
Inside PLT MzScheme

Matthew Flatt (mflatt@plt-scheme.org)

209
Released December 2004

Copyright notice

Copyright c©1995-2004 Matthew Flatt

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby
granted without fee, provided that the above copyright notice, author, and this permission notice appear in
all copies of this documentation.

libscheme: Copyright c©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyright c©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyright c©1991-
1996 by Xerox Corporation. Copyright c©1996-1999 by Silicon Graphics. Copyright c©1999-2001 by Hewlett
Packard Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyright c©1994 by Xerox Corporation. All rights
reserved.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for
your research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the
fact on some Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org.
Evidence of interest helps the DrScheme Project to maintain the necessary intellectual and financial support.
We appreciate your help.

Thanks

Some typesetting macros were originally taken from Julian Smart’s Reference Manual for wxWindows 1.60:
a portable C++ GUI toolkit.

Contents

1 Overview 1

1.1 Writing MzScheme Extensions . 1

1.2 Embedding MzScheme into a Program . 2

1.3 MzScheme and Threads . 3

2 Values and Types 5

2.1 Standard Types . 5

2.2 Global Constants . 7

2.3 Library Functions . 8

3 Memory Allocation 11

3.1 Library Functions . 11

4 Namespaces and Modules 15

4.1 Library Functions . 15

5 Procedures 17

5.1 Library Functions . 17

6 Evaluation 19

6.1 Top-level Evaluation Functions . 19

6.2 Tail Evaluation . 19

6.3 Multiple Values . 20

6.4 Library Functions . 20

7 Exceptions and Escape Continuations 23

7.1 Temporarily Catching Error Escapes . 23

7.2 Library Functions . 25

i

CONTENTS CONTENTS

8 Threads 29

8.1 Integration with Threads . 29

8.2 Allowing Thread Switches . 29

8.3 Blocking the Current Thread . 30

8.4 Threads in Embedded MzScheme with Event Loops . 30

8.4.1 Callbacks for Blocked Threads . 31

8.5 Sleeping by Embedded MzScheme . 33

8.6 Library Functions . 34

9 Parameterizations 38

9.1 Library Functions . 39

10 Bignums, Rationals, and Complex Numbers 40

10.1 Library Functions . 40

11 Ports and the Filesystem 43

11.1 Library Functions . 43

12 Structures 51

12.1 Library Functions . 51

13 Security Guards 53

13.1 Library Functions . 53

14 Custodians 54

14.1 Library Functions . 54

15 Miscellaneous Utilities 56

15.1 Library Functions . 56

16 Flags and Hooks 60

Index 61

ii

1. Overview

This manual describes MzScheme’s C interface, which allows the interpreter to be extended by a dynamically-
loaded library, or embedded within an abitrary C/C++ program. The manual assumes familiarity with
MzScheme, as described in PLT MzScheme: Language Manual .

1.1 Writing MzScheme Extensions

To write a C/C++-based extension for MzScheme, follow these steps:

• For each C/C++ file that uses MzScheme library functions, #include the file escheme.h.

This file is distributed with the PLT software in plt/include, but if mzc is used to compile, this path
is found automatically.

• Define the C function scheme initialize, which takes a Scheme Env * namespace (see §4) and returns
a Scheme Object * Scheme value.

This initialization function can install new global primitive procedures or other values into the name-
space, or it can simply return a Scheme value. The initialization function is called when the extension
is loaded with load-extension (the first time); the return value from scheme initialize is used as
the return value for load-extension. The namespace provided to scheme initialize is the current
namespace when load-extension is called.

• Define the C function scheme reload, which has the same arguments and return type as
scheme initialize.

This function is called if load-extension is called a second time (or more times) for an extension.
Like scheme initialize, the return value from this function is the return value for load-extension.

• Define the C function scheme module name, which takes no arguments and returns a Scheme Object
* value, either a symbol or scheme false.

The function should return a symbol when the effect of calling scheme initialize and scheme reload
is only to declare a module with the returned name. This function is called when the extension is loaded
to satisfy a require declaration.

The scheme module name function may be called before scheme initialize and scheme reload, after
those functions, or both before and after, depending on how the extension is loaded and re-loaded.

• Compile the extension C/C++ files to create platform-specific object files.

The mzc compiler, distributed with MzScheme, compiles plain C files when the --cc flag is specified.
More precisely, mzc does not compile the files itself, but it locates a C compiler on the system and
launches it with the appropriate compilation flags. If the platform is a relatively standard Unix system,
a Windows system with either Microsoft’s C compiler or gcc in the path, or a Mac OS system with
Metrowerks CodeWarrior installed, then using mzc is typically easier than working with the C compiler
directly.

1

1.2. Embedding MzScheme into a Program 1. Overview

• Link the extension C/C++ files with mzdyn.o (Unix) or mzdyn.obj (Windows) to create a shared
object.

The mzdyn object file is distributed in plt/lib for Unix or Windows, but it is not distributed for Mac
OS. For Windows, the object file is in a compiler-specific sub-directory.

The mzc compiler links object files into an extension when the --ld flag is specified, automatically
locating mzdyn. Under Mac OS, mzc generates the mzdyn object file as necessary.

• Load the shared object within Scheme using (load-extension path), where path is the name of the
extension file generated in the previous step.

IMPORTANT: Scheme values are garbage collected using a conservative garbage collector, so point-
ers to MzScheme objects can be kept in registers, stack variables, or structures allocated with
scheme malloc. However, static variables that contain pointers to collectable memory must be registered
using scheme register extension global (see §3).

As an example, the following C code defines an extension that returns "hello world" when it is loaded:

#include "escheme.h"
Scheme_Object *scheme_initialize(Scheme_Env *env) {
return scheme_make_string("hello world");

}
Scheme_Object *scheme_reload(Scheme_Env *env) {
return scheme_initialize(env); /* Nothing special for reload */

}
Scheme_Object *scheme_module_name() {
return scheme_false;

}

Assuming that this code is in the file hw.c, the extension is compiled under Unix with the following two
commands:

mzc --cc hw.c
mzc --ld hw.so hw.o

(Note that the --cc and --ld flags are each prefixed by two dashes, not one.)

The plt/collects/mzscheme/examples directory in the PLT distribution contains additional examples.

1.2 Embedding MzScheme into a Program

To embed MzScheme in a program, first download the MzScheme source code. Then, follow these steps:

• Compile the MzScheme libraries.

Under Unix, the libraries are libmzscheme.a and libgc.a. After compiling MzScheme and running
make install, the libraries are in a platform-specific directory under plt/collects/mzscheme/lib/.
Under Windows and Mac OS, consult the compilation instructions for information on compiling the
libraries.

• For each C/C++ file that uses MzScheme library functions, #include the file scheme.h.1

This file is distributed with the PLT software in plt/include.
1The C preprocessor symbol SCHEME DIRECT EMBEDDED is defined as 1 when scheme.h is #included, or as 0 when escheme.h

is #included.

2

1. Overview 1.3. MzScheme and Threads

• In your main program, obtain a global MzScheme environment Scheme Env * by calling
scheme basic env. This function must be called before any other function in the MzScheme library
(except scheme make param).

• Access MzScheme though scheme load, scheme eval, and/or other top-level MzScheme functions
described in this manual.

• Compile the program and link it with the MzScheme libraries.

Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme objects
can be kept in registers, stack variables, or structures allocated with scheme malloc. In an embedding
application, static variables are also automatically registered as roots for garbage collection (but see the
Windows-specific note below).

For example, the following is a simple embedding program which evaluates all expressions provided on the
command line and displays the results, then runs a read-eval-print loop:

#include "scheme.h"
int main(int argc, char *argv[])
{
Scheme_Env *e = scheme_basic_env();
Scheme_Object *curout = scheme_get_param(scheme_config, MZCONFIG_OUTPUT_PORT);
int i;
for (i = 1; i < argc; i++) {
if (scheme_setjmp(scheme_error_buf)) {
return -1; /* There was an error */

} else {
Scheme_Object *v = scheme_eval_string(argv[i], e);
scheme_display(v, curout);
scheme_display(scheme_make_character(’\n’), curout);
/* read-eval-print loop, implicitly uses the initial Scheme_Env: */
scheme_apply(scheme_builtin_value("read-eval-print-loop"), 0, NULL);

}
}
return 0;

}

Under Windows, the garbage collector finds static variables in an embeddeding program by examining all
memory pages. This strategy fails if a program contains multiple Windows threads; a page may get unmapped
by a thread while the collector is examining the page, causing the collector to crash. To avoid this problem,
call scheme set stack base with a non-zero second argument before calling any scheme function, and
register all globals with scheme register static.

1.3 MzScheme and Threads

MzScheme implements threads for Scheme programs without aid from the operating system. MzScheme can
co-exist with additional OS-implemented threads that are created by an extension or an embedding program,
but the additional OS threads must not call any scheme function. Only the OS thread that originally calls
scheme basic env can call scheme functions.2

When scheme basic env is called a second time to reset the interpreter, it can be called in an OS thread
2This restriction is stronger than saying all calls must be serialized across threads. MzScheme relies on properties of specific

threads to avoid stack overflow and garbage collection.

3

1.3. MzScheme and Threads 1. Overview

that is different from the original call to scheme basic env. Thereafter, all calls to scheme functions must
originate from the new thread.

See §8 for more information about threads, including the possible effects of MzScheme’s thread implemen-
tation on extension and embedding C code.

4

2. Values and Types

A Scheme value is represented by a pointer-sized value. The low bit is a mark bit: a 1 in the low bit indicates
an immediate integer, a 0 indicates a (word-aligned) pointer.

A pointer Scheme value references a structure that begins with a type tag. This type tag has the C type
Scheme Type. The rest of the structure, following the type tag, is type-dependent. Examples of Scheme Type
values include scheme pair type, scheme symbol type, and scheme compiled closure type.

MzScheme’s C interface gives Scheme values the type Scheme Object *. (The “object” here does not refer
to objects in the sense of MzLib’s class library.) The struct type Scheme Object is defined in scheme.h,
but extension or embedding code should never access this structure directly. Instead, the code should use
macros, such as SCHEME CAR, that provide access to the data of common Scheme types. A Scheme Object
structure is actually only allocated for certain types (i.e., some of the built-in types that contain two words
of data, in addition to the type tag), but Scheme Object * is nevertheless used as the type of a generic
Scheme value (for historical reasons).

For most Scheme types, a constructor is provided for creating values of the type. For example,
scheme make pair takes two Scheme Object * values and returns the cons of the values.

The macro SCHEME TYPE takes a Scheme Object * and returns the type of the object. This macro performs
the tag-bit check, and returns scheme integer type when the value is an immediate integer; otherwise,
SCHEME TYPE follows the pointer to get the type tag. Macros are provided to test for common Scheme types;
for example, SCHEME PAIRP returns 1 if the value is a cons cell, 0 otherwise.

In addition to providing constructors, MzScheme defines six global constant Scheme values: scheme true,
scheme false, scheme null, scheme eof, scheme void, and scheme undefined. Each of these has a type
tag, but each is normally recognized via its constant address.

An extension or embedding application can create new a primitive data type by calling scheme make type,
which returns a fresh Scheme Type value. To create a collectable instance of this type, allocate memory
for the instance with scheme malloc. From MzScheme’s perspective, the only constraint on the data for-
mat of such an instance is that the first sizeof(Scheme Type) bytes must contain the value returned by
scheme make type. Extensions with modest needs can use scheme make cptr, instead.

Scheme values should never be allocated on the stack, and they should never contain pointers to values on
the stack. Besides the problem of restricting the value’s lifetime to that of the stack frame, allocating values
on the stack creates problems for continuations and threads, both of which copy into and out of the stack.

2.1 Standard Types

The following are the Scheme Type values for the standard types:

• scheme char type — SCHEME CHAR VAL extracts the character; test for this type with SCHEME CHARP

5

2.1. Standard Types 2. Values and Types

• scheme integer type — fixnum integers, which are identified via the tag bit rather than following
a pointer to this Scheme Type value; SCHEME INT VAL extracts the integer; test for this type with
SCHEME INTP

• scheme double type — flonum inexact numbers; SCHEME FLOAT VAL or SCHEME DBL VAL extracts the
floating-point value; test for this type with SCHEME DBLP

• scheme float type — single-precision flonum inexact numbers, when specifically enabled when com-
piling MzScheme; SCHEME FLOAT VAL or SCHEME FLT VAL extracts the floating-point value; test for this
type with SCHEME FLTP

• scheme bignum type — test for this type with SCHEME BIGNUMP

• scheme rational type — test for this type with SCHEME RATIONALP

• scheme complex type — test for this type or scheme complex izi type with SCHEME COMPLEXP

• scheme complex izi type — complex number with an inexact zero imaginary part (so it counts as a
real number); test for this type specifically with SCHEME COMPLEX IZIP

• scheme string type — SCHEME STR VAL extracts the string (which is always null-terminated, but
may also contain embedded nulls; the Scheme string is modified if this string is modified) and
SCHEME STRLEN VAL extracts the string length (not counting the null terminator); test for this type
with SCHEME STRINGP

• scheme symbol type — SCHEME SYM VAL extracts the string (do not modify this string); test for this
type with SCHEME SYMBOLP

• scheme box type — SCHEME BOX VAL extracts/sets the boxed value; test for this type with SCHEME BOXP

• scheme pair type — SCHEME CAR extracts/sets the car and SCHEME CDR extracts/sets the cdr; test
for this type with SCHEME PAIRP

• scheme vector type — SCHEME VEC SIZE extracts the length and SCHEME VEC ELS extracts the array
of Scheme values (the Scheme vector is modified when this array is modified); test for this type with
SCHEME VECTORP

• scheme type symbol type — SCHEME TSYM VAL extracts the symbol; test for this type with
SCHEME TSYMBOLP

• scheme structure type — structure instances; test for this type with SCHEME STRUCTP

• scheme struct type type — structure types; test for this type with SCHEME STRUCT TYPEP

• scheme struct property type — structure type properties

• scheme input port type — SCHEME INPORT VAL extracts/sets the user data pointer; test for this type
with SCHEME INPORTP

• scheme output port type — SCHEME OUTPORT VAL extracts/sets the user data pointer; test for this
type with SCHEME OUTPORTP

• scheme thread type — thread descriptors; test for this type with SCHEME THREADP

• scheme sema type — semaphores; test for this type with SCHEME SEMAP

• scheme hash table type — test for this type with SCHEME HASHTP

• scheme bucket table type — test for this type with SCHEME BUCKTP

• scheme weak box type — test for this type with SCHEME WEAKP; SCHEME WEAK PTR extracts the con-
tained object, or NULL after the content is collected; do not set the content of a weak box

6

2. Values and Types 2.2. Global Constants

• scheme namespace type — namespaces; test for this type with SCHEME NAMESPACEP

• scheme c pointer type — void pointer with a type-describing string; SCHEME CPTR VAL extracts the
pointer and SCHEME CPTR TYPE extracts the type string; test for this type with SCHEME CPTRP

The following are the procedure types:

• scheme prim type — a primitive procedure

• scheme closed prim type — a primitive procedure with a data pointer

• scheme compiled closure type — a Scheme procedure

• scheme cont type — a continuation

• scheme escaping cont type — an escape continuation

• scheme case closure type — a case-lambda procedure

The predicate SCHEME PROCP returns 1 for all procedure types and 0 for anything else.

The following are additional number predicates:

• SCHEME NUMBERP — all numerical types

• SCHEME REALP — all non-complex numerical types, plus scheme complex izi type

• SCHEME EXACT INTEGERP — fixnums and bignums

• SCHEME EXACT REALP — fixnums, bignums, and rationals

• SCHEME FLOATP — both single-precision (when enabled) and double-precision flonums

2.2 Global Constants

There are six global constants:

• scheme null — test for this value with SCHEME NULLP

• scheme eof — test for this value with SCHEME EOFP

• scheme true

• scheme false — test for this value with SCHEME FALSEP; test against it with SCHEME TRUEP

• scheme void — test for this value with SCHEME VOIDP

• scheme undefined

7

2.3. Library Functions 2. Values and Types

2.3 Library Functions

• Scheme Object *scheme make char(char ch)

Returns the character value.

• Scheme Object *scheme make character(char ch)

Returns the character value. (This is a macro.)

• Scheme Object *scheme make integer(long i)

Returns the integer value; i must fit in a fixnum. (This is a macro.)

• Scheme Object *scheme make integer value(long i)

Returns the integer value. If i does not fit in a fixnum, a bignum is returned.

• Scheme Object *scheme make integer value from unsigned(unsigned long i)

Like scheme make integer value, but for unsigned integers.

• int scheme get int val(Scheme Object *o, long *i)

Extracts the integer value. Unlike the SCHEME INT VAL macro, this procedure will extract an integer that fits
in a long from a Scheme bignum. If o fits in a long, the extracted integer is placed in *i and 1 is returned;
otherwise, 0 is returned and *i is unmodified.

• int scheme get unsigned int val(Scheme Object *o, unsigned long *i)

Like scheme get int val, but for unsigned integers.

• Scheme Object *scheme make double(double d)

Creates a new floating-point value.

• Scheme Object *scheme make float(float d)

Creates a new single-precision floating-point value. The procedure is available only when MzScheme is
compiled with single-precision numbers enabled.

• double scheme real to double(Scheme Object *o)

Converts a Scheme real number to a double-precision floating-point value.

• Scheme Object *scheme make pair(Scheme Object *carv , Scheme Object *cdrv)

Makes a cons pair.

• Scheme Object *scheme make string(char *chars)

Makes a Scheme string from a null-terminated C string. The chars string is copied.

• Scheme Object *scheme make string without copying(char *chars)

8

2. Values and Types 2.3. Library Functions

Like scheme make string , but the string is not copied.

• Scheme Object *scheme make sized string(char *chars, long len, int copy)

Makes a string value with size len. A copy of chars is made if copy is not 0. The string chars should contain
len characters; chars can contain the null character at any position, and need not be null-terminated.
However, if len is negative, then the null-terminated length of chars is used for the length.

• Scheme Object *scheme make sized offset string(char *chars, long d , long len, int copy)

Like scheme make sized string, except the len characters start from position d in chars.

• Scheme Object *scheme alloc string(int size, char fill)

Allocates a new Scheme string.

• Scheme Object *scheme append string(Scheme Object *a, Scheme Object *b)

Creates a new string by appending the two given strings.

• Scheme Object *scheme intern symbol(char *name)

Finds (or creates) the symbol matching the given null-terminated string. The case of name is (non-
destructively) normalized before interning if scheme case sensitive is 0.

• Scheme Object *scheme intern exact symbol(char *name, int len)

Creates or finds a symbol given the symbol’s length. The the case of name is not normalized.

• Scheme Object *scheme make symbol(char *name)

Creates an uninterned symbol from a null-terminated string.

• Scheme Object *scheme make exact symbol(char *name, int len)

Creates an uninterned symbol given the symbol’s length.

• Scheme Object *scheme make vector(int size, Scheme Object *fill)

Allocates a new vector.

• Scheme Object *scheme box(Scheme Object *v)

Creates a new box containing the value v .

• Scheme Object *scheme make weak box(Scheme Object *v)

Creates a new weak box containing the value v .

• Scheme Type scheme make type(char *name)

Creates a new type (not a Scheme value).

• Scheme Object *scheme make cptr(void *ptr , const char *name)

9

2.3. Library Functions 2. Values and Types

Creates a C-pointer object that encapuslates ptr and uses name to identify the type of the pointer. The
SCHEME CPTRP macro recognizes objects created by scheme make cptr. The SCHEME CPTR VAL macro extracts
the original ptr from the Scheme object, and SCHEME CPTR TYPE extracts the type string.

10

3. Memory Allocation

MzScheme uses both malloc and allocation functions provided the conservative garbage collector. Embed-
ding/extension C/C++ code may use either allocation method, keeping in mind that pointers to garbage-
collectable blocks in malloced memory are invisible (i.e., such pointers will not prevent the block from being
garbage-collected).

The garbage collector normally only recognizes pointers to the beginning of allocated objects. Thus, a
pointer into the middle of a GC-allocated string will normally not keep the string from being collected.
The exception to this rule is that pointers saved on the stack or in registers may point to the middle of a
collectable object. Thus, it is safe to loop over an array by incrementing a local pointer variable.

The collector allocation functions are:

• scheme malloc — Allocates collectable memory that may contain pointers to collectable objects.

• scheme malloc atomic — Allocates collectable memory that does not contain pointers to collectable
objects. If the memory does contain pointers, they are invisible to the collector and will not prevent
an object from being collected.

Atomic memory is used for strings or other blocks of memory which do not contain pointers. Atomic
memory can also be used to store intentionally-hidden pointers.

• scheme malloc uncollectable — Allocates uncollectable memory that may contain pointers to col-
lectable objects. There is no way to free the memory.

If a MzScheme extension stores Scheme pointers in a global or static variable, then that variable must be
registered with scheme register extension global; this makes the pointer visible to the garbage collector.
Registered variables need not contain a collectable pointer at all times.

No registration is needed for the global or static variables of an embedding program, unless it calls
scheme set stack base with a non-zero second argument. In that case, global and static variables containg
collectable pointers must be registered with scheme register static. The MZ REGISTER STATIC macro
takes any variable name and registers it with scheme register static. The scheme register static
function can be safely called even when it’s not needed, but it should not be called multiple times for a single
memory address.

Collectable memory can be temporarily locked from collection by using the reference-counting function
scheme dont gc ptr.

Garbage collection can occur during any call into MzScheme or its allocator, on anytime that MzScheme has
control, except during functions that are documented otherwise. The predicate and accessor macros listed
in §2.1 never trigger a collection.

3.1 Library Functions

11

3.1. Library Functions 3. Memory Allocation

• void *scheme malloc(size t n)

Allocates n bytes of collectable memory.

• void *scheme malloc atomic(size t n)

Allocates n bytes of collectable memory containing no pointers visible to the garbage collector.

• void *scheme malloc uncollectable(size t n)

Allocates n bytes of uncollectable memory.

• void *scheme malloc eternal(size t n)

Allocates uncollectable atomic memory. This function is equivalent to malloc except that it the memory
cannot be freed.

• void *scheme calloc(size t num, size t size)

Allocates num * size bytes of memory.

• char *scheme strdup(char *str)

Copies the null-terminated string str ; the copy is collectable.

• char *scheme strdup eternal(char *str)

Copies the null-terminated string str ; the copy will never be freed.

• void *scheme malloc fail ok(void *(*mallocf)(size t size), size t size)

Attempts to allocate size bytes using mallocf . If the allocation fails, the exn:misc:out-of-memory exception
is raised.

• void scheme register extension global(void *ptr , long size)

Registers an extension’s global variable that can contain Scheme pointers. The address of the global is given
in ptr , and its size in bytes in size.In addition to global variables, this function can be used to register
any permanent memory that the collector would otherwise treat as atomic. A garbage collection can occur
during the registration.

• void scheme set stack base(void *stack addr , int no auto statics)

Overrides the GC’s auto-determined stack base, and/or disables the GC’s automatic traversal of global and
static variables. If stack addr is NULL, the stack base determined by the GC is used. Otherwise, it should
be the “deepest” memory address on the stack where a collectable pointer might be stored. This function
should be called only once, and before any other scheme function is called. It never triggers a garbage
collection.

The following example shows a typical use for setting the stack base:
int main(int argc, char **argv) {

int dummy;
scheme_set_stack_base(&dummy, 0);
real_main(argc, argv); /* calls scheme_basic_env(), etc. */

12

3. Memory Allocation 3.1. Library Functions

}

• void scheme register static(void *ptr , long size)

Like scheme register extension global, for use in embedding applications in situations where the col-
lector does not automatically find static variables (i.e., when scheme set stck base has been called with a
non-zero second argument).

The macro MZ REGISTER STATIC can be used directly on a static variable. It expands to a comment if statics
need not be registered, and a call to scheme register static (with the address of the static variable)
otherwise.

• void scheme weak reference(void **p)

Registers the pointer *p as a weak pointer; when no other (non-weak) pointers reference the same memory
as *p references, then *p will be set to NULL by the garbage collector. The value in *p may change, but the
pointer remains weak with respect to the value of *p at the time p was registered.

• void scheme weak reference indirect(void **p, void *v)

Like scheme weak reference, but *p is cleared (regardless of its value) when there are no references to v .

• void scheme register finalizer(void *p, void (*f)(void *p, void *data), void *data,
void (**oldf)(void *p, void *data), void **olddata)

Registers a callback function to be invoked when the memory p would otherwise be garbage-collected. The f
argument is the callback function; when it is called, it will be passed the value p and the data pointer data;
data can be anything — it is only passed on to the callback function. If oldf and olddata are not NULL, then
*oldf and *olddata are filled with with old callback information (f and data will override ths old callback).

Note: registering a callback not only keeps p from collection until the callback is invoked, but it also keeps
data from collection.

• void scheme add finalizer(void *p, void (*f)(void *p, void *data), void *data)

Adds a finalizer to a chain of primitive finalizers. This chain is separate from the single finalizer installed
with scheme register finalizer; all finalizers in the chain are called immediately after a finalizer that is
installed with scheme register finalizer.

See scheme register finalizer, above, for information about the arguments.

• void scheme add scheme finalizer(void *p, void (*f)(void *p, void *data), void *data)

Installs a “will”-like finalizer, similar to will-register. Scheme finalizers are called one at a time, requiring
the collector to prove that a value has become inaccesibile again before calling the next Scheme finalizer.

See scheme register finalizer, above, for information about the arguments.

• void scheme dont gc ptr(void *p)

Keeps the collectable block p from garbage collection. Use this procedure when a reference to p is be stored
somewhere inaccessible to the collector. Once the reference is no longer used from the inaccessible region,
de-register the lock with scheme gc ptr ok. A garbage collection can occur during the registration.

13

3.1. Library Functions 3. Memory Allocation

This function keeps a reference count on the pointers it registers, so two calls to scheme dont gc ptr for the
same p should be balanced with two calls to scheme gc ptr ok.

• void scheme gc ptr ok(void *p)

See scheme dont gc ptr.

• void scheme collect garbage()

Forces an immediate garbage-collection.

14

4. Namespaces and Modules

A Scheme namespace (a top-level environment) is represented by a value of type Scheme Env * — which
is also a Scheme value, castable to Scheme Object *. Calling scheme basic env returns a namespace that
includes all of MzScheme’s standard global procedures and syntax.

The scheme basic env function must be called once by an embedding program, before any other MzScheme
function is called (except scheme make param). The returned namespace is the initial current namespace for
the main MzScheme thread. MzScheme extensions cannot call scheme basic env.

The current thread’s current namespace is available from scheme get env, given the current parameterization
(see §9): scheme get env(scheme config).

New values can be added as globals in a namespace using scheme add global. The scheme lookup global
function takes a Scheme symbol and returns the global value for that name, or NULL if the symbol is undefined.

A module’s set of top-level bindings is implemented using the same machinery as a namespace. Use
scheme primitive module to create a new Scheme Env * that represents a primitive module. The name
provided to scheme primitive module is subject to prefixing through the current-module-name-prefix
parameter (which is normally set by the module name resolver when auto-loading module files). After in-
stalling variables into the module with scheme add global, etc., call scheme finish primitive module on
the Scheme Env * value to make the module declaration available. All defined variables are exported fromthe
primitive module.

4.1 Library Functions

• void scheme add global(char *name, Scheme Object *val , Scheme Env *env)

Adds a value to the table of globals for the namespace env , where name is a null-terminated string. (The
string’s case will be normalized in the same way as for interning a symbol.)

• void scheme add global symbol(Scheme Object *name, Scheme Object *val , Scheme Env *env)

Adds a value to the table of globals by symbol name instead of string name.

• Scheme Object *scheme lookup global(Scheme Object *symbol , Scheme Env *env)

Given a global variable name (as a symbol) in sym, returns the current value.

• Scheme Bucket *scheme global bucket(Scheme Object *symbol , Scheme Env *env)

Given a global variable name (as a symbol) in sym, returns the bucket where the value is stored. When the
value in this bucket is NULL, then the global variable is undefined.

The Scheme Bucket structure is defined as:

15

4.1. Library Functions 4. Namespaces and Modules

typedef struct Scheme_Bucket {
Scheme_Type type; /* = scheme_variable_type */
/* ... */
void *key;
void *val;

} Scheme_Bucket;

• Scheme Bucket *scheme module bucket(Scheme Object *mod , Scheme Object *symbol , int pos, Scheme Env *env)

Like scheme global bucket, but finds a variable in a module. The mod and symbol arguments are as for
dynamic-require in Scheme. The pos argument should be -1 always. The env argument represents the
namespace in which the module is declared.

• void scheme set global bucket(char *procname, Scheme Bucket *var , Scheme Object *val ,
int set undef)

Changes the value of a global variable. The procname argument is used to report errors (in case the global
variable is constant, not yet bound, or a keyword). If set undef is not 1, then the global variable must
already have a binding. (For example, set! cannot set unbound variables, while define can.)

• Scheme Object *scheme builtin value(const char *name)

Gets the binding of a name as it would be defined in the initial namespace.

• Scheme Env *scheme get env(Scheme Config *config)

Returns the current namespace for the given parameterization. See §9 for more information. The current
thread’s current parameterization is available as scheme config.

• Scheme Env *scheme primitive module(Scheme Object *name, Scheme Env *for env)

Prepares a new primitive module whose name is the symbol name (plus any prefix that is active via
current-module-name-prefix). The module will be declared within the namespace for env . The result is
a Scheme Env * value that can be used with scheme add global, etc., but it represents a module instead of
a namespace. The module is not fully declared until scheme finish primitive module is called, at which
point all variables defined in the module become exported.

• void scheme finish primitive module(Scheme Env *env)

Finalizes a primitive module and makes it available for use within the module’s namespace.

16

5. Procedures

A primitive procedure is a Scheme-callable procedure that is implemented in C. Primitive procedures are
created in MzScheme with the function scheme make prim w arity, which takes a C function pointer, the
name of the primitive, and information about the number of Scheme arguments that it takes; it returns a
Scheme procedure value.

The C function implementing the procedure must take two arguments: an integer that specifies the number of
arguments passed to the procedure, and an array of Scheme Object * arguments. The number of arguments
passed to the function will be checked using the arity information. (The arity information provided to
scheme make prim w arity is also used for the Scheme arity procedure.) The procedure implementation
is not allowed to mutate the input array of arguments, although it may mutate the arguments themselves
when appropriate (e.g., a fill in a vector argument).

The function scheme make closed prim w arity is similar to scheme make prim w arity, but it takes an
additional void * argument; this argument is passed back to the C function when the closure is invoked. In
this way, closure-like data from the C world can be associated with the primitive procedure.

To work well with MzScheme threads, a C function that performs substantial or unbounded work should
occassionally call SCHEME USE FUEL; see §8.2 for details.

5.1 Library Functions

• Scheme Object *scheme make prim w arity(Scheme Prim *prim, char *name,
int mina, int maxa)

Creates a primitive procedure value, given the C function pointer prim. The form of prim is defined by:
typedef Scheme_Object *(*Scheme_Prim)(int argc, Scheme_Object **argv);

The value mina should be the minimum number of arguments that must be supplied to the procedure. The
value maxa should be the maximum number of arguments that can be suplied to the procedure, or -1 if
the procedure can take arbitrarily many arguments. The mina and maxa values are used for automatically
checking the argument count before the primitive is invoked, and also for the Scheme arity procedure. The
name argument is used to report application arity errors at run-time.

• Scheme Object *scheme make folding prim(Scheme Prim *prim, char *name,
int mina, int maxa, short folding)

Like scheme make prim w arity, but if folding is non-zero, the compiler assumes that an application of the
procedure to constant values can be folded to a constant. For example, +, zero?, and string-length are
folding primitives, but display and cons are not.

• Scheme Object *scheme make prim(Scheme Prim *prim)

17

5.1. Library Functions 5. Procedures

Same as scheme make prim w arity, but the arity (0, -1) and the name “UNKNOWN” is assumed. This
function is provided for backward compatibility only.

• Scheme Object *scheme make closed prim w arity(Scheme Closed Prim *prim, void *data,
char *name, int mina, int maxa)

Creates a primitive procedure value; when the C function prim is invoked, data is passed as the first
parameter. The form of prim is defined by:

typedef Scheme_Object *(*Scheme_Closed_Prim)(void *data, int argc, Scheme_Object **argv);

• Scheme Object *scheme make closed prim(Scheme Closed Prim *prim, void *data)

Creates a closed primitive procedure value. This function is provided for backward compatibility only.

18

6. Evaluation

A Scheme S-expression is evaluated by calling scheme eval. This function takes an S-expression (as a
Scheme Object *) and a namespace and returns the value of the expression in that namespace.

The function scheme apply takes a Scheme Object * that is a procedure, the number of arguments to
pass to the procedure, and an array of Scheme Object * arguments. The return value is the result of the
application. There is also a function scheme apply to list, which takes a procedure and a list (constructed
with scheme make pair) and performs the Scheme apply operation.

The scheme eval function actually calls scheme compile followed by scheme eval compiled.

6.1 Top-level Evaluation Functions

The functions scheme eval, scheme apply, etc., are top-level evaluation functions. Continuation invocations
are confined to jumps within a top-level evaluation.

The functions scheme eval compiled, scheme apply, etc. provide the same functionality without starting
a new top-level evaluation; these functions should only be used within new primitive procedures. Since these
functions allow full continuation hops, calls to non-top-level evaluation functions can return zero or multiple
times.

Currently, escape continuations and primitive error escapes can jump out of all evaluation and application
functions. For more information, see §7.

6.2 Tail Evaluation

All of MzScheme’s built-in functions and syntax support proper tail-recursion. When a new primitive
procedure or syntax is added to MzScheme, special care must be taken to ensure that tail recursion is
handled properly. Specifically, when the final return value of a function is the result of an application,
then scheme tail apply should be used instead of scheme apply. When scheme tail apply is called, it
postpones the procedure application until control returns to the Scheme evaluation loop.

For example, consider the following implementation of a thunk-or primitive, which takes any number of
thunks and performs or on the results of the thunks, evaluating only as many thunks as necessary.
static Scheme_Object *
thunk_or (int argc, Scheme_Object **argv)
{
int i;
Scheme_Object *v;

if (!argc)
return scheme_false;

19

6.3. Multiple Values 6. Evaluation

for (i = 0; i < argc - 1; i++)
if (SCHEME_FALSEP((v = _scheme_apply(argv[i], 0, NULL))))
return v;

return scheme_tail_apply(argv[argc - 1], 0, NULL);
}

This thunk-or properly implements tail-recursion: if the final thunk is applied, then the result of thunk-or
is the result of that application, so scheme tail apply is used for the final application.

6.3 Multiple Values

A primitive procedure can return multiple values by returning the result of calling scheme values.
The functions scheme eval compiled multi, scheme apply multi, scheme eval compiled multi, and
scheme apply multi potentially return multiple values; all other evaluation and applications procedures

return a single value or raise an exception.

Multiple return values are repsented by the scheme multiple values “value”. This quasi-value has the type
Scheme Object *, but it is not a pointer or a fixnum. When the result of an evaluation or application is
scheme multiple values, the number of actual values can be obtained as scheme multiple count and the
array of Scheme Object * values as scheme multiple array. If any application or evaluation procedure is
called, the scheme multiple count and scheme multiple array variables may be modified, but the array
previously referenced by scheme multiple array is never re-used and should never be modified.

The scheme multiple count and scheme multiple array variables only contain meaningful values when
scheme multiple values is returned.

6.4 Library Functions

• Scheme Object *scheme eval(Scheme Object *expr , Scheme Env *env)

Evaluates the (uncompiled) S-expression expr in the namespace env .

• Scheme Object *scheme eval compiled(Scheme Object *obj)

Evaluates the compiled expression obj , which was previously returned from scheme compile.

• Scheme Object *scheme eval compiled multi(Scheme Object *obj)

Evaluates the compiled expression obj , possibly returning multiple values (see §6.3).

• Scheme Object * scheme eval compiled(Scheme Object *obj)

Non-top-level version of scheme eval compiled. (See §6.1.)

• Scheme Object * scheme eval compiled multi(Scheme Object *obj)

Non-top-level version of scheme eval compiled multi. (See §6.1.)

• Scheme Env *scheme basic env()

20

6. Evaluation 6.4. Library Functions

Creates the main namespace for an embedded MzScheme. This procedure must be called before other
MzScheme library function (except scheme make param). Extensions to MzScheme cannot call this function.

If it is called more than once, this function resets all threads (replacing the main thread), parameters, ports,
namespaces, and finalizations.

• Scheme Object *scheme make namespace(int argc, Scheme Object **argv)

Creates and returns a new namespace. This values can be cast to Scheme Env *. It can also be installed in
a parameterization using scheme set param with MZCONFIG ENV.

When MzScheme is embedded in an application, create the initial namespace with scheme basic env before
calling this procedure to create new namespaces.

• Scheme Object *scheme apply(Scheme Object *f , int c, Scheme Object **args)

Applies the procedure f to the given arguments.

• Scheme Object *scheme apply multi(Scheme Object *f , int c, Scheme Object **args)

Applies the procedure f to the given arguments, possibly returning multiple values (see §6.3).

• Scheme Object * scheme apply(Scheme Object *f , int c, Scheme Object **args)

Non-top-level version of scheme apply. (See §6.1.)

• Scheme Object * scheme apply multi(Scheme Object *f , int c, Scheme Object **args)

Non-top-level version of scheme apply multi. (See §6.1.)

• Scheme Object *scheme apply to list(Scheme Object *f , Scheme Object *args)

Applies the procedure f to the list of arguments in args.

• Scheme Object *scheme eval string(char *str , Scheme Env *env)

Reads an S-expression from str and evaluates it in the given namespace (raising an exception if the expression
returns multiple values).

• Scheme Object *scheme eval string multi(char *str , Scheme Env *env)

Like scheme eval string, but returns scheme multiple values when the expression returns multiple val-
ues.

• Scheme Object *scheme eval string all(char *str , Scheme Env *env , int all)

Like scheme eval string, but if all is not 0, then expressions are read and evaluated from str until the end
of the string is reached.

• Scheme Object *scheme tail apply(Scheme Object *f , int n, Scheme Object **args)

Applies the procedure as a tail-call. Actually, this function just registers the given application to be invoked
when control returns to the evaluation loop. (Hence, this function is only useful within a primitive procedure
that is returning to its calle.)

21

6.4. Library Functions 6. Evaluation

• Scheme Object *scheme tail apply no copy(Scheme Object *f , int n, Scheme Object **args)

Like scheme tail apply, but the array args is not copied. Use this only when args has infinite extent and
will not be used again, or when args will certainly not be used again until the called procedure has returned.

• Scheme Object *scheme tail apply to list(Scheme Object *f , Scheme Object *l)

Applies the procedure as a tail-call.

• Scheme Object *scheme compile(Scheme Object *form, Scheme Env *env)

Compiles the S-expression form in the given namespace. The returned value can be used with
scheme eval compiled et al.

• Scheme Object *scheme expand(Scheme Object *form, Scheme Env *env)

Expands all macros in the S-expression form using the given namespace.

• Scheme Object *scheme values(int n, Scheme Object **args)

Returns the given values together as multiple return values. Unless n is 1, the result will always be
scheme multiple values.

22

7. Exceptions and Escape Continuations

When MzScheme encounters an error, it raises an exception. The default exception handler invokes the error
display handler and then the error escape handler. The default error escape handler escapes via a primitive
error escape, which is implemented by calling scheme longjmp(scheme error buf). An embedding program
should call scheme setjmp(scheme error buf) before any top-level entry into MzScheme evaluation to catch
primitive error escapes:

...
if (scheme_setjmp(scheme_error_buf)) {
/* There was an error */
...

} else {
v = scheme_eval_string(s, env);

}
...

New primitive procedures can raise a generic exception by calling scheme signal error. The arguments
for scheme signal error are roughly the same as for the standard C function printf. A specific primitive
exception can be raised by calling scheme raise exn.

Full continuations are implemented in MzScheme by copying the C stack and using scheme setjmp and
scheme longjmp. As long a C/C++ application invokes MzScheme evaluation through the top-level evalua-
tion functions (scheme eval, scheme eval, etc., as opposed to scheme eval, scheme apply, etc.), the code
is protected against any unusual behavior from Scheme evaluations (such as returning twice from a function)
because continuation invocations ae confined to jumps within a single top-level evaluation. However, escape
continuation jumps are still allowed; as explained in the following sub-section, special care must be taken in
extension that is sensitive to escapes.

7.1 Temporarily Catching Error Escapes

When implementing new primitive procedure, it is sometimes useful to catch and handle errors that occur
in evaluating subexpressions. One way to do this is the following: first copy scheme error buf to a tem-
porary variable, invoke scheme setjmp(scheme error buf), perform the function’s work, and then restore
scheme error buf before returning a value.

However, beware that the invocation of an escaping continuation looks like a primitive error escape, but
the special indicator flag scheme jumping to continuation is non-zero (instead of its normal zero value);
this situation is only visible when implementing a new primitive procedure. Honor the escape request by
chaining to the previously saved error buffer; otherwise, call scheme clear escape.

mz_jmp_buf save;
memcpy(&save, &scheme_error_buf, sizeof(mz_jmp_buf));
if (scheme_setjmp(scheme_error_buf)) {
/* There was an error or continuation invokcation */

23

7.1. Temporarily Catching Error Escapes 7. Exceptions and Escape Continuations

if (scheme_jumping_to_continuation) {
/* It was a continuation jump */
scheme_longjmp(save, 1);
/* To block the jump, instead: scheme_clear_escape(); */

} else {
/* It was a primitive error escape */

}
} else {
scheme_eval_string("x", scheme_env);

}
memcpy(&scheme_error_buf, &save, sizeof(mz_jmp_buf));

This solution works fine as long as the procedure implementation only calls top-level evaluation func-
tions (scheme eval, scheme eval, etc., as opposed to scheme eval, scheme apply, etc.). Otherwise,
use scheme dynamic wind to protect your code against full continuation jumps in the same way that
dynamic-wind is used in Scheme.

The above solution simply traps the escape; it doesn’t report the reason that the escape occurred. To
catch exceptions and obtain information about the exception, the simplest route is to mix Scheme code
with C-implemented thunks. The code below can be used to catch exceptions in a variety of situations. It
implements the function apply catch exceptions, which catches exceptions during the application of a
thunk. (This code is in plt/collects/mzscheme/examples/catch.c in the source code distribution.)

static Scheme_Object *exn_catching_apply, *exn_p, *exn_message;

static void init_exn_catching_apply()
{
if (!exn_catching_apply) {
char *e =
"(lambda (thunk) "
"(with-handlers ([void (lambda (exn) (cons #f exn))]) "
"(cons #t (thunk))))";

/* make sure we have a namespace with the standard bindings: */
Scheme_Env *env = (Scheme_Env *)scheme_make_namespace(0, NULL);

scheme_register_extension_global(&exn_catching_apply, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_p, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_message, sizeof(Scheme_Object *));

exn_catching_apply = scheme_eval_string(e, env);
exn_p = scheme_lookup_global(scheme_intern_symbol("exn?"), env);
exn_message = scheme_lookup_global(scheme_intern_symbol("exn-message"), env);

}
}

/* This function applies a thunk, returning the Scheme value if there’s no exception,
otherwise returning NULL and setting *exn to the raised value (usually an exn
structure). */

Scheme_Object *_apply_thunk_catch_exceptions(Scheme_Object *f, Scheme_Object **exn)
{
Scheme_Object *v;

24

7. Exceptions and Escape Continuations 7.2. Library Functions

init_exn_catching_apply();

v = _scheme_apply(exn_catching_apply, 1, &f);
/* v is a pair: (cons #t value) or (cons #f exn) */

if (SCHEME_TRUEP(SCHEME_CAR(v)))
return SCHEME_CDR(v);

else {
*exn = SCHEME_CDR(v);
return NULL;

}
}

Scheme_Object *extract_exn_message(Scheme_Object *v)
{
init_exn_catching_apply();

if (SCHEME_TRUEP(_scheme_apply(exn_p, 1, &v)))
return _scheme_apply(exn_message, 1, &v);

else
return NULL; /* Not an exn structure */

}

In the following example, the above code is used to catch exceptions that occur during while evaluating
source code from a string.

static Scheme_Object *do_eval(void *s, int noargc, Scheme_Object **noargv)
{
return scheme_eval_string((char *)s, scheme_get_env(scheme_config));

}

static Scheme_Object *eval_string_or_get_exn_message(char *s)
{
Scheme_Object *v, *exn;

v = _apply_thunk_catch_exceptions(scheme_make_closed_prim(do_eval, s), &exn);
/* Got a value? */
if (v)
return v;

v = extract_exn_message(exn);
/* Got an exn? */
if (v)
return v;

/* ‘raise’ was called on some arbitrary value */
return exn;

}

7.2 Library Functions

• void scheme signal error(char *msg , ...)

25

7.2. Library Functions 7. Exceptions and Escape Continuations

Raises a generic primitive exception. The parameters are roughly as for printf, but restricted to the
following format directives:

• %c — a character

• %d — an integer

• %ld — a long integer

• %f — a floating-point double

• %s — a nul-terminated string

• %S — a MzScheme symbol (a Scheme Object*)

• %t — a string with a long size (two arguments), possibly containing a non-terminating nul character,
and possibly without a nul-terminator

• %T — a MzScheme string (a Scheme Object*)

• %q — a string, truncated to 253 characters, with ellipses printed if the string is truncated

• %Q — a MzScheme string (a Scheme Object*), truncated to 253 characters, with ellipses printed if
the string is truncated

• %V — a MzScheme value (a Scheme Object*), truncated according to the current error print width.

• %e — an errno value, to be printed as a text message.

• %E — a platform-specific value, to be printed as a text message.

• %% — a percent sign

The arguments following the format string must include no more than 10 strings, 10 MzScheme values, 10
integers, and 10 floating-point numbers. (This restriction simplifies the implementation with precise garbage
collection.)

• void scheme raise exn(int exnid , ...)

Raises a specific primitive exception. The exnid argument specifies the exception to be raised. If an instance
of that exception has n fields, then the next n − 2 arguments are values for those fields (skipping the
message and debug-info fields). The remaining arguments start with an error string and proceed roughly
as for printf; see scheme signal error above for more details.

Exception ids are #defined using the same names as in Scheme, but prefixed with “MZ”, all let-
ters are capitalized, and all “:’s’, “-”s, and “/”s are replaced with underscores. For example,
MZEXN I O FILESYSTEM DIRECTORY is the exception id for the bad directory pathname exception.

• void scheme warning(char *msg , ...)

Signals a warning. The parameters are roughly as for printf; see scheme signal error above for more
details.

• void scheme wrong count(char *name, int minc, int maxc, int argc, Scheme Object **argv)

26

7. Exceptions and Escape Continuations 7.2. Library Functions

This function is automatically invoked when the wrong number of arguments are given to a primitive proce-
dure. It signals that the wrong number of parameters was received and escapes (like scheme signal error).
The name argument is the name of the procedure that was given the wrong number of arguments; minc is
the minimum number of expected arguments; maxc is the maximum number of expected arguments, or -1 if
there is no maximum; argc and argv contain all of the received arguments.

• void scheme wrong type(char *name, char *expected , int which, int argc, Scheme Object **argv)

Signals that an argument of the wrong type was received, and escapes (like scheme signal error). The
name argument is the name of the procedure that was given the wrong type of argument; expected is the
name of the expected type; which is the offending argument in the argv array; argc and argv contain all of
the received arguments. If the original argc and argv are not available, provide -1 for which and a pointer
to the bad value in argv ; argc is ignored in this case.

• void scheme wrong return arity(char *name, int expected , int got , Scheme Object **argv ,
const char *detail , . . .)

Signals that the wrong number of values were returned to a multiple-values context. The expected argument
indicates how many values were expected, got indicates the number received, and argv are the received
values. The detail string can be NULL or it can contain a printf-style string (with additional arguments) to
describe the context of the error; see scheme signal error above for more details about the printf-style
string.

• void scheme unbound global(char *name)

Signals an unbound-variable error, where name is the name of the variable.

• char *scheme make provided string(Scheme Object *o, int count , int *len)

Converts a Scheme value into a string for the purposes of reporting an error message. The count argument
specifies how many Scheme values total will appear in the error message (so the string for this value can be
scaled appropriately). If len is not NULL, it is filled with the length of the returned string.

• char *scheme make args string(char *s, int which, int argc, Scheme Object **argv , long *len)

Converts an array of Scheme values into a string, skipping the array element indicated by which. This
function is used to specify the “other” arguments to a function when one argument is bad (thus giving the
user more information about the state of the program when the error occurred). If len is not NULL, it is filled
with the length of the returned string.

• void scheme check proc arity(char *where, int a, int which, int argc, Scheme Object **argv)

Checks the whichth argument in argv to make sure it is a procedure that can take a arguments. If there
is an error, the where, which, argc, and argv arguments are passed on to scheme wrong type. As in
scheme wrong type, which can be -1, in which case *argv is checked.

• Scheme Object *scheme dynamic wind(
void (*pre)(void *data),
Scheme Object *(*action)(void *data),
void (*post)(void *data),
Scheme Object *(*jmp handler)(void *data),
void *data)

27

7.2. Library Functions 7. Exceptions and Escape Continuations

Evaluates calls the function action to get a value for the scheme dynamic wind call. The functions pre and
post are invoked when jumping into and out of action, repsectively.

The function jmp handler is called when an error is signaled (or an escaping continuation is invoked) duirng
the call to action; if jmp handler returns NULL, then the error is passed on to the next error handler, otherwise
the return value is used as the return value for the scheme dynamic wind call.

The pointer data can be anything; it is passed along in calls to action, pre, post , and jmp handler .

• void scheme clear escape()

Clears the “jumping to escape continuation” flag associated with a thread. Call this function when blocking
escape continuation hops (see the first example in §7.1).

28

8. Threads

The intializer function scheme basic env creates the main Scheme thread; all other threads are created
through calls to scheme thread.

Information about each internal MzScheme thread is kept in a Scheme Thread structure. A pointer to the
current thread’s structure is available as scheme current thread. A Scheme Thread structure includes the
following fields:

• error buf — This is the mz jmp buf value used to escape from errors. The error buf value of the
current thread is available as scheme error buf.

• cjs.jumping to continuation — This flag distinguishes escaping-continuation invocations from
error escapes. The cjs.jumping to continuation value of the current thread is available as
scheme jumping to continuation.

• config — The thread’s current parameterization. See also §9.

• next — The next thread in the linked list of threads; this is NULL for the main thread.

The list of all threads is kept in a linked list; scheme first thread points to the first thread in the list. The
last thread in the list is always the main thread.

8.1 Integration with Threads

MzScheme’s threads can break external C code under two circumstances:

• Pointers to stack-based values can be communicated between threads. For example, if thread A stores a
pointer to a stack-based variable in a global variable, if thread B uses the pointer in the global variable,
it may point to data that is not currently on the stack.

• C functions that can invoke MzScheme (and also be invoked by MzScheme) depend on strict function-
call nesting. For example, suppose a function F uses an internal stack, pushing items on to the stack
on entry and popping the same items on exit. Suppose also that F invokes MzScheme to evaluate an
expression. If the evaluate on this expression invoked F again in a new thread, but then returns to the
first thread before completeing the second F, then F’s internal stack will be corrupted.

If either of these circumstances occurs, MzScheme will probably crash.

8.2 Allowing Thread Switches

C code that performs substantial or unbounded work should occassionally call SCHEME USE FUEL—actually
a macro—which allows MzScheme to swap in another Scheme thread to run, and to check for breaks on the
current thread. In particular, if breaks are enabled, then SCHEME USE FUEL may trigger an exception.

29

8.3. Blocking the Current Thread 8. Threads

The macro consumes an integer argument. On most platforms, where thread scheduling is based on timer
interrupts, the argument is ignored. On some platforms, however, the integer represents the amount of
“fuel” that has been consumed since the last call to SCHEME USE FUEL. For example, the implementation of
vector->list consumes a unit of fuel for each created cons cell:
Scheme_Object *scheme_vector_to_list(Scheme_Object *vec)
{
int i;
Scheme_Object *pair = scheme_null;

i = SCHEME_VEC_SIZE(vec);

for (; i--;) {
SCHEME_USE_FUEL(1);
pair = scheme_make_pair(SCHEME_VEC_ELS(vec)[i], pair);

}

return pair;
}

The SCHEME USE FUEL macro expands to a C block, not an expression.

8.3 Blocking the Current Thread

Embedding or extension code sometimes needs to block, but blocking should allow other MzScheme threads
to execute. To allow other threads to run, block using scheme block until. This procedure takes two
functions: a polling function that tests whether the blocking operation can be completed, and a prepare-
to-sleep function that sets bits in fd sets when MzScheme decides to sleep (because all MzScheme threads
are blocked). Under Windows, an “fd set” can also accomodate OS-level semaphores or other handles via
scheme add fd handle.

Since the functions passed to scheme block until are called by the Scheme thread scheduler, they must
never raise exceptions, call scheme apply, or trigger the evaluation of Scheme code in any way. The
scheme block until function itself may call the current exception handler, however, in reaction to a break
(if breaks are enabled).

When a blocking operation is associated with an object, then the object might make sense as an argu-
ment to object-wait-multiple. To extend the set of objects accepted by object-wait-multiple, either
register polling and sleeping functions with scheme add waitable, or register a semaphore accessor with
scheme add waitable through sema.

8.4 Threads in Embedded MzScheme with Event Loops

When MzScheme is embedded in an application with an event-based model (i.e., the execution of Scheme
code in the main thread is repeatedly triggered by external events until the application exits) special hooks
must be set to ensure that non-main threads execute correctly. For example, during the execution in the
main thread, a new thread may be created; the new thread may still be running when the main thread
returns to the event loop, and it may be arbitrarily long before the main thread continues from the event
loop. Under such circumstances, the embedding program must explicitly allow MzScheme to execute the
non-main threads; this can be done by periodically calling the function scheme check threads.

Thread-checking only needs to be performed when non-main threads exist (or when there are active callback
triggers). The embedding application can set the global function pointer scheme notify multithread to a

30

8. Threads 8.4. Threads in Embedded MzScheme with Event Loops

function that takes an integer parameter and returns void. This function is be called with 1 when thread-
checking becomes necessary, and then with 0 when thread checking is no longer necessary. An embedding
program can use this information to prevent unnecessary scheme check threads polling.

The below code illustrates how MrEd formerly set up scheme check threads polling using the wxWindows
wxTimer class. (Any regular event-loop-based callback is appropriate.) The scheme notify multithread
pointer is set to MrEdInstallThreadTimer. (MrEd no longer work this way, however.)

class MrEdThreadTimer : public wxTimer
{
public:
void Notify(void); /* callback when timer expires */

};

static int threads_go;
static MrEdThreadTimer *theThreadTimer;
#define THREAD_WAIT_TIME 40

void MrEdThreadTimer::Notify()
{
if (threads_go)
Start(THREAD_WAIT_TIME, TRUE);

scheme_check_threads();
}

static void MrEdInstallThreadTimer(int on)
{
if (!theThreadTimer)
theThreadTimer = new MrEdThreadTimer;

if (on)
theThreadTimer->Start(THREAD_WAIT_TIME, TRUE);

else
theThreadTimer->Stop();

threads_go = on;
if (on)
do_this_time = 1;

}

An alternate architecture, which MrEd now uses, is to send the main thread into a loop, which blocks until
an event is ready to handle. MzScheme automatically takes care of running all threads, and it does so
efficiently because the main thread blocks on a file descriptor, as explained in §8.3.

8.4.1 Callbacks for Blocked Threads

Scheme threads are sometimes blocked on file descriptors, such as an input file or the X event socket.
Blocked non-main threads do not block the main thread, and therefore do not affect the event loop, so
scheme check threads is sufficient to implement this case correctly. However, it is wasteful to poll these
descriptors with scheme check threads when nothing else is happening in the application and when a lower-
level poll on the file descriptors can be installed. If the global function pointer scheme wakeup on input is
set, then this case is handled more efficiently by turning off thread checking and issuing a “wakeup” request

31

8.4. Threads in Embedded MzScheme with Event Loops 8. Threads

on the blocking file descriptors through scheme wakeup on input. (The scheme wakeup on input function
is only used on platforms with file descriptions.)

A scheme wakeup on input procedure takes a pointer to an array of three fd sets (sortof1) and returns
void. The scheme wakeup on input does not sleep; it just sets up callbacks on the specified file descriptors.
When input is ready on any of those file descriptors, the callbacks are be removed and scheme wake up is
called.

For example, the X Windows version of MrEd formerly set scheme wakeup on input to this MrEdNeedWakeup:

static XtInputId *scheme_cb_ids = NULL;
static int num_cbs;

static void MrEdNeedWakeup(void *fds)
{
int limit, count, i, p;
fd_set *rd, *wr, *ex;

rd = (fd_set *)fds;
wr = ((fd_set *)fds) + 1;
ex = ((fd_set *)fds) + 2;

limit = getdtablesize();

/* See if we need to do any work, really: */
count = 0;
for (i = 0; i < limit; i++) {
if (MZ_FD_ISSET(i, rd))
count++;

if (MZ_FD_ISSET(i, wr))
count++;

if (MZ_FD_ISSET(i, ex))
count++;

}

if (!count)
return;

/* Remove old callbacks: */
if (scheme_cb_ids)
for (i = 0; i < num_cbs; i++)
notify_set_input_func((Notify_client)NULL, (Notify_func)NULL,

scheme_cb_ids[i]);

num_cbs = count;
scheme_cb_ids = new int[num_cbs];

/* Install callbacks */
p = 0;
for (i = 0; i < limit; i++) {
if (MZ_FD_ISSET(i, rd))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

1To ensure maximum portability, use MZ FD XXX instead of FD XXX.

32

8. Threads 8.5. Sleeping by Embedded MzScheme

(XtPointer *)XtInputReadMask,
(XtInputCallbackProc)MrEdWakeUp, NULL);

if (MZ_FD_ISSET(i, wr))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputWriteMask,
(XtInputCallbackProc)MrEdWakeUp, NULL);

if (MZ_FD_ISSET(i, ex))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputExceptMask,
(XtInputCallbackProc)MrEdWakeUp,
NULL);

}
}

/* callback function when input/exception is detected: */
Bool MrEdWakeUp(XtPointer, int *, XtInputId *)
{
int i;

if (scheme_cb_ids) {
/* Remove all callbacks: */
for (i = 0; i < num_cbs; i++)
XtRemoveInput(scheme_cb_ids[i]);

scheme_cb_ids = NULL;

/* ‘‘wake up’’ */
scheme_wake_up();

}

return FALSE;
}

8.5 Sleeping by Embedded MzScheme

When all MzScheme threads are blocked, MzScheme must “sleep” for a certain number of seconds or until
external input appears on some file descriptor. Generally, sleeping should block the main event loop of
the entire application. However, the way in which sleeping is performed may depend on the embedding
application. The global function pointer scheme sleep can be set by an embedding application to implement
a blocking sleep, although MzScheme implements this function for you.

A scheme sleep function takes two arguments: a float and a void *. The latter is really points to an array
of three “fd set” records (one for read, one for write, and one for exceptions); these records are described
further below. If the float argument is non-zero, then the scheme sleep function blocks for the specified
number of seconds, at most. The scheme sleep function should block until there is input one of the file
descriptors specified in the “fd set,” indefinitely if the float argument is zero.

The second argument to scheme sleep is conceptually an array of three fd set records, but always use
scheme get fdset to get anything other than the zeroth element of this array, and manipulate each “fd set”
with MZ FD XXX instead of FD XXX.

The following function mzsleep is an appropriate scheme sleep function for most any Unix or Windows
application. (This is approximately the built-in sleep used by MzScheme.)

33

8.6. Library Functions 8. Threads

void mzsleep(float v, void *fds)
{
if (v) {
sleep(v);

} else {
int limit;
fd_set *rd, *wr, *ex;

ifdef WIN32
limit = 0;

else
limit = getdtablesize();

endif

rd = (fd_set *)fds;
wr = (fd_set *)scheme_get_fdset(fds, 1);
ex = (fd_set *)scheme_get_fdset(fds, 2);

select(limit, rd, wr, ex, NULL);
}

}

8.6 Library Functions

• Scheme Object *scheme thread(Scheme Object *thunk , Scheme Config *config)

Creates a new thread, using the given parameterization config for the new thread. The config argument is
usually scheme make config(). The new thread begins evaluating the application of the procedure thunk
(with no arguments).

• Scheme Object *scheme thread w custodian(Scheme Object *thunk , Scheme Config *config ,
Scheme Custodian *cust)

Like scheme thread, except that the created thread belongs to cust instead of the current custodian.

• Scheme Object *scheme make sema(long v)

Creates a new semaphore.

• void scheme post sema(Scheme Object *sema)

Posts to sema.

• int scheme wait sema(Scheme Object *sema, int try)

Waits on sema. If try is not 0, the wait can fail and 0 is returned for failure, otherwise 1 is returned.

• void scheme thread block(float sleep time)

Allows the current thread to be swapped out in favor of other threads. If sleep time positive, then the current
thread will sleep for at least sleep time seconds.

34

8. Threads 8.6. Library Functions

After calling this function, a program should almost always call scheme making progress next. The excep-
tion is when scheme thread block is called in a polling loop that performs no work that affects the progress
of other threads. In that case, scheme making progress should be called immediately after exiting the loop.

See also scheme block until, and see also the SCHEME USE FUEL macro in §8.2.

• void scheme swap thread(Scheme Thread *thread)

Swaps out the current thread in favor of thread .

• void scheme break thread(Scheme Thread *thread)

Issues a user-break in the given thread.

• int scheme break waiting(Scheme Thread *thread)

Returns 1 if a break from break-thread or scheme break thread has occured in the specified thread but
has not yet been handled.

• int scheme block until(Scheme Ready Fun f , Scheme Needs Wakeup Fun fdf ,
Scheme Object *data, float sleep)

The Scheme Ready Fun and Scheme Needs Wakeup Fun types are defined as follows:
typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data, void *fds);

Blocks the current thread until f returns a true value. The f function is called periodically—at least once
per potential swap-in of the blocked thread—and it may be called multiple times even after it returns a true
value. If f ever returns a true value, it must continue to return a true value. The argument to f is the same
data as provided to scheme block until, and data is ignored otherwise. (The data argument is not actually
required to be a Scheme Object* value, because it is only used by f and fdf .)

If MzScheme decides to sleep, then the fdf function is called to sets bits in fds, conceptually an array of three
fd sets: one or reading, one for writing, and one for exceptions. Use scheme get fdset to get elements
of this array, and manipulate an “fd set” with MZ FD XXX instead of FD XXX. Under Windows, an “fd set”
can also accomodate OS-level semaphores or other handles via scheme add fd handle.

The fdf argument can be NULL, which implies that the thread becomes unblocked (i.e., ready changes its
result to true) only through Scheme actions, and never through external processes (e.g., through a socket or
OS-level semaphore).

If sleep is a positive number, then scheme block until polls f at least every sleep seconds, but
scheme block until does not return until f returns a true value. The call to scheme block until can
return before sleep seconds if f returns a true value.

The return value from scheme block until is the return value of its most recent call to f , which enables f
to return some information to the scheme block until caller.

See §8.3 for information about restrictions on the f and fdf functions.

• void scheme check threads()

This function is periodically called by the embedding program to give background processes time to execute.
See §8.4 for more information.

35

8.6. Library Functions 8. Threads

• void scheme wake up()

This function is called by the embedding program when there is input on an external file descriptor. See
§8.5 for more information.

• void *scheme get fdset(void *fds, int pos)

Extracts an “fd set” from an array passed to scheme sleep, a callback for scheme block until, or an
input port callback for scheme make input port.

• void scheme add fd handle(void *h, void *fds, int repost)

Adds an OS-level semaphore (Windows) or other waitable handle (Windows) to the “fd set” fds. When
MzScheme performs a “select” to sleep on fds, it also waits on the given semaphore or handle. This feature
makes it possible for MzScheme to sleep until it is awakened by an external process.

MzScheme does not attempt to deallocate the given semaphore or handle, and the “select” call using fds
may be unblocked due to some other file descriptor or handle in fds. If repost is a true value, then h must
be an OS-level semeaphore, and if the “select” unblocks due to a post on h, then h is reposted; this allows
clients to treat fds-installed semaphores uniformly, whether or not a post on the semaphore was consumed
by “select”.

The scheme add fd handle function is useful for implementing the second procedure passed to
scheme wait until, or for implementing a custom input port.

Under Unix and Mac OS, this function has no effect.

• void scheme add fd eventmask(void *fds, int mask)

Adds an OS-level event type (Windows) to the set of types in the “fd set” fds. When MzScheme performs
a “select” to sleep on fds, it also waits on events of them specified type. This feature makes it possible for
MzScheme to sleep until it is awakened by an external process.

The event mask is only used when some handle is installed with scheme add fd handle. This restriction is
stupid, and it may force you to create a dummy semaphore that is never posted.

Under Unix, and Mac OS, this function has no effect.

• void scheme add waitable(Scheme Type type, Scheme Ready Fun ready ,
Scheme Needs Wakeup Fun wakeup, Scheme Wait Filter Fun filter)

The argument types are defined as follows:
typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data, void *fds);
typedef int (*Scheme_Wait_Filter_Fun)(Scheme_Object *data);

Extends the set of waitable objects for object-wait-multiple to those with the type tag type. If filter is
non-NULL, it constrains the new watiable set to those objects for which filter returns a non-zero value.

The ready and wakeup functions are used in the same way was the arguments to scheme block until.

• void scheme add waitable through sema(Scheme Type type, Scheme Wait Sema Fun getsema,
Scheme Wait Filter Fun filter)

36

8. Threads 8.6. Library Functions

Like scheme add waitable, but for objects where waiting is based on a semaphore. Instead of ready and
wakeup functions, the getsema function extracts a semaphore for a given object:

typedef Scheme_Object *(*Scheme_Wait_Sema_Fun)(Scheme_Object *data, int *repost);

If a successful wait should leave the semaphore waited, then getsema should set *repost to 0. Otherwise,
the given semaphore will be re-posted after a successful wait. A getsema function should almost always set
*repost to 1.

• void scheme making progress()

Notifies the scheduler that the current thread is not simply calling scheme thread block in a loop, but that
it is actually making progress.

• int scheme tls allocate()

Allocates a thread local storage index to be used with scheme tls set and scheme tls get.

• void scheme tls set(int index , void *v)

Stores a thread-specific value using an index allocated with scheme tls allocate.

• void *scheme tls get(int index)

Retrieves a thread-specific value installed with scheme tls set. If no thread-specific value is available for
the given index, NULL is returned.

• Scheme Object *scheme call enable break(Scheme Prim *prim, int argc, Scheme Object **argv)

Calls prim with the given argc and argv with breaks enabled. The prim function can block, in which case it
might be interrupted by a break. The prim function should not block, yield, or check for breaks after it suc-
ceeds, where “succeeds” depends on the operation. For example, tcp-accept/enable-break is implemented
by wrapping this function around the implementation of tcp-accept; the tcp-accept implementation does
not block or yield after it accepts a connection.

37

9. Parameterizations

A parameterization is a set of parameter values. Each thread has its own parameterization.

Parameterization information is stored in a Scheme Config record. For the currently executing thread,
scheme config is the current parameterization. For any thread, the thread’s Scheme Thread record’s config
field stores the parameterization pointer.

Parameter values for built-in parameters are obtained and modified using scheme get param and
scheme set param. Each parameter is stored as a Scheme Object * value, and the built-in parameters
are accessed through the following indices:

• MZCONFIG ENV — current-namespace (use scheme get env)
• MZCONFIG INPUT PORT — current-input-port
• MZCONFIG OUTPUT PORT — current-output-port
• MZCONFIG ERROR PORT — current-error-port
• MZCONFIG ENABLE BREAK — break-enabled
• MZCONFIG ENABLE EXCEPTION BREAK — exception-break-enabled
• MZCONFIG ERROR DISPLAY HANDLER — error-display-handler
• MZCONFIG ERROR PRINT VALUE HANDLER — error-value->string-handler
• MZCONFIG EXIT HANDLER — exit-handler
• MZCONFIG EXN HANDLER — current-exception-handler
• MZCONFIG DEBUG INFO HANDLER — debug-info-handler
• MZCONFIG EVAL HANDLER — current-eval
• MZCONFIG LOAD HANDLER — current-load
• MZCONFIG PRINT HANDLER — current-print
• MZCONFIG PROMPT READ HANDLER — current-prompt-read
• MZCONFIG CAN READ GRAPH — read-accept-graph
• MZCONFIG CAN READ COMPILED — read-accept-compiled
• MZCONFIG CAN READ BOX — read-accept-box
• MZCONFIG CAN READ TYPE SYMBOL — read-accept-type-symbol
• MZCONFIG CAN READ PIPE QUOTE — read-accept-bar-quote
• MZCONFIG PRINT GRAPH — print-graph
• MZCONFIG PRINT STRUCT — print-struct
• MZCONFIG PRINT BOX — print-box
• MZCONFIG CASE SENS — read-case-sensitive
• MZCONFIG SQUARE BRACKETS ARE PARENS — read-square-brackets-as-parens
• MZCONFIG CURLY BRACES ARE PARENS — read-curly-braces-as-parens
• MZCONFIG ERROR PRINT WIDTH — error-print-width
• MZCONFIG CONFIG BRANCH HANDLER — parameterization-branch-handler
• MZCONFIG ALLOW SET UNDEFINED — allow-compile-set!-undefined
• MZCONFIG CUSTODIAN — current-custodian
• MZCONFIG USE COMPILED KIND — use-compiled-file-kinds
• MZCONFIG LOAD DIRECTORY — current-load-relative-directory
• MZCONFIG COLLECTION PATHS — current-library-collection-paths
• MZCONFIG PORT PRINT HANDLER — global-port-print-handler

38

9. Parameterizations 9.1. Library Functions

• MZCONFIG LOAD EXTENSION HANDLER — current-load-extension

When installing a new parameter with scheme set param, no checking is performed on the supplied value to
ensure that it is a legal value for the parameter; this is the responsibility of the caller of scheme set param.
Note that Boolean parameters should only be set to the values #t and #f.

New primitive parameter indices are created with scheme new param and implemented with
scheme make parameter and scheme param config.

9.1 Library Functions

• Scheme Object *scheme get param(Scheme Config *config , int param id)

Gets the current value of the parameter specified by param id . (This is a macro.)

• Scheme Object *scheme get param or null(Scheme Config *config , int param id)

Gets the current value of the parameter specified by param id . (This is a macro.)

• Scheme Object *scheme make config(Scheme Config *base)

Creates and returns a new parameterization, using base as the source parameterization. If base is NULL, the
current thread’s parameterization is used.

• int scheme new param()

Allocates a new primitive parameter index. This function must be called before scheme basic env.

• Scheme Object *scheme register parameter(Scheme Prim *function, char *name, int exnid)

Use this function instead of the other primitive-constructing functions, like scheme make prim, to create a
primitive parameter procedure. See also scheme param config, below.

• Scheme Object *scheme param config(char *name, Scheme Object *param, int argc, Scheme Object **argv ,
int arity , Scheme Prim *check , char *expected , int isbool)

Call this procedure in a primitive parameter procedure to implement the work of getting or setting the
parameter. The name argument should be the parameter procedure name; it is used to report errors. The
param argument is a fixnum corresponding to the primtive parameter index returned by scheme new param.
The argc and argv arguments should be the un-touched and un-tested arguments that were passed to the
primitive parameter. Argument-checking is performed within scheme param config using arity , check ,
expected , and isbool :

• If arity is non-negative, potential parameter values must be able to accept the specified number of
arguments. The check and expected arguments should be NULL.

• If check is not NULL, it is called to check a potential parameter value. The arguments passed to check
are always 1 and an array that contains the potential parameter value. If isbool is 0 and check returns
scheme false, then a type error is reported using name and expected . If isbool is 1, then a type error
is reported only when check returns NULL and any non-NULL return value is used as the actual value
to be stored for the parameter.

• Otherwise, isbool should be 1. A potential procedure argument is then treated as a Boolean value.

39

10. Bignums, Rationals, and Complex Numbers

MzScheme supports integers of an arbitrary magnitude; when an integer cannot be represented as a fixnum
(i.e., 30 or 62 bits plus a sign bit), then it is reprsented by the MzScheme type scheme bignum type. There
is no overlap in integer values represented by fixnums and bignums.

Rationals are implemented by the type scheme rational type, composed of a numerator and a denominator.
The numerator and denominator fixnums or bignums (possibly mixed).

Complex numbers are implemented by the types scheme complex type and scheme complex izi type, com-
posed of a real and imaginary part. The real and imaginary parts will either be both flonums, both exact
numbers (fixnums, bignums, and rationals can be mixed in any way), or one part will be eacxt 0 and the
other part will be a flonum. If the inexact part is inexact 0, the type is scheme complex izi type, otherwise
the type is scheme complex type; this distinction make it easy to test whether a complex number should
be treated as a real number.

10.1 Library Functions

• int scheme is exact(Scheme Object *n)

Returns 1 if n is an exact number, 0 otherwise (n need not be a number).

• int scheme is inexact(Scheme Object *n)

Returns 1 if n is an inexact number, 0 otherwise (n need not be a number).

• Scheme Object *scheme make bignum(long v)

Creates a bignum representing the integer v . This can create a bignum that otherwise fits into a fixnum.
This must only be used to create temporary values for use with the bignum functions. Final results can be
normalized with scheme bignum normalize. Only normalized numbers can be used with procedures that
are not specific to bignums.

• Scheme Object *scheme make bignum from unsigned(unsigned long v)

Like scheme make bignum, but works on unsigned integers.

• double scheme bignum to double(Scheme Object *n)

Converts a bignum to a floating-point number, with reasonable but unspecified accuracy.

• float scheme bignum to float(Scheme Object *n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum to double.

40

10. Bignums, Rationals, and Complex Numbers 10.1. Library Functions

• Scheme Object *scheme bignum from double(double d)

Creates a bignum that is close in magnitude to the floating-point number d . The conversion accuracy is
reasonable but unspecified.

• Scheme Object *scheme bignum from float(float f)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum from double.

• char *scheme bignum to string(Scheme Object *n, int radix)

Writes a bignum into a newly allocated string.

• Scheme Object *scheme read bignum(char *str , int offset , int radix)

Reads a bignum from a string, starting from position offset in str . If the string does not represent an integer,
then NULL will be returned. If the string represents a number that fits in 31 bits, then a scheme integer type
object will be returned.

• Scheme Object *scheme bignum normalize(Scheme Object *n)

If n fits in 31 bits, then a scheme integer type object will be returned. Otherwise, n is returned.

• Scheme Object *scheme make rational(Scheme Object *r , Scheme Object *d)

Creates a rational from a numerator and denominator. The n and d parameters must be fixnums or bignums
(possibly mixed). The resulting will be normalized (thus, an bignum or fixnum might be returned).

• double scheme rational to double(Scheme Object *n)

Converts the rational n to a double.

• float scheme rational to float(Scheme Object *n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational to double.

• Scheme Object *scheme rational numerator(Scheme Object *n)

Returns the numerator of the rational n.

• Scheme Object *scheme rational denominator(Scheme Object *n)

Returns the denominator of the rational n.

• Scheme Object *scheme rational from double(double d)

Converts the given double into a maximally-precise rational.

• Scheme Object *scheme rational from float(float d)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational from double.

41

10.1. Library Functions 10. Bignums, Rationals, and Complex Numbers

• Scheme Object *scheme make complex(Scheme Object *r , Scheme Object *i)

Creates a complex number from real and imaginary parts. The r and i arguments must be fixnums, bignums,
flonums, or rationals (possibly mixed). The resulting number will be normalized (thus, a real number might
be returned).

• Scheme Object *scheme complex real part(Scheme Object *n)

Returns the real part of the complex number n.

• Scheme Object *scheme complex imaginary part(Scheme Object *n)

Returns the imaginary part of the complex number n.

42

11. Ports and the Filesystem

Ports are represented as Scheme values with the types scheme input port type and scheme output port type.
The function scheme read takes an input port value and returns the next S-expression from the port. The
function scheme write takes an output port and a value and writes the value to the port. Other standard
low-level port functions are also provided, such as scheme getc.

File ports are created with scheme make file input port and scheme make file output port; these
functions take a FILE * file pointer and return a Scheme port. Strings are read or written with
scheme make string input port, which takes a null-terminated string, and scheme make string output port,
which takes no arguments. The contents of a string output port are obtained with scheme get string output.

Custom ports, with arbitrary read/write handlers, are created with scheme make input port and
scheme make output port.

When opening a file for any reason using a name provided from Scheme, use scheme expand filename to
normalize the filename and resolve relative paths.

11.1 Library Functions

• Scheme Object *scheme read(Scheme Object *port)

Reads the next S-expression from the given input port.

• void scheme write(Scheme Object *obj , Scheme Object *port)

writes the Scheme value obj to the given output port.

• void scheme write w max(Scheme Object *obj , Scheme Object *port , int n)

Like scheme write, but the printing is truncated to n characters. (If printing is truncated, the last three
characters are printed as “.”.)

• void scheme display(Scheme Object *obj , Scheme Object *port)

displays the Scheme value obj to the given output port.

• void scheme display w max(Scheme Object *obj , Scheme Object *port , int n)

Like scheme display, but the printing is truncated to n characters. (If printing is truncated, the last three
characters are printed as “.”.)

• void scheme write string(char *str , long len, Scheme Object *port)

displays len characters of str to the given output port.

43

11.1. Library Functions 11. Ports and the Filesystem

• long scheme put string(const char *who, Scheme Object *port , char *str , long d , long len,
int rarely block)

Writes len characters of str , starting with the dth character. Characters are written to the given output
port, and errors are reported as from who.

If rarely block is 0, the write blocks until all len characters are written, possibly to an internal buffer. If
rarely block is 2, the write never blocks, and written characters are not buffered. If rarely block is 1, the
write blocks only until at least one character is written (without buffering) or until part of an internal buffer
is flushed.

The result is -1 if no characters are written from str and unflushed characters remain in the internal buffer.
Otherwise, the return value is the number of written characters.

• char *scheme write to string(Scheme Object *obj , long *len)

writes the Scheme value obj to a newly allocated string. If len is not NULL, *len is set to the length of the
string.

• void scheme write to string w max(Scheme Object *obj , long *len, int n)

Like scheme write to string, but the string is truncated to n characters. (If the string is truncated, the
last three characters are “.”.)

• char *scheme display to string(Scheme Object *obj , long *len)

displays the Scheme value obj to a newly allocated string. If len is not NULL, *len is set to the length of
the string.

• void scheme display to string w max(Scheme Object *obj , long *len, int n)

Like scheme display to string, but the string is truncated to n characters. (If the string is truncated, the
last three characters are “.”.)

• void scheme debug print(Scheme Object *obj)

writes the Scheme value obj to the main thread’s output port.

• void scheme flush output(Scheme Object *port)

If port is a file port, a buffered data is written to the file. Otherwise, there is no effect. port must be an
output port.

• int scheme getc(Scheme Object *port)

Get the next character from the given input port.

• int scheme peekc(Scheme Object *port)

Peeks the next character from the given input port.

• long scheme get string(const char *who, Scheme Object *port , char *buffer , int offset , long size,
int only avail , int peek , Scheme Object *peek skip)

44

11. Ports and the Filesystem 11.1. Library Functions

Gets multiple characters at once from a port, reporting errors with the name who. The size argument
indicates the number of requested characters, to be put into the buffer array starting at offset . The return
value is the number of characters actually read, or EOF if an end-of-file is encountered without reading any
characters.

If only avail is 0, then the function blocks until size characters are read or an end-of-file is reached. If
only avail is 1, the function blocks only until at least one character is read. If only avail is 2, the function
never blocks.

If peek is non-zero, then the port is peeked instead of read. The peek skip argument indicates a portion
of the input stream to skip as a non-negative, exact integer (fixnum or bignum). In this case, a only avail
value of 1 means to continue the skip until at least one character can be returned, even if it means multiple
blocking reads to skip characters.

If peek is zero, then peek skip should be either NULL (which means zero) or the fixnum zero.

• long scheme get chars(Scheme Object *port , long size, char *buffer , int offset)

For backward compatibility: calls scheme get string in essentially the obvious way with only avail as 0; if
size is negative, then it reads -size characters with only avail as 1.

• void scheme ungetc(int ch, Scheme Object *port)

Puts the character ch back as the next character to be read from the given input port. The character need
not have been read from port , and scheme ungetc can be called to insert any number of characters at the
start of port .

Use scheme getc followed by scheme unget only when your program will certainly call scheme getc again
to consume the character. Otherwsie, use scheme peekc, because some a port may implement peeking and
getting differently.

• int scheme char ready(Scheme Object *port)

Returns 1 if a call to scheme getc is guranteed not to block for the given input port.

• void scheme need wakeup(Scheme Object *port , void *fds)

Requests that appropriate bits are set in fds to specify which file descriptors(s) the given input port reads
from. (fds is sortof a pointer to an fd set struct; see §8.4.1.)

• long scheme tell(Scheme Object *port)

Returns the current read position of the given input port, or the current file position of the given output
port.

• long scheme tell line(Scheme Object *port)

Returns the current read line of the given input port. If lines are not counted, -1 is returned.

• void scheme count lines(Scheme Object *port)

Turns on line-counting for the given input port. To get accurate line counts, call this function immediately
after creating a port.

45

11.1. Library Functions 11. Ports and the Filesystem

• long scheme set file position(Scheme Object *port , long pos)

Sets the file position of the given input or output port (from the start of the file). If the port does not
support position setting, an exception is raised.

• void scheme close input port(Scheme Object *port)

Closes the given input port.

• void scheme close output port(Scheme Object *port)

Closes the given output port.

• Scheme Object *scheme make port type(char *name)

Creates a new port subtype.

• Scheme Input Port *scheme make input port(Scheme Object *subtype,
void *data,
Scheme Get String Fun get string fun,
Scheme Peek String Fun peek string fun,
Scheme In Ready Fun char ready fun,
Scheme Close Input Fun close fun,
Scheme Need Wakeup Input Fun need wakeup fun,
int must close)

Creates a new input port with arbitary control functions. The subtype is an arbitrary value to distinguish
the port’s class. The pointer data will be installed as the port’s user data, which can be extracted/set with
the SCHEME INPORT VAL macro.

The functions are as follows:

• long (*get string fun)(Scheme Input Port *port, char *buffer, long offset, long size, int non-
block) — Reads characters into buffer , starting from offset , up to size characters (i.e., buffer is at least
offset+size long). If nonblock is 0, then the function can block indifinitely. If nonblock is non-zero, the
function should never block. The function should return 0 if no characters are ready in non-blocking
mode. It should return EOF if an end-of-file is reached (and no characters were read into buffer). Oth-
erwise, the function should return the number of read characters. The function can raise an exception
to report an error.

• long (*peek string fun)(Scheme Input Port *port, char *buffer, long offset, long size, Scheme Object
*skip, int nonblock) — Can be NULL to use a default implementation of peeking that uses
get string proc. Otherwise, the protocol is the same as for get string proc, except that an extra skip
argument indicates the number of input elements to skip (but skip does not apply to buffer). The skip
value will be a non-negative exact integer, either a fixnum or a bignum.

• int (*char ready fun)(Scheme Input Port *port) — Returns 1 when a non-blocking get string fun
will return characters or an EOF.

• void (*close fun)(Scheme Input Port *port) — Called to close the port. The port is not considered
closed until the function returns.

• void (*need wakeup fun)(Scheme Input Port *port, void *fds) — Called when the port is blocked
on a read; need wakeup fun should set appropriate bits in fds to specify which file decriptor(s) it is
blocked on. The fds argument is conceptually an array of three fd set structs (one for read, one

46

11. Ports and the Filesystem 11.1. Library Functions

for write, one for exceptions), but manipulate this array using scheme get fdset to get a partic-
ular element of the array, and use MZ FD XXX instead of FD XXX to manipulate a single “fd set”.
Under Windows, the first “fd set” can also contain OS-level semaphores or other handles via
scheme add fd handle.

If must close is non-zero, the new port will be registered with the current custodian, and close fun is
guranteed to be called before the port is garbage-collected.

Although the return type of scheme make input port is Scheme Input Port *, it can be cast into a
Scheme Object *.

• Scheme Output Port *scheme make output port(Scheme Object *subtype,
void *data,
Scheme Write String Fun write string fun,
Scheme Out Ready Fun char ready fun,
Scheme Close Output Fun close fun,
Scheme Need Wakeup Output Fun need wakeup fun,
int must close)

Creates a new output port with arbitary control functions. The subtype is an arbitrary value to distinguish
the port’s class. The pointer data will be installed as the port’s user data, which can be extracted/set with
the SCHEME OUTPORT VAL macro.

The functions are as follows:

• long (*write string fun)(Scheme Output Port *port, const char *buffer, long offset, long size,
int rarely block) — Write characters from buffer , starting from offset , up to size characters (i.e., buffer
is at least offset+size long). If rarely block is 0, then the function can block indifinitely, and it can
buffer output. If rarely block is 2, the function should never block, and it should not buffer output. If
rarely block is 1, the function should not buffer data, and it should block only until writing at least
one character, either from buffer or an internal buffer. The function should return the number of
characters from buffer that were written; with rarely block is non-zero and characters remain in an
internal buffer, it should return -1. The size argument can be 0 when rarely block is 0 for a blocking
flush, and it can be 0 if rarely block is 2 for a non-blocking flush. The function can raise an exception
to report an error.

• int (*char ready fun)(Scheme Output Port *port) — Returns 1 when a non-blocking write string fun
will write at least one character or flush at least one character from the port’s internal buffer.

• void (*close fun)(Scheme Output Port *port) — Called to close the port. The port is not considered
closed until the function returns. This function is allowed to block (usually to flush a buffer) unless
scheme close should force port closed returns a non-zero result, in which case the function must
return without blocking.

• void (*need wakeup fun)(Scheme Output Port *port, void *fds) — Called when the port is
blocked on a write; need wakeup fun should set appropriate bits in fds to specify which file decrip-
tor(s) it is blocked on. The fds argument is conceptually an array of three fd set structs (one
for read, one for write, one for exceptions), but manipulate this array using scheme get fdset to
get a particular element of the array, and use MZ FD XXX instead of FD XXX to manipulate a single
“fd set”. Under Windows, the first “fd set” can also contain OS-level semaphores or other handles
via scheme add fd handle.

If must close is non-zero, the new port will be registered with the current custodian, and close fun is
guranteed to be called before the port is garbage-collected.

47

11.1. Library Functions 11. Ports and the Filesystem

Although the return type of scheme make output port is Scheme Output Port *, it can be cast into a
Scheme Object *.

• Scheme Object *scheme make file input port(FILE *fp)

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on reads.

• Scheme Object *scheme open input file(const char *filename, const char *who)

Opens filename for reading. In an exception is raised, the exception message uses who as the name of
procedure that raised the exception.

• Scheme Object *scheme make named file input port(FILE *fp, char *filename)

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on reads. The
filename is used for error reporting.

• Scheme Object *scheme open output file(const char *filename, const char *who)

Opens filename for writing in ’truncate/replace mode. If an exception is raised, the exception message uses
who as the name of procedure that raised the exception.

• Scheme Object *scheme make file output port(FILE *fp)

Creates a Scheme output file port from an ANSI C file pointer. The file must never block on writes.

• Scheme Object *scheme make string input port(char *str)

Creates a Scheme input port from a string; successive read-chars on the port return successive characters
in the string.

• Scheme Object *scheme make string output port()

Creates a Scheme output port; all writes to the port are kept in a string, which can be obtained with
scheme get string output.

• char *scheme get string output(Scheme Object *port)

Returns (in a newly allocated string) all data that has been written to the given string output port so far.
(The returned string is null-terminated.)

• char *scheme get sized string output(Scheme Object *port , long *len)

Returns (in a newly allocated string) all data that has been written to the given string output port so far
and fills in *len with the length of the string (not including the null terminator).

• void scheme pipe(Scheme Object **read , Scheme Object **write)

Creates a pair of ports, setting *read and *write; data written to *write can be read back out of *read . The
pipe can store arbitrarily many unread characters,

• void scheme pipe with limit(Scheme Object **read , Scheme Object **write, int limit)

48

11. Ports and the Filesystem 11.1. Library Functions

Like scheme pipe is limit is 0. If limit is positive, creates a pipe that stores at most limit unread characters,
blocking writes when the pipe is full.

• int scheme file exists(char *name)

Returns 1 if a file by the given name exists, 0 otherwise. If name specifies a directory, FALSE is returned.
The name should be already expanded.

• int scheme directory exists(char *name)

Returns 1 if a directory by the given name exists, 0 otherwise. The name should be already expanded.

• char *scheme expand filename(const char *name, int len, const char *where, int *expanded ,
int checks)

Expands the pathname name, resolving relative paths with respect to the current directory parameter.
Under Unix, this expands “∼” into a user’s home directory. On the Macintosh, aliases are resolved to real
pathnames. The len argument is the length of the input string; if it is -1, the string is assumed to be
null-terminated. The where argument is used to raise an exception if there is an error in the filename; if this
is NULL, an error is not reported and NULL is returned instead. If expanded is not NULL, *expanded is set to
1 if some expansion takes place, or 0 if the input name is simply returned.

If guards is not 0, then scheme security check file (see §13) is called with name, where, and checks
(which implies that where should never be NULL unless guards is 0). Normally, guards should be
SCHEME GUARD FILE EXISTS at a minimum. Note that a failed access check will result in an exception.

• char *scheme build mac filename(FSSpec *spec, int isdir)

Mac OS only: Converts an FSSpec record (defined by Mac OS) into a pathname string. If spec contains only
directory information (via the vRefNum and parID fields), isdir should be 1, otherwise it should be 0.

• int scheme mac path to spec(const char *filename, FSSpec *spec, long *type)

Mac OS only: Converts a pathname into an FSSpec record (defined by Mac OS), returning 1 if successful and
0 otherwise. If type is not NULL and filename is a file that exists, type is filled with the file’s four-character
Mac OS type. If type is not NULL and filename is not a file that exists, type is filled with 0.

• char *scheme os getcwd(char *buf , int buflen, int *actlen, int noexn)

Gets the current working directory according to the operating system. This is separate from MzScheme’s
current directory parameter.

The direcory path is written into buf , of length buflen, if it fits. Otherwise, a new (collectable) string is
allocated for the directory path. If actlen is not NULL, *actlen is set to the length of the current directory
path. If noexn is no 0, then an exception is raised if the operation fails.

• int scheme os setcwd(char *buf , int noexn)

Sets the current working directory according to the operating system. This is separate from MzScheme’s
current directory parameter.

If noexn is not 0, then an exception is raised if the operation fails.

• char *scheme format(char *format , int flen, int argc, Scheme Object **argv , long *rlen)

49

11.1. Library Functions 11. Ports and the Filesystem

Creates a string like MzScheme’s format procedure, using the format string format (of length flen) and the
extra arguments specified in argc and argv . If rlen is not NULL, *rlen is filled with the length of the resulting
string.

• void scheme printf(char *format , int flen, int argc, Scheme Object **argv)

Writes to the current output port like MzScheme’s printf procedure, using the format string format (of
length flen) and the extra arguments specified in argc and argv .

• int scheme close should force port closed()

This function must be called by the close function for a port created with scheme make output port.

50

12. Structures

A new Scheme structure type is created with scheme make struct type. This creates the structure type,
but does not generate the constructor, etc. procedures. The scheme make struct values function takes a
structure type and creates these procedures. The scheme make struct names function generates the stan-
dard structure procvedures names given the structure type’s name. Instances of a structure type are created
with scheme make struct instance and the function scheme is struct instance tests a structure’s type.
The scheme struct ref and scheme struct set functions access or modify a field of a structure.

The the structure procedure values and names generated by scheme make struct values and
scheme make struct names can be restricted by passing any combination of these flags:

• SCHEME STRUCT NO TYPE — the structure type value/name is not returned.
• SCHEME STRUCT NO CONSTR — the constructor procedure value/name is not returned.
• SCHEME STRUCT NO PRED— the predicate procedure value/name is not returned.
• SCHEME STRUCT NO GET — the selector procedure values/names are not returned.
• SCHEME STRUCT NO SET — the mutator procedure values/names are not returned.
• SCHEME STRUCT GEN GET — the field-independent selector procedure value/name is returned.
• SCHEME STRUCT GEN SET — the field-independent mutator procedure value/name is returned.

When all values or names are returned, they are returned as an array with the following order: structure
type, constructor, predicate, first selector, first mutator, second selector, etc., field-independent select, field-
independent mutator. When particular values/names are omitted, the array is compressed accordingly.

12.1 Library Functions

• Scheme Object *scheme make struct type(Scheme Object *base name, Scheme Object *super type,
Scheme Object *inspector , int num init fields, int num auto fields
Scheme Object *auto val , Scheme Object *properties)

Creates and returns a new structure type. The base name argument is used as the name of the new struc-
ture type; it must be a symbol. The super type argument should be NULL or an existing structure type to
use as the super-type. The inspector argument should be NULL or an inspector to manage the type. The
num init fields argument specifies the number of fields for instances of this structure type that have cor-
responding constructor arguments. (If a super-type is used, this is the number of additional fields, rather
than the total number.) The num auto fields argument specifies the number of additional fields that have
no corresponding constructor arguments, and they are initialized to auto val . The properties argument is a
list of property-value pairs.

• Scheme Object **scheme make struct names(Scheme Object *base name, Scheme Object *field names,
int flags, int *count out)

Creates and returns an array of standard structure value name symbols. The base name argument is
used as the name of the structure type; it should be the same symbol passed to the associated call to

51

12.1. Library Functions 12. Structures

scheme make struct type. The field names argument is a (Scheme) list of field name symbols. The flags
argument specifies which names should be generated, and if count out is not NULL, count out is filled with
the number of names returned in the array.

• Scheme Object **scheme make struct values(Scheme Object *struct type, Scheme Object **names,
int count , int flags)

Creates and returns an array of the standard structure value and procedure values for struct type. The
struct type argument must be a structure type value created by scheme make struct type. The names
procedure must be an array of name symbols, generally the array returned by scheme make struct names.
The count argument specifies the length of the names array (and therefore the number of expected return
values) and the flags argument specifies which values should be generated.

• Scheme Object *scheme make struct instance(Scheme Object *struct type, int argc,
Scheme Object **argv)

Creates an instance of the structure type struct type. The argc and argv arguments provide the field values
for the new instance.

• int scheme is struct instance(Scheme Object *struct type, Scheme Object *v)

Returns 1 if v is an instance of struct type or 0 otherwise.

• Scheme Object *scheme struct ref(Scheme Object *s, int n)

Returns the nth field (counting from 0) in the structure s.

• void scheme struct set(Scheme Object *s, int n, Scheme Object *v)

Sets the nth field (counting from 0) in the structure s to v .

52

13. Security Guards

Before a primitive procedure accesses the filesystem or creates a network connection, it should first consult
the current security guard to determine whether such access is allowed for the current thread.

File access is normally preceded by a call to scheme expand filename, which accepts flags to indicate the
kind of filesystem access needed, so that the security guard is consulted automatically.

An explicit filesystem-access check can be made by calling scheme security check file. Simiarly, an
explicit network-access check is performed by calling scheme security check network.

13.1 Library Functions

• void scheme security check file(const char *who, char *filename, int guards)

Consults the current security manager to determine whether access is allowed to filename. The guards
argument should be a bitwise combination of the following:

• SCHEME GUARD FILE READ

• SCHEME GUARD FILE WRITE

• SCHEME GUARD FILE EXECUTE

• SCHEME GUARD FILE DELETE

• SCHEME GUARD FILE EXISTS (do not combine with other values)

The filename argument can be NULL (in which case #f is sent to the security manager’s procedure), and
guards should be SCHEME GUARD FILE EXISTS in that case.

If access is denied, an exception is raised.

• void scheme security check network(const char *who, char *host , int portno)

Consults the current security manager to determine whether access is allowed for creating a client connection
to host on port numver portno. If host is NULL, the security managr is consulted for creating a server at port
number portno.

If access is denied, an exception is raised.

53

14. Custodians

When an extension allocates resources that must be explicitly freed (in the same way that a port must be
explicitly closed), a Scheme object associated with the resource should be placed into the management of
the current custodian with scheme add managed.

Before allocating the resource, call scheme custodian check avialable to ensure that the relevant cus-
todian is not already shut down. If it is, scheme custodian check avialable will raise an excep-
tion. If the custodian is shut down when scheme add managed is called, the close function provided to
scheme add managed will be called immediately, and no exception will be reported.

14.1 Library Functions

• Scheme Custodian *scheme make custodian(Scheme Custodian *m)

Creates a new custodian as a subordinate of m. If m is NULL, then the main custodian is used as the
new custodian’s supervisor. Do not use NULL for m unless you intend to create an especially priviledged
custodian.

• Scheme Custodian Reference *scheme add managed(Scheme Custodian *m, Scheme Object *o,
Scheme Close Custodian Client *f , void *data,
int strong)

Places the value o into the management of the custodian m. If m is NULL, the current custodian is used.

The f function is called by the custodian if it is ever asked to “shutdown” its values; o and data are passed
on to f , which has the type
typedef void (*Scheme_Close_Custodian_Client)(Scheme_Object *o, void *data);

If strong is non-zero, then the newly managed value will be remembered until either the custodian shuts it
down or scheme remove managed is called. If strong is zero, the value is allowed to be garbaged collected
(and automatically removed from the custodian).

The return value from scheme add managed can be used to refer to the value’s custodian later in a call to
scheme remove managed. A value can be registered with at most one custodian.

If m (or the current custodian if m is NULL), then f is called immediately, and the result is NULL.

• void scheme custodian check available(Scheme Custodian *m, const char *name,
const char *resname)

Checks whether m is already shut down, and raises an error if so. If m is NULL, the current custodian is
used. The name argument is used for error reporting. The resname argument will likely be used for checking
pre-set limits in the future; pre-set limits will have symbolic names, and the resname string will be compared
to the symbols.

54

14. Custodians 14.1. Library Functions

• void scheme remove managed(Scheme Custodian Reference *mref , Scheme Object *o)

Removes o from the management of its custodian. The mref argument must be a value returned by
scheme add managed or NULL.

• void scheme close managed(Scheme Custodian *m)

Instructs the custodian m to shutdown all of its managed values.

• void scheme add atexit closer(Scheme Exit Closer Func f)

Installs a function to be called on each custodian-registered item and its closer when MzScheme is about to
exit. The registered function has the type

typedef void (*Scheme_Exit_Closer_Func)(Scheme_Object *o,
Scheme_Close_Custodian_Client *f, void *d);

where d is the second argument for f .

55

15. Miscellaneous Utilities

The MZSCHEME VERSION preprocessor macro is defined as a string describing the version of MzScheme. The
MZSCHEME VERSION MAJOR and MZSCHEME VERSION MINOR macros are defined as the major and minor version
numbers, respectively.

15.1 Library Functions

• int scheme eq(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are eq?.

• int scheme eqv(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are eqv?.

• int scheme equal(Scheme Object *obj1 , Scheme Object *obj2)

Returns 1 if the Scheme values are equal?.

• Scheme Object *scheme build list(int c, Scheme Object **elems)

Creates and returns a list of length c with the elements elems.

• int scheme list length(Scheme Object *list)

Returns the length of the list. If list is not a proper list, then the last cdr counts as an item. If there is a
cycle in list (involvng only cdrs), this procedure will not terminate.

• int scheme proper list length(Scheme Object *list)

Returns the length of the list, or -1 if it is not a proper list. If there is a cycle in list (involvng only cdrs),
this procedure returns -1.

• Scheme Object *scheme car(Scheme Object *pair)

Returns the car of the pair.

• Scheme Object *scheme cdr(Scheme Object *pair)

Returns the cdr of the pair.

• Scheme Object *scheme cadr(Scheme Object *pair)

Returns the cadr of the pair.

56

15. Miscellaneous Utilities 15.1. Library Functions

• Scheme Object *scheme caddr(Scheme Object *pair)

Returns the caddr of the pair.

• Scheme Object *scheme vector to list(Scheme Object *vec)

Creates a list with the same elements as the given vector.

• Scheme Object *scheme list to vector(Scheme Object *list)

Creates a vector with the same elements as the given list.

• Scheme Object *scheme append(Scheme Object *lstx , Scheme Object *lsty)

Non-destructively appends the given lists.

• Scheme Object *scheme unbox(Scheme Object *obj)

Returns the contents of the given box.

• void scheme set box(Scheme Object *b, Scheme Object *v)

Sets the contents of the given box.

• Scheme Object *scheme load(char *file)

Loads the specified Scheme file, returning the value of the last expression loaded, or NULL if the load fails.

• Scheme Object *scheme load extension(char *filename)

Loads the specified Scheme extension file, returning the value provided by the extension’s initialization
function.

• Scheme Hash Table *scheme make hash table(int type)

Creates a hash table. The type argument must be either SCHEME hash ptr or SCHEME hash string, which
determines how keys are compared (unless the hash and compare functions are modified in the hash table
record; see below). A SCHEME hash ptr table hashes on a key’s pointer address, while SCHEME hash string
uses a key as a char * and hashes on the null-terminated string content.

Although the hash table interface uses the type Scheme Object * for both keys and values, the table functions
never inspect values, and they inspect keys only for SCHEME hash string hashing. Thus, the actual types of
the values (and keys, for SCHEME hash ptr tables) can be anything.

The public portion of the Scheme Hash Table type is defined roughly as follows:
typedef struct Scheme_Hash_Table {
Scheme_Type type; /* = scheme_variable_type */
/* ... */
int size; /* size of keys and vals arrays */
int count; /* number of mapped keys */
Scheme_Object **keys;
Scheme_Object **vals;
void (*make_hash_indices)(void *v, long *h1, long *h2);
int (*compare)(void *v1, void *v2);

57

15.1. Library Functions 15. Miscellaneous Utilities

/* ... */
} Scheme_Hash_Table;

The make hash indices and compare function pointers can be set to arbirary hashing and comparion func-
tions (before any mapping is installed into the table). A hash function should fill h1 with a primary hash value
and h2 with a secondary hash value; the values are for double-hashing, where the caller takes appropriate
modulos.

To traverse the hash table content, iterate over keys and vals in parallel from 0 to size-1, and ignore keys
where the corresponding vals entry is NULL.

• void scheme hash set(Scheme Hash Table *table, Scheme Object *key , Scheme Object *val)

Sets the current value for key in table to val . If val is NULL, the key is unmapped in table.

• Scheme Object *scheme hash get(Scheme Hash Table *table, Scheme Object *key)

Returns the current value for key in table, or NULL if key has no value.

• Scheme Bucket Table *scheme make bucket table(int size hint , int type)

Like make hash table, but bucket tables are somewhat more flexible, in that hash buckets are accessible
and weak keys are supported. (They also consume more space than hash tables.)

The type argument must be either SCHEME hash ptr, SCHEME hash string, or SCHEME hash weak ptr. The
first two are the same as for hash tables. The last is like SCHEME hash ptr, but the keys are weakly held.

The public portion of the Scheme Bucket Table type is defined roughly as follows:
typedef struct Scheme_Bucket_Table {
Scheme_Type type; /* = scheme_variable_type */
/* ... */
int size; /* size of buckets array */
int count; /* number of buckets, >= number of mapped keys */
Scheme_Bucket **buckets;
void (*make_hash_indices)(void *v, long *h1, long *h2);
int (*compare)(void *v1, void *v2);
/* ... */

} Scheme_Bucket_Table;

The make hash indices and compare functions are used as for hash tables. Note that SCHEME hash weak ptr
supplied as the initial type makes keys weak even if the hash and comparision functions are changed.

See scheme bucket from table for information on buckets.

• void scheme add to table(Scheme Bucket Table *table, const char *key , void *val , int const)

Sets the current value for key in table to val . If const is non-zero, the value for key must never be changed.

• void scheme change in table(Scheme Bucket Table *table, const char *key , void *val)

Sets the current value for key in table to val , but only if key is already mapped in the table.

• void *scheme lookup in table(Scheme Bucket Table *table, const char *key)

58

15. Miscellaneous Utilities 15.1. Library Functions

Returns the current value for key in table, or NULL if key has no value.

• Scheme Bucket *scheme bucket from table(Scheme Bucket Table *table, const char *key)

Returns the bucket for key in table. The Scheme Bucket structure is defined as:
typedef struct Scheme_Bucket {
Scheme_Type type; /* = scheme_bucket_type */
/* ... */
void *key;
void *val;

} Scheme_Bucket;

Setting val to NULL unmaps the bucket’s key, and key can be NULL in that case as well. If the table holds
keys weakly, then key points to a (weak) pointer to the actual key, and the weak pointer’s value can be NULL.

• long scheme double to int(char *where, double d)

Returns a fixnum value for the given floating-point number d . If d is not an integer or if it is too large, then
an error message is reported; name is used for error-reporting.

• long scheme get millseconds()

Returns the current “time” in millseconds, just like current-millseconds.

• long scheme get process millseconds()

Returns the current process “time” in millseconds, just like current-process-millseconds.

• char *scheme banner()

Returns the string that is used as the MzScheme startup banner.

• char *scheme version()

Returns a string for the executing version of MzScheme.

59

16. Flags and Hooks

These flags and hooks are availble when MzScheme is embedded:

• scheme exit — This pointer can be set to a function that takes an integer argument and returns void;
the function will be used as the default exit handler. The default is NULL.

• scheme make stdin, scheme make stdout, scheme make stderr, — These pointers can be set to a
function that takes no arguments and returns a Scheme port Scheme Object * to be used as the
starting standard input, output, and/or error port. The defaults are NULL. Setting the initial erorr
port is particularly important for seeing unexpected error messages if stderr output goes nowhere.

• scheme console output — This pointer can be set to a function that takes a string and a long string
length; the function will be called to display internal MzScheme warnings and messages that possibly
contain non-terminating nuls. The default is NULL.

• scheme check for break — This points to a function of no arguments that returns an integer. It is
used as the default user-break polling procedure in the main thread. (A non-zero return value indicates
a user break.) The default is NULL.

• scheme case sensitive — If this flag is set to a non-zero value before scheme basic env is called,
then MzScheme will not ignore capitalization for synbols and global variable names. The value of this
flag should not change once it is set. The default is zero.

• scheme allow set undefined — This flag determines the initial value of compile-allow-set!-undefined.
The default is zero.

• scheme console printf — This function pointer was left for backward compatiblity. The default
builds a string and calls scheme console output.

60

Index

--cc, 1
--ld, 2
scheme apply, 19, 21
scheme apply multi, 20, 21
scheme eval compiled, 19, 20
scheme eval compiled multi, 20

allocation, 2, 3, 11
allow-compile-set

allow-compile-set
-undefined, 38

apply, 19
arity, 17

bignums, 40
break-enabled, 38

caddr, 57
cadr, 56
car, 6, 56
case-lambda, 7
cdr, 6, 56
cjs.jumping to continuation, 29
compile-allow-set

compile-allow-set
-undefined, 60

config, 29, 38
cons, 5, 8
constants, 5, 7
continuations, 19, 23, 29
current directory, 49
current-custodian, 38
current-error-port, 38
current-eval, 38
current-exception-handler, 38
current-input-port, 38
current-library-collection-paths, 38
current-load, 38
current-load-extension, 39
current-load-relative-directory, 38
current-namespace, 38
current-output-port, 38
current-print, 38
current-prompt-read, 38
custodians, 54

debug-info-handler, 38
display, 43

embedding MzScheme, 2

environments, 15
eq?, 56
equal?, 56
eqv?, 56
error-display-handler, 38
error-print-width, 38
error-value->string-handler, 38
error buf, 29
escheme.h, 1
evaluation, 19

top-level functions, 19
event loops, 30
exception-break-enabled, 38
exceptions, 23, 29

catching temporarily, 23
exit-handler, 38
extending MzScheme, 1

fd set, 45–47
files, 43
FSSpec, 49

garbage collection, see allocation
global-port-print-handler, 38
globals, 15

in extension code, 11

header files, 1, 2

intialization, 15

libgc.a, 2
libmzscheme.a, 2

malloc, 11
memory, see allocation
modules, 15
multiple values, 20, 22
MZ FD XXX, 47
mz jmp buf, 29
MZ REGISTER STATIC, 11, 13
mzc, 1
MZCONFIG ALLOW SET UNDEFINED, 38
MZCONFIG CAN READ BOX, 38
MZCONFIG CAN READ COMPILED, 38
MZCONFIG CAN READ GRAPH, 38
MZCONFIG CAN READ PIPE QUOTE, 38
MZCONFIG CAN READ TYPE SYMBOL, 38
MZCONFIG CASE SENS, 38
MZCONFIG COLLECTION PATHS, 38

61

INDEX

MZCONFIG CONFIG BRANCH HANDLER, 38
MZCONFIG CURLY BRACES ARE PARENS, 38
MZCONFIG CUSTODIAN, 38
MZCONFIG DEBUG INFO HANDLER, 38
MZCONFIG ENABLE BREAK, 38
MZCONFIG ENABLE EXCEPTION BREAK, 38
MZCONFIG ENV, 21, 38
MZCONFIG ERROR DISPLAY HANDLER, 38
MZCONFIG ERROR PORT, 38
MZCONFIG ERROR PRINT VALUE HANDLER, 38
MZCONFIG ERROR PRINT WIDTH, 38
MZCONFIG EVAL HANDLER, 38
MZCONFIG EXIT HANDLER, 38
MZCONFIG EXN HANDLER, 38
MZCONFIG INPUT PORT, 38
MZCONFIG LOAD DIRECTORY, 38
MZCONFIG LOAD EXTENSION HANDLER, 39
MZCONFIG LOAD HANDLER, 38
MZCONFIG OUTPUT PORT, 38
MZCONFIG PORT PRINT HANDLER, 38
MZCONFIG PRINT BOX, 38
MZCONFIG PRINT GRAPH, 38
MZCONFIG PRINT HANDLER, 38
MZCONFIG PRINT STRUCT, 38
MZCONFIG PROMPT READ HANDLER, 38
MZCONFIG SQUARE BRACKETS ARE PARENS, 38
MZCONFIG USE COMPILED KIND, 38
mzdyn.o, 2
mzdyn.obj, 2
MZSCHEME VERSION, 56
MZSCHEME VERSION MAJOR, 56
MZSCHEME VERSION MINOR, 56

next, 29
numbers, 40

object-wait-multiple, 30

parameterization-branch-handler, 38
parameterizations, 29, 38
ports, 43

custom, 43
print-box, 38
print-graph, 38
print-struct, 38
procedures, 7, 17

primitive, 17

read-accept-bar-quote, 38
read-accept-box, 38
read-accept-compiled, 38
read-accept-graph, 38
read-accept-type-symbol, 38
read-case-sensitive, 38

read-curly-braces-as-parens, 38
read-square-brackets-as-parens, 38
representation, 5

scheme.h, 2
scheme add atexit closer, 55
scheme add fd eventmask, 36
scheme add fd handle, 36
scheme add finalizer, 13
scheme add global, 15
scheme add global symbol, 15
scheme add managed, 54
scheme add scheme finalizer, 13
scheme add to table, 58
scheme add waitable, 30, 36
scheme add waitable through sema, 30, 36
scheme alloc string, 9
scheme allow set undefined, 60
scheme append, 57
scheme append string, 9
scheme apply, 19, 21
scheme apply multi, 20, 21
scheme apply to list, 19, 21
scheme banner, 59
scheme basic env, 3, 15, 20, 21, 29, 39, 60
scheme bignum from double, 41
scheme bignum from float, 41
scheme bignum normalize, 41
scheme bignum to double, 40
scheme bignum to float, 40
scheme bignum to string, 41
scheme bignum type, 40
SCHEME BIGNUMP, 6
scheme block until, 30, 35
scheme box, 9
SCHEME BOX VAL, 6
SCHEME BOXP, 6
scheme break thread, 35
scheme break waiting, 35
Scheme Bucket, 15, 59
scheme bucket from table, 59
Scheme Bucket Table, 58
SCHEME BUCKTP, 6
scheme build list, 56
scheme build mac filename, 49
scheme builtin value, 16
scheme caddr, 57
scheme cadr, 56
scheme call enable break, 37
scheme calloc, 12
SCHEME CAR, 6
scheme car, 56
scheme case sensitive, 9, 60
SCHEME CDR, 6

62

INDEX

scheme cdr, 56
scheme change in table, 58
scheme char ready, 45
SCHEME CHAR VAL, 5
SCHEME CHARP, 5
scheme check for break, 60
scheme check proc arity, 27
scheme check threads, 30, 31, 35
scheme clear escape, 23, 28
scheme close input port, 46
scheme close managed, 55
scheme close output port, 46
scheme close should force port closed, 50
scheme collect garbage, 14
scheme compile, 19, 22
scheme complex imaginary part, 42
scheme complex izi type, 40
SCHEME COMPLEX IZIP, 6
scheme complex real part, 42
scheme complex type, 40
SCHEME COMPLEXP, 6
Scheme Config, 38
scheme config, 16, 38
scheme console output, 60
scheme console printf, 60
scheme count lines, 45
SCHEME CPTR TYPE, 7, 10
SCHEME CPTR VAL, 7, 10
SCHEME CPTRP, 7, 10
scheme current thread, 29
scheme custodian check available, 54
scheme custodian check avialable, 54
SCHEME DBL VAL, 6
SCHEME DBLP, 6
scheme debug print, 44
SCHEME DIRECT EMBEDDED, 2
scheme directory exists, 49
scheme display, 43
scheme display to string, 44
scheme display to string w max, 44
scheme display w max, 43
scheme dont gc ptr, 11, 13, 14
scheme double to int, 59
scheme dynamic wind, 24, 27
Scheme Env *, 15
scheme eof, 5
SCHEME EOFP, 7
scheme eq, 56
scheme equal, 56
scheme eqv, 56
scheme error buf, 23, 29
scheme eval, 3, 19, 20
scheme eval compiled, 19, 20

scheme eval compiled multi, 20
scheme eval string, 21
scheme eval string all, 21
scheme eval string multi, 21
SCHEME EXACT INTEGERP, 7
SCHEME EXACT REALP, 7
scheme exit, 60
scheme expand, 22
scheme expand filename, 43, 49, 53
scheme false, 5
SCHEME FALSEP, 7
scheme file exists, 49
scheme finish primitive module, 15, 16
scheme first thread, 29
SCHEME FLOAT VAL, 6
SCHEME FLOATP, 7
SCHEME FLT VAL, 6
SCHEME FLTP, 6
scheme flush output, 44
scheme format, 49
scheme gc ptr ok, 14
scheme get chars, 45
scheme get env, 15, 16, 38
scheme get fdset, 36, 47
scheme get int val, 8
scheme get millseconds, 59
scheme get param, 38, 39
scheme get param or null, 39
scheme get process millseconds, 59
scheme get sized string output, 48
scheme get string, 44
scheme get string output, 43, 48
scheme get unsigned int val, 8
scheme getc, 43, 44
scheme global bucket, 15
SCHEME GUARD FILE DELETE, 53
SCHEME GUARD FILE EXECUTE, 53
SCHEME GUARD FILE EXISTS, 53
SCHEME GUARD FILE READ, 53
SCHEME GUARD FILE WRITE, 53
scheme hash get, 58
SCHEME hash ptr, 57, 58
scheme hash set, 58
SCHEME hash string, 57, 58
Scheme Hash Table, 57
SCHEME hash weak ptr, 58
SCHEME HASHTP, 6
scheme initialize, 1
SCHEME INPORT VAL, 6, 46
SCHEME INPORTP, 6
Scheme Input Port *, 47
scheme input port type, 43
SCHEME INT VAL, 6, 8

63

INDEX

scheme integer type, 5
scheme intern exact symbol, 9
scheme intern symbol, 9
SCHEME INTP, 6
scheme is exact, 40
scheme is inexact, 40
scheme is struct instance, 51, 52
scheme jumping to continuation, 23, 29
scheme list length, 56
scheme list to vector, 57
scheme load, 3, 57
scheme load extension, 57
scheme longjmp, 23
scheme lookup global, 15
scheme lookup in table, 58
scheme mac path to spec, 49
scheme make args string, 27
scheme make bignum, 40
scheme make bignum from unsigned, 40
scheme make bucket table, 58
scheme make char, 8
scheme make character, 8
scheme make closed prim, 18
scheme make closed prim w arity, 17, 18
scheme make complex, 42
scheme make config, 39
scheme make cptr, 5, 9
scheme make custodian, 54
scheme make double, 8
scheme make exact symbol, 9
scheme make file input port, 43, 48
scheme make file output port, 43, 48
scheme make float, 8
scheme make folding prim, 17
scheme make hash table, 57
scheme make input port, 43, 46
scheme make integer, 8
scheme make integer value, 8
scheme make integer value from unsigned, 8
scheme make named file input port, 48
scheme make namespace, 21
scheme make output port, 43, 47
scheme make pair, 8, 19
scheme make parameter, 39
scheme make port type, 46
scheme make prim, 17
scheme make prim w arity, 17, 18
scheme make provided string, 27
scheme make rational, 41
scheme make sema, 34
scheme make sized offset string, 9
scheme make sized string, 9
scheme make stderr, 60

scheme make stdin, 60
scheme make stdout, 60
scheme make string, 8
scheme make string input port, 43, 48
scheme make string output port, 43, 48
scheme make string without copying, 8
scheme make struct instance, 51, 52
scheme make struct names, 51
scheme make struct type, 51
scheme make struct values, 51, 52
scheme make symbol, 9
scheme make type, 5, 9
scheme make vector, 9
scheme make weak box, 9
scheme making progress, 35, 37
scheme malloc, 2, 3, 11, 12
scheme malloc atomic, 11, 12
scheme malloc eternal, 12
scheme malloc fail ok, 12
scheme malloc uncollectable, 11, 12
scheme module bucket, 16
scheme module name, 1
scheme multiple array, 20
scheme multiple count, 20
scheme multiple values, 20
SCHEME NAMESPACEP, 7
scheme need wakeup, 45
scheme new param, 39
scheme notify multithread, 30
scheme null, 5
SCHEME NULLP, 7
SCHEME NUMBERP, 7
Scheme Object, 5
Scheme Object *, 1
scheme open input file, 48
scheme open output file, 48
scheme os getcwd, 49
scheme os setcwd, 49
SCHEME OUTPORT VAL, 6, 47
SCHEME OUTPORTP, 6
Scheme Output Port *, 48
scheme output port type, 43
SCHEME PAIRP, 6
scheme param config, 39
scheme peekc, 44
scheme pipe, 48
scheme pipe with limit, 48
scheme post sema, 34
scheme primitive module, 15, 16
scheme printf, 50
SCHEME PROCP, 7
scheme proper list length, 56
scheme put string, 44

64

INDEX

scheme raise exn, 23, 26
scheme rational denominator, 41
scheme rational from double, 41
scheme rational from float, 41
scheme rational numerator, 41
scheme rational to double, 41
scheme rational to float, 41
scheme rational type, 40
SCHEME RATIONALP, 6
scheme read, 43
scheme read bignum, 41
scheme real to double, 8
SCHEME REALP, 7
scheme register extension global, 2, 11, 12
scheme register finalizer, 13
scheme register parameter, 39
scheme register static, 3, 11, 13
scheme reload, 1
scheme remove managed, 55
scheme security check file, 53
scheme security check network, 53
SCHEME SEMAP, 6
scheme set box, 57
scheme set file position, 46
scheme set global bucket, 16
scheme set param, 21, 38
scheme set stack base, 3, 11, 12
scheme setjmp, 23
scheme signal error, 23, 25
scheme sleep, 33
SCHEME STR VAL, 6
scheme strdup, 12
scheme strdup eternal, 12
SCHEME STRINGP, 6
SCHEME STRLEN VAL, 6
SCHEME STRUCT GEN GET, 51
SCHEME STRUCT GEN SET, 51
SCHEME STRUCT NO CONSTR, 51
SCHEME STRUCT NO GET, 51
SCHEME STRUCT NO PRED, 51
SCHEME STRUCT NO SET, 51
SCHEME STRUCT NO TYPE, 51
scheme struct ref, 51, 52
scheme struct set, 51, 52
SCHEME STRUCT TYPEP, 6
SCHEME STRUCTP, 6
scheme swap thread, 35
SCHEME SYM VAL, 6
SCHEME SYMBOLP, 6
scheme tail apply, 19–21
scheme tail apply no copy, 22
scheme tail apply to list, 22
scheme tell, 45

scheme tell line, 45
Scheme Thread, 29, 38
scheme thread, 29, 34
scheme thread block, 34, 37
scheme thread w custodian, 34
SCHEME THREADP, 6
scheme tls allocate, 37
scheme tls get, 37
scheme tls set, 37
scheme true, 5
SCHEME TRUEP, 7
SCHEME TSYM VAL, 6
SCHEME TSYMBOLP, 6
SCHEME TYPE, 5
Scheme Type, 5
scheme unbound global, 27
scheme unbox, 57
scheme undefined, 5
scheme ungetc, 45
SCHEME USE FUEL, 29
scheme values, 20, 22
SCHEME VEC ELS, 6
SCHEME VEC SIZE, 6
scheme vector to list, 57
SCHEME VECTORP, 6
scheme version, 59
scheme void, 5
SCHEME VOIDP, 7
scheme wait sema, 34
scheme wake up, 36
scheme wakeup on input, 31
scheme warning, 26
SCHEME WEAK PTR, 6
scheme weak reference, 13
scheme weak reference indirect, 13
SCHEME WEAKP, 6
scheme write, 43
scheme write string, 43
scheme write to string, 44
scheme write to string w max, 44
scheme write w max, 43
scheme wrong count, 26
scheme wrong return arity, 27
scheme wrong type, 27
security guards, 53
sleeping, 33
strings

conversion to C, 6
reading and writing, 43

structures, 51

tail recursion, 19
threads, 3, 29

blocking, 30

65

INDEX

giving time, 30
interaction with C, 29
sleeping, 33

types
creating, 5
standard, 5

use-compiled-file-kinds, 38
user breaks, 60

values, 5

working directory, 49
write, 43

66

	1 Overview
	1.1 Writing MzScheme Extensions
	1.2 Embedding MzScheme into a Program
	1.3 MzScheme and Threads

	2 Values and Types
	2.1 Standard Types
	2.2 Global Constants
	2.3 Library Functions

	3 Memory Allocation
	3.1 Library Functions

	4 Namespaces and Modules
	4.1 Library Functions

	5 Procedures
	5.1 Library Functions

	6 Evaluation
	6.1 Top-level Evaluation Functions
	6.2 Tail Evaluation
	6.3 Multiple Values
	6.4 Library Functions

	7 Exceptions and Escape Continuations
	7.1 Temporarily Catching Error Escapes
	7.2 Library Functions

	8 Threads
	8.1 Integration with Threads
	8.2 Allowing Thread Switches
	8.3 Blocking the Current Thread
	8.4 Threads in Embedded MzScheme with Event Loops
	8.4.1 Callbacks for Blocked Threads

	8.5 Sleeping by Embedded MzScheme
	8.6 Library Functions

	9 Parameterizations
	9.1 Library Functions

	10 Bignums, Rationals, and Complex Numbers
	10.1 Library Functions

	11 Ports and the Filesystem
	11.1 Library Functions

	12 Structures
	12.1 Library Functions

	13 Security Guards
	13.1 Library Functions

	14 Custodians
	14.1 Library Functions

	15 Miscellaneous Utilities
	15.1 Library Functions

	16 Flags and Hooks
	Index

