15 file.ss: Filesystem Utilities 40

16 include.ss: Textually Including Source 43

17 inflate.ss: Inflating Compressed Data 44

18 list.ss: List Utilities 45

19 match.ss: Pattern Matching 48

19.1 Patterns . 50

19.2 Examples . 51

20 math.ss: Math 53

21 pconvert.ss: Converted Printing 54

22 pregexp.ss: Perl-Style Regular Expressions 57

22.1 Introduction . 57

22.2 Regexp procedures . 57

22.2.1 pregexp . 58

22.2.2 pregexp-match-positions . 58

22.2.3 pregexp-match . 59

ii

CONTENTS CONTENTS

22.2.4 pregexp-split . 59

22.2.5 pregexp-replace . 59

22.2.6 pregexp-replace* . 60

22.3 The regexp pattern language . 60

22.3.1 Basic assertions . 60

22.3.2 Characters and character classes . 60

22.3.3 Quantifiers . 62

22.3.4 Clusters . 63

22.3.5 Alternation . 66

22.3.6 Backtracking . 67

22.3.7 Looking ahead and behind . 68

22.4 An extended example . 69

23 pretty.ss: Pretty Printing 71

24 process.ss: Process and Shell-Command Execution 74

25 restart.ss: Simulating Stand-alone MzScheme 76

26 sendevent.ss: AppleEvents 77

26.1 AppleEvents . 77

27 shared.ss: Graph Constructor Syntax 79

28 spidey.ss: MrSpidey Annotations 80

29 string.ss: String Utilities 81

30 thread.ss: Thread Utilities 83

31 trace.ss: Tracing Top-level Procedure Calls 85

32 traceld.ss: Tracing File Loads 86

33 transcr.ss: Transcripts 87

iii

CONTENTS CONTENTS

34 unit.ss: Core Units 88

34.1 Creating Units . 88

34.2 Invoking Units . 90

34.3 Linking Units and Creating Compound Units . 91

34.4 Unit Utilities . 93

35 unitsig.ss: Units with Signatures 94

35.1 Importing and Exporting with Signatures . 94

35.2 Signatures . 95

35.3 Signed Units . 96

35.4 Linking with Signatures . 97

35.5 Restricting Signatures . 98

35.6 Embedded Units . 99

35.7 Signed Compound Units . 99

35.8 Invoking Signed Units . 101

35.9 Extracting a Primitive Unit from a Signed Unit . 102

35.10Adding a Signature to Primitive Units . 102

35.11Expanding Signed Unit Expressions . 103

Index 105

iv

1. MzLib

The MzLib collection consists of several libraries, each of which provides a set of procedures and syntax.

To use a MzLib library, either at the top-level or within a module, import it with

(require (lib libname))

For example, to use the list.ss library:

(require (lib "list.ss"))

The MzLib collection provides the following libraries:

• awk.ss — AWK-like syntax
• class.ss — object system
• cm.ss — compilation manager
• cmdline.ss — command-line parsing
• compat.ss — compatibility procedures and syntax
• compile.ss — bytecode compilation
• contract.ss — programming by contract
• date.ss — date-processing procedures
• deflate.ss — gzip
• defmacro.ss — define-macro and defmacro
• etc.ss — semi-standard procedures and syntax
• file.ss — file-processing procedures
• include.ss — textual source inclusion
• inflate.ss — gunzip
• list.ss — list-processing procedures
• match.ss — pattern matching
• math.ss — arithmetic procedures and constants
• pconvert.ss — print values as expressions
• pregexp.ss – Perl-style regular expressions
• pretty.ss — pretty-printer
• restart.ss — stand-alone MzScheme emulator
• sendevent.ss — AppleEvents
• shared.ss — graph constructor syntax
• spidey.ss — MrSpidey annotation syntax
• string.ss — string-processing procedures
• thread.ss — thread utilities
• trace.ss — function tracing
• traceld.ss — file-load tracing
• transcr.ss — transcripts
• unit.ss — component system
• unitsig.ss — component system with signatures

1

2. awk.ss: Awk-like Syntax

This library defines the awk macro from Scsh:

(awk next-record-expr
(record field-variable · · ·)
counter-variable/optional
((state-variable init-expr) · · ·)
continue-variable/optional

clause · · ·)

counter-variable/optional is either empty or
variable

continue-variable/optional is either empty or
variable

clause is one of
(test body-expr · · ·1)
(test => procedure-expr)
(/ regexp-str / (variable-or-false · · ·1) body-expr · · ·1)
(range exclusive-start-test exclusive-stop-test body-expr · · ·1)
(:range inclusive-start-test exclusive-stop-test body-expr · · ·1)
(range: exclusive-start-test inclusive-stop-test body-expr · · ·1)
(:range: inclusive-start-test inclusive-inclusive-stop-test body-expr · · ·1)
(else body-expr · · ·1)
(after body-expr · · ·1)

test is one of
integer
regexp-str
expr

variable-or-false is one of
variable
#f

For detailed information about awk, see Olin Shivers’s Scsh Reference Manual. In addition to awk, the
Scsh-compatible procedures match:start, match:end, match:substring, and regexp-exec are defined.
These match: procedures must be used to extract match information in a regular expression clause when
using the => form.

2

3. class.ss: Classes and Objects

A class specifies

• a collection of fields;

• a collection of methods;

• initial value expressions for the fields; and

• initialization variables that are bound to initialization arguments.

An object is a collection of bindings for fields that are instantiated according to a class description.

The primary role of the object system is ability to define a new class (a derived class) in terms of an existing
class (the superclass) using inheritance and overriding:

• inheritance: An object of a derived class supports methods and instantiates fields declared by the
derived class’s superclass, as well as methods and fields declared in the derived class expression.

• overriding: A method declared in a superclass can be redeclared in the derived class. References to
the overridden method in the superclass use the implementation in the derived class.

An interface is a collection of method names to be implemented by a class, combined with a derivation
requirement. A class implements an interface when it

• declares (or inherits) a public method for each variable in the interface;

• is derived from the class required by the interface, if any; and

• specifically declares its intention to implement the interface.

A class can implement any number of interfaces. A derived class automatically implements any interface that
its superclass implements. Each class also implements an implicitly-defined interface that is associated with
the class. The implicitly-defined interface contains all of the class’s public method namess, and it requires
that all other implementations of the interface are derived from the class.

A new interface can extend one or more interfaces with additional method names; each class that implements
the extended interface also implements the original interfaces. The derivation requirements of the original
interface must be consistent, and the extended interface inherits the most specific derivation requirement
from the original interfaces.

Classes, objects, and interfaces are all first-class Scheme values. However, a MzScheme class or interface is
not a MzScheme object (i.e., there are no “meta-classes” or “meta-interfaces”).

3

3.1. Object Example 3. class.ss: Classes and Objects

3.1 Object Example

The following example converys the object system’s basic style.

(define stack<%> (interface () push! pop! none?))

(define stack%
(class∗ object% (stack<%>)

; Declare public methods:
(public push! pop! none? print-name)

(define stack null) ; A private field
(init-field (name ’stack)) ; A public field

; Method implementations:
(define (push! v) (set! stack (cons v stack)))
(define (pop!)

(let ([v (car stack)])
(set! stack (cdr stack))
v))

(define (none?) (null? stack))
(define (print-name) (display name) (newline))

; Call superclass initializer:
(super-instantiate ())))

(define fancy-stack%
(class stack%

; Declare override
(override print-name)

; Add inherited field to local environment
(inherit-field name)

(define (print-name)
(display name)
(display ", Esq.")
(newline))

(super-instantiate ())))

(define double-stack%
(class stack%

(inherit push!)

(public double-push!)
(define (double-push! v) (push! v) (push! v))

; Always supply name
(super-instantiate () (name ’double-stack))))

(define-values (make-safe-stack-class is-safe-stack?)
(let ([safe-stack<%> (interface (stack<%>))])

(values

4

3. class.ss: Classes and Objects 3.1. Object Example

(lambda (super%)
(class∗ super% (safe-stack<%>)

(inherit none?)
(rename [std-pop! pop!])
(override pop!)
(define (pop!) (if (none?) #f (std-pop!)))
(super-instantiate ())))

(lambda (obj)
(is-a? obj safe-stack<%>)))))

(define safe-stack% (make-safe-stack-class stack%))

The interface stack<%>1 defines the ever-popular stack interface with the methods push! , pop! , and none? .
Since it has no superinterfaces, the only derivation requirement of stack<%> is that its classes are derived
from the built-in empty class, object%. The class stack% 2 is derived from object% and implements the
stack<%> interface. Three additional classes are derived from the basic stack% implementation:

• The class fancy-stack% defines a stack that overrides print-name to add an “Esq.” suffix.

• The class double-stack% extends the functionality stack% with a new method, double-push!. It also
supplies a specific name to stack% .

• The class safe-stack% overrides the pop! method of stack% , ensuring that #f is returned whenever the
stack is empty.

In each derived class, the call (super-instantiate . . .) causes the superclass portion of the object to be
initialized, including the initialization of its fields.

The creation of safe-stack% illustrates the use of classes as first-class values. Applying make-safe-stack-class
to named-stack% or double-stack% — indeed, any class with push, pop! , and none? methods — creates a
“safe” version of the class. A stack object can be recognized as a safe stack by testing it with is-safe-stack? ;
this predicate returns #t only for instances of a class created with make-safe-stack-class (because only those
classes implement the safe-stack<%> interface).

In each of the example classes, the field name contains the name of the class. The name instance variable
is introduced as a new instance variable in stack% , and it is declared there with the init-field keyword,
which means that an instantiation of the class can specify the initial value, but it defaults to ’stack. The
double-stack% class provides name when initializing the stack% part of the object, so a name cannot be
supplied when instantiating double-stack% . When the print-name method of an object from double-stack%
is invoked, the name printed to the screen is always “double-stack”.

While all of named-stack% , double-stack% , and safe-stack% inherit the push! method of stack% , it is declared
with inherit only in double-stack% ; new declarations in named-stack% and safe-stack% do not need to refer
to push! , so the inheritance does not need to be declared. Similarly, only safe-stack% needs to declare
(inherit none?).

The safe-stack% class overrides pop! to extend the implementation of pop! . The new definition of pop!
must access the original pop! method that is defined in stack% . The rename declaration binds a new name,
std-pop! to the original pop! . Then, std-pop! is used in the overriding pop! . Variables declared with rename
cannot be overridden, so std-pop! will always refer to the superclass’s pop! .

1A bracketed percent sign (“<%>”) is used by convention in MzScheme to indicate that a variable’s value is a interface.
2A percent sign (“%”) is used by convention in MzScheme to indicate that a variable’s value is a class.

5

3.2. Creating Interfaces 3. class.ss: Classes and Objects

The instantiate form and make-object procedure both create an object from a class. The instantiate
form supports initialization arguments by both position and name, while make-object supports initialization
arguments by position only. The following examples create objects using the classes above:

(define stack (make-object stack%))
(define fred (make-object stack% ’Fred))
(define joe (instantiate stack% () (name ’Joe)))
(define double-stack (make-object double-stack%))
(define safe-stack (instantiate safe-stack% () (name ’safe)))

The send form calls a method on an object, finding the method by name. The following example uses the
objects created above:

(send stack push! fred)
(send stack push! double-stack)
(let loop ()

(if (not (send stack none?))
(begin

(send (send stack pop!) print-name)
(loop))))

This loop displays ’double-stack and ’Fred to the standard output port.

3.2 Creating Interfaces

The interface form creates a new interface:

(interface (super-interface-expr · · ·) variable · · ·)

All of the variables must be distinct.

Each super-interface-expr is evaluated (in order) when the interface expression is evaluated. The result
of each super-interface-expr must be an interface value, otherwise the exn:object exception is raised. The
interfaces returned by the super-interface-exprs are the new interface’s superinterfaces, which are all extended
by the new interface. Any class that implements the new interface also implements all of the superinterfaces.

The result of an interface expression is an interface that includes all of the specified variables, plus all
variables from the superinterfaces. Duplicate variable names among the superinterfaces are ignored, but if a
superinteface contains one of the variables in the interface expression, the exn:object exception is raised.

If no super-interface-exprs are provided, then the derivation requirement of the resulting interface is trivial:
any class that implements the interface must be derived from object%. Otherwise, the implementation
requirement of the resulting interface is the most specific requirement from its superinterfaces. If the super-
interfaces specify inconsistent derivation requirements, the exn:object exception is raised.

3.3 Creating Classes

The built-in class object% has no methods fields, implements only its own interface, (class->interface
object%). All other classes are derived from object%.

The class∗/names form creates a new class:

(class∗/names local-names superclass-expr (interface-expr · · ·)
class-clause

6

3. class.ss: Classes and Objects 3.3. Creating Classes

· · ·)

local-names is one of
(this-variable)
(this-variable super-instantiate-variable)
(this-variable super-instantiate-variable super-make-object-variable)

class-clause is one of
(init init-declaration · · ·)
(init-field init-declaration · · ·)
(field field-declaration · · ·)
(inherit-field variable · · ·)
(init-rest variable)
(init-rest)
(public optionally-renamed-variable · · ·)
(override optionally-renamed-variable · · ·)
(public-final optionally-renamed-variable · · ·)
(override-final optionally-renamed-variable · · ·)
(private variable · · ·)
(inherit optionally-renamed-variable · · ·)
(rename renamed-variable · · ·)
method-definition
definition
expr
(begin class-clause · · ·)

init-declaration is one of
variable
(variable default-value-expr)

field-declaration is
(variable default-value-expr)

optionally-renamed-variable is one of
variable
renamed-variable

renamed-variable is
(internal-variable external-variable)

method-definition is
(define-values (variable) method-procedure)

method-procedure is
(lambda formals expr · · ·1)
(case-lambda (formals expr · · ·1) · · ·)
(let-values (((variable) method-procedure) · · ·) method-procedure)
(letrec-values (((variable) method-procedure) · · ·) method-procedure)
(let-values (((variable) method-procedure) · · ·1) variable)
(letrec-values (((variable) method-procedure) · · ·1) variable)

The this-variable, super-instantiate-variable, and super-make-object-variable variables (usually this, super-
instantiate, and super-make-object) are bound in the rest of the class*/names expression, excluding

7

3.3. Creating Classes 3. class.ss: Classes and Objects

superclass-expr and the interface-exprs. In instances of the new class, this-variable (i.e., this) is bound to
the object itself; super-instantiate-variable (i.e., super-instantiate) is bound to a form that must be used
(once) to initialize fileds in the superclass (see §3.4); super-make-object-variable (i.e., super-make-object)
can be used instead of super-instantiate-variable to initialize superclass fields. See §3.4 for more information
about super-instantiate-variable and super-make-object-variable.

The superclass-expr expression is evaluated when the class*/names expression is evaluated. The result
must be a class value (possibly object%), otherwise the exn:object exception is raised. The result of the
superclass-expr expression is the new class’s superclass.

The interface-expr expressions are also evaluated when the class*/names expression is evaluated, after
superclass-expr is evaluated. The result of each interface-expr must be an interface value, otherwise the
exn:object exception is raised. The interfaces returned by the interface-exprs are all implemented by the
class. For each variable in each interface, the class (or one of its ancestors) must declare a public instance
variable with the same name, otherwise the exn:object exception is raised. The class’s superclass must
satisfy the implementation requirement of each interface, otherwise the exn:object exception is raised.

The class-clauses define initialization arguments, public and private fields, and public and private methods.
For each variable or optionally-renamed-variable in a public, override, public-final, override-final, or
private clause, there must be one method-definition. All other definition class-clauses create private fields.
All remaining exprs are initialization expressions to be evaluated when the class is instantiated (see §3.4).

The result of a class*/names expression is a new class, derived from the specified superclass and implement-
ing the specified interfaces. Instances of the class are created with the instantiate form or make-object
procedure, as described in §3.4.

Each class-clause is (partially) macro-expanded to reveal its shapes. If a class-clause is a begin expression,
its sub-expressions are lifted out of the begin and treated as class-clauses, in the same way that begin is
flattened for top-level and embedded definitions.

The class∗ form is like class∗/names, but omits local-names and always uses the name this, super-
instantiate, and super-make-object:

(class∗ superclass-expr (interface-expr · · ·)
class-clause
· · ·)

The class form further omits the interface-exprs, for the case that none are needed:

(class superclass-expr
class-clause
· · ·)

The public∗, override∗, and private∗ forms abbreviate a public, override, or private declaration and
a sequence of definitions:

(public∗ (name expr) · · ·)
=expands=>
(begin
(public name · · ·)
(define name expr) · · ·)

etc.

The define/public, define/override, and define/private forms similarly abbreviate a public, override,
or private declaration with a definition:

8

3. class.ss: Classes and Objects 3.3. Creating Classes

(define/public name expr)
=expands=>
(begin
(public name)
(define name expr))

(define/public (name . formals) expr)
=expands=>
(begin
(public name)
(define (name . formals) expr))

etc.

3.3.1 Initialization Variables

A class’s initialization variables, declared with init, init-field, and init-rest, are instantiated for each object
of a class. Initialization variables can be used in the initial value expressions of fields, default value expressions
for initialization arguments, and in initialization expressions. Only initialization variables declared with init-
field can be accessed from methods; accessing any other initialization variable from a method is a syntax
error.

The values bound to initialization variables are

• the arguments provided with instantiate or passed to make-object, if the object is created as a direct
instance of the class; or,

• the arguments passed to the superclass initialization form or procedure, if the object is created as an
instance of a derived class.

If an initialization argument is not provided for a initalization variable that has an associated default-value-
expr , then the default-value-expr expression is evaluated to obtain a value for the variable. A default-value-
expr is only evaluated when an argument is not provided for its variable. The environment of default-value-
expr includes all of the initialization variables, all of the fields, and all of the methods of the class. If
multiple default-value-exprs are evaluated, they are evaluated from left to right. Object creation and field
initialization are described in detail in §3.4.

If an initialization variable has no default-value-expr , then the object creation or superclass initialization call
must supply an argument for the variable, otherwise the exn:object exception is raised.

Initialization arguments can be provided by name or by position. The name of an initialization variable can
be used with instantiate or with the superclass initialization form. Those forms also accept by-position
arguments. The make-object procedure and the superclass initialization procedure accept only by-position
arguments.

Arguments provided by position are converted into by-name arguments using the order of init and init-field
clauses and the order of variables within each clause. When a instantiate form provides both by-position
and by-name arguments, the converted arguments are placed before by-name arguments. (The order can be
significant; see also §3.4.)

Unless a class contains an init-rest clause, when the number of by-position arguments exceeds the number
of declared initialization variables, the order of variables in the superclass (and so on, up the superclass
chain) determines the by-name conversion.

9

3.3. Creating Classes 3. class.ss: Classes and Objects

If a class expression contains an init-rest clause, there must be only one, and it must be last. If it declares
a variable, then the variable receives extra by-position initialization arguments as a list (similar to a dotted
“rest argument” in a procedure). An init-rest variable can receive by-position initialization arguments that
are left over from a by-name conversion for a derived class. When a derived class’s superclass initialization
provides even more by-position arguments, they are prefixed onto the by-position arguments accumulated
so far.

If too few or too many by-position initialization arguments are provided to an object creation or superclass
initialization, then the exn:object exception is raised. Similarly, if extra by-position arguments are provided
to a class with an init-rest clause, the exn:object exception is raised.

Unused (by-name) arguments are be propagated to the superclass, as described in §3.4. Multiple initialization
arguments can use the same name if the class derivation contains multiple declarations (in different classes)
of initialization variables with the name. See §3.4 for further details.

3.3.2 Fields

Each field, init-field, and non-method define-values clause in a class declares one or more new fields for
the class. Fields declared with field or init-field are public. Public fields can be access and mutated by
subclasses using inherit-field. Public fields are also accessible outside the class via class-field-accessor
and mutable via class-field-mutator (see §3.5). Fields declared with define-values are accessible only
within the class.

A field declared with init-field is both a public field an an initialization variable. See §3.3.1 for information
about initialization variables.

An inherit-field declaration makes a public field defined by a superclass directly accessible in the class
expression. If the indicated field is not defined in the superclass, the exn:object exception is raised when
the class expression is evaluated. Every field in a superclass is present in a derived class, even if it is not
declared with inherit-field in the derived class. The inherit-field clause does not control inheritance, but
merely controls lexical scope within a class expression.

When an object is first created, all of its fields have the undefined value (see §3.1 in PLT MzScheme: Language
Manual). The fields of a class are initialized at the same time that the class’s initialization expressions are
evaluated; see §3.4 for more information.

3.3.3 Methods

3.3.3.1 Method Definitions

Each public, override, public-final, override-final, and private clause in a class declares one or more
method names. Each method name must have a corresponding method-definition. The order of public,
override, public-final, override-final, private clauses and their corresponding definitions (among them-
selves, and with respect to other clauses in the class) does not matter.

As shown in §3.3, a method definition is syntactically restricted to certain procedure forms, as defined by
the grammar for method-procedure; in the last two forms of method-procedure, the body variable must be
one of the variables bound by let-values or letrec-values. A method-procedure expression is not evalated
directly. Instead, for each method, a class-specific method procedure is created; it takes an initial object
argument, in addition to the arguments the procedure would accept if the method-procedure expression were
evaluated directly. The body of the procedure is transformed to access methods and fields through the object
argument.

A method declared with public or public-final introduces a new method into a class. The method must not

10

3. class.ss: Classes and Objects 3.3. Creating Classes

be present already in the superclass, otherwise the exn:object exception is raised when the class expression
is evaluated. A method declared with public-final cannot be overridden in a subclass.

A method declared with override or override-final overrides a definition already present in the superclass.
If the method is not already present, the exn:object exception is raised when the class expression is
evaluated. A method declared with override-final cannot be overridden in a subclass.

A method declared with private is not accessible outside the class expression, cannot be overridden, and
never overrides a method in the superclass.

3.3.3.2 Inherited and Superclass Methods

Each inherit and rename clause declares one or more methods that are not defined in the class, but must be
present in the superclass. Methods declared with inherit are subject to overriding, while methods declared
with rename are not. Methods that are present in the superclass but not declared with inherit or rename
are not directly accessible in the class (through they can be called with send).

Every public method in a superclass is present in a derived class, even if it is not declared with inherit in
the derived class. The inherit clause does not control inheritance, but merely controls lexical scope within
a class expression.

If a method declared with inherit is not present in the superclass, the exn:object exception is raised when
the class expression is evaluated.

3.3.3.3 Internal and External Method Names

Each method declared with public, override, public-final, override-final, inherit, and rename can
have separate internal and external names. The internal name is used to access the method directly within
the class expression, while the external name is used with send and generic (see §3.5). If a single variable
is provided for a method, it is used for both the internal and external names.

Method inheritance and overriding are based external names, only. Separate internal and external names
are required for rename, because its purpose is to provide access to the superclass’s version of an overridden
method.

An init variable or field declared with init, field, or init-field uses the same name internally and externally.3

An init variable name is used externally as a keyword for initialize, and a field name is used externally in
creating field accessors and mutators with class-field-accessor and class-field-mutator.

A single identifier can be used as an internal variable and an external variable, and it is possible to use the
same identifier as internal and external variables for different bindings (as long as all internal variables are
distinct and all external variables are distinct).

By default, external names have no lexical scope, which means, for example, that an external method name
matches the same syntactic symbol in all uses of send. The define-local-member-name form introduces
a set of scoped external names:

(define-local-member-name variable · · ·)

This form binds each variable so that, within the scope of the definition, each use of each variable as an
external name is resolved to a hidden name generated by the define-local-member-name declaration.
Thus, methods and fields declared with such external-name variables are accessible only in the scope of the
define-local-member-name declaration.

3Future extensions to the syntax may support separate names.

11

3.4. Creating Objects 3. class.ss: Classes and Objects

The binding introduced by define-local-member-name is a syntax binding that can be exported and
imported with modules (see §5 in PLT MzScheme: Language Manual). Each execution of a define-local-
member-name declaration generates a distinct hidden name. The interface->method-names procedure
(see §3.6) does not expose hidden names.

Example:

(define o (let ()
(define-local-member-name m)
(define c% (class object%

(define/public (m) 10)
(super-make-object))

(define o (make-object c%))

(send o m) ; ⇒ 10
o))

(send o m) ; ⇒ error: no method m

3.4 Creating Objects

The make-object procedure creates a new object with by-position initialization arguments:

(make-object class init-v · · ·)

An instance of class is created, and the init-vs are passed as initialization arguments, bound to the ini-
tialization variables of class for the newly created object as described in §3.3.1. If class is not a class, the
exn:application:type exception is raised.

The instantiate form creates a new object with both by-position and by-name initialization arguments:

(instantiate class-expr (by-pos-expr · · ·) (variable by-name-expr) · · ·)

An instance of the value of class-expr is created, and the values of the by-pos-exprs are provided as by-
position initialization arguments. In addition, the value of each by-name-expr is provided as a by-name
argument for the corresponding variable.

All fields in the newly created object are initially bound to the special undefined value (see §3.1 in PLT
MzScheme: Language Manual). Initialization variables with default value expressions (and no provided
value) are also initialized to undefined. After argument values are assigned to initialization variables, expres-
sions in field clauses, init-field clauses with no provided argument, init clauses with no provided argument,
private field definitions, and other expressions are evaluated. Those expressions are evaluated as they appear
in the class expression, from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must be executed once
by invoking the form bound to super-instantiate-variable (usually super-instantiate):

(super-instantiate-variable (by-position-super-init-expr · · ·) (variable by-name-super-init-expr · · ·) · · ·)

or by calling the procedure bound to super-make-object-variable (usually super-make-object):

(super-make-object-variable super-init-v · · ·)

The by-position-super-init-exprs, by-name-super-init-exps, and super-init-vs are mapped to initialization
variables in the same way as for instantiate and make-object.

12

3. class.ss: Classes and Objects 3.5. Field and Method Access

By-name initialization arguments to a class that have no matching initialization variable are implicitly added
as by-name arguments to a super-instantiate-variable or super-make-object-variable invocation, after the ex-
plicit arguments. If multiple initialization arguments are provided for the same name, the first (if any) is used,
and the unused arguments are propagated to the superclass. (Note that converted by-position arguments
are always placed before explicit by-name arguments.) The initialization procedure for the object% class
accepts zero initialization arguments; if it receives any by-name initialization arguments, then exn:object
exception is raised.

Fields inherited from a superclass will not be initialized until the superclass’s initialization procedure is
invoked. In contrast, all methods are available for an object as soon as the object is created; the overriding
of methods is not affect by initialization (unlike objects in C++).

It is an error to reach the end of initialization for any class in the hierarchy without invoking superclasses
initialization; the exn:object exception is raised in such a case. Also, if superclass initialization is invoked
more than once, the exn:object exception is raised.

3.5 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of the class all part
of the environment, as are the names bound to super-instantiate-variable and super-make-object-variable.
Within a method body, only the fields and other methods of the class can be referenced; a reference to any
other class-introduced identifier is a syntax error. Elsewhere within the class, all class-introduced identifiers
are available, and fields and initialization variables can be mutated with set!.

3.5.1 Methods

Method names within a class can only be used in the procedure position of an application expression; any
other use is a syntax error. To allow methods to be applied to lists of arguments, a method application can
have the form

(method-variable arg-expr · · · . arg-list-expr)

which calls the method in a way analogous to (apply method-variable arg-expr · · · arg-list-expr). The arg-
list-expr must not be a parenthesized expression, otherwise the dot and the parentheses will cancel each
other.

Methods are called from outisde a class with the send and send/apply forms:

(send obj-expr method-name arg-expr · · ·)
(send obj-expr method-name arg-expr · · · . arg-list-expr)
(send/apply obj-expr method-name arg-expr · · · arg-list-expr)

where the last two forms apply the method to a list of argument values; in the second form, arg-list-expr
cannot be a parenthesized expression. For any send or send/apply, if obj-expr does not produce an object,
the exn:application:type exception is raised. If the object has no public method method-name, the
exn:object exception is raised.

The send∗ form calls multiple methods of an object in the specified order:

(send∗ obj-expr msg · · ·)

msg is one of
(method-name arg-expr · · ·)
(method-name arg-expr · · · . arg-list-expr)

13

3.5. Field and Method Access 3. class.ss: Classes and Objects

where arg-list-expr is not a parenthesized expression.

Example:

(send∗ edit (begin-edit-sequence)
(insert "Hello")
(insert #\newline)
(end-edit-sequence))

which is the same as

(let ([o edit])
(send o begin-edit-sequence)
(send o insert "Hello")
(send o insert #\newline)
(send o end-edit-sequence))

The with-method form extracts a method from an object and binds a local name that can be applied
directly (in the same way as declared methods within a class):

(with-method ((variable (object-expr method-name)) · · ·)
expr · · ·1)

Example:

(let ([s (make-object stack%)])
(with-method ([push (s push!)]

[pop (s pop!)])
(push 10)
(push 9)
(pop)))

which is the same as

(let ([s (make-object stack%)])
(send s push! 10)
(send s push! 9)
(send s pop!))

3.5.2 Fields

Fields are accessed from outside an object through a field accessor or mutator procedure produced by class-
field-accessor or class-field-mutator:

• (class-field-accessor class-expr field-name) returns an accessor procedure that takes an instance of
the class produced by class-expr and returns the value of the object’s field-name field.

• (class-field-mutator class-expr field-name) returns an mutator procedure that takes an instance of
the class produced by class-expr and a new value for the field, mutates the field in the object named
by field-name, then returns void.

3.5.3 Generics

A generic can be used instead of a method name to avoid the cost of relocating a method by name within a
class. The make-generic procedure and generic form create generics:

14

3. class.ss: Classes and Objects 3.6. Object Utilities

• (make-generic class-or-interface symbol) returns a generic that works on instances of class-or-
interface (or an instance of a class/interface derived from class-or-interface) to call the method named
by symbol .

If class-or-interface does not contain a method with the (external and non-scoped) name symbol , the
exn:object exception is raised.

• (generic class-or-interface-expr name) is analogous to (make-generic class-or-interface-expr
’name), except that name can be a scoped method name declared by define-local-member-name
(see §3.3.3.3).

A generic is applied with send-generic:

(send-generic obj-expr generic-expr arg-expr · · ·)
(send-generic obj-expr generic-expr arg-expr · · · . arg-list-expr)

where the value of obj-expr is an object and the value of generic-expr is a generic.

3.6 Object Utilities

(object? v) returns #t if v is a object, #f otherwise.

(class? v) returns #t if v is a class, #f otherwise.

(interface? v) returns #t if v is an interface, #f otherwise.

(class->interface class) returns the interface implicitly defined by class.

(object-interface object) returns the interface implicitly defined by the class of object .

(is-a? v interface) returns #t if v is an instance of a class that implements interface, #f otherwise.

(is-a? v class) returns #t if v is an instance of class (or of a class derived from class), #f otherwise.

(subclass? v class) returns #t if v is a class derived from (or equal to) class, #f otherwise.

(implementation? v interface) returns #t if v is a class that implements interface, #f otherwise.

(interface-extension? v interface) returns #t if v is an interface that extends interface, #f otherwise.

(method-in-interface? symbol interface) returns #t if interface (or any of its ancestor interfaces) defines
an instance variable with the name symbol , #f otherwise.

(interface->method-names interface) returns a list of symbols for the instance variable names in interface
(including instance variables inherited from superinterfaces).

15

4. class100.ss: Version-100-Style Classes

The class100, class100∗, and class100∗/names forms provide a syntax close to that of class, class∗, and
class∗/names in MzScheme versions 100 through 103, but with the semantics of the current class.ss system
(see Chapter 3).

The class100∗/names form creates a new class:

(class100∗/names local-names superclass-expr (interface-expr · · ·) initialization-variables
class100-clause
· · ·)

local-names is
(this-variable super-make-object-variable)

initialization-variables is one of
variable
(variable · · · variable-with-default · · ·)
(variable · · · variable-with-default · · · . variable)

variable-with-default is
(variable default-value-expr)

class100-clause is one of
(sequence expr · · ·)
(public public-method-declaration · · ·)
(override public-method-declaration · · ·)
(private private-method-declaration · · ·)
(private-field private-var-declaration · · ·)
(inherit inherit-method-declaration · · ·)
(rename rename-method-declaration · · ·)

public-method-declaration is one of
((internal-variable external-variable) method-procedure)
(variable method-procedure)

private-method-declaration is one of
(variable method-procedure)

private-var-declaration is one of
(variable initial-value-expr)
(variable)
variable

inherit-method-declaration is one of
variable
(internal-instance-variable external-inherited-variable)

16

4. class100.ss: Version-100-Style Classes

rename-method-declaration is
(internal-variable external-variable)

The class100∗ macro avoids specifying local-names:

(class100∗ superclass-expr (interface-expr · · ·) initialization-variables
class100-clause
· · ·)

The class100 macro omits both local-names and the interface-exprs:

(class100 superclass-expr initialization-variables
class100-clause
· · ·)

(class100-asi superclass instance-variable-clause · · ·) syntax

Like class100, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

(class100∗-asi superclass interfaces instance-variable-clause · · ·) syntax

Like class100∗, but the initialization arguments are automatically passed on to the superclass initialization
procedure.

17

5. class-old.ss: Version-100 Classes

This library provides the class system of MzScheme version 103; consult old MzScheme documentation for
details.. It is not compatible with the newer class system implemented by class.ss and class100.ss.

18

6. cm.ss: Compilation Manager

(make-compilation-manager-load/use-compiled-handler) procedure

Returns a procedure suitable as a value for the current-load/use-compiled parameter (see §7.4.1.6 in PLT
MzScheme: Language Manual). The returned procedure automatically compiles source files to a .zo file if

• the file is expected to contain a module (i.e., the second argument to the handler is a symbol);

• the value of current-eval, current-load, and current-namespace is the same as when
make-compilation-manager-load/use-compiled-handler was called; and

• either the source file is newer than the .zo file in the compiled subdirectory, or no .dep file exists next
to the .zo file, or the version in the .dep does not match the result of (version), or one of the files
listed in the .dep file has a timestamp newer than the one recorded in the .dep file.

After the handler procedure compiles the .zo file, it creates a corresponding .dep file that lists the current
version, plus the timestamp for every file that is required by the module in the compiled file (including
require-for-syntaxes).

The handler caches timestamps when it checks .dep files, and the cache is maintained across calls to the
same handler. The cache is not consulted to compare the immediate source file to its .zo file, which means
that the caching behavior is consistent with the caching of the default module name resolver (see §5.4 in
PLT MzScheme: Language Manual).

(managed-compile-zo file) procedure

Compiles the given module source file to a .zo, installing a compilation-manager handler while the file is
compiled, and creating a .dep file to record the timestamps of immediate files used to compile the source
(i.e., files required in the source, including require-for-syntaxes).

(manager-trace-handler proc [procedure])

A parameter whose value is a procedure to return a trace string for compilation-manager actions. The
procedure receives a single string argument, and its result is ignored.

(trust-existing-zos on? [procedure])

A parameter that is intended for use by Setup PLT when installing with pre-built .zo files. It causes a
compilation-manager load/use-compiled handler to “touch” out-of-date .zo files instead of re-compiling from
source.

19

7. cmdline.ss: Command-line Parsing

(command-line program-name-expr argv-expr clause · · ·) syntax

Parses a command line according to the specification in the clauses. The program-name-expr should produce
a string to be used as the program name for reporting errors when the command-line is ill-formed. The argv-
expr must evaluate to a vector of strings; typically, it is (current-command-line-arguments).

The command-line is disassembled into flags (possibly with flag-specific arguments) followed by (non-flag)
arguments. Command-line strings starting with “-” or “+” are parsed as flags, but arguments to flags
are never parsed as flags, and integers and decimal numbers that start with “-” or “+” are not treated as
flags. Non-flag arguments in the command-line must appear after all flags and the flags’ arguments. No
command-line string past the first non-flag argument is parsed as a flag. The built-in -- flag signals the end
of command-line flags; any command-line string past the -- flag is parsed as a non-flag argument.

For defining the command line, each clause has one of the following forms:

(multi flag-spec · · ·)
(once-each flag-spec · · ·)
(once-any flag-spec · · ·)
(final flag-spec · · ·)
(help-labels string · · ·)
(args arg-formals body-expr · · ·1)
(=> finish-proc-expr arg-help-expr help-proc-expr unknown-proc-expr)

flag-spec is one of
(flags variable · · · help-str body-expr · · ·1)
(flags => handler-expr help-expr)

flags is one of
flag-str
(flag-str · · ·1)

arg-formals is one of
variable
(variable · · ·)
(variable · · ·1 . variable)

A multi, once-each, once-any, or final clause introduces a set of command-line flag specifications. The
clause tag indicates how many times the flag can appear on the command line:

• multi — Each flag specified in the set can be represented any number of times on the command line;
i.e., the flags in the set are independent and each flag can be used multiple times.

• once-each — Each flag specified in the set can be represented once on the command line; i.e., the
flags in the set are independent, but each flag should be specified at most once. If a flag specification
is represented in the command line more than once, the exn:user exception is raised.

20

7. cmdline.ss: Command-line Parsing

• once-any — Only one flag specified in the set can be represented on the command line; i.e., the flags
in the set are mutually exclusive. If the set is represented in the command line more than once, the
exn:user exception is raised.

• final — Like multi, except that no other argument after the flag is treated as a flag.

A normal flag specification has four parts:

1. flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent.
Each flag string must be of the form ”-x” or ”+x” for some character x , or ”--x” or ”++x” for some
sequence of characters x . An x cannot contain only digits or digits plus a single decimal point, since
simple (signed) numbers are not treated as flags. In addition, the flags ”--”, ”-h”, and ”--help” are
predefined and cannot be changed.

2. variables — variables that are bound to the flag’s arguments. The number of variables specified here
determines how many arguments can be provided on the command line with the flag, and the names of
these variables will appear in the help message describing the flag. The variables are bound to string
values in the body-exprs for handling the flag.

3. help-str — a string that describes the flag. This string is used in the help message generated by the
handler for the built-in -h (or --help) flag.

4. body-exprs — expressions that are evaluated when one of the flags appears on the command line. The
flags are parsed left-to-right, and each sequence of body-exprs is evaluated as the corresponding flag is
encountered. When the body-exprs are evaluated, the variables are bound to the arguments provided
for the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and help strings.
In this case, the handler procedure and help string list returned by handler-expr and help-expr are embedded
directly in the table for parse-command-line, the procedure used to implement command-line parsing.

A help-labels clause inserts text lines into the help table of command-line flags. Each string in the clause
provides a separate line of text.

An args clause can be specified as the last clause. The variables in arg-formals are bound to the leftover
command-line strings in the same way that variables are bound to the formals of a lambda expression.
Thus, specifying a single variable (without parentheses) collects all of the leftover arguments into a list. The
effective arity of the arg-formals specification determines the number of extra command-line arguments that
the user can provide, and the names of the variables in arg-formals are used in the help string. When the
command-line is parsed, if the number of provided arguments cannot be matched to variables in arg-formals,
the exn:user exception is raised. Otherwise, args clause’s body-exprs are evaluated to handle the leftover
arguments, and the result of the last body-expr is the result of the command-line expression.

Instead of an args clause, the => clause can be used to escape to a more general method of handling the
leftover arguments. In this case, the values of the expressions with => are passed on directly as arguments
to parse-command-line. The help-proc-expr and unknown-proc-expr expressions are optional.

Example:

(command-line "compile" (current-command-line-arguments)
(once-each

[("-v" "–verbose") "Compile with verbose messages"
(verbose-mode #t)]

[("-p" "–profile") "Compile with profiling"
(profiling-on #t)])

21

7. cmdline.ss: Command-line Parsing

(once-any
[("-o" "–optimize-1") "Compile with optimization level 1"

(optimize-level 1)]
["–optimize-2" "Compile with optimization level 2"

(optimize-level 2)])
(multi

[("-l" "–link-flags") lf ; flag takes one argument
"Add a flag for the linker" "flag"
(link-flags (cons lf (link-flags)))])

(args (filename) ; expects one command-line argument: a filename
filename)) ; return a single filename to compile

(parse-command-line progname argv table finish-proc arg-help [help-proc unknown-proc]) procedure

Parses a command-line using the specification in table. For an overview of command-line parsing, see the
command-line form. The table argument to this procedural form encodes the information in command-line’s
clauses, except for the args clause. Instead, arguments are handled by the finish-proc procedure, and
help information about non-flag arguments is provided in arg-help. In addition, the finish-proc procedure
receives information accumulated while parsing flags. The help-proc and unknown-proc arguments allow
customization that is not possible with command-line.

When there are no more flags, the finish-proc procedure is called with a list of information accumulated for
command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity
of the finish-proc procedure determines the number of non-flag arguments accepted and required from the
command-line. For example, if finish-proc accepts either two or three arguments, then either one or two
non-flag arguments must be provided on the command-line. The finish-proc procedure can have any arity
(see §3.10.1 in PLT MzScheme: Language Manual) except 0 or a list of 0s (i.e., the procedure must at least
accept one or more arguments).

The arg-help argument is a list of strings identifying the expected (non-flag) command-line arguments, one
for each argument. (If an arbitrary number of arguments are allowed, the last string in arg-help represents
all of them.)

The help-proc procedure is called with a help string if the -h or --help flag is included on the command line.
If an unknown flag is encountered, the unknown-proc procedure is called just like a flag-handling procedure
(as described below); it must at least accept one argument (the unknown flag), but it may also accept more
arguments. The default help-proc displays the string and exits and the default unknown-proc raises the
exn:user exception.

A table is a list of flag specification sets. Each set is represented as a list of two items: a mode symbol and a
list of either help strings or flag specifications. A mode symbol is one of ’once-each, ’once-any, ’multi, ’final, or
’help-labels, with the same meanings as the corresponding clause tags in command-line. For the ’help-labels
mode, a list of help string is provided. For the other modes, a list of flag specifications is provided, where
each specification maps a number of flags to a single handler procedure. A specification is a list of three
items:

1. A list of strings for the flags defined by the spec. See command-line for information about the format
of flag strings.

2. A procedure to handle the flag and its arguments when one of the flags is found on the command line.
The arity of this handler procedure determines the number of arguments consumed by the flag: the
handler procedure is called with a flag string plus the next few arguments from the command line to
match the arity of the handler procedure. The handler procedure must accept at least one argument
to receive the flag. If the handler accepts arbitrarily many arguments, all of the remaining arguments

22

7. cmdline.ss: Command-line Parsing

are passed to the handler. A handler procedure’s arity must either be a number or an arity-at-least
value (see §3.10.1 in PLT MzScheme: Language Manual).

The return value from the handler is added to a list that is eventually passed to finish-proc. If the
handler returns void, no value is added onto this list. For all non-void values returned by handlers, the
order of the values in the list is the same as the order of the arguments on the command-line.

3. A non-empty list of strings used for constructing help information for the spec. The first string in the
list describes the flag, and additional strings name the expected arguments for the flag. The number
of extra help strings provided for a spec must match the number of arguments accepted by the spec’s
handler procedure.

The following example is the same as the example for command-line, translated to the procedural form:

(parse-command-line "compile" (current-command-line-arguments)
‘((once-each

[("-v" "–verbose")
,(lambda (flag) (verbose-mode #t))
("Compile with verbose messages")]
[("-p" "–profile")
,(lambda (flag) (profiling-on #t))
("Compile with profiling")])

(once-any
[("-o" "–optimize-1")
,(lambda (flag) (optimize-level 1))
("Compile with optimization level 1")]
[("–optimize-2")
,(lambda (flag) (optimize-level 2))
("Compile with optimization level 2")])

(multi
[("-l" "–link-flags")
,(lambda (flag lf) (link-flags (cons lf (link-flags))))
("Add a flag for the linker" "flag")]))

(lambda (flag-accum file) file) ; return a single filename to compile
’("filename")) ; expects one command-line argument: a filename

23

8. compat.ss: Compatibility

This library defines a number of procedures and syntactic forms that are commonly provided by other Scheme
implementations. Most of the procedures are aliases for built-in MzScheme procedures, as shown in the table
below. The remaining procedures and forms are described below.

Compatible MzScheme
=? =
<? <
>? >
<=? <=
>=? >=
1+ add1
1- sub1

gentemp gensym
flush-output-port flush-output

real-time current-milliseconds

(atom? v) procedure

Same as (not (pair? v)).

(define-structure (name-identifier field-identifier · · ·)) syntax

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields. A second
form of define-structure, below, supports initial-value expressions for fields.

(define-structure (name-identifier field-identifier · · ·) ((init-field-identifier init-expr) · · ·)) syntax

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields, and additional
fields can be specified with initial-value expressions.

The init-field-identifiers do not have corresponding arguments for the make-name-identifier constructor.
Instead, the init-field-identifier ’s init-expr is evaluated to obtain the field’s value when the constructor is
called. The field-identifiers are bound in init-exprs, but not the init-field-identifiers.

Example:

(define-structure (add left right) ([sum (+ left right)]))
(add-sum (make-add 3 6)) ; ⇒ 9

24

8. compat.ss: Compatibility

(getprop sym property default) procedure

Gets a property value associated with the symbol sym. The property argument is also a symbol that names
the property to be found. If the property is not found, default is returned. If the default argument is omitted,
#f is used as the default.

(new-cafe [eval-handler]) procedure

Emulates Chez Scheme’s new-cafe.

(putprop sym property value) procedure

Installs a value for property of the symbol sym. See getprop above.

(sort less-than?-proc list) procedure

This is the same as mergesort (see §18) with the arguments reversed.

25

9. compile.ss: Compiling Files

(compile-file src [dest filter]) procedure

Compiles the Scheme file src and saves the compiled code to dest . If dest is not specified, a filename is
constructed by taking src’s directory path, adding a compiled subdirectory, and then adding src’s filename
with its suffix replaced by .zo. Also, if dest is not provided and the compiled subdirectory does not already
exist, the subdirectory is created. If the filter procedure is provided, it is applied to each source expression
and the result is compiled (otherwise, the identity function is used as the filter).

The compile-file function is designed for compiling modules files; each expression in src is compiled
independently. If src does not contain a single module expression, then earlier expressions can affect the
compilation of later expressions when src is loaded directly. An appropriate filter can make compilation
behave like evaluation, but the problem is also solved (as much as possible) by the compile-zos function
provided by the compiler collection’s compiler.ss module.

26

10. contract.ss: Contracts

Mzlib’s contract.ss library defines new forms of expression that specify contracts and new forms of expression
that attach contracts to values.

This section describes two classes of contracts: contracts for flat values (described in section 10.1) and
contracts for functions (described in section 10.2).

In addition, this section describes two forms for establishing a contract on a value (described in section 10.3).

10.1 Flat Contracts

A contract for a flat value can be a predicate that accepts the value and returns a boolean indicating if the
contract holds.

(flat-named-contract type-name predicate) procedure

For better error reporting, a flat contract can be constructed with flat-named-contract , a procedure that
accepts two arguments. The first argument must be a string that describes the type that the predicate
checks for. The second argument is the predicate itself.

(flat-named-contract-type-name flat-named-contract) procedure

Extracts the type name from a flat-named-contract .

(flat-named-contract-predicate flat-named-contract) procedure

Extracts the predicate from a flat-named-contract .

In addition, this library provides many helper functions for constructing contracts.

(union contract ...) procedure

union accepts any number of predicates and at most one function contract and returns a contract that
corresponds to the union of them all.

(and/f predicate) procedure

and/f accepts a list of predicates and returns a predicate that is the conjunction of those predicates.

(or/f predicate ...) procedure

or/f accepts a list of predicates and returns a predicate that is the disjuction of those predicates.

27

10.1. Flat Contracts 10. contract.ss: Contracts

(>=/c number) procedure

>=/c accepts a number and returns a predicate that requires the input to be a number and greater than or
equal to the original input.

(<=/c number) procedure

<=/c accepts a number and returns a predicate that requires the input to be a number and less than or
equal to the original input.

(>/c number) procedure

>/c accepts a number and returns a predicate that requires the input to be a number and greater than the
original input.

(</c number) procedure

</c accepts a number and returns a predicate that requires the input to be a number and less than the
original input.

natural-number? flat-contract

natural-number? returns #t if the input is a natural number and #f otherwise.

false? flat-contract

false? returns true if the input is #f and #t otherwise.

printable? flat-contract

printable? returns #t for any value that can be written out and read back in.

any? flat-contract

any? always returns #t.

(symbols symbol ...) procedure

symbols accepts any number of symbols and returns a predicate that checks for those symbols.

(is-a?/c class-or-interface) procedure

is-a?/c accepts a class or interface and returns a predicate that checks if objects are subclasses of the class
or implement the interface.

(implementation?/c interface) procedure

implementation?/c accepts an interface and returns a predicate that checks if classes are implement the
given interface.

28

10. contract.ss: Contracts 10.2. Function Contracts

(subclass?/c class) procedure

subclass?/c accepts a class and returns a predicate that checks if classes are subclasses of the original class.

(listof flat-contract) flat-contract

listof accepts a flat contract and returns a predicate that checks for lists whose elements match the original
predicate.

(vectorof flat-contract) flat-contract

vectorof accepts a flat contract and returns a predicate that checks for vectors whose elements match the
original predicate.

(vector/p flat-contract ...) flat-contract

vector/p accepts any number of flat contract and returns a predicate that checks for vectors. The number
of elements in the vector must match the number of arguments supplied to vector/p and the elements of the
vector must match the corresponding flat contract.

(box/p flat-contract) flat-contract

box/p accepts a flat contract and returns a flat contract that checks for boxes whose contents match box/p’s
argument.

(cons/p flat-contract flat-contract) flat-contract

cons/p accepts two predicates and returns a predicate that checks for cons cells whose car and cdr correspond
to cons/p’s two arguments.

(list/p flat-contract ...) procedure

list/p accepts an arbitrary number of arguments and returns a predicate that checks for lists whose length
is the same as the number of arguments to list/p and whose elements match those arguments.

mixin-contract contract

mixin-contract is a contract that matches mixins. It is a function contract. It guarantees that the input to
the function is a class and the result of the function is a subclass of the input.

(make-mixin-contract class-or-interface ...) procedure

make-mixin-contract is a function that constructs mixins contracts. It accepts any number of classes and
interfaces and returns a function contract. The function contract guarantees that the input to the function
implements the interfaces and is derived from the classes and that the result of the function is a subclass of
the input.

10.2 Function Contracts

This section describes the contract constructors for function contracts. This is their shape:

contract-expr ::==

29

10.2. Function Contracts 10. contract.ss: Contracts

| (case-> arrow-contract-expr . . .)
| arrow-contract-expr

arrow-contract-expr ::==
| (-> expr . . . expr)
| (-> expr . . . any)
| (->∗ (expr . . .) expr (expr . . .))
| (->∗ (expr . . .) (expr . . .))
| (->d expr . . . expr)
| (->∗d (expr . . .) expr)
| (->∗d (expr . . .) expr expr)
| (opt-> (expr . . .) (expr . . .) expr)
| (opt->∗ (expr . . .) (expr . . .) (expr . . .))

where expr is any Scheme expression.

(-> expr ...) syntax

(-> expr ... any) syntax

The -> contract is for functions that accept a fixed number of arguments and return a single result. The
last argument to -> is the contract on the result of the function and the other arguments are the contracts
on the arguments to the function. Each of the arguments to -> must be another contract expression or a
predicate. For example, this expression:

(integer? boolean? . -> . integer?)

is a contract on functions of two arguments. The first must be an integer and the second a boolean and the
function must return an integer. (This example uses MzScheme’s infix notation so that the -> appears in a
suggestive place; see §14.3 in PLT MzScheme: Language Manual).

If any is used as the last argument to ->, no contract checking is performed on the result of the function,
and tail-recursion is preserved.

(->* (expr ...) (expr ...)) syntax

(->* (expr ...) expr (expr ...)) syntax

The ->∗ expression is for functions that return multiple results and/or have rest arguments. If two arguments
are supplied, the first is the contracts on the arguments to the function and the second is the contract on
the results of the function. If three arguments are supplied, the first argument contains the contracts on
the arguments to the function (excluding the rest argument), the second contains the contract on the rest
argument to the function and the final argument is the contracts on the results of the function.

(->d expr ...) syntax

(->*d (expr ...) expr)) syntax

(->*d (expr ...) expr expr) syntax

The ->d and ->∗d contract constructors are like their d-less counterparts, except that the result portion is
a function that accepts the original arguments to the function and returns the range contracts. The range

30

10. contract.ss: Contracts 10.3. Attaching Contracts to Scheme Values

contract function for ->∗d must return multiple values: one for each result of the original function. As an
example, this is the contract for sqrt:

(number?
. ->d .
(lambda (in)

(lambda (out)
(and (number? out)

(abs (− (∗ out out) in) 0.01)))))

It says that the input must be a number and that the difference between the square of the result and the
original number is less than 0.01.

(case-> arrow-contract-expr ...) contract-case->

The case-> expression constructs a contract for case-λ function. It’s arguments must all be function con-
tracts, built by one of ->, ->d, ->∗, or ->∗d.

(opt-> (req-contracts ...) (opt-contracts ...) res-contract)) syntax

(opt->* (req-contracts ...) (opt-contracts ...) (res-contracts ...)) syntax

The opt-> expression constructs a contract for an opt-lambda function. The first arguments are the
required parameters, the second arguments are the optional parameters and the final argument is the result.
Each opt-> expression expands into case->.

The opt->∗ expression constructs a contract for an opt-lambda function. The only difference between
opt-> and opt->∗ is that multiple return values are permitted with opt->∗ and they are specified in the
last clause of an opt->∗ expression.

10.3 Attaching Contracts to Scheme Values

(provide/contract (id expr) ...) syntax

There are two special forms that add contract specifications, provide/contract and contract. A pro-
vide/contract form has this shape:

(provide/contract (id expr) . . .)

and can only appear at the top-level of a module (see §5 in PLT MzScheme: Language Manual). As with
provide, each identifier is provided from the module. In addition, clients of the module must live up to the
contract specified by expr .

(contract contract-expr to-protect-expr positive-blame negative-blame) syntax

(contract contract-expr to-protect-expr positive-blame negative-blame contract-source) syntax

The contract special form is the primitive mechanism for attaching a contract to a value. Its purpose is as
a target for the expansion of some higher-level contract specifying form.

The contract form has this shape:

(contract expr to-protect-expr positive-blame negative-blame contract-source)

31

10.4. Contract Utility 10. contract.ss: Contracts

The contract expression adds the contract specified by the first argument to the value in the second
argument. The result of a contract expression is the result of the to-protect-expr expression, but with the
contract specified by contract-expr enforced on to-protect-expr . The expressions positive-blame and negative-
blame must be symbols indicating how to assign blame for positive and negative positions of the contract
specified by contract-expr . Finally, contract-source, if specified, indicates where the contract was assumed.
It must be a syntax object specifying the source location of the location where the contract was assumed.
If the syntax object wraps a symbol, the symbol is used as the name of the primitive whose contract was
assumed. If absent, it defaults to the source location of the contract expression.

10.4 Contract Utility

contract? predicate

The procedure contract? returns #t if its argument was constructed with one of the arrow constructors
described earlier in this section, or if its argument is a procedure of arity 1.

32

11. date.ss: Dates

See also §15.1 in PLT MzScheme: Language Manual .

(date->string date [time?]) procedure

Converts a date structure value (such as returned by MzScheme’s seconds->date) to a string. The returned
string contains the time of day only if time? is a true value; the default is #f. See also date-display-format.

(date-display-format [format-symbol]) procedure

Parameter that determines the date display format, one of ’american, ’chinese, ’german, ’indian, ’irish, ’iso-
8601, or ’julian. The initial format is ’american.

(find-seconds second minute hour day month year) procedure

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of
the date structure. If the platform cannot represent the specified date, an error is signaled, otherwise an
integer is returned.

(date->julian/scalinger date) procedure

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is
not a strict Julian number, but rather Scalinger’s version, which is off by one for easier calculations.

(julian/scalinger->string date) procedure

Converts a Julian number (Scalinger’s off-by-one version) into a string.

33

12. deflate.ss: Deflating (Compressing) Data

(gzip in-filename [out-filename]) procedure

Compresses data to the same format as the GNU gzip utility, writing the compressed data directly to a file.
The in-filename argument is the name of the file to compress. The default output file name is in-filename
with .gz appended. If the file named by out-filename exists, it will be overwritten. The return value is void.

(gzip-through-ports in out orig-filename timestamp) procedure

Reads the port in for data and compresses it to out , outputting the same format as the GNU gzip utility.
The orig-filename string is embedded in this output; orig-filename can be #f to omit the filename from the
compressed stream. The timestamp number is also embedded in the output stream, as the modification date
of the original file (in Unix seconds, as file-or-directory-modify-seconds would report under Unix).
The return value is void.

(deflate in out) procedure

Writes pkzip-format “deflated” data to the port out , compressing data from the port in. The data in a file
created by gzip uses this format (preceded with some header information). The return value is void.

34

13. defmacro.ss: Non-Hygienic Macros

(define-macro identifier expr) syntax

(define-macro (identifier . formals) expr · · ·1) syntax

Defines a (non-hygienic) macro identifier as a procedure that manipulates S-expressions (as opposed to
syntax objects). In the first form, expr must produce a procedure. In the second form, formals determines
the formal arguments of the procedure, as in lambda, and the exprs are the procedure body. In both cases,
the procedure is generated in the transformer environment, not the normal environment (see §12 in PLT
MzScheme: Language Manual).

In a use of the macro,

(identifier expr · · ·)

syntax-object->datum is applied to the expression (see §12.2.2 in PLT MzScheme: Language Manual), and
the macro procedure is applied to the cdr of the resulting list. If the number of exprs does not match the
procedure’s arity (see §3.10.1 in PLT MzScheme: Language Manual) or if identifier is used in a context that
does not match the above pattern, then a syntax error is reported.

After the macro procedure returns, the result is compared to the procedure’s arguments. For each value
that appears exactly once within the arguments (or, more precisely, within the S-expression derived from the
original source syntax), if the same value appears in the result, it is replaced with a syntax object from the
original expression. This heuristic substitution preserves source location information in many cases, despite
the macro procedure’s operation on raw S-expressions.

After substituting syntax objects for preserved values, the entire macro result is converted to syntax with
datum->syntax-object (see §12.2.2 in PLT MzScheme: Language Manual). The original expression supplies
the lexical context and source location for converted elements.

(defmacro identifier formals expr · · ·1) syntax

Same as (define-macro (identifier . formals) expr · · ·1).

35

14. etc.ss: Useful Procedures and Syntax

(boolean=? bool1 bool2) procedure

Returns #t if bool1 and bool2 are both #t or both #f, and returns #f otherwise. If either bool1 or bool2 is
not a Boolean, the exn:application:type exception is raised.

(build-list n f) procedure

Creates a list of n elements by applying f to the integers from 0 to n − 1 in order, where n is a non-negative
integer. The ith element of the resulting list is (f (- i 1)).

(build-string n f) procedure

Creates a string of length n by applying f to the integers from 0 to n−1 in order, where n is a non-negative
integer and f returns a character for the n invocations. The ith character of the resulting string is (f (- i
1)).

(build-vector n f) procedure

Creates a vector of n elements by applying f to the integers from 0 to n−1 in order, where n is a non-negative
integer. The ith element of the resulting vector is (f (- i 1)).

(compose f g) procedure

Returns a procedure that takes x and returns (call-with-values (lambda () (g x)) f).

(define-syntax-set (identifier · · ·) defn · · ·) syntax

This form is similar to define-syntaxes, but instead of a single body expression, a sequence of definitions
follows the sequence of defined identifiers. For each identifier , the defns should include a definition for
identifier/proc. The value for identifier/proc is used as the (expansion-time) value for identifier .

The define-syntax-set form is especially useful for defining a set of syntax transformers that share helper
functions.

Example:

(define-syntax-set (let-current-continuation let-current-escape-continuation)
(define (mk call-id)

(lambda (stx)
(syntax-case stx ()

[(id body1 body . . .)
(with-syntax ([call call-id])

(syntax (call (lambda (id) body1 body . . .))))])))

36

14. etc.ss: Useful Procedures and Syntax

(define let-current-continuation/proc (mk (quote-syntax call/cc)))
(define let-current-escape-continuation/proc (mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr · · ·) · · ·1) syntax

The evcase form is similar to case, except that expressions are provided in each clause instead of a sequence
of data. After key-expr is evaluated, each value-expr is evaluated until a value is found that is eqv? to the
key value; when a matching value is found, the corresponding body-exprs are evaluated and the value(s) for
the last is the result of the entire evcase expression.

A value-expr can be the special identifier else. This identifier is recognized as in case (see §2.3 in PLT
MzScheme: Language Manual).

false boolean

Boolean false.

(identity v) procedure

Returns v .

(let+ clause body-expr · · ·1) syntax

A new binding construct that specifies scoping on a per-binding basis instead of a per-expression basis. It
helps eliminate rightward-drift in programs. It looks similar to let, except each clause has an additional
keyword tag before the binding variables.

Each clause has one of the following forms:

• (val target expr) binds target non-recursively to expr .

• (rec target expr) binds target recursively to expr .

• (vals (target expr) · · ·) the targets are bound to the exprs. The environment of the exprs is the
environment active before this clause.

• (recs (variable expr) · · ·) the targetss are bound to the exprs. The environment of the exprs includes
all of the targetss.

• (expr · · ·) evaluates the exprs without binding any variables.

The clauses bind left-to-right. Each target above can either be an identifier or (values variable · · ·). In the
latter case, multiple values returned by the corresponding expression are bound to the multiple variables.

Examples:

(let+ ([val (values x y) (values 1 2)])
(list x y)) ; ⇒ ’(1 2)

(let ([x 1])
(let+ ([val x 3]

[val y x])
y)) ; ⇒ 3

37

14. etc.ss: Useful Procedures and Syntax

(local (definition · · ·) body-expr · · ·1) syntax

This is a binding form similar to letrec, except that each definition is a define-values expression (after
partial macro expansion). The body-exprs are evaluated in the lexical scope of these definitions.

(loop-until start done? next f) procedure

Repeatedly invokes the f procedure until the done? procedure returns #t. The procedure is best described
by its implementation:

(define loop-until
(lambda (start done? next f)

(let loop ([i start])
(unless (done? i)

(f i)
(loop (next i))))))

(namespace-defined? symbol) procedure

Returns #t if namespace-variable-binding would return a value for symbol , #f otherwise. See §8.2 in
PLT MzScheme: Language Manual for further information.

(nand expr · · ·) syntax

Returns (not (and expr · · ·)).

(nor expr · · ·) syntax

Returns (not (or expr · · ·)).

(opt-lambda formals body-expr · · ·1) syntax

The opt-lambda form is like lambda, except that default values are assigned to arguments (C++-style). De-
fault values are defined in the formals list by replacing each variable by [variable default-value-expression].
If an variable has a default value expression, then all (non-aggregate) variables after it must have default
value expressions. A final aggregate variable can be used as in lambda, but it cannot be given a default
value. Each default value expression is evaluated only if it is needed. The environment of each default value
expression includes the preceding arguments.

For example:

(define f
(opt-lambda (a [b (add1 a)] . c)

. . .))

In the example, f is a procedure which takes at least one argument. If a second argument is specified, it is
the value of b, otherwise b is (add1 a). If more than two arguments are specified, then the extra arguments
are placed in a new list that is the value of c.

(recur name bindings body-expr · · ·1) syntax

This is equivalent to a named let: (let name bindings body-expr · · ·1).

38

14. etc.ss: Useful Procedures and Syntax

(rec name value-expr) syntax

This is equivalent to a letrec expression that returns its binding: (letrec ((name value-expr)) name).

(symbol=? symbol1 symbol2) procedure

Returns #t if symbol1 and symbol2 are equivalent (as determined by eq?), #f otherwise. If either symbol1
or symbol2 is not a symbol, the exn:application:type exception is raised.

(this-expression-source-directory) syntax

Expands to a string that names the directory of the file containing the source expression. The source
expression’s file is detemermined through source location information associated with the syntax if it is
present. Otherwise, current-load-relative-directory is used if it is not #f, and current-directory is
used if all else fails.

true boolean

Boolean true.

39

15. file.ss: Filesystem Utilities

See also §11.3 in PLT MzScheme: Language Manual .

(build-absolute-path base path · · ·) procedure

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be an absolute
pathname. If base is not an absolute pathname, error is called.

(build-relative-path base path · · ·) procedure

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be a relative
pathname. If base is not a relative pathname, error is called.

(call-with-input-file* pathname proc flag-symbol · · ·) procedure

Like call-with-input-file, except that the opened port is closed if control escapes from the body of proc.

(call-with-output-file* pathname proc flag-symbol · · ·) procedure

Like call-with-output-file, except that the opened port is closed if control escapes from the body of
proc.

(copy-directory/files src-path dest-path) procedure

Copies the file or directory src-path to dest-path, raising exn:i/o:filesystem if the file or directory cannot
be copied, possibly because dest-path exists already. If src-path is a directory, the copy applies recursively
to the directory’s content. If a source is a link, the target of the link is copied rather than the link itself.

(delete-directory/files path) procedure

Deletes the file or directory specified by path, raising exn:i/o:filesystem if the file or directory cannot be
deleted. If path is a directory, then delete-directory/files is first applied to each file and directory in
path before the directory is deleted. The return value is void.

(explode-path path) procedure

Returns the list of directories that constitute path. The path argument must be normalized (except for letter
case; see normalize-path below).

(file-name-from-path path) procedure

If path is a file pathname, returns just the file name part without the directory path.

40

15. file.ss: Filesystem Utilities

(filename-extension path) procedure

Returns a string that is the extension part of the filename in path. If path is (syntactically) a directory, #f
is returned.

(find-library name collection) procedure

Returns the path of the specified library (see Chapter 16 in PLT MzScheme: Language Manual), returning
#f if the specified library or collection cannot be found. The collection argument is optional, defaulting to
"mzlib".

(find-relative-path basepath path) procedure

Finds a relative pathname with respect to basepath that names the same file or directory as path. Both
basepath and path must be normalized (except for letter case; see normalize-path below). If path is not a
proper subpath of basepath (i.e., a subpath that is strictly longer), path is returned.

(get-preference name [failure-thunk flush-cache? filename]) procedure

Extracts a preference value from the file designated by (find-system-path ’pref-file) (see §11.3 in PLT
MzScheme: Language Manual), or by filename if it is provided and is not #f. In the former case, if the
preference file doesn’t exist, get-preferences attempts to read a plt-prefs.ss file in the defaults collection,
instead. If neither file exists, the preference set is empty.

The preference file should contain a symbol-keyed association list (written to the file with the default pa-
rameter settings). Keys starting with mzscheme:, mred:, and plt: in any letter case are reserved for use by
PLT.

The result of get-preference is the value associated with name if it exists in the association list, or the
result of calling failure-thunk otherwise. The default failure-thunk returns #f.

Preference settings from the standard preference file are cached (weakly) across calls to get-preference; if
flush-cache? is provided as #f, the cache is used instead of the re-consulting the preferences file.

See also put-preferences. The framework collection supports a more elaborate preference system; see PLT
Framework: GUI Application Framework for details.

(make-directory* path) procedure

Creates directory specified by path, creating intermediate directories as necessary.

(make-temporary-file [format-string copy-from-filename]) procedure

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a
fresh file name, the file is actually created; this prevents other threads or processes from picking the same
temporary name; if copy-from-filename is provided as string, the temporary file is created as a copy of the
named file,. If copy-from-filename is #f or not provided, the temporary file is created as empty.

The temporary file is not opened for reading or writing when the pathname is returned. The client program
calling make-temporary-file is expected to open the file with the desired access and flags (probably using
the ’truncate flag; see §11.1.2 in PLT MzScheme: Language Manual) and to delete it when it is no longer
needed.

41

15. file.ss: Filesystem Utilities

If format-string is specified, it must be a format string suitable for use with format and one additional string
argument (where the string contains only digits). If the resulting string is a relative path, it is combined
with the result of (find-system-path ’temp-dir). The default format-string is "mztmp∼a".

(normalize-path path wrt) procedure

Returns a normalized, complete version of path, expanding the path and resolving all soft links. If path is
relative, then the pathname wrt is used as the base path. The wrt argument is optional; if is omitted, then
the current directory is used as the base path.

Letter case is not normalized by normalize-path, so combine normalize-path with normal-case-path to
get strings for path comparison.

An error is signaled by normalize-path if the input path contains an embedded path for a non-existent
directory, or if an infinite cycle of soft-links is detected.

(path-only path) procedure

If path is a filename, the file’s path is returned. If path is syntactically a directory, #f is returned.

(put-preferences name-list val-list [locked-proc filename]) procedure

See also get-preference.

Installs a set of preference values and writes all current values to the preference file designated by
(find-system-path ’pref-file) (see §11.3 in PLT MzScheme: Language Manual), or fielname if it is sup-
plied and not #f. The name-list argument must be a list of symbols for the preference names, and val-list
must have the same length as name-list .

Current preference values are read from the preference file before updating, and an update “lock” is held
starting before the file read, and lasting until after the preferences file is updated. The lock is implemented
by the existence of a file in the same directory as the preference file.

If the update lock is already held (i.e., the lock file exists), then locked-proc is called with a single argument:
the path of the lock file. The default locked-proc reports an error; an alternative thunk might wait a while and
try again, or give the user the choice to delete the lock file (in case a previous update attempt encountered
disaster).

If filename is #f or not supplied, and the preference file does not already exist, then values read from the
defaults collection (if any) are written for preferences that are not mentioned in name-list .

42

16. include.ss: Textually Including Source

(include path-spec) syntax

Inlines the syntax in the designated file in place of the include expression.

The path-spec can be either a literal string (parsed according to the platform’s conventions) or a path
construction of the form (build-path elem · · ·1) where build-path is module-identifier=? either to
the build-path export from mzscheme or to the top-level build-path, and where each elem is a path string,
up (unquoted), or same (unquoted). The elems are combined in the same way as for the build-path
function (see §11.3.1 in PLT MzScheme: Language Manual).

If path-spec specifies a relative path, it is resolved relative to the source for the include expression, if that
source is a complete path string. If the source is not a complete path string, then path-spec is resolved
relative to the current load relative directory if one is available, or to the current directory otherwise.

The included syntax is given the lexical context of the include expression.

(include-at/relative-to context source path-spec) syntax

Like include, except that the lexical context of context is used for the included syntax, and a relative
path-spec is resolved with respect to the source of source. The context and source elements are otherwise
discarded by expansion.

(include-at/relative-to/reader context source path-spec reader-expr) syntax

Combines include-at/relative-to and include/reader.

(include/reader path-spec reader-expr) syntax

Like include, except that the procedure produced by the expression reader-expr is used to read the included
file, instead of read-syntax.

The reader-expr is evaluated at expansion time in the transformer environment. Since it serves as a replace-
ment for read-syntax, the expression’s value should be a procedure that consumes two inputs—a string
representing the source and an input port—and produces a syntax object or eof. The procedure will be
called repeatedly until it produces eof.

The syntax objects returned by the procedure should have source location information, but usually no lexical
context; any lexical context in the syntax objects will be ignored.

43

17. inflate.ss: Inflating Compressed Data

(gunzip file [output-name-filter]) procedure

Extracts data that was compressed using the GNU gzip utility (or gzip in the deflate.ss library; see §12),
writing the uncompressed data directly to a file. The file argument is the name of the file containing
compressed data. The default output file name is the original name of the compressed file as stored in file. If
a file by this name exists, it will be overwritten. If no original name is stored in the source file, "unzipped"
is used as the default output file name.

The output-name-filter procedure is applied to two arguments — the default destination file name and a
Boolean that is #t if this name was read from file — before the destination file is created. The return
value of the file is used as the actual destination file name (opened with the ’truncate flag). The default
output-name-filter procedure returns its first argument.

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

(gunzip-through-ports in out) procedure

Reads the port in for compressed data that was created using the GNU gzip utility, writing the uncompressed
data to the port out .

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

(inflate in out) procedure

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“inflated”) data to the
port out . The data in a file created by gzip uses this format (preceded with some header information).

The return value is void. If the compressed data is corrupted, the exn:user exception is raised.

44

18. list.ss: List Utilities

The procedures second, third, fourth, fifth, sixth, seventh, and eighth access the corresponding
element from a list.

(assf f l) procedure

Applies f to the car of each element of l (from left to right) until f returns a true value, in which case that
element is returned. If f does not return a true value for the car of any element of l , #f is returned.

(cons? v) procedure

Returns #t if v is a value created with cons, #f otherwise.

empty empty list

The empty list.

(empty? v) procedure

Returns #t if v is the empty list, #f otherwise.

(filter f l) procedure

Applies f to each element in l (from left to right) and returns a new list that is the same as l , but omitting
all the elements for which f returned #f.

(first l) procedure

Returns the first element of the list l . (The first procedure is a synonym for car.)

(foldl f init l · · ·1) procedure

Like map, foldl applies a procedure f to the elements of one or more lists. While map combines the return
values into a list, foldl combines the return values in an arbitrary way that is determined by f .

If foldl is called with n lists, the f procedure takes n+1 arguments. The extra value is the combined return
values so far. The f procedure is initially invoked with the first item of each list; the final argument is init .
In subsequent invocations of f , the last argument is the return value from the previous invocation of f . The
input lists are traversed from left to right, and the result of the whole foldl application is the result of the
last application of f . (If the lists are empty, the result is init .)

For example, reverse can be defined in terms of foldl:

45

18. list.ss: List Utilities

(define reverse
(lambda (l)
(foldl cons ’() l)))

(foldr f init l · · ·1) procedure

Like foldl, but the lists are traversed from right to left.

For example, a restricted map (that works only on single-argument procedures) can be defined in terms of
foldr:

(define simple-map
(lambda (f list)
(foldr (lambda (v l) (cons (f v) l)) ’() list)))

(last-pair list) procedure

Returns the last pair in list , raising an error if list is not a pair (but list does not have to be a proper list).

(memf f l) procedure

Applies f to each element of l (from left to right) until f returns a true value for some element, in which
case the tail of l starting with that element is returned. If f does not return a true value for any element of
l , #f is returned.

(mergesort list less-than?) procedure

Sorts list using the comparison procedure less-than? . This implementation is not stable (i.e., if two elements
in the input are “equal,” their relative positions in the output may be reversed).

(quicksort list less-than?) procedure

Sorts list using the comparison procedure less-than? . This implementation is not stable (i.e., if two elements
in the input are “equal,” their relative positions in the output may be reversed).

(remove item list [equal?]) procedure

Returns list without the first instance of item, where an instance is found by comparing item to the list items
using equal? . The default value for equal? is equal?. When equal? is invoked, item is the first argument.

(remove* items list [equal?]) procedure

Like remove, except that the first argument is a list of items to remove, instead of a single item.

(remq item list) procedure

Calls remove with eq? as the comparison procedure.

(remq* items list) procedure

Calls remove* with eq? as the comparison procedure.

46

18. list.ss: List Utilities

(remv item list) procedure

Calls remove with eqv? as the comparison procedure.

(remv* items list) procedure

Calls remove* with eqv? as the comparison procedure.

(rest l) procedure

Returns a list that contains all but the first element of the non-empty list l . (The rest procedure is a
synonym for cdr.)

(set-first! l v) procedure

Destructively modifies l so that its first element is v . (The set-first! procedure is a synonym for set-car!.)

(set-rest! l1 l2) procedure

Destructively modifies l1 so that the rest of the list (after the first element) is l2 . (The set-rest! procedure
is a synonym for set-cdr!.)

47

19. match.ss: Pattern Matching

This library provides functions for pattern-matching Scheme values. (This chapter written by Andrew
K. Wright, originally titled Pattern Matching for Scheme.) The following forms are provided:

(match expr clause . . .)
(match-lambda clause . . .)
(match-lambda∗ clause . . .)
(match-let ((pat expr) . . .) expr · · ·1)
(match-let∗ ((pat expr) . . .) expr · · ·1)
(match-letrec ((pat expr) . . .) expr · · ·1)
(match-let var ((pat expr) . . .) expr · · ·1)
(match-define pat expr)

clause is one of
(pat expr · · ·1)
(pat (=> identifier) expr · · ·1)

Figures 19.1 and 19.2 give the full syntax for pat patterns. The next subsection describes the various
patterns.

The match-lambda and match-lambda∗ forms are convenient combinations of match and lambda, and
can be explained as follows:

(match-lambda (pat expr · · ·1) . . .) = (lambda (x) (match x (pat expr · · ·1) . . .))
(match-lambda∗ (pat expr · · ·1) . . .) = (lambda x (match x (pat expr · · ·1) . . .))

where x is a unique variable. The match-lambda form is convenient when defining a single argument
function that immediately destructures its argument. The match-lambda∗ form constructs a function that
accepts any number of arguments; the patterns of match-lambda∗ should be lists.

The match-let, match-let∗, match-letrec, and schemematch-define forms generalize Scheme’s let, let∗,
letrec, and define expressions to allow patterns in the binding position rather than just variables. For
example, the following expression:

(match-let ([(x y z) (list 1 2 3)]) body)

binds x to 1, y to 2, and z to 3 in the body. These forms are convenient for destructuring the result
of a function that returns multiple values. As usual for letrec and define, pattern variables bound by
match-letrec and match-define should not be used in computing the bound value.

The match, match-lambda, and match-lambda∗ forms allow the optional syntax (=> identifier) between
the pattern and the body of a clause. When the pattern match for such a clause succeeds, the identifier is
bound to a failure procedure of zero arguments within the body. If this procedure is invoked, it jumps back
to the pattern matching expression, and resumes the matching process as if the pattern had failed to match.
The body must not mutate the object being matched, otherwise unpredictable behavior may result.

48

19. match.ss: Pattern Matching

Pattern : Matches :
pat ::= identifier anything, and binds identifier as a variable

| anything
| () itself (the empty list)
| #t itself
| #f itself
| string an equal? string
| number an equal? number
| character an equal? character
| ’s-expression an equal? s-expression
| ’symbol an equal? symbol (special case of s-expression)
| (pat1 . . . patn) a proper list of n elements
| (pat1 . . . patn . patn+1) a list of n or more elements
| (pat1 . . . patn patn+1 ...) a proper list of n or more elements1

| (pat1 . . . patn patn+1 ..k) a proper list of n+ k or more elements
| #(pat1 . . . patn) a vector of n elements
| #&pat a box
| ($ struct pat1 . . . patn) a structure
| (and pat1 . . . patn) if all of pat1 through patn match
| (or pat1 . . . patn) if any of pat1 through patn match
| (not pat1 . . . patn) if none of pat1 through patn match
| (? predicate pat1 . . . patn) if predicate true and pat1 through patn all match
| (set! identifier) anything, and binds identifier as a setter
| (get! identifier) anything, and binds identifier as a getter
| ‘qp a quasipattern

Figure 19.1: Pattern Syntax

Quasipattern: Matches :
qp ::= () itself (the empty list)

| #t itself
| #f itself
| string an equal? string
| number an equal? number
| character an equal? character
| identifier an equal? symbol
| (qp1 . . . qpn) a proper list of n elements
| (qp1 . . . qpn . qpn+1) a list of n or more elements
| (qp1 . . . qpn qpn+1 ...) a proper list of n or more elements
| (qp1 . . . qpn qpn+1 ..k) a proper list of n+ k or more elements
| #(qp1 . . . qpn) a vector of n elements
| #&qp a box
| ,pat a pattern
| ,@pat a pattern, spliced

Figure 19.2: Quasipattern Syntax

49

19.1. Patterns 19. match.ss: Pattern Matching

19.1 Patterns

Figure 19.1 gives the full syntax for patterns. Explanations of these patterns follow.

• identifier (excluding the reserved names ?, $, , and, or, not, set!, get!, ..., and ..k for non-negative
integers k) — matches anything, and binds a variable of this name to the matching value in the body.

• — matches anything, without binding any variables.

• (), #t, #f, string , number , character , ’s-expression — constant patterns that match themselves (i.e.,
the corresponding value must be equal? to the pattern).

• (pat1 · · · patn) matches a proper list of n elements that match pat1 through patn.

• (pat1 · · · patn . patn+1) — matches a (possibly improper) list of at least n elements that ends in
something matching patn + 1.

• (pat1 · · · patn patn+1 ...) — matches a proper list of n or more elements, where each element of the
tail matches patn+1. Each pattern variable in patn+1 is bound to a list of the matching values. For
example, the expression:

(match ’(let ([x 1][y 2]) z)
[(’let ((binding vals) . . .) exp) expr · · ·1])

binds binding to the list ’(x y), vals to the list ’(1 2), and exp to ’z in the body of the match-expression.
For the special case where patn+1 is a pattern variable, the list bound to that variable may share with
the matched value.

• (pat1 · · · patn patn+1 ..k) — similar to the previous pattern, but the tail must be at least k elements
long. The pattern keywords ..0 and ... are equivalent.

• #(pat1 · · · patn) — matches a vector of length n, whose elements match pat1 through patn.

• #&pat — matches a box containing something matching pat .

• ($ struct-name pat1 · · · patn) — matches an instance of a structure type struct-name, where the
instance contains n fields.

Usually, struct-name is defined with define-struct. More generally, struct-name must be bound to
expansion-time information for a structure type (see §12.6.3 in PLT MzScheme: Language Manual),
where the information includes at least a predicate binding and some field accessor bindings (and pat1
through patn correspond to the provided accessors). In particular, a module import or a unit/sig
import with a signature containing a struct declaration (see §35.2) can provide the structure type
information.

• (and pat1 · · · patn) — matches if all of the subpatterns match. This pattern is often used as (and
x pat) to bind x to to the entire value that matches pat .

• (or pat1 · · · patn) — matches if any of the subpatterns match. At least one subpattern must be
present. All subpatterns must bind the same set of pattern variables.

• (not pat1 · · · patn) — matches if none of the subpatterns match. The subpatterns may not bind any
pattern variables.

• (? predicate-expr pat1 · · · patn) — In this pattern, predicate-expr must be an expression evaluating
to a single argument function. This pattern matches if predicate-expr applied to the corresponding
value is true, and the subpatterns pat1 through patn all match. The predicate-expr should not have side
effects, as the code generated by the pattern matcher may invoke predicates repeatedly in any order.
The predicate-expr expression is bound in the same scope as the match expression, so free variables in
predicate-expr are not bound by pattern variables.

50

19. match.ss: Pattern Matching 19.2. Examples

• (set! identifier) — matches anything, and binds identifier to a procedure of one argument that
mutates the corresponding field of the matching value. This pattern must be nested within a pair,
vector, box, or structure pattern. For example, the expression:

(define x (list 1 (list 2 3)))
(match x [(((set! setit))) (setit 4)])

mutates the cadadr of x to 4, so that x is ’(1 (2 4)).

• (get! identifier) — matches anything, and binds identifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement to set!. As
with scmkset!, this pattern must be nested within a pair, vector, box, or structure pattern.

• ‘quasipattern — introduces a quasipattern, in which identifiers are considered to be symbolic constants.
Like Scheme’s quasiquote for data, unquote (,) and unquote-splicing (,@) escape back to normal
patterns.

If no clause matches the value, the reult is void.

19.2 Examples

This section illustrates the convenience of pattern matching with some examples. The following function
recognizes some s-expressions that represent the standard Y operator:

(define Y?
(match-lambda

[(’lambda (f1)
(’lambda (y1)

(((’lambda (x1) (f2 (’lambda (z1) ((x2 x3) z2))))
(’lambda (a1) (f3 (’lambda (b1) ((a2 a3) b2)))))

y2)))
(and (symbol? f1) (symbol? y1) (symbol? x1) (symbol? z1) (symbol? a1) (symbol? b1)

(eq? f1 f2) (eq? f1 f3) (eq? y1 y2)
(eq? x1 x2) (eq? x1 x3) (eq? z1 z2)
(eq? a1 a2) (eq? a1 a3) (eq? b1 b2))]

[#f]))

Writing an equivalent piece of code in raw Scheme is tedious.

The following code defines abstract syntax for a subset of Scheme, a parser into this abstract syntax, and
an unparser.

(define-struct Lam (args body))
(define-struct Var (s))
(define-struct Const (n))
(define-struct App (fun args))

(define parse
(match-lambda

[(and s (? symbol?) (not ’lambda))
(make-Var s)]
[(? number? n)
(make-Const n)]
[(’lambda (and args ((? symbol?) . . .) (not (? repeats?))) body)

51

19.2. Examples 19. match.ss: Pattern Matching

(make-Lam args (parse body))]
[(f args . . .)
(make-App

(parse f)
(map parse args))]

[x (error ’syntax "invalid expression")]))

(define repeats?
(lambda (l)

(and (not (null? l))
(or (memq (car l) (cdr l)) (repeats? (cdr l))))))

(define unparse
(match-lambda

[($ Var s) s]
[($ Const n) n]
[($ Lam args body) ‘(lambda ,args ,(unparse body))]
[($ App f args) ‘(,(unparse f) ,@(map unparse args))]))

With pattern matching, it is easy to ensure that the parser rejects all incorrectly formed inputs with an
error message.

With match-define, it is easy to define several procedures that share a hidden variable. The following code
defines three procedures, inc, value, and reset , that manipulate a hidden counter variable:

(match-define (inc value reset)
(let ([val 0])

(list
(lambda () (set! val (add1 val)))
(lambda () val)
(lambda () (set! val 0)))))

Although this example is not recursive, the bodies could recursively refer to each other.

52

20. math.ss: Math

(conjugate z) procedure

Returns the complex conjugate of z .

(cosh z) procedure

Returns the hyperbolic cosine of z .

e number

Approximation of Euler’s number, equivalent to (exp 1.0).

pi number

Approximation of π, equivalent to (atan 0.0 −1.0).

(sinh z) procedure

Returns the hyperbolic sine of z .

(sgn n) procedure

Returns 1 if n is positive, -1 if n is negative, and 0 otherwise. If n is exact, the result is exact, otherwise the
result is inexact.

(sqr z) procedure

Returns (∗ z z)).

53

21. pconvert.ss: Converted Printing

This library defines routines for printing Scheme values as evaluatable S-expressions rather than readable
S-expressions. The print-convert procedure does not print values; rather, it converts a Scheme value into
another Scheme value such that the new value pretty-prints as a Scheme expression that evaluates to the
original value. For example, (pretty-print (print-convert ‘(9 ,(box 5) #(6 7))) prints the literal
expression (list 9 (box 5) (vector 6 7)) to the current output port.

To install print converting into the read-eval-print loop, require pconver.ss and call the procedure
install-converting-printer.

In addition to print-convert, this library provides print-convert, build-share, get-shared, and
print-convert-expr. The last three are used to convert sub-expressions of a larger expression (poten-
tially with shared structure).

(abbreviate-cons-as-list [abbreviate?]) procedure

Parameter that controls how lists are represented with constructor-style conversion. If the parameter’s value
is #t, lists are represented using list. Otherwise, lists are represented using cons. The initial value of the
parameter is #t.

(booleans-as-true/false [use-name?]) procedure

Parameter that controls how #t and #f are represented. If the parameter’s value is #t, then #t is represented
as true and #f is represented as false. The initial value of the parameter is #t.

(use-named/undefined-handler [use-handler]) procedure

This parameter that controls how values that have inferred names are represented. This parameter is passed
a value. If the parameter returns #t, the named/undefined-handler is invoked to render that value. Only
values that have inferred names but are not defined at the top-level are used with this handler.

The initial value of the parameter is (lambda (x) #f).

(use-named/undefined-handler [use-handler]) procedure

This parameter that controls how values that have inferred names are represented. This parameter is only
called if use-named/undefined-handler returned true for some value. This parameter is passed that same
value and the result of the parameter is used as the representation for the value.

The initial value of the parameter is (lambda (x) #f).

(build-share v) procedure

Takes a value and computes sharing information used for representing the value as an expression. The return

54

21. pconvert.ss: Converted Printing

value is an opaque structure that can be passed back into get-shared or print-convert-expr.

(constructor-style-printing [use-constructors?]) procedure

Parameter that controls how values are represented after conversion. If this parameter is #t, then construc-
tors are used, e.g., pair containing 1 and 2 is represented as (cons 1 2). Otherwise, quasiquote-style syntax
is used, e.g. the pair containing 1 and 2 is represented as ‘(1 . 2). The initial value of the parameter is
#f.

See also quasi-read-style-printing.

(current-build-share-hook [hook]) procedure

Parameter that sets a procedure used by print-convert and build-share to assemble sharing information.
The procedure hook takes three arguments: a value v , a procedure basic-share, and a procedure sub-share;
the return value is ignored. The basic-share procedure takes v and performs the built-in sharing analysis,
while the sub-share procedure takes a component of v ands analyzes it. These procedures return void; sharing
information is accumulated as values are passed to basic-share and sub-share.

A current-build-share-hook procedure usually works together with a current-print-convert-hook pro-
cedure.

(current-build-share-name-hook [hook]) procedure

Parameter that sets a procedure used by print-convert and build-share to generate a new name for a
shared value. The hook procedure takes a single value and returns a symbol for the value’s name. If hook
returns #f, a name is generated using the form “-n-” (where n is an integer).

(current-print-convert-hook [hook]) procedure

Parameter that sets a procedure used by print-convert and print-convert-expr to convert values. The
procedure hook takes three arguments — a value v , a procedure basic-convert , and a procedure sub-convert
— and returns the converted representation of v . The basic-convert procedure takes v and returns the
default conversion, while the sub-convert procedure takes a component of v and returns its conversion.

A current-print-convert-hook procedure usually works together with a current-build-share-hook pro-
cedure.

(current-read-eval-convert-print-prompt [str]) procedure

Parameter that sets the prompt used by install-converting-printer. The initial value is "|- ".

(get-shared share-info [cycles-only?]) procedure

The shared-info value must be a result from build-share. The procedure returns a list matching variables
to shared values within the value passed to build-share. For example,

(get-shared (build-share (shared ([a (cons 1 b)][b (cons 2 a)]) a)))

might return the list

((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

55

21. pconvert.ss: Converted Printing

The default value for cycles-only? is #f; if it is not #f, get-shared returns only information about cycles.

(install-converting-printer) procedure

Sets the current print handler to print values using print-convert. The current read handler is also set to
use the prompt returned by current-read-eval-convert-print-prompt.

(print-convert v [cycles-only?]) procedure

Converts the value v . If cycles-only? is not #f, then only circular objects are included in the output. The
default value of cycles-only? is the value of (show-sharing).

(print-convert-expr share-info v unroll-once?) procedure

Converts the value v using sharing information share-info previously returned by build-share for a value
containing v . If the most recent call to get-shared with share-info requested information only for cycles,
then print-convert-expr will only display sharing among values for cycles, rather than showing all value
sharing.

The unroll-once? argument is used if v is a shared value in share-info. In this case, if unroll-once? is
#f, then the return value will be a shared-value identifier; otherwise, the returned value shows the internal
structure of v (using shared value identifiers within v ’s immediate structure as appropriate).

(quasi-read-style-printing [on?]) procedure

Parameter that controls how vectors and boxes are represented after conversion when the value of
constructor-style-printing is #f. If quasi-read-style-printing is set to #f, then boxes and vec-
tors are unquoted and represented using constructors. For example, the list of a box containing the number
1 and a vector containing the number 1 is represented as ‘(,(box 1) ,(vector 1)). If the parameter is
#t, then #& and #() are used, e.g., ‘(#&1 #(1)). The initial value of the parameter is #t.

(show-sharing [show?]) procedure

Parameter that determines whether sub-value sharing is conserved (and shown) in the converted output by
default. The initial value of the parameter is #t.

(whole/fractional-exact-numbers [whole-frac?]) procedure

Parameter that controls how exact, non-integer numbers are converted when the numerator is greater than
the denominator. If the parameter’s value is #t, the number is converted to the form (+ integer fraction)
(i.e., a list containing ’+, an exact integer, and an exact rational less than 1 and greater than -1). The
initial value of the parameter is #f.

56

22. pregexp.ss: Perl-Style Regular Expressions

This library provides regular expressions modeled on Perl’s , and includes such powerful directives as numeric
and nongreedy quantifiers, capturing and non-capturing clustering, POSIX character classes, selective case-
and space-insensitivity, backreferences, alternation, backtrack pruning, positive and negative lookahead and
lookbehind, in addition to the more basic directives familiar to all regexp users.

22.1 Introduction

A regexp is a string that describes a pattern. A regexp matcher tries to match this pattern against (a portion
of) another string, which we will call the text string. The text string is treated as raw text and not as a
pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves in the text string.
Thus, the pattern "abc" matches a string that contains the characters a, b, c in succession.

In the regexp pattern, some characters act as metacharacters, and some character sequences act as metase-
quences. That is, they specify something other than their literal selves. For example, in the pattern "a.c",
the characters a and c do stand for themselves but the metacharacter ‘.’ can match any character (other
than newline). Therefore, the pattern "a.c" matches an a, followed by any character, followed by a c.

If we needed to match the character ‘.’ itself, we escape it, ie, precede it with a backslash (\). The character
sequence \. is thus a metasequence, since it doesn’t match itself but rather just ‘.’. So, to match a followed
by a literal ‘.’ followed by c, we use the regexp pattern "a\\.c".1 Another example of a metasequence is
\t, which is a readable way to represent the tab character.

We will call the string representation of a regexp the U-regexp, where U can be taken to mean Unix-style or
universal, because this notation for regexps is universally familiar. Our implementation uses an intermediate
tree-like representation called the S-regexp, where S can stand for Scheme, symbolic, or s-expression. S-
regexps are more verbose and less readable than U-regexps, but they are much easier for Scheme’s recursive
procedures to navigate.

22.2 Regexp procedures

This library provides the procedures pregexp, pregexp-match-positions, pregexp-match, pregexp-split,
pregexp-replace, and pregexp-replace*.

1The double backslash is an artifact of Scheme strings, not the regexp pattern itself. When we want a literal backslash inside
a Scheme string, we must escape it so that it shows up in the string at all. Scheme strings use backslash as the escape character,
so we end up with two backslashes — one Scheme-string backslash to escape the regexp backslash, which then escapes the dot.
Another character that would need escaping inside a Scheme string is ‘"’.

57

22.2. Regexp procedures 22. pregexp.ss: Perl-Style Regular Expressions

22.2.1 pregexp

(pregexp U-regexp) procedure

Takes a U-regexp, which is a string, and returns an S-regexp, which is a tree.

(pregexp "c.r")
=> (:sub (:or (:seq #\c :any #\r)))

There is rarely any need to look at the S-regexps returned by pregexp.

22.2.2 pregexp-match-positions

(pregexp-match-positions regexp text-string [start end]) procedure

Takes a regexp pattern and a text string, and returns a match if the regexp matches (some part of) the text
string.

The regexp may be either a U- or an S-regexp. (pregexp-match-positions will internally com-
pile a U-regexp to an S-regexp before proceeding with the matching. If you find yourself calling
pregexp-match-positions repeatedly with the same U-regexp, it may be advisable to explicitly convert
the latter into an S-regexp once beforehand, using pregexp, to save needless recompilation.)

pregexp-match-positions returns #f if the regexp did not match the string; and a list of index pairs if it
did match. Eg,

(pregexp-match-positions "brain" "bird")
=> #f

(pregexp-match-positions "needle" "hay needle stack")
=> ((4 . 10))

In the second example, the integers 4 and 10 identify the substring that was matched. 4 is the starting
(inclusive) index and 10 the ending (exclusive) index of the matching substring.

(substring "hay needle stack" 4 10)
=> "needle"

Here, pregexp-match-positions’s return list contains only one index pair, and that pair represents the
entire substring matched by the regexp. When we discuss subpatterns later, we will see how a single match
operation can yield a list of submatches.

pregexp-match-positions takes optional third and fourth arguments that specify the indices of the text
string within which the matching should take place.

(pregexp-match-positions "needle"
"his hay needle stack -- my hay needle stack -- her hay needle stack"
24 43)

=> ((31 . 37))

Note that the returned indices are still reckoned relative to the full text string.

58

22. pregexp.ss: Perl-Style Regular Expressions 22.2. Regexp procedures

22.2.3 pregexp-match

(pregexp-match regexp text-string [start end]) procedure

Called like pregexp-match-positions but instead of returning index pairs it returns the matching sub-
strings:

(pregexp-match "brain" "bird")
=> #f

(pregexp-match "needle" "hay needle stack")
=> ("needle")

pregexp-match also takes optional third and fourth arguments, with the same meaning as does
pregexp-match-positions.

22.2.4 pregexp-split

(pregexp-split regexp text-string) procedure

Takes two arguments, a regexp pattern and a text string, and returns a list of substrings of the text string,
where the pattern identifies the delimiter separating the substrings.

(pregexp-split ":" "/bin:/usr/bin:/usr/bin/X11:/usr/local/bin")
=> ("/bin" "/usr/bin" "/usr/bin/X11" "/usr/local/bin")

(pregexp-split " " "pea soup")
=> ("pea" "soup")

If the first argument can match an empty string, then the list of all the single-character substrings is returned.

(pregexp-split "" "smithereens")
=> ("s" "m" "i" "t" "h" "e" "r" "e" "e" "n" "s")

To identify one-or-more spaces as the delimiter, take care to use the regexp " +", not " *".

(pregexp-split " +" "split pea soup")
=> ("split" "pea" "soup")

(pregexp-split " *" "split pea soup")
=> ("s" "p" "l" "i" "t" "p" "e" "a" "s" "o" "u" "p")

22.2.5 pregexp-replace

(pregexp-replace regexp text-string insert-string) procedure

Replaces the matched portion of the text string by another string. The first argument is the pattern, the
second the text string, and the third is the insert string (string to be inserted).

(pregexp-replace "te" "liberte" "ty")
=> "liberty"

59

22.3. The regexp pattern language 22. pregexp.ss: Perl-Style Regular Expressions

22.2.6 pregexp-replace*

(pregexp-replace* regexp text-string insert-string) procedure

Replaces all matches in the text string by the insert string:

(pregexp-replace* "te" "liberte egalite fraternite" "ty")
=> "liberty egality fratyrnity"

22.3 The regexp pattern language

Here is a complete description of the regexp pattern language recognized by the pregexp procedures.

22.3.1 Basic assertions

The assertions ^ and $ identify the beginning and the end of the text string respectively. They ensure that
their adjoining regexps match at one or other end of the text string. Examples:

(pregexp-match-positions "^contact" "first contact")
=> #f

The regexp fails to match because contact does not occur at the beginning of the text string.

(pregexp-match-positions "laugh$" "laugh laugh laugh laugh")
=> ((18 . 23))

The regexp matches the last laugh.

The metasequence \b asserts that a word boundary exists.

(pregexp-match-positions "yack\\b" "yackety yack")
=> ((8 . 12))

The yack in yackety doesn’t end at a word boundary so it isn’t matched. The second yack does and is.

The metasequence \B has the opposite effect to \b. It asserts that a word boundary does not exist.

(pregexp-match-positions "an\\B" "an analysis")
=> ((3 . 5))

The an that doesn’t end in a word boundary is matched.

22.3.2 Characters and character classes

Typically a character in the regexp matches the same character in the text string. Sometimes it is necessary
or convenient to use a regexp metasequence to refer to a single character. Thus, metasequences \n, \r, \t,
and \. match the newline, return, tab and period characters respectively.

The metacharacter period (.) matches any character other than newline.

(pregexp-match "p.t" "pet")
=> ("pet")

60

22. pregexp.ss: Perl-Style Regular Expressions 22.3. The regexp pattern language

It also matches pat, pit, pot, put, and p8t but not peat or pfffft.

A character class matches any one character from a set of characters. A typical format for this is the
bracketed character class [...], which matches any one character from the non-empty sequence of characters
enclosed within the brackets.2 Thus "p[aeiou]t" matches pat, pet, pit, pot, put and nothing else.

Inside the brackets, a hyphen (-) between two characters specifies the ascii range between the characters.
Eg, "ta[b-dgn-p]" matches tab, tac, tad, and tag, and tan, tao, tap.

An initial caret (^) after the left bracket inverts the set specified by the rest of the contents, ie, it specifies
the set of characters other than those identified in the brackets. Eg, "do[^g]" matches all three-character
sequences starting with do except dog.

Note that the metacharacter ^ inside brackets means something quite different from what it means outside.
Most other metacharacters (., *, +, ?, etc) cease to be metacharacters when inside brackets, although you
may still escape them for peace of mind. - is a metacharacter only when it’s inside brackets, and neither
the first nor the last character.

Bracketed character classes cannot contain other bracketed character classes (although they contain certain
other types of character classes — see below). Thus a left bracket ([) inside a bracketed character class
doesn’t have to be a metacharacter; it can stand for itself. Eg, "[a[b]" matches a, [, and b.

Furthermore, since empty bracketed character classes are disallowed, a right bracket (]) immediately occur-
ring after the opening left bracket also doesn’t need to be a metacharacter. Eg, "[]ab]" matches], a, and
b.

22.3.2.1 Some frequently used character classes

Some standard character classes can be conveniently represented as metasequences instead of as explicit
bracketed expressions. \d matches a digit ([0-9]); \s matches a whitespace character; and \w matches a
character that could be part of a “word”.3

The upper-case versions of these metasequences stand for the inversions of the corresponding character
classes. Thus \D matches a non-digit, \S a non-whitespace character, and \W a non-“word” character.

Remember to include a double backslash when putting these metasequences in a Scheme string:

(pregexp-match "\\d\\d"
"0 dear, 1 have 2 read catch 22 before 9")

=> ("22")

These character classes can be used inside a bracketed expression. Eg, "[a-z\\d]" matches a lower-case
letter or a digit.

22.3.2.2 POSIX character classes

A POSIX character class is a special metasequence of the form [:...:] that can be used only inside a
bracketed expression. The POSIX classes supported are

[:alnum:] letters and digits
[:alpha:] letters

2Requiring a bracketed character class to be non-empty is not a limitation, since an empty character class can be more easily
represented by an empty string.

3Following regexp custom, we identify “word” characters as [A-Za-z0-9], although these are too restrictive for what a
Schemer might consider a “word”.

61

22.3. The regexp pattern language 22. pregexp.ss: Perl-Style Regular Expressions

[:algor:] the letters c, h, a and d
[:ascii:] 7-bit ascii characters
[:blank:] widthful whitespace, ie, space and tab
[:cntrl:] “control” characters, viz, those with code < 32
[:digit:] digits, same as \d
[:graph:] characters that use ink
[:lower:] lower-case letters
[:print:] ink-users plus widthful whitespace
[:space:] whitespace, same as \s
[:upper:] upper-case letters
[:word:] letters, digits, and underscore, same as \w
[:xdigit:] hex digits

For example, the regexp "[[:alpha:]_]" matches a letter or underscore.

(pregexp-match "[[:alpha:]_]" "--x--")
=> ("x")

(pregexp-match "[[:alpha:]_]" "--_--")
=> ("_")

(pregexp-match "[[:alpha:]_]" "--:--")
=> #f

The POSIX class notation is valid only inside a bracketed expression. For instance, [:alpha:], when not
inside a bracketed expression, will not be read as the letter class. Rather it is (from previous principles) the
character class containing the characters :, a, l, p, h.

(pregexp-match "[:alpha:]" "--a--")
=> ("a")

(pregexp-match "[:alpha:]" "--_--")
=> #f

By placing a caret (^) immediately after [:, you get the inversion of that POSIX character class. Thus,
[:^alpha] is the class containing all characters except the letters.

22.3.3 Quantifiers

The quantifiers *, +, and ? match respectively: zero or more, one or more, and zero or one instances of the
preceding subpattern.

(pregexp-match-positions "c[ad]*r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]*r" "cr")
=> ((0 . 2))

(pregexp-match-positions "c[ad]+r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]+r" "cr")
=> #f

(pregexp-match-positions "c[ad]?r" "cadaddadddr")
=> #f

62

22. pregexp.ss: Perl-Style Regular Expressions 22.3. The regexp pattern language

(pregexp-match-positions "c[ad]?r" "cr")
=> ((0 . 2))
(pregexp-match-positions "c[ad]?r" "car")
=> ((0 . 3))

22.3.3.1 Numeric quantifiers

You can use braces to specify much finer-tuned quantification than is possible with *, +, ?.

The quantifier {m} matches exactly m instances of the preceding subpattern. m must be a nonnegative integer.

The quantifier {m,n} matches at least m and at most n instances. m and n are nonnegative integers with m
<= n. You may omit either or both numbers, in which case m defaults to 0 and n to infinity.

It is evident that + and ? are abbreviations for {1,} and {0,1} respectively. * abbreviates {,}, which is the
same as {0,}.

(pregexp-match "[aeiou]{3}" "vacuous")
=> ("uou")

(pregexp-match "[aeiou]{3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "zeugma")
=> ("eu")

22.3.3.2 Non-greedy quantifiers

The quantifiers described above are greedy, ie, they match the maximal number of instances that would still
lead to an overall match for the full pattern.

(pregexp-match "<.*>" "<tag1> <tag2> <tag3>")
=> ("<tag1> <tag2> <tag3>")

To make these quantifiers non-greedy, append a ? to them. Non-greedy quantifiers match the minimal
number of instances needed to ensure an overall match.

(pregexp-match "<.*?>" "<tag1> <tag2> <tag3>")
=> ("<tag1>")

The non-greedy quantifiers are respectively: *?, +?, ??, {m}?, {m,n}?. Note the two uses of the metacharacter
?.

22.3.4 Clusters

Clustering, ie, enclosure within parens (...), identifies the enclosed subpattern as a single entity. It causes
the matcher to capture the submatch, or the portion of the string matching the subpattern, in addition to
the overall match.

(pregexp-match "([a-z]+) ([0-9]+), ([0-9]+)" "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1" "1970")

63

22.3. The regexp pattern language 22. pregexp.ss: Perl-Style Regular Expressions

Clustering also causes a following quantifier to treat the entire enclosed subpattern as an entity.

(pregexp-match "(poo)*" "poo poo platter")
=> ("poo poo " "poo ")

The number of submatches returned is always equal to the number of subpatterns specified in the regexp,
even if a particular subpattern happens to match more than one substring or no substring at all.

(pregexp-match "([a-z]+;)*" "lather; rinse; repeat;")
=> ("lather; rinse; repeat;" " repeat;")

Here the *-quantified subpattern matches three times, but it is the last submatch that is returned.

It is also possible for a quantified subpattern to fail to match, even if the overall pattern matches. In such
cases, the failing submatch is represented by #f.

(define date-re
;match ‘month year’ or ‘month day, year’.
;subpattern matches day, if present
(pregexp "([a-z]+) +([0-9]+,)? *([0-9]+)"))

(pregexp-match date-re "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1," "1970")

(pregexp-match date-re "jan 1970")
=> ("jan 1970" "jan" #f "1970")

22.3.4.1 Backreferences

Submatches can be used in the insert string argument of the procedures pregexp-replace and
pregexp-replace*. The insert string can use \n as a backreference to refer back to the nth submatch,
ie, the substring that matched the nth subpattern. \0 refers to the entire match, and it can also be specified
as \&.

(pregexp-replace "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the _pinta_, and the _santa maria_"

(pregexp-replace* "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the *pinta*, and the *santa maria*"

;recall: \S stands for non-whitespace character

(pregexp-replace "(\\S+) (\\S+) (\\S+)"
"eat to live"
"\\3 \\2 \\1")

=> "live to eat"

Use \\ in the insert string to specify a literal backslash. Also, \$ stands for an empty string, and is useful
for separating a backreference \n from an immediately following number.

64

22. pregexp.ss: Perl-Style Regular Expressions 22.3. The regexp pattern language

Backreferences can also be used within the regexp pattern to refer back to an already matched subpattern
in the pattern. \n stands for an exact repeat of the nth submatch.4

(pregexp-match "([a-z]+) and \\1"
"billions and billions")

=> ("billions and billions" "billions")

Note that the backreference is not simply a repeat of the previous subpattern. Rather it is a repeat of the
particular substring already matched by the subpattern.

In the above example, the backreference can only match billions. It will not match millions, even though
the subpattern it harks back to — ([a-z]+) — would have had no problem doing so:

(pregexp-match "([a-z]+) and \\1"
"billions and millions")

=> #f

The following corrects doubled words:

(pregexp-replace* "(\\S+) \\1"
"now is the the time for all good men to to come to the aid of of the party"
"\\1")

=> "now is the time for all good men to come to the aid of the party"

The following marks all immediately repeating patterns in a number string:

(pregexp-replace* "(\\d+)\\1"
"123340983242432420980980234"
"{\\1,\\1}")

=> "12{3,3}40983{24,24}3242{098,098}0234"

22.3.4.2 Non-capturing clusters

It is often required to specify a cluster (typically for quantification) but without triggering the capture of
submatch information. Such clusters are called non-capturing. In such cases, use (?: instead of (as the
cluster opener. In the following example, the non-capturing cluster eliminates the “directory” portion of a
given pathname, and the capturing cluster identifies the basename.

(pregexp-match "^(?:[a-z]*/)*([a-z]+)$"
"/usr/local/bin/mzscheme")

=> ("/usr/local/bin/mzscheme" "mzscheme")

22.3.4.3 Cloisters

The location between the ? and the : of a non-capturing cluster is called a cloister.5 You can put modifiers
there that will cause the enclustered subpattern to be treated specially. The modifier i causes the subpattern
to match case-insensitively:

(pregexp-match "(?i:hearth)" "HeartH")
=> ("HeartH")

4

0, which is useful in an insert string, makes no sense within the regexp pattern, because the entire regexp has not matched yet
that you could refer back to it.

5A useful, if terminally cute, coinage from the abbots of Perl .

65

22.3. The regexp pattern language 22. pregexp.ss: Perl-Style Regular Expressions

The modifier x causes the subpattern to match space-insensitively, ie, spaces and comments within the
subpattern are ignored. Comments are introduced as usual with a semicolon (;) and extend till the end of
the line. If you need to include a literal space or semicolon in a space-insensitized subpattern, escape it with
a backslash.

(pregexp-match "(?x: a lot)" "alot")
=> ("alot")

(pregexp-match "(?x: a \\ lot)" "a lot")
=> ("a lot")

(pregexp-match "(?x:
a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"a man; a plan; a canal")
=> ("a man; a plan; a canal")

The global variable *pregexp-comment-char* contains the comment character (#\;). For Perl-like com-
ments,

(set! *pregexp-comment-char* #\#)

You can put more than one modifier in the cloister.

(pregexp-match "(?ix:
a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"A Man; a Plan; a Canal")
=> ("A Man; a Plan; a Canal")

A minus sign before a modifier inverts its meaning. Thus, you can use -i and -x in a subcluster to overturn
the insensitivities caused by an enclosing cluster.

(pregexp-match "(?i:the (?-i:TeX)book)"
"The TeXbook")

=> ("The TeXbook")

This regexp will allow any casing for the and book but insists that TeX not be differently cased.

22.3.5 Alternation

You can specify a list of alternate subpatterns by separating them by |. The | separates subpatterns in the
nearest enclosing cluster (or in the entire pattern string if there are no enclosing parens).

(pregexp-match "f(ee|i|o|um)" "a small, final fee")
=> ("fi" "i")

(pregexp-replace* "([yi])s(e[sdr]?|ing|ation)"
"it is energising to analyse an organisation
pulsing with noisy organisms"

66

22. pregexp.ss: Perl-Style Regular Expressions 22.3. The regexp pattern language

"\\1z\\2")
=> "it is energizing to analyze an organization

pulsing with noisy organisms"

Note again that if you wish to use clustering merely to specify a list of alternate subpatterns but do not
want the submatch, use (?: instead of (.

(pregexp-match "f(?:ee|i|o|um)" "fun for all")
=> ("fo")

An important thing to note about alternation is that the leftmost matching alternate is picked regardless of
its length. Thus, if one of the alternates is a prefix of a later alternate, the latter may not have a chance to
match.

(pregexp-match "call|call-with-current-continuation"
"call-with-current-continuation")

=> ("call")

To allow the longer alternate to have a shot at matching, place it before the shorter one:

(pregexp-match "call-with-current-continuation|call"
"call-with-current-continuation")

=> ("call-with-current-continuation")

In any case, an overall match for the entire regexp is always preferred to an overall nonmatch. In the
following, the longer alternate still wins, because its preferred shorter prefix fails to yield an overall match.

(pregexp-match "(?:call|call-with-current-continuation) constrained"
"call-with-current-continuation constrained")

=> ("call-with-current-continuation constrained")

22.3.6 Backtracking

We’ve already seen that greedy quantifiers match the maximal number of times, but the overriding priority
is that the overall match succeed. Consider

(pregexp-match "a*a" "aaaa")

The regexp consists of two subregexps, a* followed by a. The subregexp a* cannot be allowed to match all
four a’s in the text string "aaaa", even though * is a greedy quantifier. It may match only the first three,
leaving the last one for the second subregexp. This ensures that the full regexp matches successfully.

The regexp matcher accomplishes this via a process called backtracking. The matcher tentatively allows the
greedy quantifier to match all four a’s, but then when it becomes clear that the overall match is in jeopardy,
it backtracks to a less greedy match of three a’s. If even this fails, as in the call

(pregexp-match "a*aa" "aaaa")

the matcher backtracks even further. Overall failure is conceded only when all possible backtracking has
been tried with no success.

Backtracking is not restricted to greedy quantifiers. Nongreedy quantifiers match as few instances as possible,
and progressively backtrack to more and more instances in order to attain an overall match. There is
backtracking in alternation too, as the more rightward alternates are tried when locally successful leftward
ones fail to yield an overall match.

67

22.3. The regexp pattern language 22. pregexp.ss: Perl-Style Regular Expressions

22.3.6.1 Disabling backtracking

Sometimes it is efficient to disable backtracking. For example, we may wish to commit to a choice, or we
know that trying alternatives is fruitless. A nonbacktracking regexp is enclosed in (?>...).

(pregexp-match "(?>a+)." "aaaa")
=> #f

In this call, the subregexp ?>a* greedily matches all four a’s, and is denied the opportunity to backpedal.
So the overall match is denied. The effect of the regexp is therefore to match one or more a’s followed by
something that is definitely non-a.

22.3.7 Looking ahead and behind

You can have assertions in your pattern that look ahead or behind to ensure that a subpattern does or does
not occur. These “look around” assertions are specified by putting the subpattern checked for in a cluster
whose leading characters are: ?= (for positive lookahead), ?! (negative lookahead), ?<= (positive lookbehind),
?<! (negative lookbehind). Note that the subpattern in the assertion does not generate a match in the final
result. It merely allows or disallows the rest of the match.

22.3.7.1 Lookahead

Positive lookahead (?=) peeks ahead to ensure that its subpattern could match.

(pregexp-match-positions "grey(?=hound)"
"i left my grey socks at the greyhound")

=> ((28 . 32))

The regexp "grey(?=hound)" matches grey, but only if it is followed by hound. Thus, the first grey in the
text string is not matched.

Negative lookahead (?!) peeks ahead to ensure that its subpattern could not possibly match.

(pregexp-match-positions "grey(?!hound)"
"the gray greyhound ate the grey socks")

=> ((27 . 31))

The regexp "grey(?!hound)" matches grey, but only if it is not followed by hound. Thus the grey just
before socks is matched.

22.3.7.2 Lookbehind

Positive lookbehind (?<=) checks that its subpattern could match immediately to the left of the current
position in the text string.

(pregexp-match-positions "(?<=grey)hound"
"the hound in the picture is not a greyhound")

=> ((38 . 43))

The regexp (?<=grey)hound matches hound, but only if it is preceded by grey.

Negative lookbehind (?<!) checks that its subpattern could not possibly match immediately to the left.

68

22. pregexp.ss: Perl-Style Regular Expressions 22.4. An extended example

(pregexp-match-positions "(?<!grey)hound"
"the greyhound in the picture is not a hound")

=> ((38 . 43))

The regexp (?<!grey)hound matches hound, but only if it is not preceded by grey.

Lookaheads and lookbehinds can be convenient when they are not confusing.

22.4 An extended example

Here’s an extended example from Friedl’s Mastering Regular Expressions that covers many of the features
described above. The problem is to fashion a regexp that will match any and only IP addresses or dotted
quads, ie, four numbers separated by three dots, with each number between 0 and 255. We will use the
commenting mechanism to build the final regexp with clarity. First, a subregexp n0-255 that matches 0
through 255.

(define n0-255
"(?x:
\\d ; 0 through 9
\\d\\d ; 00 through 99
[01]\\d\\d ;000 through 199
2[0-4]\\d ;200 through 249
25[0-5] ;250 through 255

)")

The first two alternates simply get all single- and double-digit numbers. Since 0-padding is allowed, we need
to match both 1 and 01. We need to be careful when getting 3-digit numbers, since numbers above 255 must
be excluded. So we fashion alternates to get 000 through 199, then 200 through 249, and finally 250 through
255.6

An IP-address is a string that consists of four n0-255s with three dots separating them.

(define ip-re1
(string-append

"^" ;nothing before
n0-255 ;the first n0-255,
"(?x:" ;then the subpattern of
"\\." ;a dot followed by
n0-255 ;an n0-255,
")" ;which is
"{3}" ;repeated exactly 3 times
"$" ;with nothing following
))

Let’s try it out.

(pregexp-match ip-re1
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re1

6Note that n0-255 lists prefixes as preferred alternates, something we cautioned against in sec 22.3.5. However, since we
intend to anchor this subregexp explicitly to force an overall match, the order of the alternates does not matter.

69

22.4. An extended example 22. pregexp.ss: Perl-Style Regular Expressions

"55.155.255.265")
=> #f

which is fine, except that we also have

(pregexp-match ip-re1
"0.00.000.00")

=> ("0.00.000.00")

All-zero sequences are not valid IP addresses! Lookahead to the rescue. Before starting to match ip-re1,
we look ahead to ensure we don’t have all zeros. We could use positive lookahead to ensure there is a digit
other than zero.

(define ip-re
(string-append
"(?=.*[1-9])" ;ensure there’s a non-0 digit
ip-re1))

Or we could use negative lookahead to ensure that what’s ahead isn’t composed of only zeros and dots.

(define ip-re
(string-append
"(?![0.]*$)" ;not just zeros and dots

;(note: dot is not metachar inside [])
ip-re1))

The regexp ip-re will match all and only valid IP addresses.

(pregexp-match ip-re
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re
"0.0.0.0")

=> #f

70

23. pretty.ss: Pretty Printing

(pretty-display v [port]) procedure

Same as pretty-print, but v is printed like display instead of like write.

(pretty-print v [port]) procedure

Pretty-prints the value v using the same printed form as write, but with newlines and whitespace inserted to
avoid lines longer than (pretty-print-columns), as controlled by (pretty-print-current-style-table).
The printed form ends in a newline unless the pretty-print-columns parameter is set to ’infinity.

If port is provided, v is printed into port ; otherwise, v is printed to the current output port.

In addition to the parameters defined by the pretty library, pretty-print conforms to the print-graph,
print-struct, and print-vector-length parameters.

(pretty-print-current-style-table style-table [procedure])

Parameter that holds a table of style mappings. See pretty-print-extend-style-table.

(pretty-print-columns [width]) procedure

Parameter that sets the default width for pretty printing to width and returns void. If no width argument
is provided, the current value is returned instead.

If the display width is ’infinity, then pretty-printed output is never broken into lines, and a newline is not
added to the end of the output.

(pretty-print-depth [depth]) procedure

Parameter that sets the default depth for recursive pretty printing to depth and returns void. If no depth
argument is provided, the current value is returned instead. A depth of 0 indicates that only simple values
are printed; Scheme values within other values (e.g. the elements of a list) are replaced with “...”.

(pretty-print-display-string-handler [f]) procedure

Parameter that sets the procedure for displaying final strings to a port to output pretty-printed values. The
default handler is the default port display handler (see §11.2.5 in PLT MzScheme: Language Manual).

(pretty-print-exact-as-decimal [as-decimal?]) procedure

Parameter that determines how exact non-integers are printed. If the parameter’s value is #t, then an exact
non-integer with a decimal representation is printed as a decimal number instead of a fraction. The initial

71

23. pretty.ss: Pretty Printing

value is #f.

(pretty-print-extend-style-table style-table symbol-list like-symbol-list) procedure

Creates a new style table by extending an existing style-table, so that the style mapping for each symbol
of like-symbol-list in the original table is used for the corresponding symbol of symbol-list in the new table.
The symbol-list and like-symbol-list lists must have the same length. The style-table argument can be #f, in
which case with default mappings are used for the original table (see below).

The style mapping for a symbol controls the way that whitespace is inserted when printing a list that starts
with the symbol. In the absence of any mapping, when a list is broken across multiple lines, each element of
the list is printed on its own line, each with the same indentation.

The default style mapping includes mappings for the following symbols, so that the output follows popular
code-formatting rules:

lambda case-lambda
define define-macro define-syntax
let letrec let∗
let-syntax letrec-syntax
let-values letrec-values let∗-values
let-syntaxes letrec-syntaxes
begin begin0 do
if set! set!-values
unless when
cond case and or
module
syntax-rules syntax-case letrec-syntaxes+values
import export require require-for-syntax provide link
public private override rename inherit field init
shared send class instantiate make-object

(pretty-print-handler v) procedure

Pretty-prints v if v is not void or prints nothing otherwise. Pass this procedure to current-print to install
the pretty printer into the read-eval-print loop.

(pretty-print-print-hook [hook]) procedure

Parameter that sets the print hook for pretty-printing to hook . If hook is not provided, the current hook is
returned.

The print hook is applied to a value for printing when the sizing hook (see pretty-print-size-hook)
returns an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second argument is a
Boolean: #t for printing like display and #f for printing like write. The third argument is the destination
port.

(pretty-print-print-line [liner]) procedure

Parameter that sets a procedure for printing the newline separator between lines of a pretty-printed value.
The liner procedure is called with four arguments: a new line number, an output port, the old line’s length,

72

23. pretty.ss: Pretty Printing

and the number of destination columns. The return value from liner is the number of extra characters it
printed at the beginning of the new line.

The liner procedure is called before any characters are printed with 0 as the line number and 0 as the old
line length; liner is called after the last character for a value is printed with #f as the line number and with
the length of the last line. Whenever the pretty-printer starts a new line, liner is called with the new line’s
number (where the first new line is numbered 1) and the just-finished line’s length. The destination columns
argument to liner is always the total width of the destination printing area, or ’infinity if pretty-printed
values are not broken into lines.

The default liner procedure prints a newline whenever the line number is not 0 and the column count is not
’infinity, always returning 0. A custom liner procedure can be used to print extra text before each line of
pretty-printed output; the number of characters printed before each line should be returned by liner so that
the next line break can be chosen correctly.

(pretty-print-show-inexactness [explicit?]) procedure

Parameter that determines how inexact numbers are printed. If the parameter’s value is #t, then inexact
numbers are always printed with a leading #i. The initial value is #f.

(pretty-print-style-table? v) procedure

Returns #t if v is a style table,#f otherwise.

(pretty-print-post-print-hook [hook]) procedure

Parameter that sets a procedure to be called just after an object is printed. The hook receives two arguments:
the object and the output port.

(pretty-print-pre-print-hook [hook]) procedure

Parameter that sets a procedure to be called just before an object is printed. The hook receives two
arguments: the object and the output port.

(pretty-print-size-hook [hook]) procedure

Parameter that sets the sizing hook for pretty-printing to hook . If hook is not provided, the current hook is
returned.

The sizing hook is applied to each value to be printed. If the hook returns #f, then printing is handled
internally by the pretty-printer. Otherwise, the value should be an integer specifying the length of the printed
value in characters; the print hook will be called to actually print the value (see pretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The second argument is a
Boolean: #t for printing like display and #f for printing like write. The third argument is the destination
port. The sizing hook may be applied to a single value multiple times during pretty-printing.

(pretty-print-.-symbol-without-bars [bool]) procedure

Parameter that controls the printing of the symbol whose print name is just a period. If set to a true value,
it is printed as only the period. If set to a false value, it is printed as a period with vertical bars surronding
it.

73

24. process.ss: Process and Shell-Command Execu-

tion

This library builds on MzScheme’s subprocess procedure; see also §15.2 in PLT MzScheme: Language
Manual .

(system command-string) executes a Unix, Windows, or BeOS shell command synchronously (i.e., the
call to system does not return until the subprocess has ended), or launches a MacOS application by its
creator signature (and returns immediately). The command-string argument is a string (of four characters
for MacOS) containing no null characters. If the command succeeds, the return value is #t, #f otherwise.
Under MacOS, if command-string is not four characters, the exn:application:mismatch exception is raised.

(system* command-string arg-string · · ·) is like system, except that command-string is a filename that
is executed directly (instead of through a shell command or through a MacOS creator signature), and the
arg-strings are the arguments. Under Unix, Windows and BeOS, the executed file is passed the specified
string arguments (which must contain no null characters). Under MacOS, no arguments can be supplied,
otherwise the exn:misc:unsupported exception is raised. Under Windows, the first arg-string can be ’exact
where the second arg-string is a complete command line; see §15.2 in PLT MzScheme: Language Manual for
details.

(process command-string) executes a shell command asynchronously under Unix, Windows, and BeOS.
(This procedure is not supported for MacOS.) If the subprocess is launched successfully, the result is a list
of five values:

• an input port piped from the subprocess’s standard output,
• an output port piped to the subprocess standard input,
• the system process id of the subprocess,
• an input port piped from the subprocess’s standard error,1 and
• a procedure of one argument, either ’status, ’wait, ’interrupt, or ’kill:

– ’status returns the status of the subprocess as one of ’running, ’done-ok, or ’done-error.
– ’wait blocks execution in the current thread until the subprocess has completed.
– ’interrupt sends the subprocess an interrupt signal under Unix and Mac OS X and takes no action

under Windows. The result is void.
– ’kill terminates the subprocess and returns void.

Important: All three ports returned from process must be explicitly closed with close-input-port and
close-output-port.

(process* command-string arg-string · · ·) is like process under Unix for all of Unix, Windows, and BeOS,
except that command-string is a filename that is executed directly, and the arg-strings are the arguments.
(This procedure is not supported for MacOS.) Under Windows, as for system*, the first arg-string can be
’exact.

1 The standard error port is placed after the process id for compatibility with other Scheme implementations. For the same
reason, process returns a list instead of multiple values.

74

24. process.ss: Process and Shell-Command Execution

(process/ports output-port input-port error-output-port command-string) is like process, except that
output-port is used for the process’s standard output, input-port is used for the process’s standard input,
and error-output-port is used for the process’s standard error. All provided ports must be file-stream ports.
Any of the ports can be #f, in which case a system pipe is created and returned, as in process. For each
port that is provided, no pipe is created and the corresponding returned value is #f.

(process*/ports output-port input-port error-output-port command-string arg-string · · ·) is like process*,
but with the port handling of process/ports.

75

25. restart.ss: Simulating Stand-alone MzScheme

(restart-mzscheme init-argv adjust-flag-table argv init-namespace) procedure

Simulates starting the stand-alone version of MzScheme with the vector of command-line strings argv .
The init-argv , adjust-flag-table, and init-namespace arguments are used to modify the default settings for
command-line flags, adjust the parsing of command-line flags, and customize the initial namespace, respec-
tively.

The vector of strings init-argv is read first with the standard MzScheme command-line parsing. Flags that
load files or evaluate expressions (e.g., -f and -e) are ignored, but flags that set MzScheme’s modes (e.g.,
-g or -m) effectively set the default mode before argv is parsed.

Before argv is parsed, the procedure adjust-flag-table is called with a command-line flag table as accepted by
parse-command-line (see §7). The return value must also be a table of command-line flags, and this table
is used to parse argv . The intent is to allow adjust-flag-table to add or remove flags from the standard
set.

After argv is parsed, a new thread and a namespace are created for the “restarted” MzScheme. (The new
namespace is installed as the current namespace in the new thread.) In the new thread, restarting performs
the following actions:

• The init-namespace procedure is called with no arguments. The return value is ignored.

• Expressions and files specified by argv are evaluated and loaded. If an error occurs, the remaining
expressions and files are ignored, and the return value for restart-mzscheme is set to #f.

• The read-eval-print-loop procedure is called, unless a flag in init-argv or argv disables it. When
read-eval-print-loop returns, the return value for restart-mzscheme is set to #t.

Before evaluating command-line arguments, an exit handler is installed that immediately returns from
restart-mzscheme with the value supplied to the handler. This exit handler remains in effect when
read-eval-print-loop is called (unless a command-line argument changes it). If restart-mzscheme re-
turns normally, the return value is determined as described above. (Note that an error in a command-line
expression followed by read-eval-print-loop produces a #t result. This is consistent with MzScheme’s
stand-alone behavior.)

76

26. sendevent.ss: AppleEvents

26.1 AppleEvents

(send-event receiver-string event-class-string event-id-string [direct-argument-v argument-list]) proce-

dure

Sends an AppleEvent or raises exn:misc:unsupported. Currently AppleEvents are supported only within
MrEd under Mac OS Classic and Mac OS X.

The receiver-string , event-class-string , and event-id-string arguments specify the signature of the receiving
application, the class of the AppleEvent, and the ID of the AppleEvent. Each of these must be a four-
character string, otherwise the exn:application:type exception is raised.

The direct-argument-v value is converted (see below) and passed as the main argument of the event; if
direct-argument-v is void, no main argument is sent in the event. The argument-list argument is a list of
two-element lists containing a typestring and value; each typestring is used ad the keyword name of an
AppleEvent argument for the associated converted value. Each typestring must be a four-character string,
otherwise the exn:application:mismatch exception is raised. The default values for direct-argument and
arguments are void and null, respectively.

The following types of MzScheme values can be converted to AppleEvent values passed to the receiver:

#t or #f ⇒ Boolean
small integer ⇒ Long Integer

inexact real number ⇒ Double
string ⇒ Characters

list of convertible values ⇒ List of converted values
#(file pathname) ⇒ Alias (file exists) or FSSpec (does not exist)

#(record (typestring v) · · ·) ⇒ Record of keyword-tagged values

If other types of values are passed to send-event for conversion, the exn:misc:unsupported exception is
raised.

The send-event procedure does not return until the receiver of the AppleEvent replies. The result of
send-event is the reverse-converted reply value (see below), or the exn:misc exception is raised if there is
an error. If there is no error or return value, send-event returns void.

The following types of AppleEvent values can be reverse-converted into a MzScheme value returned by
send-event:

77

26.1. AppleEvents 26. sendevent.ss: AppleEvents

Boolean ⇒ #t or #f
Signed Integer ⇒ integer

Float, Double, or Extended ⇒ inexact real number
Characters ⇒ string

list of reverse-convertible values ⇒ List of reverse-converted values
Alias or FSSpec ⇒ #(file pathname)

Record of keyword-tagged values ⇒ #(record (typestring v) · · ·)

If the AppleEvent reply contains a value that cannot be reverse-converted, the exn:misc exception is raised.

78

27. shared.ss: Graph Constructor Syntax

(shared (shared-binding · · ·) body-expr · · ·1) syntax

Binds variables with shared structure according to shared-bindings and then evaluates the body-exprs, re-
turning the result of the last expression.

The shared form is similar to letrec. Each shared-binding has the form:

(variable value-expr)

The variables are bound to the result of value-exprs in the same way as for a letrec expression, except for
value-exprs with the following special forms (after partial expansion):

• (cons car-expr cdr-expr)
• (list element-expr · · ·)
• (box box-expr)
• (vector element-expr · · ·)
• (prefix:make-name element-expr · · ·) where prefix:name is the name of a structure type (or, more

generally, is bound to expansion-time information about a structure type)

The cons above means an identifier that is module-identifier=? either to the cons export from mzscheme
or to the top-level cons. The same is true of list, box, and vector. In the \var{prefix:}make-\var{name}
case, the expansion-time information associated with prefix:name must provide a constructor binding and a
complete set of field mutator bindings.

For each of the special forms, the cons cell, list, box, vector, or structure is allocated with undefined content.
The content expressions are not evaluated until all of the bindings have values; then the content expressions
are evaluated and the values are inserted into the appropriate locations. In this way, values with shared
structure (even cycles) can be constructed.

Examples:

(shared ([a (cons 1 a)]) a) ; => infinite list of 1s
(shared ([a (cons 1 b)]

[b (cons 2 a)])
a) ; => (1 2 1 2 1 2 · · ·)

(shared ([a (vector b b b)]
[b (box 1)])

(set-box! (vector-ref a 0) 2)
a) ; => #(#&2 #&2 #&2)

79

28. spidey.ss: MrSpidey Annotations

This library defines syntax for annotations understood by MrSpidey (see PLT MrSpidey: Static Debugger
Manual). The annotations are associated to syntax objects via properties (see §12.6.2 in PLT MzScheme:
Language Manual), and the syntax forms below otherwise expand away. The following macros are defined:

• : — expands to the first expression
• polymorphic — expands to the first expression
• define-constructor — expands to (void)
• define-type — expands to (void)
• mrspidey:control — expands to (void)
• type: — expands to (void)

80

29. string.ss: String Utilities

(eval-string str [err-display err-result]) procedure

Reads and evaluates S-expressions from the string str , returning a result for each expression. Note that if
str contains only whitespace and comments, zero values are returned, while if str contains two expressions,
two values are returned.

If err-display is not #f (the default), then errors are caught and err-display is used as the error display
handler. If err-result is specified, it must be a thunk that returns a value to be returned when an error is
caught; otherwise, #f is returned when an error is caught.

(expr->string expr) procedure

Prints expr into a string and returns the string.

(read-from-string str [err-display err-result]) procedure

Reads the first S-expression from the string str and returns it. The err-display and err-result are as in
eval-str.

(read-from-string-all str [err-display err-result]) procedure

Reads all S-expressions from the string str and returns them in a list. The err-display and err-result are as
in eval-str.

(regexp-match* pattern str [start-k end-k]) procedure

Like regexp-match (see §10 in PLT MzScheme: Language Manual), but the result is a list of strings corre-
sponding to a sequence of matches of pattern in str . (Unlike regexp-match, results for parenthesized sub-
patterns in pattern are not returned.) If pattern matches a zero-length string along the way, the exn:user
exception is raised.

If str contains no matches (in the range start to end), null is returned. Otherwise, each string in the
resulting list is a distinct substring of str that matches pattern.

(regexp-match-exact? pattern str) procedure

This procedure is like MzScheme’s built-in regexp-match (see §10 in PLT MzScheme: Language Manual),
but the result is always #t or #f; #t is only returned when the entire string str matches pattern.

(regexp-match-positions* pattern str [start-k end-k]) procedure

Like regexp-match-positions (see §10 in PLT MzScheme: Language Manual), but the result is a list of

81

29. string.ss: String Utilities

integer pairs corresponding to a sequence of matches of pattern in str . (Unlike regexp-match-positions,
results for parenthesized sub-patterns in pattern are not returned.) If pattern matches a zero-length string
along the way, the exn:user exception is raised.

If str contains no matches, null is returned.

(regexp-quote str [case-sensitive?]) procedure

Produces a string suitable for use with regexp (see §10 in PLT MzScheme: Language Manual) to match the
literal sequence of characters in str . If case-sensitive? is true, the resulting regexp matches letters in str
case-insensitively, otherwise (and by default) it matches case-sensitively.

(regexp-replace-quote str) procedure

Produces a string suitable for use as the third argument to regexp-replace (see §10 in PLT MzScheme:
Language Manual), to insert the literal sequence of characters in str as a replacement. Concretely, every
backslash in str is protected by a quoting backslash.

(regexp-split pattern str [start-k end-k]) procedure

The complement of regexp-match* (see above): the result is a list of sub-strings in str that are separated
by matches to pattern; adjacent matches are separated with ””. If pattern matches a zero-length string along
the way, the exn:user exception is raised.

If str contains no matches (in the range start to end), the result will be a list containing str (from start to
end). If a match occurs at the beginning of str (at start), the resulting list will start with an empty string,
and if a match occurs at the end (at end), the list will end with an empty string.

(string-lowercase! str) procedure

Destructively changes str to contain only lowercase characters.

(string-uppercase! str) procedure

Destructively changes str to contain only uppercase characters.

82

30. thread.ss: Thread Utilities

(consumer-thread f [init]) procedure

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity as f .1 When
the returned procedure is applied, its arguments are queued to be passed on to f , and void is immediately
returned. The thread created by consumer-thread dequeues arguments and applies f to them, removing a
new set of arguments from the queue only when the previous application of f has completed; if f escapes
from a normal return (via an exception or a continuation), the f -applying thread terminates.

The init argument is a procedure of no arguments; if it is provided, init is called in the new thread imme-
diately after the thread is created.

(copy-port input-port output-port · · ·1) procedure

Reads data from input-port and writes it back out to output-port , returning when input-port produces eof.
The copy is efficient, and without significant buffer delays (i.e., a character that becomes available on input-
port is immediately transferred to output-port , even if future reads on input-port must block).

This function is often called from a “background” thread to continuously pump data from one stream to
another.

If multiple output-ports are provided, case data from input-port is written to every output-port . The different
output-ports block output to each other, because each quantum of data read from input-port is written
completely to one output-port before moving to the next output-port . The output-ports are written in the
provided order, so non-blocking ports (e.g., to a file) should be placed first in the argument list.

(dynamic-disable-break thunk) procedure

Invokes thunk and returns the result. During the application of thunk , breaks are disabled.

(dynamic-enable-break thunk) procedure

Invokes thunk and returns the result. During the application of thunk , breaks are enabled.

(make-single-threader) procedure

Returns a new procedure that takes any thunk and applies it. When this procedure is applied to any
collection of thunks by any collection of threads, the thunks are applied sequentially across all threads.

1The returned procedure actually accepts any number of arguments, but immediately raises exn:application:arity if f
cannot accept the provided number of arguments.

83

30. thread.ss: Thread Utilities

(merge-input a-input-port b-input-port [limit-k]) procedure

Accepts two input ports and returns a new input port. The new port merges the data from two original
ports, so data can be read from the new port whenever it is available from either original port. The data from
the original ports are interleaved. When EOF has been read from an original port, it no longer contributes
characters to the new port. After EOF has been read from both original ports, the new port returns EOF.
Closing the merged port does not close the original ports.

The optional limit-k argument limits the number of characters to be buffered from a-input-port and b-input-
port , so that the merge process does not advance arbitrarily beyond the rate of consumption of the merged
data. A #f value disables the limit; the default is 4096.

(run-server port-k session-proc session-timeout) procedure

Executes a TCP server on the port inidicated by port-k . When a connection is made by a client, session-proc
is called with two values: an input port to receive from the client, and an output port to send to the client.

Each client connection, or session, is managed by a new custodian, and each call to session-proc occurs in
a new thread (managed by the session’s custodian). If the thread executing session-proc terminates for any
reason (e.g., sesson-proc returns), the session’s custodian is shut down. Consequently, session-proc need not
close the ports provded to it. Breaks are enabled in the session thread if breaks are enabled when run-server
is called.

If session-timeout is not #f, then it must be a non-negative number specifying the time in seconds that a
session thread is allowed to run before it is sent a break signal. Then, if the thread runs longer than (∗
session-timeout 2) seconds, then the session’s custodian is shut down. If session-timeout is #f, a session
thread can run indefinitely.

The run-server procedure loops to serve client connections, so it never returns. If a break occurs, the loop
will cleanly shut down the server, but it will not terminate active sessions.

(with-semaphore s thunk) procedure

Calls semaphore-wait on s, then invokes thunk with no arguments, and then calls semaphore-post on s.
The return value is the result of calling thunk .

84

31. trace.ss: Tracing Top-level Procedure Calls

This library mimics the tracing facility available in Chez SchemeTM.

Tracing does not respect tail calls; i.e., tracing a procedure that ends with a tail call checks the call so that
it executes (and prints) as a non-tail call. Untracing a procedure restores its tail call behavior. Only one
procedure can be traced for any single name across all namespaces.

(trace name · · ·) syntax

This form takes a sequence of global variables names; each name must be defined as as procedure in the
current namespace when the trace expression is evaluated. Each name provided to trace is then redefined to
a new procedure. This new procedure traces procedure-calls and procedure-returns by printing the arguments
and results of the call. If multiple values are returned, each value is displayed starting on a separate line.

When traced procedures invoke each other, this is shown by printing a nesting prefix. If the nesting depth
grows to ten and beyond, a number is printed to show the actual nesting depth.

The trace macro can be used on a name that is already traced in the current namespace. In this case,
assuming that the name has not been redefined, trace has no effect. If the name has been redefined, then a
new trace is installed. If trace is used on the same name in two different eventspaces, then the first installed
trace will remain intact but it will no longer be recognized by the trace and untrace forms.

The value of a trace expression is the list of names specified for tracing.

(untrace name · · ·) syntax

This form undoes the effects of the trace form for each name, but only if the current definition of name is
the one previously installed by trace. If the current definition for name is not the procedure installed by
trace, then the definition is not changed.

The value of an untrace expression is the list of names restored to their untraced definitions.

85

32. traceld.ss: Tracing File Loads

This library does not define any procedures or syntax. Instead, trace.ss is imported at the top-level for its
side-effects. The trace library installs a new load handler and load extension handler to print information
about the files that are loaded. These handlers chain to the current handlers to perform the actual loads.
Trace output is printed to the port that is the current error port when the library is loaded.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested loads is printed with
indentation. After the file is loaded, the file name is printed with the “time” that the load completed.

If a loader extension is loaded (see §14.1 in PLT MzScheme: Language Manual), the tracer wraps the
returned loader procedure to print information about libraries requested from the loader. When a library
is found in the loader, the thunk procedure that extracts the library is wrapped to print the start and end
times of the extraction.

86

33. transcr.ss: Transcripts

MzScheme’s built-in transcript-on and transcript-off always raise exn:misc:unsupported. The tran-
scr.ss library provides working versions of transcript-on and transcript-off.

87

34. unit.ss: Core Units

MzScheme’s units are used to organize a program into separately compilable and reusable components. A
unit resembles a procedure in that both are first-class values that are used for abstraction. While procedures
abstract over values in expressions, units abstract over names in collections of definitions. Just as a procedure
is invoked to evaluate its expressions given actual arguments for its formal parameters, a unit is invoked
to evaluate its definitions given actual references for its imported variables. Unlike a procedure, however,
a unit’s imported variables can be partially linked with the exported variables of another unit prior to
invocation. Linking merges multiple units together into a single compound unit. The compound unit itself
imports variables that will be propagated to unresolved imported variables in the linked units, and re-exports
some variables from the linked units for further linking.

In some ways, a unit resembles a module (see Chapter 5 in PLT MzScheme: Language Manual), but units
and modules serve different purposes overall. A unit encapsulates a plugable component—code that relies,
for example, on “some function f from a source to be determined later.” In contrast, if a module imports
a function, the import is “the function f provided by the specific module m.” Moreover, a unit is a first-
class value that can be multiply instantiated, each time with different imports, whereas a module’s context
is fixed. Finally, because a unit’s interface is separate from its implementation, units naturally support
mutually recursive references across unit boundaries, while module imports must be acyclic.

MzScheme supports two layers of units. The core unit system comprises the unit, compound-unit, and
invoke-unit syntactic forms. These forms implement the basic mechanics of units for separate compilation
and linking. While the semantics of units is most easily understood via the core forms, they are too verbose
for specifying the interconnections between units in a large program. Therefore, a system of units with
signatures is provided on top of the core forms, comprising the define-signature, unit/sig, compound-
unit/sig, and invoke-unit/sig syntactic forms.

The core system is described in this chapter, and defined by the unit.ss library. The signature system is
described in §35, and defined by unitsig.ss. Details about mixing core and signed units are presented in
§35.9 (using procedures from unitsig.ss).

34.1 Creating Units

The unit form creates a unit:

(unit
(import variable · · ·)
(export exportage · · ·)
unit-body-expr
· · ·)

exportage is one of
variable
(internal-variable external-variable)

The variables in the import clause are bound within the unit-body-expr expressions. The variables for

88

34. unit.ss: Core Units 34.1. Creating Units

exportages in the export clause must be defined in the unit-body-exprs as described below; additional
private variables can be defined as well. The imported and exported variables cannot occur on the left-hand
side of an assignment (i.e., a set! expression).

The first exportage form exports the binding defined as variable in the unit body using the external name
variable. The second form exports the binding defined as internal-variable using the external name external-
variable. The external variables from an export clause must be distinct.

Each exported variable or internal-variable must be defined in a define-values expression as a unit-body-
expr .1 All identifiers defined by the unit-body-exprs together with the variables from the import clause
must be distinct.

Examples

The unit defined below imports and exports no variables. Each time it is invoked, it prints and returns the
current time in seconds:2

(define f1@
(unit (import) (export)
(define x (current-seconds))
(display x)
(newline)
x))

The unit defined below is similar, except that it exports the variable x instead of returning the value:

(define f2@
(unit (import) (export x)
(define x (current-seconds))
(display x)
(newline)))

The following units define two parts of an interactive phone book:

(define database@
(unit

(import show-message)
(export insert lookup)

(define table (list))
(define insert

(lambda (name info)
(set! table (cons (cons name info) table))))

(define lookup
(lambda (name)

(let ([data (assoc name table)])
(if data

(cdr data)
(show-message "info not found")))))

insert))

1The detection of unit definitions is the same as for internal definitions (see §2.8.5 in PLT MzScheme: Language Manual).
Thus, the define and define-struct forms can be used for definitions.

2The “@” in the variable name “f1@” indicates (by convention) that its value is a unit.

89

34.2. Invoking Units 34. unit.ss: Core Units

(define interface@
(unit

(import insert lookup make-window make-button)
(export show-message)
(define show-message

(lambda (msg) . . .))
(define main-window

. . .)))

In this example, the database@ unit implements the database-searching part of the program, and the inter-
face@ unit implements the graphical user interface. The database@ unit exports insert and lookup procedures
to be used by the graphical interface, while the interface@ unit exports a show-message procedure to be
used by the database (to handle errors). The interface@ unit also imports variables that will be supplied by
an platform-specific graphics toolbox.

34.2 Invoking Units

A unit is invoked using the invoke-unit form:

(invoke-unit unit-expr import-expr · · ·)

The value of unit-expr must be a unit. For each of the unit’s imported variables, the invoke-unit expression
must contain an import-expr . The value of each import-expr is imported into the unit. More detailed
information about linking is provided in the following section on compound units.

Invocation proceeds in two stages. First, invocation creates bindings for the unit’s private, imported, and
exported variables. All bindings are initialized to the undefined value. Second, invocation evaluates the
unit’s private definitions and expressions. The result of the last expression in the unit is the result of the
invoke-unit expression. The unit’s exported variable bindings are not accessible after the invocation.

Examples

These examples use the definitions from the earlier unit examples in §34.1.

The f1@ unit is invoked with no imports:

(invoke-unit f1@) ; ⇒ displays and returns the current time

Here is one way to invoke the database@ unit:

(invoke-unit database@ display)

This invocation links the imported variable message in database@ to the standard Scheme display procedure,
sets up an empty database, and creates the procedures insert and lookup tied to this particular database.
Since the last expression in the database@ unit is insert , the invoke-unit expression returns the insert
procedure (without binding any top-level variables). The fact that insert and lookup are exported is irrelevant
to the invocation; exports are only used for linking.

Invoking the database@ unit directly in the above manner is actually useless. Although a program can insert
information into the database, it cannot extract information since the lookup procedure is not accessible.
The database@ unit becomes useful when it is linked with another unit in a compound-unit expression.

90

34. unit.ss: Core Units 34.3. Linking Units and Creating Compound Units

(define-values/invoke-unit (export-id · · ·) unit-expr [prefix import-id · · ·]) syntax

This form is similar to invoke-unit. However, instead of returning the value of the unit’s initialization
expression, define-values/invoke-unit expands to a define-values expression that binds each identifier
export-id to the value of the corresponding variable exported by the unit. At run time, if the unit does not
export all of the export-ids, the exn:unit exception is raised.

If prefix is specified, it must be either #f or an identifier. If it is an identifier, the names defined by the
expansion of define-values/invoke-unit are prefixed with prefix:.

Example:

(define x 3)
(define y 2)
(define-values/invoke-unit (c)

(unit (import a b) (export c)
(define c (− a b)))

ex
x y)

ex:c ; ⇒ 1

(namespace-variable-bind/invoke-unit (export-id · · ·) unit-expr [prefix import-id · · ·]) syntax

This form is like define-values/invoke-unit, but the expansion is a sequence of calls to
namespace-variable-binding instead of a define-values expression. Thus, when it is evaluated, a
namespace-variable-bind/invoke-unit expression binds top-level variables in the current namespace.

34.3 Linking Units and Creating Compound Units

The compound-unit form links several units into one new compound unit. In the process, it matches
imported variables in each sub-unit either with exported variables of other sub-units or with its own imported
variables:

(compound-unit
(import variable · · ·)
(link (tag (sub-unit-expr linkage · · ·)) · · ·)
(export (tag exportage · · ·) · · ·))

linkage is one of
variable
(tag variable)
(tag variable · · ·)

exportage is one of
variable
(internal-variable external-variable)

tag is
identifier

The three parts of a compound-unit expression have the following roles:

• The import clause imports variables into the compound unit. These imported variables are used as
imports to the compound unit’s sub-units.

91

34.3. Linking Units and Creating Compound Units 34. unit.ss: Core Units

• The link clause specifies how the compound unit is created from sub-units. A unique tag is associated
with each sub-unit, which is specified using an arbitrary expression. Following the unit expression,
each linkage specifies a variable using the variable form or the (tag variable) form. In the former case,
the variable must occur in the import clause of the compound-unit expression; in the latter case,
the tag must be defined in the same compound-unit expression. The (tag variable · · ·) form is a
shorthand for multiple adjacent clauses of the second form with the same tag .

• The export clause re-exports variables from the compound unit that were originally exported from the
sub-units. The tag part of each export sub-clause specifies the sub-unit from which the re-exported
variable is drawn. The exportages specify the names of variables exported by the sub-unit to be
re-exported.

As in the export clause of the unit form, a re-exported variable can be renamed for external refer-
ences using the (internal-variable external-variable) form. The internal-variable is used as the name
exported by the sub-unit, and external-variable is the name visible outside the compound unit.

The evaluation of a compound-unit expression starts with the evaluation of the link clause’s unit ex-
pressions (in sequence). For each sub-unit, the number of variables it imports must match the number of
linkage specifications that are provided, and each linkage specification is matched to an imported variable by
position. Each sub-unit must also export those variables that are specified by the link and export clauses.
If, for any sub-unit, the number of imported variables does not agree with the number of linkages provided,
the exn:unit exception is raised. If an expected exported variable is missing from a sub-unit for linking to
another sub-unit, the exn:unit exception is raised. If an expected export variable is missing for re-export,
the exn:unit exception is raised.

The invocation of a compound unit proceeds in two phases to invoke the sub-units. In the first phase, the
compound unit resolves the imported variables of sub-units with the bindings provided for the compound
unit’s imports and new bindings created for sub-unit exports. In the second phase, the internal definitions
and expressions of the sub-units are evaluated sequentially according to the order of the sub-units in the
link clause. The result of invoking a compound unit is the result from the invocation of the last sub-unit.

Examples

These examples use the definitions from the earlier unit examples in §34.1.

The following compound-unit expression creates a (probably useless) renaming wrapping around the unit
bound to f2@ :

(define f3@
(compound-unit

(import)
(link [A (f2@)])
(export (A (x A:x)))))

The only difference between f2@ and f3@ is that f2@ exports a variable named x , while f3@ exports a
variable named A:x .

The following example shows how the database@ and interface@ units are linked together with a graphi-
cal toolbox unit Graphics to produce a single, fully-linked compound unit for the interactive phone book
program.

(define program@
(compound-unit

(import)
(link (GRAPHICS (graphics@))

92

34. unit.ss: Core Units 34.4. Unit Utilities

(DATABASE (database@ (INTERFACE show-message)))
(INTERFACE (interface@ (DATABASE insert lookup)

(GRAPHICS make-window make-button))))
(export)))

This phone book program is executed with (invoke-unit program@). If (invoke-unit program@) is evalu-
ated a second time, then a new, independent database and window are created.

34.4 Unit Utilities

(unit? v) returns #t if v is a unit or #f otherwise.

93

35. unitsig.ss: Units with Signatures

The unit syntax presented in §34 poses a serious notational problem: each variable that is imported or
exported must be separately enumerated in many import, export, and link clauses. Consider the phone
book program example from §34.3: a realistic graphics@ unit would contain many more procedures than
make-window and make-button, and it would be unreasonable to enumerate the entire graphics toolbox
in every client module. Future extensions to the graphics library are likely, and while the program must
certainly be re-compiled to take advantage of the changes, the programmer should not be required to change
the program text in every place that the graphics library is used.

This problem is solved by separating the specification of a unit’s signature (or “interface”) from its imple-
mentation. A unit signature is essentially a list of variable names. A signature can be used in an import
clause, an export clause, a link clause, or an invocation expression to import or link a set of variables at
once. Signatures clarify the connections between units, prevent mis-orderings in the specification of imported
variables, and provide better error messages when an illegal linkage is specified.

Signatures are used to create units with signatures, a.k.a. signed units. Signatures and signed units are used
together to create signed compound units. As in the core system, a signed compound unit is itself a signed
unit.

Signed units are first-class values, just like their counterparts in the core system. A signature is not a value.
However, signature information is bundled into each signed unit value so that signature-based checks can be
performed at run time (when signed units are linked and invoked).

Along with its signature information, a signed unit includes a primitive unit from the core system that
implements the signed unit. This underlying unit can be extracted for mixed-mode programs using both
signed and unsigned units. More importantly, the semantics of signed units is the same as the semantics for
regular units; the additional syntax only serves to specify signatures and to check signatures for linking.

35.1 Importing and Exporting with Signatures

The unit/sig form creates a signed unit in the same way that the unit form creates a unit in the core
system. The only difference between these forms is that signatures are used to specify the imports and
exports of a signed unit.

In the primitive unit form, the import clause only determines the number of variables that will be imported
when the unit is linked; there are no explicitly declared connections between the import variables. In contrast,
a unit/sig form’s import clause does not specify individual variables; instead, it specifies the signatures of
units that will provide its imported variables, and all of the variables in each signature are imported. The
ordered collection of signatures used for importing in a signed unit is the signed unit’s import signature.

Although the collection of variables to be exported from a unit/sig expression is specified by a signature
rather than an immediate sequence of variables,1 variables are exported in a unit/sig form in the same way
as in the unit form. The export signature of a signed unit is the collection of names exported by the unit.

1Of course, a signature can be specified as an immediate signature.

94

35. unitsig.ss: Units with Signatures 35.2. Signatures

Example:

(define-signature arithmeticˆ (add subtract multiply divide power))
(define-signature calculusˆ (integrate))
(define-signature graphicsˆ (add-pixel remove-pixel))
(define-signature gravityˆ (go))
(define gravity@

(unit/sig gravityˆ (import arithmeticˆ calculusˆ graphicsˆ)
(define go (lambda (start-pos) . . . subtract . . . add-pixel . . .))))

In this program fragment, the signed unit gravity@ imports a collection of arithmetic procedures, a collection
of calculus procedures, and a collection of graphics procedures. The arithmetic collection will be provided
through a signed unit that matches the arithmeticˆ (export) signature, while the graphics collection will be
provided through a signed unit that matches the graphicsˆ (export) signature. The gravity@ signed unit
itself has the export signature gravityˆ.

Suppose that the procedures in graphicsˆ were named add and remove rather than add-pixel and remove-
pixel . In this case, the gravity@ unit cannot import both the arithmeticˆ and graphicsˆ signatures as above,
because the name add would be ambiguous in the unit body. To solve this naming problem, the imports of
a signed unit can be distinguished by providing prefix tags:

(define-signature graphicsˆ (add remove))
(define gravity@

(unit/sig gravityˆ (import (a : arithmeticˆ) (c : calculusˆ) (g : graphicsˆ))
(define go (lambda (start-pos) . . . a:subtract . . . g:add . . .))))

Details for the syntax of signatures are in §35.2. The full unit/sig syntax is described in §35.3.

35.2 Signatures

A signature is either a signature description or a bound signature identifier:

(sig-element · · ·)
signature-identifier

sig-element is one of
variable
(struct base-identifier (field-identifier · · ·) omission · · ·)
(open signature)
(unit identifier : signature)

omission is one of
-selectors
-setters
(- variable)

Together, the element descriptions determine the set of elements that compose the signature:

• The simple variable form adds a variable name to the new signature.

• The struct form expands into the list of variable names generated by a define-struct expression with
the given base-identifier and field-identifiers.

The actual structure type can contain additional fields; if a field identifier is omitted, the corresponding
selector and setter names are not added to the signature. Optional omission specifications can omit

95

35.3. Signed Units 35. unitsig.ss: Units with Signatures

other kinds of names: -selectors omits all field selector variables. -setters omits all field setter
variables, and (- variable) omits a specific generated variable.

In a unit importing the signature, the base-identifier is also bound to expansion-time information
about the structure type (see §12.6.3 in PLT MzScheme: Language Manual). The expansion-time
information records the descriptor, constructor, predicate, field accessor, and field mutator bindings
from the signature. It also indicates that the accessor and mutator sets are potentially incomplete (so
match works with the structure type, but shared does not), either because the signature omits fields,
or because the strcuture type is derived from a base type (which cannot be declared in a signature,
currently).

• The open form copies all of the elements of another signature into the new signature description.

• The unit form creates a sub-signature within the new signature. A signature that includes a unit
clause corresponds to a signed compound unit that exports an embedded unit. (Embedded units are
described in §35.6 and §35.7.)

The names of all elements in a signature must be distinct.2 Two signatures match when they contain the
same element names, and when a name in both signatures is either a variable name in both signatures or
a sub-signature name in both signatures such that the sub-signatures match. The order of elements within
a signature is not important. A source signature satisfies a destination signature when the source signature
has all of the elements of the destination signature, but the source signature may have additional elements.

The define-signature form binds a signature to an identifier:

(define-signature signature-identifier signature)

The let-signature form binds a signature to an identifier within a body of expressions:

(let-signature identifier signature body-expr · · ·1)

For various purposes, signatures must be flattened into a linear sequence of variables. The flattening opera-
tion is defined as follows:

• All variable name elements of the signature are included in the flattened signature.

• For each sub-signature element named s, the sub-signature is flattened, and then each variable name
in the flattened sub-signature is prefixed with s: and included in the flattened signature.

35.3 Signed Units

The unit/sig form creates a signed unit:

(unit/sig signature
(import import-element · · ·)
renames
unit-body-expr
· · ·)

import-element is one of
signature
(identifier : signature)

2Element names are compared using the printed form of the name. This is different from any other syntactic form, where
variable names are compared as symbols. This distinction is relevant only when source code is generated within Scheme rather
than read from a text source.

96

35. unitsig.ss: Units with Signatures 35.4. Linking with Signatures

renames is either empty or
(rename (internal-variable signature-variable) · · ·)

The signature immediately following unit/sig specifies the export signature of the signed unit. This signature
cannot contain sub-signatures. Each element of the signature must have a corresponding variable definition
in one of the unit-body-exprs, modulo the optional rename clause. If the rename clause is present, it maps
internal-variables defined in the unit-body-exprs to signature-variables in the export signature.

The import-elements specify imports for the signed unit. The names bound within the signed-unit-body-exprs
to imported bindings are constructed by flattening the signatures according to the algorithm in §35.2:

• For each import-element using the signature form, the variables in the flattened signature are bound
in the signed-unit-body-exprs.

• For each import-element using the (identifier : signature) form, the variables in the flattened signa-
ture are prefixed with identifier: and the prefixed variables are bound in the signed-unit-body-exprs.

35.4 Linking with Signatures

The compound-unit/sig form links signed units into a signed compound unit in the same way that the
compound-unit form links primitive units. In the compound-unit/sig form, signatures are used for
importing just as in unit/sig (except that all import signatures must have a tag), but the use of signatures
for linking and exporting is more complex.

Within a compound-unit/sig expression, each unit to be linked is represented by a tag. Each tag is
followed by a signature and an expression. A tag’s expression evaluates (at link-time) to a signed unit for
linking. The export signature of this unit must satisfy the tag’s signature. “Satisfy” does not mean “match
exactly”; satisfaction requires that the unit exports at least the variables specified in the tag’s signature, but
the unit may actually export additional variables. Those additional variables are ignored for linking and are
effectively hidden by the compound unit.

To specify the compound unit’s linkage, an entire unit is provided (via its tag) for each import of each linked
unit. The number of units provided by a linkage must match the number of signatures imported by the
linked unit, and the tag signature for each provided unit must match (exactly) the corresponding imported
signature.

The following example shows the linking of an arithmetic unit, a calculus unit, a graphics unit, and a gravity
modeling unit:

(define-signature arithmeticˆ (add subtract multiply divide power))
(define-signature calculusˆ (integrate))
(define-signature graphicsˆ (add-pixel remove-pixel))
(define-signature gravityˆ (go))
(define arithmetic@ (unit/sig arithmeticˆ (import) . . .))
(define calculus@ (unit/sig calculusˆ (import arithmeticˆ) . . .))
(define graphics@ (unit/sig graphicsˆ (import) . . .))
(define gravity@ (unit/sig gravityˆ (import arithmeticˆ calculusˆ graphicsˆ) . . .))
(define model@

(compound-unit/sig
(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ ARITHMETIC)))
(GRAPHICS : graphicsˆ (graphics@))

97

35.5. Restricting Signatures 35. unitsig.ss: Units with Signatures

(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))
(export (var (GRAVITY go)))))

In the compound-unit/sig expression for model@ , all link-time signature checks succeed since, for example,
arithmetic@ does indeed implement arithmeticˆ and gravity@ does indeed import units with the arithmeticˆ,
calculusˆ, and graphicsˆ signatures.

The export signature of a signed compound unit is implicitly specified by the export clause. In the above
example, the model@ compound unit exports a go variable, so its export signature is the same as gravityˆ.
More forms for exporting are described in §35.6.

35.5 Restricting Signatures

As explained in §35.4, the signature checking for a linkage requires that a provided signature exactly matches
the corresponding import signature. At first glance, this requirement appears to be overly strict; it might
seem that the provided signature need only satisfy the imported signature. The reason for requiring an exact
match at linkages is that a compound-unit/sig expression is expanded into a compound-unit expression.
Thus, the number and order of the variables used for linking must be fully known at compile time.

The exact-match requirement does not pose any obstacle as long as a unit is linked into only one other unit.
In this case, the signature specified with the unit’s tag can be contrived to match the importing signature.
However, a single unit may need to be linked into different units, each of which may use different importing
signatures. In this case, the tag’s signature must be “bigger” than both of the uses, and a restricting signature
is explicitly provided at each linkage. The tag must satisfy every restricting signature (this is a syntactic
check), and each restricting signature must exactly match the importing signature (this is a run-time check).

In the example from §35.4, both calculus@ and gravity@ import numerical procedures, so both import
the arithmeticˆ signature. However, calculus@ does not actually need the power procedure to implement
integrate; therefore, calculus@ could be as effectively implemented in the following way:

(define-signature simple-arithmeticˆ (add subtract multiply divide))
(define calculus@ (unit/sig calculusˆ (import simple-arithmeticˆ) . . .))

Now, the old compound-unit/sig expression for model@ no longer works. Although the old expression
is still syntactically correct, link-time signature checking will discover that calculus@ expects an import
matching the signature simple-arithmeticˆ but it was provided a linkage with the signature arithmeticˆ. On
the other hand, changing the signature associated with ARITHMETIC to simple-arithmeticˆ would cause
a link-time error for the linkage to gravity@ , since it imports the arithmeticˆ signature.

The solution is to restrict the signature of ARITHMETIC in the linkage for CALCULUS :

(define model@
(compound-unit/sig

(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ (ARITHMETIC : simple-arithmeticˆ))))
(GRAPHICS : graphicsˆ (graphics@))
(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (var (GRAVITY go)))))

A syntactic check will ensure that arithmeticˆ satisfies simple-arithmeticˆ (i.e., arithmeticˆ contains at least
the variables of simple-arithmeticˆ). Now, all link-time signature checks will succeed, as well.

98

35. unitsig.ss: Units with Signatures 35.6. Embedded Units

35.6 Embedded Units

Signed compound units can re-export variables from linked units in the same way that core compound units
can re-export variables. The difference in this case is that the collection of variables that are re-exported
determines an export signature for the compound unit. Using certain export forms, such as the open form
instead of the var form (see §35.7), makes it easier to export a number of variables at once, but these are
simply shorthand notations.

Signed compound units can also export entire units as well as variables. Such an exported unit is an
embedded unit of the compound unit. Extending the example from §35.5, the entire gravity@ unit can be
exported from model@ using the unit export form:

(define model@
(compound-unit/sig

(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ (ARITHMETIC : simple-arithmeticˆ))))
(GRAPHICS : graphicsˆ (graphics@))
(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (unit GRAVITY))))

The export signature of model@ no longer matches gravityˆ. When a compound unit exports an embedded
unit, the export signature of the compound unit has a sub-signature that corresponds to the full export
signature of the embedded unit. The following signature, modelˆ, is the export signature for the revised
model@ :

(define-signature modelˆ ((unit GRAVITY : gravityˆ)))

The signature modelˆ matches the (implicit) export signature of model@ since it contains a sub-signature
named GRAVITY —matching the tag used to export the gravity@ unit—that matches the export signature
of gravity@ .

The export form (unit GRAVITY) does not export any variable other than gravity@ ’s go, but the “unitness”
of gravity@ is intact. The embedded GRAVITY unit is now available for linking when model@ is linked to
other units.

Example:

(define tester@ (unit/sig () (import gravityˆ) (go 0)))
(define test-program@

(compound-unit/sig
(import)
(link (MODEL : modelˆ (model@))

(TESTER : () (tester@ (MODEL GRAVITY))))
(export)))

The embedded GRAVITY unit is linked as an import into the tester@ unit by using the path (MODEL
GRAVITY).

35.7 Signed Compound Units

The compound-unit/sig form links multiple signed units into a new signed compound unit:

(compound-unit/sig

99

35.7. Signed Compound Units 35. unitsig.ss: Units with Signatures

(import (tag : signature) · · ·)
(link (tag : signature (expr linkage · · ·)) · · ·)
(export export-element · · ·))

linkage is
unit-path

unit-path is one of
simple-unit-path
(simple-unit-path : signature)

simple-unit-path is one of
tag
(tag identifier · · ·)

export-element is one of
(var (simple-unit-path variable))
(var (simple-unit-path variable) external-variable)
(open unit-path)
(unit unit-path)
(unit unit-path variable)

tag is
identifier

The import clause is similar to the import clause of a unit/sig expression, except that all imported
signatures must be given a tag identifier.

The link clause of a compound-unit/sig expression is different from the link clause of a compound-unit
expression in two important aspects:

• Each sub-unit tag is followed by a signature. This signature corresponds to the export signature of the
signed unit that will be associated with the tag.

• The linkage specification consists of references to entire signed units rather than to individual variables
that are exported by units. A referencing unit-path has one of four forms:

– The tag form references an imported unit or another sub-unit.
– The (tag : signature) form references an imported unit or another sub-unit, and then restricts

the effective signature of the referenced unit to signature.
– The (tag identifier · · ·) references an embedded unit within a signed compound unit. The

signature for the tag unit must contain a sub-signature that corresponds to the embedded unit,
where the sub-signature’s name is the initial identifier . Additional identifiers trace a path into
nested sub-signatures to a final embedded unit. The degenerate (tag) form is equivalent to tag .

– The ((tag identifier · · ·) : signature) form is like the (tag identifier · · ·) form except the
effective signature of the referenced unit is restricted to signature.

The export clause determines which variables in the sub-units are re-exported and implicitly determines the
export signature of the new compound unit. A signed compound unit can export both individual variables
and entire signed units. When an entire signed unit is exported, it becomes an embedded unit of the resulting
compound unit.

There are five different forms for specifying exports:

100

35. unitsig.ss: Units with Signatures 35.8. Invoking Signed Units

• The (var (unit-path variable)) form exports variable from the unit referenced by unit-path. The export
signature for the signed compound unit includes a variable element.

• The (var (unit-path variable) external-variable) form exports variable from the unit referenced by
unit-path. The export signature for the signed compound unit includes an external-variable element.

• The (open unit-path) form exports variables and embedded units from the referenced unit. The
collection of variables that are actually exported depends on the effective signature of the referenced
unit:

– If unit-path includes a signature restriction, then only elements from the restricting signature are
exported.

– Otherwise, if the referenced unit is an embedded unit, then only the elements from the associated
sub-signature are exported.

– Otherwise, unit-path is just tag ; in this case, only elements from the signature associated with
the tag are exported.

In all cases, the export signature for the signed compound unit includes a copy of each element from
the effective signature.

• The (unit unit-path) form exports the referenced unit as an embedded unit. The export signature for
the signed compound unit includes a sub-signature corresponding to the effective signature from unit-
path. The name of the sub-signature in the compound unit’s export signature depends on unit-path:

– If unit-path refers to a tagged import or a sub-unit, then the tag is used for the sub-signature
name.

– Otherwise, the referenced sub-unit was an embedded unit, and the original name for the associated
sub-signature is re-used for the export signature’s sub-signature.

• The (unit unit-path identifier) form exports an embedded unit like (unit unit-path) form, but identifier
is used for the name of the sub-signature in the compound unit’s export signature.

The collection of names exported by a compound unit must form a legal signature. This means that all
exported names must be distinct.

Run-time checks insure that all link clause exprs evaluate to a signed unit, and that all linkages match
according to the specified signatures:

• If an expr evaluates to anything other than a signed unit, the exn:unit exception is raised.

• If the export signature for a signed unit does not satisfy the signature specified with its tag, the
exn:unit:signature exception is raised.

• If the number of units specified in a linkage does not match the number imported by a linking unit,
the exn:unit exception is raised.

• If the (effective) signature of a provided unit does not match the corresponding import signature, then
the exn:unit exception is raised.

35.8 Invoking Signed Units

Signed units are invoked using the invoke-unit/sig form:

(invoke-unit/sig expr invoke-linkage · · ·)

invoke-linkage is one of
signature
(identifier : signature)

101

35.9. Extracting a Primitive Unit from a Signed Unit 35. unitsig.ss: Units with Signatures

If the invoked unit requires no imports, the invoke-unit/sig form is used in the same way as invoke-unit.
Otherwise, the invoke-linkage signatures must match the import signatures of the signed unit to be invoked.
If the signatures match, then variables in the environment of the invoke-unit/sig expression are used for
immediate linking; the variables used for linking are the ones with names corresponding to the flattened
signatures. The signature flattening algorithm is specified in §35.2; when the (identifier : signature) form
is used, identifier: is prefixed onto each variable name in the flattened signature and the prefixed name is
used.

(define-values/invoke-unit/sig signature unit/sig-expr [prefix invoke-linkage · · ·]) syntax

This form is the signed-unit version of define-values/invoke-unit. The names defined by the expansion of
define-values/invoke-unit/sig are determined by flattening the signature specified before unit-expr , then
adding the prefix (if any). See §35.2 for more information about signature flattening.

Each invoke-linkage is either signature or (identifier : signature), as in invoke-unit/sig.

(namespace-variable-bind/invoke-unit/sig signature unit/sig-expr [prefix invoke-linkage · · ·]) syntax

This form is the signed-unit version of namespace-variable-bind/invoke-unit . See also define-
values/invoke-unit/sig.

(provide-signature-elements signature) syntax

Exports from a module every name in the flattened form of signature.

35.9 Extracting a Primitive Unit from a Signed Unit

The procedure unit/sig->unit extracts and returns the primitive unit from a signed unit.

The names exported by the primitive unit correspond to the flattened export signature of the signed unit;
see §35.2 for the flattening algorithm.

The number of import variables for the primitive unit matches the total number of variables in the flattened
forms of the signed unit’s import signatures. The order of import variables is as follows:

• All of the variables for a single import signature are grouped together, and the relative order of these
groups follows the order of the import signatures.

• Within an import signature:

– variable names are ordered according to string<?;
– all names from sub-signatures follow the variable names;
– names from a single sub-signature are grouped together and ordered within the sub-signature

group following this algorithm recursively; and
– the sub-signatures are ordered among themselves using string<? on the sub-signature names.

35.10 Adding a Signature to Primitive Units

The unit->unit/sig syntactic form wraps a primitive unit with import and export signatures:

(unit->unit/sig expr (signature · · ·) signature)

102

35. unitsig.ss: Units with Signatures 35.11. Expanding Signed Unit Expressions

The last signature is used for the export signature and the other signatures specify the import signatures.
If expr does not evaluate to a unit or the unit does not match the signature, no error is reported until the
primitive linker discovers the problem.

35.11 Expanding Signed Unit Expressions

The unit/sig, compound-unit/sig, and invoke-unit/sig forms expand into expressions using the unit,
compound-unit, and invoke-unit forms, respectively.

A signed unit value is represented by a signed-unit structure with the following fields:

• unit — the primitive unit implementing the signed unit’s content

• imports — the import signatures, represented as a list of pairs, where each pair consists of

– a tag symbol, used for error reporting; and
– an “exploded signature”; an exploded signature is a vector of signature elements, where each

element is either
∗ a symbol, representing a variable in the signature; or
∗ a pair consisting of a symbol and an exploded signature, representing a name sub-signature.

• exports — the export signature, represented as an exploded signature

To perform the signature checking needed by compound-unit/sig, MzScheme provides two procedures:

• (verify-signature-match where exact? dest-context dest-sig src-context src-sig) raises an exception
unless the exploded signatures dest-sig and src-sig match. If exact? is #f, then src-sig need only
satisfy dest-sig , otherwise the signatures must match exactly. The where symbol and dest-context and
src-context strings are used for generating an error message string: where is used as the name of the
signaling procedure and dest-context and src-context are used as the respective signature names.

If the match succeeds, void is returned. If the match fails, the exn:unit exception is raised for one of
the following reasons:

– The signatures fail to match because src-sig is missing an element.
– The signatures fail to match because src-sig contains an extra element.
– The signatures fail to match because src-dest and src-sig contain the same element name but for

different element types.

• (verify-linkage-signature-match where tags units export-sigs linking-sigs) performs all of the run-
time signature checking required by a compound-unit/sig or invoke-unit/sig expression. The where
symbol is used for error reporting. The tags argument is a list of tag symbols, and the units argument
is the corresponding list of candidate signed unit values. (The procedure will check whether these
values are actually signed unit values.)

The export-sigs list contains one exploded signature for each tag; these correspond to the tag signatures
provided in the original compound-unit/sig expression. The linking-sigs list contains a list of named
exploded signatures for each tag (where a “named signature” is a pair consisting of a name symbol and
an exploded signature); every tag’s list corresponds to the signatures that were specified or inferred
for the tag’s linkage specification in the original compound-unit/sig expression. The names on the
linking signatures are used for error messages.

If all linking checks succeed, void is returned. If any check fails, the exn:unit exception is raised for
one of the following reasons:

– A value in the units list is not a signed unit.

103

35.11. Expanding Signed Unit Expressions 35. unitsig.ss: Units with Signatures

– The number of import signatures associated with a unit does not agree with the number of linking
signatures specified by the corresponding list in linking-sigs.

– A linking signature does not exactly match the signature expected by an importing unit.

(signature->symbols name) syntax

Expands to the “exploded” version (see §35.11) of the signature bound to name (where name is an uneval-
uated identifier).

104

Index

->, 30
->*, 30
->*d, 30
->d, 30
:, 80
</c, 28
¡=/c, 28
<=/c, 28
>/c, 28
>=/c, 28

abbreviate-cons-as-list, 54
’american, 33
and/f, 27
any?, 28
assf, 45
atom?, 24
awk, 2
awk.ss, 2

boolean=?, 36
booleans-as-true/false, 54
box/p, 29
build-absolute-path, 40
build-list, 36
build-path, 40
build-relative-path, 40
build-share, 54
build-string, 36
build-vector, 36

call-with-input-file*, 40
call-with-output-file*, 40
case->, 31
’chinese, 33
class, 8
class∗, 8
class∗/names, 6
class->interface, 15
class-field-accessor, 14
class-field-mutator, 14
class-old.ss, 18
class.ss, 3
class100, 16, 17
class100∗, 16, 17
class100∗-asi, 17
class100∗/names, 16
class100-asi, 17
class100.ss, 16

class?, 15
classes, 3

creating, 6
cm.ss, 19
cmdline.ss, 20
command-line, 20
compat.ss, 24
compile-file, 26
compile.ss, 26
compose, 36
compound-unit, 91
compound-unit/sig, 97, 99
conjugate, 53
cons/p, 29
cons?, 45
constructor-style-printing, 55
consumer-thread, 83
contract, 31
contract.ss, 27
contract?, 32
Contracts on Values, 31
copy-directory/files, 40
copy-port, 83
cosh, 53
current-build-share-hook, 55
current-build-share-name-hook, 55
current-print-convert-hook, 55
current-read-eval-convert-print-prompt, 55

date, 33
date->julian/scalinger, 33
date->string, 33
date-display-format, 33
date.ss, 33
define-constructor, 80
define-local-member-name, 11
define-macro, 35
define-signature, 96
define-structure, 24
define-syntax-set, 36
define-type, 80
define-values/invoke-unit, 90
define-values/invoke-unit/sig, 102
define/override, 8
define/private, 8
define/public, 8
deflate, 34
deflate.ss, 34
defmacro, 35

105

INDEX

defmacro.ss, 35
delete-directory/files, 40
derived class, 3
’done-error, 74
’done-ok, 74
dynamic-disable-break, 83
dynamic-enable-break, 83

e, 53
effective signature, 101
eighth, 45
empty, 45
empty?, 45
etc.ss, 36
eval-string, 81
evcase, 37
exn:application:mismatch, 74, 77
exn:application:type, 12, 13, 36, 39, 77
exn:i/o:filesystem, 40
exn:misc, 77, 78
exn:misc:unsupported, 74, 77, 87
exn:object, 6, 8–11, 13, 15
exn:unit, 91, 92, 101, 103
exn:unit:signature, 101
exn:user, 20–22, 44, 81, 82
explode-path, 40
export, 89, 92
export signature, 94
expr->string, 81

false, 37
false?, 28
field, 10
fields

accessing, 13
fifth, 45
file-name-from-path, 40
file.ss, 40
filename-extension, 41
filter, 45
final, 21
’final, 22
find-library, 41
find-relative-path, 41
find-seconds, 33
first, 45
Flat Contracts, 27
flat-named-contract, 27
flat-named-contract-predicate, 27
flat-named-contract-type-name, 27
foldl, 45
foldr, 46
fourth, 45
Function Contracts, 29

generic, 14
’german, 33
get-preference, 41
get-shared, 55
getprop, 25
gunzip, 44
gunzip-through-ports, 44
gzip, 34
gzip-through-ports, 34

’help-labels, 22

identity, 37
implementation?, 15
implementation?/c, 28
import, 88, 91
import signature, 94
include, 43
include-at/relative-to, 43
include-at/relative-to/reader, 43
include.ss, 43
include/reader, 43
’indian, 33
’infinity, 71
inflate, 44
inflate.ss, 44
inherit, 11
inherit-field, 10
inheritance, 3
init, 9
init-field, 9, 10
init-rest, 9
install-converting-printer, 56
instantiate, 12
interface, 6
interface->method-names, 15
interface-extension?, 15
interface?, 15
interfaces

creating, 6
’interrupt, 74
invoke-unit, 90
invoke-unit/sig, 101
’irish, 33
is-a?, 15
is-a?/c, 28
’iso-8601, 33

’julian, 33
julian/scalinger->string, 33

’kill, 74

last-pair, 46

106

INDEX

let+, 37
link, 92
list.ss, 45
list/p, 29
listof, 29
local, 38
loop-until, 38

make-compilation-manager-load/use-compiled-handler,
19

make-directory*, 41
make-generic, 15
make-mixin-contract, 29
make-object, 9, 12
make-single-threader, 83
make-temporary-file, 41
managed-compile-zo, 19
manager-trace-handler, 19
match, 48
match-define, 48
match-lambda, 48
match-lambda∗, 48
match-let, 48
match-let∗, 48
match-letrec, 48
match.ss, 48
match:end, 2
match:start, 2
match:substring, 2
math.ss, 53
memf, 46
merge-input, 84
mergesort, 46
method-in-interface?, 15
methods

accessing, 13
applying, 13

mixin-contract, 29
MrSpidey, 80
mrspidey:control, 80
multi, 20
’multi, 22

namespace-defined?, 38
namespace-variable-bind/invoke-unit, 91
namespace-variable-bind/invoke-unit/sig, 102
nand, 38
natural-number?, 28
new-cafe, 25
nor, 38
normalize-path, 42

object-interface, 15
object?, 15

object%, 6
objects, 3

creating, 12
once-any, 21
’once-any, 22
once-each, 20
’once-each, 22
opt->, 31
opt->*, 31
opt-lambda, 38
or/f, 27
override, 10
override∗, 8
override-final, 10
overriding, 3

parse-command-line, 22
path-only, 42
pattern matching, 48
pconvert.ss, 54
Perl, 57
pi, 53
polymorphic, 80
pregexp, 58
pregexp-match, 59
pregexp-match-positions, 58
pregexp-replace, 59
pregexp-replace*, 60
pregexp-split, 59
pregexp.ss, 57
pretty-display, 71
pretty-print, 71
pretty-print-.-symbol-without-bars, 73
pretty-print-columns, 71
pretty-print-current-style-table, 71
pretty-print-depth, 71
pretty-print-display-string-handler, 71
pretty-print-exact-as-decimal, 71
pretty-print-extend-style-table, 72
pretty-print-handler, 72
pretty-print-post-print-hook, 73
pretty-print-pre-print-hook, 73
pretty-print-print-hook, 72
pretty-print-print-line, 72
pretty-print-show-inexactness, 73
pretty-print-size-hook, 73
pretty-print-style-table?, 73
pretty.ss, 71
print-convert, 56
print-convert-expr, 56
printable?, 28
private, 10
private∗, 8
process, 74

107

INDEX

process*, 74
process*/ports, 75
process.ss, 74
process/ports, 74
processes, 74
provide-signature-elements, 102
provide/contract, 31
public, 10
public∗, 8
public-final, 10
put-preferences, 42
putprop, 25

quasi-read-style-printing, 56
quicksort, 46

read-from-string, 81
read-from-string-all, 81
rec, 38
recur, 38
regexp-exec, 2
regexp-match*, 81
regexp-match-exact?, 81
regexp-match-positions*, 81
regexp-quote, 82
regexp-replace-quote, 82
regexp-split, 82
remove, 46
remove*, 46
remq, 46
remq*, 46
remv, 47
remv*, 47
rename, 11, 97
rest, 47
restart-mzscheme, 76
restart.ss, 76
run-server, 84
’running, 74

second, 45
seconds->date, 33
self (for objects), see this
send, 13
send∗, 13
send-event, 77
send/apply, 13
sendevent.ss, 77
set!, 13
set-first!, 47
set-rest!, 47
seventh, 45
sgn, 53
shared, 79

shared.ss, 79
show-sharing, 56
signature, 94
signature->symbols, 104
signatures, 94, 95
signed compound units, 94
signed units, 94
signed-unit-exports, 103
signed-unit-imports, 103
signed-unit-unit, 103
signed-unit?, 103
sinh, 53
sixth, 45
sort, 25
spidey.ss, 80
sqr, 53
’status, 74
string-lowercase!, 82
string-uppercase!, 82
string.ss, 81
subclass?, 15
subclass?/c, 29
subprocesses, 74
super-instantiate, 8
super-make-object, 8
superclass, 3
superclass initialization, see super-init
symbol=?, 39
symbols, 28
system, 74
system*, 74

third, 45
this, 8
this-expression-source-directory, 39
thread.ss, 83
trace, 85
trace.ss, 85
traceld.ss, 86
transcr.ss, 87
transcript-off, 87
transcript-on, 87
true, 39
’truncate, 41
trust-existing-zos, 19
type:, 80

union, 27
unit, 88
unit->unit/sig, 102
unit.ss, 88
unit/sig, 94, 96
unit/sig->unit, 102
unit?, 93

108

INDEX

units, 88
compound, 91
creating, 88
invoking, 90
signatures, 94

units with signatures, 94
unitsig.ss, 94
untrace, 85
use-named/undefined-handler, 54

vector/p, 29
vectorof, 29
verify-linkage-signature-match, 103
verify-signature-match, 103

’wait, 74
whole/fractional-exact-numbers, 56
with-method, 14
with-semaphore, 84

109

	1 MzLib
	2 awk.ss: Awk-like Syntax
	3 class.ss: Classes and Objects
	3.1 Object Example
	3.2 Creating Interfaces
	3.3 Creating Classes
	3.3.1 Initialization Variables
	3.3.2 Fields
	3.3.3 Methods

	3.4 Creating Objects
	3.5 Field and Method Access
	3.5.1 Methods
	3.5.2 Fields
	3.5.3 Generics

	3.6 Object Utilities

	4 class100.ss: Version-100-Style Classes
	5 class-old.ss: Version-100 Classes
	6 cm.ss: Compilation Manager
	7 cmdline.ss: Command-line Parsing
	8 compat.ss: Compatibility
	9 compile.ss: Compiling Files
	10 contract.ss: Contracts
	10.1 Flat Contracts
	10.2 Function Contracts
	10.3 Attaching Contracts to Scheme Values
	10.4 Contract Utility

	11 date.ss: Dates
	12 deflate.ss: Deflating (Compressing) Data
	13 defmacro.ss: Non-Hygienic Macros
	14 etc.ss: Useful Procedures and Syntax
	15 file.ss: Filesystem Utilities
	16 include.ss: Textually Including Source
	17 inflate.ss: Inflating Compressed Data
	18 list.ss: List Utilities
	19 match.ss: Pattern Matching
	19.1 Patterns
	19.2 Examples

	20 math.ss: Math
	21 pconvert.ss: Converted Printing
	22 pregexp.ss: Perl-Style Regular Expressions
	22.1 Introduction
	22.2 Regexp procedures
	22.2.1 pregexp
	22.2.2 pregexp-match-positions
	22.2.3 pregexp-match
	22.2.4 pregexp-split
	22.2.5 pregexp-replace
	22.2.6 pregexp-replace*

	22.3 The regexp pattern language
	22.3.1 Basic assertions
	22.3.2 Characters and character classes
	22.3.3 Quantifiers
	22.3.4 Clusters
	22.3.5 Alternation
	22.3.6 Backtracking
	22.3.7 Looking ahead and behind

	22.4 An extended example

	23 pretty.ss: Pretty Printing
	24 process.ss: Process and Shell-Command Execution
	25 restart.ss: Simulating Stand-alone MzScheme
	26 sendevent.ss: AppleEvents
	26.1 AppleEvents

	27 shared.ss: Graph Constructor Syntax
	28 spidey.ss: MrSpidey Annotations
	29 string.ss: String Utilities
	30 thread.ss: Thread Utilities
	31 trace.ss: Tracing Top-level Procedure Calls
	32 traceld.ss: Tracing File Loads
	33 transcr.ss: Transcripts
	34 unit.ss: Core Units
	34.1 Creating Units
	34.2 Invoking Units
	34.3 Linking Units and Creating Compound Units
	34.4 Unit Utilities

	35 unitsig.ss: Units with Signatures
	35.1 Importing and Exporting with Signatures
	35.2 Signatures
	35.3 Signed Units
	35.4 Linking with Signatures
	35.5 Restricting Signatures
	35.6 Embedded Units
	35.7 Signed Compound Units
	35.8 Invoking Signed Units
	35.9 Extracting a Primitive Unit from a Signed Unit
	35.10 Adding a Signature to Primitive Units
	35.11 Expanding Signed Unit Expressions

	Index

