
PLoT Manual

PLT (scheme@plt-scheme.org)

300
Released December 2005

Copyright notice

Copyright c©1996-2005 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby granted without
fee, provided that the above copyright notice, author, and this permission notice appear in all copies of this documen-
tation.

Contents

1 Quick Start 1

1.1 Overview . 1

1.2 Basic Plotting. 1

1.3 Curve Fitting . 2

1.4 Creating Custom Plots. 3

2 Module: plot.ss 4

2.1 Plotting . 4

2.2 Curve Fitting . 6

2.3 Misc Functions . 6

3 Module: plot-extend.ss 8

3.1 2d-view% . 8

3.2 3d-view% . 8

3.3 define-plot-type . 9

Index 10

i

CONTENTS CONTENTS

ii

1. Quick Start

1.1 Overview

PLoT (aka PLTplot) provides a basic interface for producing common types of plots such as line and vector field plots
as well as an advanced interface for producing customized plot types. Additionally, plots and plot-items are first-class
values and can be generated in and passed to other programs.

1.2 Basic Plotting

After loading the correct module using(require (lib "plot.ss" "plot")) try (plot (line
(lambda (x) x)))

Any other function with the contractnumber - > number can be plotted using the same form. To plot multiple
items, use the functionsmix andmix ∗ to combine the items to be plotted.

(plot (mix (line (lambda (x) (sin x)))
(line (lambda (x) (cos x)))))

The display area and appearance of the plot can be changed by adding parenthesized argument/value pairs after the
first argument.

(plot (line (lambda (x) (sin x)))
(x-min −1)
(x-max 1)
(title "Sin(x)"))

The appearance of each individual plot item can be altered by adding parameter-value pairs after the data.

(plot (line (lambda (x) x)
(color ’green)
(width 3)))

Besides plotting lines from functions in 2d, the plotter can also render a variety of other data in several ways:

• Discrete data, such as

(define data
(list (vector 1 1 2)

(vector 2 2 2)))

can be interpreted in several ways:

– As points:(plot (points data))
– As Error Data:(plot (error-bars data))

1

1.3. Curve Fitting 1. Quick Start

• A function of two variables, such as

(define 3dfun (lambda (x y) (∗ (sin x) (sin y))))

can be plotted on a 2d graph

– Using contours to represent height (z)

(plot (contour 3dfun))

– Using color shading

(plot (shade 3dfun))

– Using a gradient field

(plot (vector-field (gradient 3dfun)))

or in a 3d box

– Displaying only the top of the surface

(plot3d (surface 3dfun))

1.3 Curve Fitting

The scheme-plot library uses a Non-Linear Least Squares fit algorithm to fit parametrized functions to given data.

To fit a particular function to a curve:

1. Set up the independent and dependent variable data. The first item in each vector is the independent var, the
second is the result. The last item must is the weight of the error—we can leave it as 1 since all the items weigh
the same.

(define data ’(#(0 3 1)
#(1 5 1)
#(2 7 1)
#(3 9 1)
#(4 11 1)))

2. Set up the function to be fitted using fit. This particular function looks like a line. The independent variables
must come before the parameters.

(define fit-fun
(lambda (x m b) (+ b (∗ m x))))

3. If possible, come up with some guesses for the values of the parameters. The guesses can be left as one, but
each parameter must be named.

4. Do the fit – the details of the function are described in the Curve Fitting section

(define fit-result
(fit fit-fun

((m 1) (b 1))
data))

5. View the resulting parameters

(fit-result-final-params fit-result) ; will produce ((m 2) (b 3))

2

1. Quick Start 1.4. Creating Custom Plots

6. For some visual feedback of the fit result, plot the function with the new parameters. For convenience, the
structure that is returned by the fit command has already created the function.

(plot (mix (points data)
(line (fit-result-function fit-result)))

(y-max 15))

A more realistic example can be found indemos/fit-demo-2.ss .

1.4 Creating Custom Plots

Defining custom plots is simple: a Plot-item (that is passed to plot or mix) is just a function that acts on a view. Both
the 2d and 3d view snip have several drawing functions defined that the plot-item can call in any order. The full details
of the view interface can be found in theplot-extend.ss section.

For example, if we wanted to create a constructor that creates Plot-items that draw dashed-lines given a number-number
function we could do the following: Load the required modules

(require (lib "class.ss")
(lib "etc.ss")
(lib "plot-extend.ss" "plot"))

Set up the constructor

(define-plot-type dashed-line
fun 2dview (x-min x-max) ((samples 100) (segments 20) (color ’red) (width 1))
(let ∗ ((dash-size (/ (− x-max x-min) segments))

(x-lists (build-list
(/ segments 2)
(lambda (index)

(x-values
(/ samples segments)
(+ x-min (∗ 2 index dash-size))
(+ x-min (∗ (add1 (∗ 2 index)) dash-size)))))))

(send ∗ 2dview
(set-line-color color)
(set-line-width width))

(for-each
(lambda (dash)

(send 2dview plot-line
(map (lambda (x) (vector x (fun x))) dash)))

x-lists)))

Plot a test case

(plot (dashed-line (lambda (x) x) (color ’blue)))

3

2. Module: plot.ss

Theplot.ss module provides the ability to make basic plots, fit curves to data, and some useful miscellaneous func-
tions.

2.1 Plotting

Theplot andplot3d forms generate plots that can be viewed in the DrScheme Interactions window. The functions
and data definitions for this module are as follows:

Forms:
(plot 2d-plot-item 2d-plot-option ∗) - > VIEW
(plot3d 3d-plot-item 3d-plot-option ∗) - > VIEW

2d-plot-option is one of:
(x-min number)
(x-max number)
(y-min number)
(y-max number)
(x-label string)
(y-label string)
(title string)

3d-plot-option is one of:
2d-plot-option
(z-label)
(z-min number)
(z-max number)
(alt number) ; altitude angle, in degrees
(az number) ; azimuthal angle, in degrees

The 2d and 3d plot-options modify the view in which the graph is drawn. The 3d-plot-options alt and az set the viewing
altitude (in degrees) and azimuth (also in degrees) respectively. The rest of the options should be self-explanatory.

Data Definitions:

2d-plot-item is one of:
(points (list-of (vector number number)) point-options ∗)
(line [(number - > number) | (number - > (vector number number))] line-options ∗)
(error-bars (list-of (vector number number number)) error-bar-options ∗)
(vector-field ((vector number number) - > (vector number number)) field-options ∗)
(contour (number number - > number) contour-options ∗)
(shade (number number - > number) shade-options ∗)
(mix 2d-plot-item 2d-plot-item +)
(custom (2d-view \% -> void))

4

2. Module: plot.ss 2.1. Plotting

3d-plot-item is one of:
(surface (number number - > number) surface-options ∗)
(mix 3d-plot-item 3d-plot-item +)
(custom (3d-view \% -> void))

note: all of the options appear as
option-name : enumeration of values with default enclosed in []

or
option-name : type [default]

color is one of:
’white ’black ’yellow ’green ’aqua ’pink
’wheat ’grey ’brown ’blue ’violet ’cyan
’turquoise ’magenta ’salmon ’red

point-options are:
sym : [’square], ’circle, ’odot, ’bullet
color : color [’black]

line-options are:
samples : number [150]
width : number [1]
color : color [’red]
mode : [’standard], ’parametric
mapping : [’cartesian], ’polar
t-min : number [−5]
t-max : number [5]

error-bar-options are:
color : color [’red]

field-options are:
color : color [’red]
width : number [1]
style : [’scaled],’normalized,’read

contour-options are:
samples : number [50]
color : color [’black]
width : number [1]
levels : number U (list-of number) [10]

shade-options are:
samples : number [50]
levels : number [10]

surface-options are:
samples : number [50]
color : color [’black]
width : number [1]

The 2d and 3d plot-items can be created in several ways. The first is by using the built-in constructors with your own
data.

5

2.2. Curve Fitting 2. Module: plot.ss

points will draw points on a graph given a list of vectors specifying their location. Sym specifies the appearance of
the points.

line will draw a line specified in either functional, ie. y=f(x), or parametric mode, x,y = f(t). If the function
is parametric, the line-optionmode must be set toparametric . t-min and t-max set the parameter when in
parametric mode.mapping can be set to’radial .

error-bars will draw error bars given a list of vectors. The vector specifies the center of the error bar (x,y) as the
first two elements, and its magnitude as the third.

vector-field will draw a vector field from a vector valued function. Styles are eitherreal , scaled , or
normalized .

Both shade andcontour will render 3d functions on a 2d graph using colored shades and contours (respectively)
to represent the value of the function at that position.contour will let you choose the levels explicitly if desired, by
setting thelevels option to a list of contour levels to be plotted.

surface plots a 3d surface in a 3d box, showing only thetopof the surface.

2.2 Curve Fitting

PLTPlot uses the standard Non-Linear Least Squares fit algorithm for curve fitting. The code that implements the
algorithm is public domain, and is used by the gnuplot package.

Data:

a fit-result is
(fit (number ∗- > number) parameter-guess-list data)

parameter-guess-list is a set of name-value pairs enclosed in (..)

data is
(list-of (vector number number number))

| (list-of (vector number number number number))

Functions:

fit-result-function : fit-result - > procedure
fit-result-final-params : fit-result - > guess-list

The fit form attempts to fit afittable-function to the data that is given. Theguess-list should be set of
parameters and values. The more accurate your initial guesses are, the more likely the fit is to succeed. If there are no
good values for the guesses, leave them as 1.

fit-result-final-params returns an associative list of the parameters specified in fit and their values. Note
that the values may not be correct if the fit failed to converge. For a visual test usefit-result-function to get
the function with the parameters in place and plot it along with the original data.

2.3 Misc Functions

The plot library comes with a few useful miscellaneous functions:

derivative : (number - > number) [h .000001] - > (number - > number)
gradient : (number number - > number) [h .000001] - > (vector - > vector)
make-vec : (number number - > number) (number number - > number) - > (vector - > vector)

6

2. Module: plot.ss 2.3. Misc Functions

derivative creates a function that evaluates the numeric derivative of the given single-variable function using the
definition.h is the divisor used in the calculation.

gradient creates a vector-valued function that is the gradient of the given function.h represents the numeric divisor,
as with the derivative function.

make-vec creates one vector valued function from two parts.

7

3. Module: plot-extend.ss

plot-extend.ss allows you to create your own constructors, further customize the appearance of the plot windows, and
in general extend the package.

3.1 2d-view%

Provides an interface to drawing 2dplots. Some methods call low-level functions while others are emulated in scheme.

• set-labels : string string string - > void
Sets x, y and title labels

• plot-vector : vector vector - > void
Plots a single vector. First argument is the head, second is the tail.

• plot-vectors : (listof (list vector vector)) - > void
Plots a list of vectors. Each vector is a list of two schemevector s.

• plot-points : (listof vector) number - >void
Plots points using a specified character. ** provide character map **

• plot-line : (listof (vector number number)) - > void
Plots a line given a set of points. Each point is represented by avector .

• plot-contours : (listof (lisftof number)) (listof number) (listof number) (listof
number) - >void
Plots a grid representing a 3d function using contours to distinguish levels. Args are grid, xvalues yvalues and
levels to plot.

• plot-shades : (listof (lisftof number)) (listof number) (listof number) (listof
number) - >void
Plots a grid representing a 3d function using shades to represent height (z).

3.2 3d-view%

Provides an interface to drawing 3d plots.

• plot-surface : (listof (lisftof number)) (listof number) (listof number) - >void
Plots a grid representing a 3d function in a 3D box, showing only the top of the surface.

• plot-line : (listof number) (listof number) (listof number) - > void
Plots a line in 3d space. The arguments are lists of x,y and z coordinates respectively.

• get-z-min : - > number
Returns the minimum plottable Z coordinate.

8

3. Module: plot-extend.ss 3.3.define-plot-type

• get-z-max : - > number
Returns the maximum plottable Z coordinate.

• get-alt : - > number
Returns the altitude (in degrees) from which the 3d box is viewed.

• get-az : - > number
Returns the azimuthal angle.

3.3 define-plot-type

Macro used to create new constructors. It is easiest to explain with an example, so here is an implementation of a
simple line constructor:

(define-plot-type line
func 2dplotview (x-min x-max) ((samples 150) (color ’red) (width 1))
(send ∗ 2dplotview

(set-line-color color) (set-line-width width)
(plot-line (map (lambda (x) (vector x (func x)))

(x-values samples x-min x-max)))))

• The first keyword after then name of the new plot type, is used to refer to the data that will be rendered. In this
case, we will are calling our datafunc . For example, in the execution of(plot (line (lambda (x)
x))) func would refer to the identity function.

• 2dplotview refers to the name of the view object that the Plot-item will be applied to byplot

• Thex-min andx-max are fields in the2d-view \%object. They will be bound to the values of those fields
before the execution of the body, assuming the object has the methodsget-x-min andget-x-max . This
entire expression can be omitted if none of the fields are necessary (such as for plotting discrete data points).

• The last set of parenthesized expressions sets keywords based arguments and their default values for the con-
structor. To over-ride values the user needs to provide an associative list with the desired values. Ex:(line
(lambda (x) x) ’((color blue)))

9

Index

2d-view%,8
3d-view%,8

curve fitting,2

define-plot-type,9

fitting, 2

plot-extend.ss,7
plot.ss,3

Quick Start,1

10

	1 Quick Start
	1.1 Overview
	1.2 Basic Plotting
	1.3 Curve Fitting
	1.4 Creating Custom Plots

	2 Module: plot.ss
	2.1 Plotting
	2.2 Curve Fitting
	2.3 Misc Functions

	3 Module: plot-extend.ss
	3.1 2d-view%
	3.2 3d-view%
	3.3 define-plot-type

	Index

