
TEX2page

Dorai Sitaram
Making books is a skilled trade,

like making clocks.
— Jean de la Bruyère

TeX2page makes Web pages from TeX [11] manuscripts. It reads an input document that
is marked up in a TeX format (viz., plain TeX, LaTeX [13], Texinfo [6]), and produces
an output document with the functionally equivalent HTML markup. TeX2page uses the
same input file syntax, calling conventions, and error-recovery mechanisms as TeX, and
thus demands no additional expertise of a user already familiar with TeX. TeX2page runs
on modern Schemes and Common Lisp.

There are several advantages to keeping the document source in TeX and leaving the
task of converting to HTML to TeX2page: There is no need to write and maintain two
separate documents, one for paper and the other for the screen. Indeed, there is no need
to learn a new input format, as TeX2page reuses a format already in wide and stable use
for printed documents [5, 21, 3]. Creating TeX source requires no special-purpose software;
any text editor will do. Furthermore, powerful and reliable tools such as BibTeX [18],
MakeIndex [12], and MetaPost [9] have developed around TeX, and their benefits can be
enjoyed by TeX2page too.

Finally, TeX, unlike HTML, is a programming language, which lets the composer of
the document exercise a fine control over its structure and presentation. A converter such
as TeX2page that can convert TeX macro definitions in addition to basic TeX markup
enables the format converted to to also benefit from TeX’s extensibility. For the cases
where TeX2page’s implementation of the TeX macro system is not manipulable enough, the
document writer can use the TeX2page extension language, which is full Scheme augmented
with all the TeX2page procedure definitions.

The rest of this manual is organized as follows:

1 Running TeX2page, 1
2 TeX and TeX2page commands, 4
3 Sections, 5
4 Style, 6
5 Color, 7
6 Verbatim text, 8
7 Cross-references, 12
8 Images, 18
9 Paper and screen, 23
10 Scheme as TeX’s extension language, 25
11 Recovery from errors, 27
A Auxiliary files, 28
B Bibliography, 29
C Concept index, 30

1 Running TeX2page

TeX2page is invoked in much the same way as plain TeX or LaTeX.1 Recall how these pro-
grams are called: Given a TeX source file with the relative or full pathname wherever-it-is/jobname.ext,
where jobname is the basename of the file and .ext is its extension, you type either

1 Hereafter, we will use TeX to mean any format of TeX, and plain TeX when we
specifically mean the “plain” format.

1

tex wherever-it-is/jobname.ext

or

latex wherever-it-is/jobname.ext

at the operating-system command line. You do not need to mention the extension .ext if it
is .tex. This creates the output DVI file, jobname.dvi, in the working directory.

TeX2page is called analogously. To create the HTML version of the same file wherever-it-is/jobname.ext,
type

tex2page wherever-it-is/jobname.ext

Again, the .ext is optional if it is .tex. This creates jobname.html in the working directory.
To try this out, copy into your working directory the example file story.tex provided

in all TeX distributions. Call TeX2page on it:

tex2page story

TeX2page will get cracking on story.tex, providing the following commentary, or log, on
your console:

This is TeX2page, Version 20050501 (MzScheme 300, unix)
(story.tex)
! Missing \end inserted.
[0]
Output written on story.html (1 page).

TeX2page is now done, and the result of its labors is the HTML file story.html.
The log file story.hlog contains a copy of the above log, and is useful if you didn’t

or couldn’t keep track of the console (perhaps because the log was too long). The log
says that story.tex lacked a document-ending command such as \end (or \bye) and that
TeX2page assumed one anyway. Also, only one HTML page was created, and its name
is story.html. TeX2page could in some cases produce auxiliary HTML pages in addition
to the main HTML page jobname.html (especially for larger documents). The auxiliary
HTML pages are reachable from jobname.html by navigation links (section 3.1). As each
auxiliary HTML page is completed, the log will show the bracketed numbers [1], [2], etc.
The [0] in this log refers to the only HTML file created, viz., story.html.

All this is of course almost exactly analogous to the way you type tex story to get
story.dvi from story.tex, with the log going into story.log.

This is TeX, Version 3.14159 (Web2C 7.3.1) (format=tex 2002.10.21) 16 NOV
2002 18:29

**story
(story.tex [1])
*\end
Output written on story.dvi (1 page, 668 bytes).

The only real difference is that TeX will not add the missing \end on its own, but instead
waits for the user to supply it explicitly from the console.2 Note that the bracketed numbers
now refer to physical pages.

Thus, from one TeX source file, you can get both a printable .dvi and a browsable
.html document, using the same calling conventions.

When TeX encounters a filename f, it searches for it in a standard list of directories,
which can be modified by the user via the environment variable TEXINPUTS. The filename

2 The file story.tex lacks an \end only to demonstrate some interactive capabilities of
TeX, which are not relevant for TeX2page.

2

f.tex is tried before f itself is tried. In most modern TeXs, the search is performed using
the kpathsea library.

By default, TeX2page will look for files using the same kpathsea mechanism as TeX.
However, it is possible to supply a different list of search directories via the environment vari-
able TIIPINPUTS. It may be useful to have files in TIIPINPUTS shadow files from TEXINPUTS,
because the latter are not really HTML-specific, and can thus be unsuitable for HTML-
minded parsing by TeX2page.

In TeXs without the kpathsea library, TIIPINPUTS is the only way to get TeX2page
to automatically access files outside the working directory. Note that TIIPINPUTS should
be a simple list of directory names, colon-separated in Unix and semicolon-separated in
Windows. It cannot use the enhanced syntax (viz., * and //) that is typically permitted
for TEXINPUTS.

Error recovery in TeX2page is also exactly analogous to TeX, but we will postpone that
discussion to section 11.

1.1 Non-file arguments

Like most recent versions of TeX, TeX2page also supports the standard self-identification
arguments --help and --version. These arguments elicit help only if there isn’t an input
file (e.g., --help.tex) that could match them.

TeX2page called without an argument displays a help message and exits. Unlike TeX,
TeX2page will not try to conjure up an input document based purely on console chitchat
with an increasingly befuddled user.

In all these cases, the help displayed on the console is also saved in the specially named
log file texput.hlog.

1.2 Calling TeX2page from Scheme

You may load the library tex2page.ss into Scheme and call the procedure tex2page with
the name of the TeX file as argument:

(require (lib "tex2page.ss" "tex2page"))

(tex2page filename)

You can call the procedure tex2page several times from the same Scheme session, on the
same file or on different files.

1.3 Specifying a target directory

By default, TeX2page generates the output HTML files and other auxiliary files (section A)
in the current working directory. You can tell TeX2page to place its output and auxiliary
files in a different directory and thus avoid cluttering up your working directory.

The files used for specifying the target directory are: jobname.hdir in the working
directory, .tex2page.hdir in the working directory, and .tex2page.hdir in the user’s
HOME directory. The first line of the first of these files that exists is taken to be the name of
the target directory. If none of the files exists, the current working directory is the target
directory.

For example, if story.hdir contains the filename story as its first line, the HTML
and aux files are created in a subdirectory story of the current directory.

The filename may contain the TeX control sequence \jobname, which expands to the
basename of the TeX document. To always use an auxiliary subdirectory with the same

3

name as the basename of the TeX document, have ~/.tex2page.hdir contain the line
“\jobname” (without quotes).

2 TeX and TeX2page commands

A TeX document is a text file. Most of the text represents the content of the document,
but a few characters are used specially to embed markup commands within the text. The
TeX program, which recognizes a list of primitive commands, along with a format file that
defines some additional commands, reads the text file, and uses the markup commands in
the text to create an appropriately typeset version of the document in a DVI file, which can
then be printed.

TeX2page understands many of the commands of TeX. It uses this understanding to
convert a TeX document to its HTML version, much the same way that TeX converts the
same document into its DVI version. TeX2page can process documents written in both the
plain TeX [11] and LaTeX [13] formats.3 TeX2page also recognizes some commonly used
macros that are loaded from external macro files or LaTeX packages. With the aid of a
macro file texi2p.tex (section 2.2), TeX2page can also process Texinfo documents [6].

TeX2page silently ignores non-mathematical TeX commands that it does not under-
stand, and often this is precisely the right treatment. E.g., it is acceptable to ignore com-
mands such as \leavevmode, \noindent, \/, and \- when creating an HTML document
from TeX source.

While TeX2page will attempt gamely to process any TeX definitions that you use in
your document (perhaps by \inputting external TeX macro files), it is usually a good
idea to have them explicitly ignored (section 9). E.g., you can use macros for generating
double columns — while this is a great paper-saver for your printed copy, it is generally not
important for the HTML version and so is no loss if ignored by TeX2page.

2.1 tex2page.tex and tex2page.sty

TeX2page also processes some TeX-like commands that are not present by default in the
TeX formats. These include commands that are specific to HTML and its hyperlinks;
commands for verbatim text, with special emphasis on syntax highlighting for computer-
language fragments; and some rarely used (indeed discouraged) but sometimes unavoidable
directives (section 9) that allow TeX2page and TeX to produce differing content. If you use
these commands in your document, and you want your document to still be processable by
TeX, you need to supply some workable TeX definitions for them — even if they do not
quite produce the same effect in the DVI output as they do in the HTML output. Such
definitions are provided in the macro file tex2page.tex. It may be included in your TeX
document as

\input tex2page

LaTeX users may alternatively access the macros of tex2page.tex via the file tex2page.sty,
which has a name that fits better with LaTeX’s \usepackage command:

3 TeX2page processes both plain TeX and LaTeX commands, without the need for a
format file parameter. It can even process documents written in a mix of plain TeX and
LaTeX. This is not an uncommon scenario, with LaTeX users frequently using plain TeX
commands, and plain TeX users frequently implementing their own version of sectioning
and other commands using the LaTeX names. In the few cases where the same command
name (e.g., \footnote) is used in both formats but with different behavior, TeX2page will
choose the correct behavior based on which format it thinks the overall document is in. The
plain TeX and LaTeX document structures are sufficiently different (as human readers can
readily testify by reading just a few opening lines) to allow this disambiguation.

4

\usepackage{tex2page} % if document is in LaTeX

This ensures that your document can be processed by both TeX2page and TeX.
As we have seen above, the language recognized by TeX2page is a combination of plain

TeX and LaTeX. Most plain-TeX commands are available to the LaTeX user; however the
reverse is certainly not the case. This means that a plain-TeX user of TeX2page can use
quite a few LaTeX commands in his source that are processable by TeX2page but not by
plain TeX. In the interest of generality, the file tex2page.tex includes some plain-TeX
definitions for these LaTeX commands. You can either choose not to use these commands
or override their definitions in tex2page.tex with your own, better, definitions.

Note that TeX2page itself does not need the file tex2page.tex. Rather, plain TeX
and LaTeX need the tex2page.tex macros in order to process files written using the extra
commands supported by TeX2page. If your document does not use these extra commands,
then you can do without tex2page.tex.

In this manual, we will use the term “TeX2page command” to refer to commands
for which a definition is provided in tex2page.tex. It is not necessary that a TeX2page
command not be provided by a standard TeX format. For example, the term “LaTeX and
TeX2page command” refers to a command that is defined in the LaTeX format, but that is
also defined in tex2page.tex, and as such can be used in a non-LaTeX format (typically
plain TeX) by loading tex2page.tex.

2.2 The .t2p file

Before processing a TeX document, TeX2page will automatically load a file with the same
basename as the TeX main file but with extension .t2p, if this file exists. This is a good
place to put HTML-specific definitions for the document without making changes in the
document itself.

.t2p files are especially valuable when HTMLizing legacy or third-party documents
without compromising their authenticity, integrity, and timestamp. .t2p files can also
be used to adapt TeX2page to other formats of TeX besides plain TeX and LaTeX. For
example, the file texi2p.tex (provided in the distribution) helps TeX2page process Texinfo
documents.

Note that the definitions in the .t2p file are processed before the main file. But it
often makes sense to activate these definitions sometime later. E.g., activating the .t2p
definitions after the preamble in a LaTeX document allows you to redefine the preamble
macros in a manner that is appropriate for HTML. Here is a technique for accomplishing
this:

\let\PRIMdocument\document

\def\document{
... HTML-specific definitions ...
\PRIMdocument}

This code, which goes in the .t2p file, redefines the \document command to include a hook
that loads some HTML-specific definitions. Since the \document command is called right
after the preamble, the definitions introduced by the hook will shadow the preamble macros,
as intended.

Sample .t2p files may be found in the TeX2page distribution.

3 Sections

The command \title may be used to title the entire document.

\title{The Odyssey}

5

You can use \\ to insert linebreaks in a multiline \title.
If you wish a different “external” title for the Web document, use the TeX2page com-

mand \externaltitle. TeX will ignore \externaltitle.
For Plain TeX documents, TeX2page will set the title where \title is called. In

LaTeX, however, \title merely stores the title; the command that actually prints the title
is \maketitle. The LaTeX commands \author and \date can be used to pass additional
information to \maketitle. If \date isn’t specified, TeX2page, like LaTeX, will use \today.

TeX2page recognizes the following sectioning commands: \section, \subsection,
\subsubsection, \paragraph, and \subparagraph. Usage:

\section{The Princess at the River}

The sectioning commands are numbered, and can be cross-referenced using labels (section 7).
Unnumbered sections can created by affixing ‘*’ to the sectioning command, e.g.,

\section*{The Princess at the River}

Section heads may be collected into a table of contents (section 7.3).
The section number is a dotted number that reflects the section’s depth. E.g., the second

\subsubsection in the fourth \subsection of the third \section is numbered “3.4.2”.
TeX2page recognizes subsections deeper than \subparagraph (depth = 5), although it

does not provide the \sub...subsection or \sub...paragraph macro at these depths. To
specify a section at depth n, use \sectiond{n}. Thus, \subsection is merely a convenient
abbreviation for \sectiond{2}.

The command \chapter can also be used, and is useful for book-length documents.
Following LaTeX convention, \chapters are considered to be at depth 0. \chapter causes
a page break (section 3.1) and typesets the header more prominently than \section.
\chapter* produces unnumbered chapter headings.

The command \appendix causes subsequent top-level (i.e., depth = 0 if \chapters are
used, depth = 1 otherwise) headings to be identified alphabetically rather than numerically.

3.1 Producing several HTML pages

Typically, TeX2page produces a single HTML page for the entire document. There are a
couple of exceptions: The \chapter command will start a new HTML page. For some
documents, you may want to split the document into pages at your own discretion.

As in TeX, use the commands \eject, \supereject, or \dosupereject to force a
page break. (It is advisable to place a \vfill before \eject so the DVI document doesn’t
cause the pre-\eject text to increase its interparagraph space unsightlily in order to fill
the physical page.) LaTeX users can additionally use \pagebreak, \newpage, \clearpage,
\cleardoublepage. The TeX2page command \htmlpagebreak can be used to create a page
break only for HTML.

Each of the resulting pages has a navigation bar at the top and at the bottom that
let you travel quickly to the first, previous, or next page. If the document has a table of
contents or an index, buttons for these are also embedded in the navigation bar.

4 Style

You can have your HTML output use style sheets [24, 15, 19]. The command

\inputcss basic.css

in your TeX source will cause the HTML output to use the presentation advice contained in
the style sheet basic.css. The \inputcss command has no relevance for the DVI output.

In the style sheet, you can have rules for the various HTML elements to change the
appearance of your document. E.g.,

6

h1 {color: navy}

will cause all top-level headers to be navy-blue. You can get finer control on the look of your
document by defining rules for some classes that are peculiar to TeX2page. These special
classes are discussed in this manual alongside the commands that they govern (sections 6.4
and 6.5).

You can have as many \inputcss’s in your document as you wish. They will be
combined in the sequence in which they appear. It is perhaps necessary to add that style
sheets are completely optional.

You can also embed style sheet information in the TeX source between the control
sequences \cssblock and \endcssblock. E.g.,

\cssblock
h1 {color: navy}
\endcssblock

You can have multiple \cssblocks in the document; they are all evaluated in sequence.
TeX2page generates a default style sheet for the converted document, jobname-Z-S.css.

You can augment or override the default style by supplying your own style info via \cssblock
or by loading stylesheets with \inputcss. Some general-purpose style sheets are the W3C
Core Styles [25].

4.1 Making a slideshow

The MozPoint [16] library (which relies on Javascript and style sheets) allows a sequence of
HTML pages to be used as a presentation or slideshow. HTML pages meant for presentation
use larger, bolder fonts, and avoid navigation bars. To bring up the next slide, left-click the
mouse anywhere on the screen, or press the space bar, n, right or down arrow. To go back
to the previous slide, press p, left or up arrow. To go back to the first (i.e., title) slide, press
t or 0. To go the nth slide after the title slide, type n. If n has two or more digits, they
should be pressed fairly rapidly so that they are interpreted together.

To cause your source to be converted into slideshow-ready HTML pages, use the
macro file t2pslides.tex by embedding \input t2pslides anywhere in the document.
t2pslides.tex is included in the TeX2page distribution.

5 Color

In contrast to style sheets which affect only the HTML output, the commands \color and
\definecolor may be used to specify text color for both HTML and DVI output. These
commands are provided by the standard LaTeX package color.sty, and are also defined
in tex2page.tex for use with plain TeX.

\color[color-model]{color-spec}

specifies that the rest of the text in the current group should be in the color given by
color-spec using color-model.

color-model is one of rgb, cmyk, gray, RGB, or named, and may be omitted (with the
brackets) if it is named. The color-spec for the model gray is a number between 0 and 1
(inclusive); for rgb, a comma-separated list of three numbers, all between 0 and 1; for cmyk,
a list of four numbers, all between 0 and 1; for RGB, a list of three integers, all between 0
and 255 (inclusive); and for named, a pre- or user-defined color name.

Eg:

{\color[gray]{.17} light gray},
{\color[rgb]{.69, .19, .38} maroon},
{\color[cmyk]{0, .89, .94, .28} brick red},

7

{\color[RGB]{220, 20, 60} crimson},
{\color[named]{magenta} magenta}, and
{\color{blue} blue}.

produces:
light gray, maroon, brick red, crimson, magenta, and blue.
Predefined color names are red, blue, green, cyan, magenta, yellow, black, and

white. New color names can be defined by:

\definecolor{new-color-name}{color-model}{color-spec}

Eg:

\definecolor{BrickRed}{cmyk}{0, .89, .94, .28}

Most color-capable browsers support the very large list of named colors in the X11 file
rgb.txt. In order for your printed document to have access to these same color names, def-
initions for them are provided in the TeX macro file x11rgb.tex, included in the TeX2page
distribution.

cmyk definitions for the 68 standard DVIPS color names are available in the standard
LaTeX macro file dvipsnam.def. These are not predefined by browsers, so you will need to
load dvipsnam.def explicitly if your HTML document is to benefit from them. For plain
TeX documents, load dvipsnam.def after loading tex2page.tex.

6 Verbatim text

The command \verb is used for text that should be set verbatim, such as fragments of
computer code. \verb’s argument is enclosed within a pair of identical characters (that
aren’t whitespace, {, or *). For example,

A \verb|cons|-cell has two components: a \verb+car+ and
a \verb&cdr&.

is converted to
A cons-cell has two components: a car and a cdr.

You could also use matching braces to enclose \verb’s argument, provided the latter does
not contain unmatched braces. E.g.,

The command \verb{\section{The Test of the Bow}} types \verb{The
Test of the Bow} as a section title.

is converted to
The command \section{The Test of the Bow} types The Test of the Bow as
a section title.

If \verb’s argument commences with a newline, it is set as a display. E.g.,

\verb{
(define compose
(lambda (f g)
(lambda aa
(f (apply g aa)))))

}

produces

(define compose
(lambda (f g)
(lambda aa
(f (apply g aa)))))

8

Note that such displays faithfully typeset all the whitespace of the text, including linebreaks
and indentation.

If a * immediately follows \verb, any spaces in \verb’s argument text are highlighted
as something that is visible. This allows you to easily count spaces or tell if there is trailing
space on a line.

‘‘\verb*{three spaces}’’

produces

“three spaces”

The command \path is similar to \verb. The only difference is that when the document
is TeX’d, the text specified by \path can be broken across lines at ‘.’ and ‘/’. This is useful
for long URLs and filenames.

TeX2page also understands LaTeX’s {verbatim} and {verbatim*} environments, which
set displayed verbatim text with spaces and newlines as is. {verbatim*} differs from
{verbatim} in that spaces are highlighted as something visible.

Note: Unfortunately, you cannot use \verb and \path in LaTeX section headers. While
TeX2page itself has no problem with this sort of construction, LaTeX will cause error. Use
\tt instead, perhaps with some other definitions for special characters. The section macros
provided in tex2page.tex for use with plain TeX do not have this problem.

6.1 Commands within verbatim

Often you want to use TeX commands in special spots within verbatim text, especially
displayed verbatim material. For this reason, the character ‘|’ is allowed as an escape
character if the verbatim text is enclosed within braces.

As an example, let’s say you’ve defined an \evalsto macro to use in cases where you
want to say a program expression evaluates to a result. A possible definition is:

\def\evalsto{::==}

You could use \evalsto inside a verbatim display as follows:

\verb{
(cons 1 2) |evalsto (1 . 2)
}

This will produce

(cons 1 2) ::== (1 . 2)

Some standard commands that can be used inside braced verbatim are: || to insert the
escape character itself; and |{ and |} to insert the occasional non-matching brace.

6.1.1 Changing the verbatim escape character

You can use the macro \verbescapechar to postulate a character other than ‘|’ as the
verbatim escape. E.g.,

\verbescapechar\@

makes ‘@’ the verbatim escape.

9

6.2 Inserting files verbatim

You can insert files verbatim with the command \verbatiminput. Usage:

\verbatiminput progam.scm % or
\verbatiminput{program.scm}

This displays the contents of the file program.scm “as is”. Useful for listings.4

6.3 Writing to files

The command \verbwrite, used like \verb, does not typeset its enclosed text but outputs
it verbatim into a text file. The text file has by default the same basename as the document,
but with extension .txt.5

To specify another text file, use \verbwritefile. E.g.,

\verbwritefile notes-to-myself.txt % or
\verbwritefile{notes-to-myself.txt}

This will cause subsequent calls to \verbwrite upto the next \verbwritefile or end of doc-
ument (whichever comes first) to send text into the file notes-to-myself.txt. \verbwritefile
deletes any pre-existing contents of its argument file.

6.4 Verbatim style

The verbatim commands \verb, \path and \verbatiminput introduced above use a style
class called verbatim. You can affect the appearance of your verbatim text by defining a
style for verbatim in a style sheet (section 4). E.g.,

.verbatim {color: darkgreen}

makes all verbatim text dark green.

6.5 Syntax-highlighting of program code

The commands \scm and \scminput are variants of \verb and \verbatiminput. They are
useful for producing syntax-highlighted Scheme code in the HTML file. E.g.,

\scm{
(define fact
"The factorial function"
(lambda (n)
(if (= n 0) 1 ;the base case

(* n (fact (- n 1))))))
}

4 For the DVI output, you can use the definition for \verbatiminput in tex2page.tex
or, in LaTeX, load the package verbatim.sty. Note that the latter only accepts a braced
filename as argument. tex2page.tex will not overwrite the definition from verbatim.sty.

5 TeX2page also recognizes the TeX command \write, which takes two arguments: an
output stream number and a TeX expression to be output. Recall that TeX allows only the
numbers 0–15 for output streams that can be associated with files; numbers outside this
range are deemed to represent standard output. However: TeX2page follows modern TeX
implementation practice in treating the output stream 18 specially. \write18{command},
instead of writing command to standard output, will execute it as an operating-system
command. This is not standard TeX behavior, but most modern TeXs enable this feature
with a command-line option that is either --shell-escape [5] or --enable-write18 [21].

10

Seven categories of code text are distinguished: (1) self-evaluating atoms (numbers,
booleans, characters, strings); (2) syntactic keywords; (3) builtin variables; (4) global or
special variables, viz., identifiers that begin and end with an asterisk; (5) other variables;
(6) comments; and (7) background punctuation.

To distinguish between the categories of Scheme code text, TeX2page uses a style class
called scheme with six subclasses, viz., selfeval, keyword, builtin, global, variable,
and comment. You can set the color property (or perhaps other properties) of these classes
in a style sheet (section 4). E.g., the style sheet for this document uses:

.scheme {color: brown} /* background punctuation */

.scheme .keyword {color: black; font-weight: bold}

.scheme .builtin {color: #990000}

.scheme .variable {color: navy}

.scheme .global {color: purple}

.scheme .selfeval {color: green}

.scheme .comment {color: teal}

TeX2page initially only recognizes some well-known syntactic keywords, global variables,
and self-evaluators. It does not recognize builtins as apart from the general run of variables.
Users who want builtins distinguished can use \scmbuiltin, e.g.,

\scmbuiltin{cons car cdr}

Users can add their own keywords with \scmkeyword. E.g.,

\scmkeyword{define-class unwind-protect}

By default, tokens that don’t fall in any of the other categories are set as variables. However,
\scmvariable can be used to explicitly identify as variables those tokens that are currently
treated as non-variables (e.g., keywords or self-evaluators). E.g.,

\scmvariable{and 42 +i}

6.5.1 Using SLaTeX commands

TeX2page also syntax-highlights Scheme code introduced using the SLaTeX commands,
chiefly \scheme and {schemedisplay}. SLaTeX users know that these commands typeset
code in the DVI output using fonts (rather than color) for highlighting. For the HTML,
TeX2page will use color.

A minor point is that SLaTeX’s commands allow TeX commands inside Scheme com-
ments. This is useful if you want to highlight mentions of Scheme code inside Scheme
comments. To get the same effect with TeX2page, declare \slatexlikecomments before
first use.

\slatexlikecomments is not an unmixed blessing, however, as it restricts your Scheme
comments to text that is valid TeX. Use \noslatexlikecomments to go back to verbatim
comments.

6.6 Documenting your code

You can use TeX2page to do a form of literate programming, i.e., combining your documen-
tation with your code. The command \scmdribble, which is used like \scm, will not only
display the enclosed code, but also send it to the external file named by the most recent
\verbwritefile (sec. 6.3).

To specify code that should go into the external file but should not be displayed, simply
use \verbwrite instead of \scmdribble.

11

7 Cross-references

The command \label{tag} anchors a location in the document that can be referred to
elsewhere in the document with a \ref{tag}.6 The location represented by a \label is
the header of the smallest sectioning environment enclosing the \label. This sectioning
environment can be a chapter, (sub)section, or footnote.

A \label command is typically placed after the sectioning command, and the corre-
sponding \ref will print as that section’s number. In HTML, the \ref text will additionally
be a link : Clicking that link will cause the browser to display the part of the web page start-
ing the labeled section.

Note that the \label merely names pre-selected anchor points in the documents, viz.,
the openings of chapters, (sub)sections, and footnotes. To insert your own anchors at
arbitrary locations in the document, use \tag{atag}{tagvalue}. (You need to supply a
tagvalue, because there is no sectioning environment whose number \tag can assume.) This
causes \ref{atag} to expand to tagvalue, and furthermore, in the HTML, to be a hyperlink
to the location of the \tag. The main use for the \tag command is to enrich the HTML
version of your document with hyperlinks — unlike \label, \tag does not add value to the
print version.

You may need to rerun TeX2page in order to resolve the cross-references in a document.
TeX2page will tell you if this is the case.

7.1 Referring to external documents

The command \urlhd{URL}{HTML text}{DVI text} lets you link to arbitrary URLs, not
just to labels within your document. In the HTML output, a hyperlink to ‘URL’ is created,
with the link text being ‘HTML text’. In the DVI output, the part ‘DVI text’ is output.
Example:

For more details, consult
\urlhd{http://www.ithaka.org/odyssey.html}{the Odyssey}{the
{\it Odyssey\/} document in the Ithaka repository}.

In the DVI output, this becomes
For more details, consult the Odyssey document in the Ithaka repository.

In the HTML output, it would be
For more details, consult the Odyssey.

where “the Odyssey” is an HTML link to the site http://www.ithaka.org/odyssey.html.
\urlhd is named to be a mnemonic for its argument sequence, viz., the URL, followed

by the H tml text, followed by the Dvi text.
Note that you can use \urlhd for cross-referencing within the document also. The URL

in such cases will be a label as specified by a \label or a \tag command, but should add
a ‘#’ prefix. E.g.,

See \urlhd{#hairy}{below}{section~\ref{hairy}}
for further details.

where the further details are described in a section annotated with \label{hairy}. Assume
this section is numbered 21. Then, the reference typesets as “See section 21 . . . ” in the DVI
output and “See below . . . ” in the HTML output (with below being a link). In contrast, if
we had written

6 If you are using the Eplain [1] format, use the name \tagref instead of \ref to get the
behavior described here. Or do \let\ref\tagref after \inputting tex2page.tex. Eplain
uses the name \ref for a somewhat different operation, and tex2page.tex will not by itself
overwrite it.

12

See section~\ref{hairy} for further details.

we would have had “See section 21 . . . ” in both DVI and HTML. \urlhd is thus more
flexible than \ref.

Because of page breaks in the HTML output (sec. 3.1), it is possible that a label’s
definition and the references to it do not ultimately sit on the same physical HTML page.
Nevertheless, your TeX source can use #tag-style URLs to refer to anchors anywhere within
it. TeX2page will automatically convert a #tag-style URL to its correct fully qualified
equivalent.

7.1.1 Abbreviations for specifying links

\urlhd takes three arguments. In some cases the second and third arguments may be mere
repetitions of a preceding argument. For such cases, TeX2page provides some convenient
abbreviations.

\urlh takes two arguments. The first argument is the URL, and the second is the
descriptive text that is used in both the HTML and the DVI outputs. For example:

TeX is available at
\urlh{http://www.tug.org}{the TUG website}.

produces

TeX is available at the TUG website.

In the HTML output, “the TUG website” is a hyperlink to http://www.tug.org.
An optional \\ may be used inside \urlh’s second argument. The text before the \\

is used in both the HTML and the DVI outputs. The text after the \\ is used only in the
DVI output. This helps you to specify extra information for the DVI output, which may
be necessary because the DVI output lacks the information implicit in the hyperlink. For
example:

TeX is available at
\urlh{http://www.tug.org}{TUG\\ (\path{tug.org})}.

produces, in the DVI output.

TeX is available at TUG (tug.org).

The HTML output will not mention the parenthesized domain name, since the word “TUG”
hyperlinks to it.

\\ is useful for internal cross-references too. For example (assuming the label callcc
refers to section 2.3):

More complicated forms of program control are possible
using \urlh{#callcc}{{\tt callcc}\\ (section~\ref{callcc})}.

produces

More complicated forms of program control are possible using callcc (section 2.3).

in the DVI output. In the HTML output, the parenthesized section reference will be dropped
as redundant, as the word “callcc” hyperlinks to the relevant section.

An optional \1 may be used after \\ to refer to \urlh’s first argument, i.e., the URL.
Example:

TeX is available at
\urlh{http://www.tug.org}{TUG\\ (\1)}.

produces

TeX is available at TUG (http://www.tug.org).

13

in the DVI output. In the HTML output, the parenthesized URL is dropped as redundant,
as the word “TUG” hyperlinks to it.

Finally, the combination of \tag and \urlh is useful for inserting internal cross-references
in the HTML document without affecting the print document. For example, the following
text

\tag{ex1}{ignore}
\urlh{#ans1}{\bf Exercise 1.} Statement of a problem ...

... lots of intervening stuff ...

\tag{ans1}{ignore}
\urlh{#ex1}{\bf Answer 1.} Answer to exercise 1 ...

prints as

Exercise 1. Statement of a problem . . .

. . . lots of intervening stuff . . .

Answer 1. Answer to exercise 1 . . .

in both the DVI and the HTML. However, in the HTML, the proclamations “Exercise 1.”
and “Answer 1.” are also helpful hyperlinks to each other.

\url takes just one argument, the URL. For the descriptive text, both the HTML and
the DVI outputs simply use the URL itself. Example:

TeX is available at \url{http://www.tug.org}.

\urlp takes two arguments. In the HTML output, the first argument is the link text and
the second is the URL. In the DVI output, the first argument is typeset followed by a space
followed by the URL in parentheses. \urlp{text}{URL} abbreviates \urlh{URL}{text\\
(\path{URL})}.

\mailto is a single-argument command for specifying email addresses. \mailto{address}
abbreviates \urlh{mailto:address}{\path{address}}.

7.2 Referring to labels in related documents

TeX2page allows several related online documents to refer to labels in one another, much
as each would refer to labels within itself. Each document needs to identify the location of
the other documents that it wishes to refer to. The commands \includeexternallabels
and \inputexternallabels accomplish two flavors of such mutual cross-referencing.

7.2.1 \includeexternallabels

\includeexternallabels external-jobname

allows the current document to incorporate labels from external-jobname, and refer to them
as it would to its own labels, i.e., using \ref. It is therefore important that the label names
used by the documents should not clash.

The argument external-jobname is the appropriate pathname to the external document.
Use the name of the main HTML file, without the extension. If using a relative pathname,
take care to calculate the pathname from the location of the current document’s main HTML
(not source) file to the location of the external document’s main HTML (again, not source)
file.

For example, if you have two documents docA.tex and docB.tex in the current di-
rectory, and you have used the .hdir mechanism to direct the HTML files to go into

14

subdirectories docA and docB7, then docA.tex should contain

\includeexternallabels ../docB/docB

and docB.tex should contain

\includeexternallabels ../docA/docA

7.2.2 \inputexternallabels

\inputexternallabels external-jobname

also allows the current document to refer to labels from external-jobname. However, unlike
\includeexternallabels, the labels are not incorporated into the current documents pool
of labels. The call merely identifies that the labels from external-jobname are available
for use in the current document, but with appropriate qualification. Instead of \ref, the
command \htmlrefexternal is used to refer these labels. The call

\htmlrefexternal{text}{external-jobname}{external-label}

typesets text as a hyperlink to the label external-label in the HTML document of basename
external-jobname.

Note that the external document is named explicitly. While the situation is more
verbose than that with \includeexternallabels, it makes no requirement that the names
of the labels in the two documents should not clash.

7.3 Table of contents

The command \tableofcontents emits a list of the section names in the document, with
their numbers. In HTML, these entries are links to the corresponding sections.

7.4 Footnotes

Footnotes are a more print-oriented form of cross-reference. TeX2page recognizes plain
TeX’s \footnote as well as a new macro called \numfootnote. The latter numbers footnotes
automatically and sequentially (i.e., the user need not think up footnote marks).

Both \footnote and \numfootnote produce the expected output. The footnote mark
occurs both in the body of the text and at the bottom of the relevant (DVI or HTML) page,
with the latter accompanied by the footnote text.

Additionally, in the HTML output, the footnote mark in the text body is a link to the
footnote mark in the footnote text, and vice versa. This paragraph ends with a footnote.
Click the footnote mark to see the footnote text at the bottom of the HTML page. You
can either click the “back” button on your browser or the footnote mark itself to get back
to the body of the text.8

The footnote above (below?) was generated by

... to get back to the body of the
text.\numfootnote{Footnotes are separated ...
by a horizontal rule.}

7 This could be done, for instance, by having both docA.hdir and docB.hdir contain
\jobname.

8 Footnotes are separated from the body of the page by a horizontal rule.

15

7.5 Bibliographies

TeX2page can use the external program BibTeX [13, 18] to generate bibliographies from bib-
liographic database files. A bibliographic database file is a .bib file containing bibliographic
entries of the form

@book{tex,
author = "D E Knuth",
title = "{The TeXbook}",
publisher = "Addison-Wesley",
year = 1993

}

TeX source can cite a bibliographic entry using the command \cite. E.g.,

Here’s an example diagram from {\it The
TeXbook\/}~\cite[p.~389]{tex}.

\cite and the other bibliography-related commands described below are included in LaTeX.
For plain TeX, you will need to explicitly load the macro file btxmac.tex, present in all TeX
distributions.

The command \bibliographstyle specifies the style of the citations: plain num-
bers the bibliography items, whereas alpha gives them mnemonic alphanumeric keys. The
command \bibliography specifies one or more .bib files to search for the citations, and
generates a bibliography, i.e., a sorted list of all the cited entries. E.g.,

\section*{Bibliography}

\bibliographystyle{plain}
\bibliography{tex,scheme,html}

Here tex.bib, scheme.bib, and html.bib are the .bib files used, presumably containing
entries specific to TeX, Scheme, and HTML respectively.

\nocite{citation} will include in the bibliography the entry for citation, without need-
ing to cite it in the text. \nocite{*} will include all the entries from all the supplied .bib
files.

A first run of TeX2page on the document jobname.ext creates an auxiliary file jobname-Z-B.aux.
A subsequent run of TeX2page calls BibTeX on jobname-Z-B.aux to produce the corre-
sponding sorted bibliography in the file jobname-Z-B.bbl, which is slurped into the output
document. (You may call BibTeX yourself, as you would have to do when TeXing the
document for the DVI output.)

If TeX2page cannot create or find jobname-Z-B.bbl despite its best efforts, it will
inform you that you need to generate it manually. Once created, the file is reused as is
in future runs. Delete the file to have it regenerated (perhaps because your document has
changed).

BibTeX is convenient for selecting, sorting, and writing out in appropriate format the
relevant bibliographic entries for your document, but if for some reason you want to do it all
on your own, you can.9 Use the thebibliography environment to enclose your bibliographic
entries, and introduce each entry with \bibitem. For more details, see the LaTeX manual
[13, section 4.3.2, p. 71], or see a sample .bbl file generated by BibTeX and imitate.

9 This approach, while tedious and a maintenance millstone, can be rational sometimes:
E.g., if your bibliographic entries are written in a raconteur’s style and include opinions
or digressions that are tailormade for the particular document at hand, they are likely
inappropriate for inclusion in a quasi-central bibliographic database.

16

7.6 Index generation

TeX2page can use the external program MakeIndex [2, 12] to generate indices. TeX2page’s
index-generation feature follows the same conventions as traditionally used with TeX and
its derived packages [13, section 4.5, appendix A].

This means that an occurrence of \index{item} in the TeX source causes item to be
entered into an unsorted index file, jobname-Z-I.idx. A subsequent run of TeX2page calls
MakeIndex on jobname-Z-I.idx to produce the sorted index in jobname-Z-I.ind, which is
included in the output using a command such as \printindex. (You may call MakeIndex
yourself, as you would have to do when TeXing the document for the DVI output.)

The auxiliary files have the basename jobname-Z-I rather than jobname as in TeX,
because the HTML index is necessarily different in character from the DVI index: Whereas
the DVI index item mentions one or more page numbers in the main text where the indexed
item occurs, the HTML index item is a hyperlink into the main text.

If an indexed item needs to point to multiple occurrences in the main text, the hyperlink
associated with the index entry points to the first occurrence. The hyperlinks for succeeding
occurrences are notated by bracketed numbers starting from 2. (The number represents the
number of the occurrence.)

TeX2page recognizes two macros for index insertion. First, there is the conventional
\printindex which emits the sorted index inside a section called “Index”. In addition,
there is also \inputindex, which emits just the index without a section header. This is so
that you can set the index your own way. E.g., you may want to have a different section
header or include some introductory prose.

If TeX2page cannot find the sorted index file (jobname-Z-I.ind) despite its best efforts,
it will inform you that you need to generate it manually. Once created, the file is reused as
is in future runs. Delete the file to have it regenerated (perhaps because your document has
changed).

7.7 Colophon

By default, TeX2page prints a two-line colophon at the bottom of the first page, the first
line giving the time of last change of the source document, and the second line identifying
TeX2page. You can control both the placement and the detail of the colophon using the
\htmlcolophon command.

\htmlcolophon{last-page} puts the colophon on the last, instead of the first, page.
\htmlcolophon{no-timestamp} prevents mention of the last modification time of the doc-
ument.10 \htmlcolophon{dont-link-to-tex2page-website} will mention TeX2page, but
without hyperlinking to the TeX2page website. To avoid mentioning TeX2page at all,
use \htmlcolophon{dont-credit-tex2page}, which also has the convenient shorter form
\htmlcolophon{ingrate}.

These arguments to \htmlcolophon can be grouped together, with whitespace sepa-
rating them. Thus, \htmlcolophon{last-page dont-credit-tex2page} produces on the
last page a colophon containing only the timestamp. To produce no colophon at all, do
\htmlcolophon{no-timestamp dont-credit-tex2page}.

A call to \htmlcolophon requesting last-page is best placed in the document before
text for the second page starts, so as to avoid the default of the colophon appearing at the
end of the first page.

10 If the underlying Scheme is incapable of determining a file’s write date, no-timestamp
is automatically assumed.

17

8 Images

Some portions of your TeX source may be explicitly images, or text that is particularly resis-
tant to conversion to HTML. Examples are encapsulated PostScript inserts, mathematics,
and the LaTeX {picture} environment. In such instances, TeX2page invokes a combina-
tion of TeX, Dvips [20], Ghostscript [7] and the NetPBM library [17] to produce image files,
which are inserted into the HTML output.

By default, the image files employ the GIF format. You may change the format to
PNG11 or JPEG using the \htmlimageformat command, e.g.,

\htmlimageformat{png} % for PNG images
\htmlimageformat{jpeg} % for JPEG images
\htmlimageformat{gif} % for GIF images (default)

8.1 Mathematics

Math is typically text between $...$ (in-text math) and $$...$$ (displayed math). Here
are some samples of mathematics with TeX:

$$ F = G {m_1 m_2 \over r^2 } $$

$$ \int_0^\infty { t - ib \over t^2 + b^2} e^{iat}\,dt =
e^{ab} E_1(ab), \qquad a, b > 0 $$

$$ A =
\left(
\matrix{ x - \lambda & 1 & 0 \cr

0 & x - \lambda & 1 \cr
0 & 0 & x - \lambda \cr}

\right) $$

These produce, respectively:

F = G
m1m2

r2

∫ ∞

0

t− ib

t2 + b2
eiat dt = eabE1(ab), a, b > 0

A =

 x− λ 1 0
0 x− λ 1
0 0 x− λ


In-text mathematics is also available. E.g.,

The Euclidean distance between two points is given by
$\sqrt{ (\Delta x)^2 + (\Delta y)^2 }$.

produces

The Euclidean distance between two points is given by
√

(∆x)2 + (∆y)2.

11 PNG would have been the default image format of choice, were it not for the fact that
browser support for transparent PNGs is currently poor. If your HTML background color
is pure white, PNG is a good choice as lack of transparency is not a concern.

18

You can control whether your mathematics should be specified as image or ascii with the
command \htmlmathstyle:

\htmlmathstyle{no-in-text-image} sets in-text math (i.e., math embedded in run-
ning text) as ascii. \htmlmathstyle{no-display-image} sets displayed math as ascii.
\htmlmathstyle{no-image} abbreviates \htmlmathstyle{no-in-text-image no-display-image}
and sets all math as ascii.

\htmlmathstyle{in-text-image}, \htmlmathstyle{display-image}, and \htmlmathstyle{image}
respectively set in-text, displayed, and all math as images. By default, \htmlmathstyle{image}
holds.

If the mathematical notation in your document is simple enough not to need images, it
is advisable to set one or both of the no- options of \htmlmathstyle.

If you do all your mathematics in roman numbers, you can avoid math-related im-
ages completely. TeX2page recognizes the TeX command \romannumeral, which produces
the roman equivalent of the following arabic number (\romannumeral 1986 = mcmlxxxvi).
\romannumeral produces lower-case letters — tex2page.tex includes \Romannumeral, whose
result is all-upper-case (\Romannumeral 1986 = MCMLXXXVI).

8.2 Graphics inclusions

Encapsulated PostScript files (EPS) are a convenient and popular way to insert pictures
(graphics) into TeX documents. Users create EPS files with their favorite external pro-
grams, which can be GUI tools such as Xfig [26] and The Gimp [8], or algebraic ones like
MetaPost [9]. It is also possible to write a picture’s specification in the document, while
still relying on an external program to make sense of it. An example is MFpic [14], whose
TeX macros transform a picture specification inside the document into an external META-
FONT [10] or MetaPost file.

However it is created, an EPS file is typically inserted as a TeX box into a TeX document
with calls like

\epsfbox{eps-file}
\includegraphics{eps-file} % LaTeX only

TeX2page converts such calls into images. Here is an example: The MetaPost file lambda.mp
is processed by MetaPost generating the PS file lambda.1, which we load with

\centerline{\epsfbox{lambda.1}}

to produce12

12 The file lambda.mp was actually written out from this document’s source using \verbwrite
(sec. 6.3), so the file lambda.1 isn’t immediately available. Nevertheless, TeX2page will take
care to call MetaPost on the generated lambda.mp file, ensuring that the EPS file is avail-
able for conversion into an HTML image. In contrast, when getting the DVI version of the
document via TeX, it is the user’s responsibility to call MetaPost on generated files, and call
TeX again. Unfortunately, commands like \epsfbox and \includegraphics, when they do
not find their argument file, will signal error and cause TeX to go into a debug loop, even
though the MetaPost file needed for their creation can only be created if TeX successfully
finishes processing the source document! To force TeX to finish processing the source file
regardless of missing EPS files, you need to run it in \scrollmode, or its even more reckless
cousins \nonstopmode and \batchmode. One way to get into these modes is to type s, r, or
q, respectively, at the TeX debug prompt. By default, TeX runs in \errorstopmode, which
is why it stops on the missing-file error.

19

1

π

For \epsfbox, you can specify the desired image width and height by assigning to the dimen
registers \epsfxsize and \epsfysize (specifying only one of them will cause the other to
change as well, maintaining the image’s aspect ratio). TeX2page will respect such sizes,
equating one browser pixel to one point (= 1/72.27 inch). Thus,

\epsfxsize=1.5in

sets the width of an immediately following \epsfboxed image to 1.5× 72.27 ' 108 pixels.
\epsfxsize and \epsfysize are cleared after each \epsfbox.

Note that \epsfbox and \includegraphics are defined external to plain TeX and
LaTeX. Plain TeX documents using \epsfbox must load the standard macro file called
epsf.tex. LaTeX documents using \epsfbox can do the same, or they can load the
epsfig.sty package. \includegraphics is available only to LaTeX, and is defined in
the package graphicx.sty.

If you use the PDF versions of TeX (which produce PDF instead of DVI output), you
can insert MetaPost-created EPS files with the \convertMPtoPDF command:

\convertMPtoPDF{eps-file}{1}{1}

\convertMPtoPDF is defined in the macro file supp-pdf.tex of the ConTeXt [23] package,
which is included in most modern distributions of TeX. Caveat: \convertMPtoPDF doesn’t
work for EPS files that weren’t made using MetaPost.

PDF versions of TeX can import common graphics formats such PNG and JPEG. PDF
LaTeX uses \includegraphics as before, whereas in PDF plain TeX, a command like

\pdfximage height 1.5in {pic.png}\pdfrefximage\pdflastxmimage

is used. TeX2page recognizes \pdfximage including the scaling information, with one
browser pixel equated to one point.

8.3 Other image inserts

You may explicitly request any part at all of your TeX document — not just its math or
EPS inserts — to be converted into images for your HTML output. The fragment of the
document to be converted to image is given as an \makehtmlimage argument. Here’s an
example TeX-based diagram from The TeXbook [11, p 389]:

\makehtmlimage{
\newdimen\unit
\def\point#1 #2 {\rlap{\kern#1\unit

\raise#2\unit\hbox{$
\scriptstyle\bullet\;(#1,#2)$}}}

\unit=\baselineskip
\centerline{\vtop{\hrule

20

\hbox{\vrule height10\unit depth9.4\unit \kern2\unit
\hbox{%
\point 0 0 % Alioth (Epsilon Ursae Majoris), mag 1.79
\point 0 8 % Dubhe (Alpha Ursae Majoris), mag 1.81
\point 0 -8 % Alkaid (Eta Ursae Majoris), mag 1.87
\point -1 -2.5 % Mizar (Zeta Ursae Majoris), mag 2.26
\point 4 7 % Merak (Beta Ursae Majoris), mag 2.37
\point 4 2 % Phekda (Gamma Ursae Majoris), mag 2.44
\point 1 1.5 % Megrez (Delta Ursae Majoris), mag 3.30
}% Src: Atlas of the Universe; Astronomy Data Book

\kern7\unit \vrule}\hrule}}
}

This produces the image:

• (0,0)

• (0,8)

• (0,−8)

• (−1,−2.5)

• (4,7)

• (4,2)
• (1,1.5)

\makehtmlimage’s argument is a group containing no unmatched braces.

8.4 Image preamble

When converting math, EPS, and other implicit or explicit \htmlimages into images for
HTML, TeX2page extracts the small fragment of the TeX document containing the would-
be image into a separate, smaller TeX file. The content of this auxiliary TeX file is then
cajoled by a bevy of external programs into an image file suitable for HTML. This demands
that all the TeX code within the auxiliary TeX file be self-sufficient. However, it is quite
possible that such TeX fragments contain references to macros defined elsewhere in the
larger document. TeX2page therefore provides the \imgpreamble ... \endimgpreamble
environment, into which are placed all definitions that are necessary for the HTML images.
For example, the “image preamble”

\imgpreamble
\input some-pic-macs
\let\gO\Omega
\def\I#1#2{\int_{#1}^#2}

\endimgpreamble

21

allows the use of the control sequences \gO, \I, and those in some-pic-macs.tex in the
TeX fragments destined for imagehood.

The commands inside \imgpreamble are visible only to TeX2page, so a form of them
should also be specified outside the \imgpreamble for use by TeX when it processes the
entire document for DVI.

Note that if you use encapsulated PostScript inserts, it is not necessary (though it
doesn’t hurt) to specify an image preamble for loading the epsf.tex macro file or graphicx.sty
package. TeX2page will automatically load them when processing the EPS files. You still
need to load these files outside the image preamble for your document to be processable by
TeX though.

8.5 Image magnification

In general, the magnification of the image inserts, whether math or picture, may not match
that of the rest of the text in the HTML output. The DVI output has no such problem,
because the math and the picture-macros use the same magnification as the surrounding
text. In the HTML output, however, the regular text is rendered at the default magnification
of your browser, while the images have come via TeX, and the twain may not meet. Typically,
the image is too small.

The solution is to adjust the magnification of just the image inserts. In plain TeX, this
can be done by a call to the \magnification command inside the image preamble. E.g.,

\imgpreamble
\magnification\magstep1
...

\endimgpreamble

The above will magnify the HTML math and pictures. Note that it will not affect the
magnification of these same items in the DVI output. Indeed, you can specify an alternate
\magnification outside \imgpreamble, and that will affect overall size of the entire DVI
output, inclusive of math and pictures, as advertised in The TeXbook [11].

In sum: \magnification, when called outside the \imgpreamble, magnifies the entire
DVI document. When called inside the \imgpreamble, it will magnify just the images in
the HTML document. These two uses of \magnification will not interfere.

LaTeX users can use the following:

\imgpreamble
\let\LaTeXdocument\document
\def\document{\LaTeXdocument\Large}

\endimgpreamble

This tacks a hook on to the \document command. (This modified \document will only
operate on the image.)

8.6 Reusing image files

\definitions that use math (such as the following one for \ohm) work as expected in the
HTML output.

\def\ohm{Ω}

The circuit uses two 10-\ohm\ resistors, three 50-\ohm\
resistors and one 1-k\ohm\ resistor.

produces

22

The circuit uses two 10-Ω resistors, three 50-Ω resistors and one 1-kΩ resistor.

However, this is very inefficient: Every occurrence of \ohm in the document will generate
a brand new image file. To advise TeX2page to reuse the same image for these multiple
occurrences, change the \def to an \imgdef:

\imgdef\ohm{Ω}

8.7 Recycling image files

The conversion of TeX fragments into images can consume a lot of time. TeX2page will
therefore recycle existing image files from a previous run, instead of generating them anew.
To force generation of new image files, delete the old image files.

9 Paper and screen

Some text you want to go only to TeX. Other text you want to go only to HTML. For such
purposes, use the directives

\texonly
... for TeX only ...

\endtexonly

and

\htmlonly
... for HTML only ...

\endhtmlonly

The \texonly and \htmlonly directives are defined in the macro file tex2page.tex.
Thus, you must have your document \input tex2page.tex before you can use these direc-
tives. If not, running the document through TeX will produce errors of undefinition.

If you don’t want to load the macros of tex2page.tex and would yet like to distinguish
between TeX-only and HTML-only text in your document, you can exploit the fact that
certain TeX control sequences such as \shipout have no definition in TeX2page. Thus, the
conditional

\ifx\shipout\undefined
... for HTML only ...

\else
... for TeX only ...

\fi

produces differing text in the DVI and HTML output, without the need for tex2page.tex.
\htmlonly and \texonly are more robust than using conditionals such as \ifx\shipout.

If you must use the latter approach, make sure that the “then” branch constitutes the
HTML-only portion. This is because any verbatim occurrence of \else, \fi, or \if... com-
mands in the TeX-only portion (to be sure, not a common situation) may cause TeX2page to
misread where the “then” branch ends and the “else” branch begins. (In general, you need
to be careful with \if... nesting in TeX too [11, ch. 20, p. 211], not just for TeX2page.)

Note that the text inside the HTML-only portion is in TeX format. To specify some of
this text as raw HTML, enclose it in \rawhtml ... \endrawhtml.

\htmlonly
... \rawhtml raw HTML text \endrawhtml ...

\endhtmlonly

23

The \rawhtml environment can occur only within an HTML-only text (whether described
by \htmlonly or via \ifx\shipout.)

The directives are used as follows: In cases where the print and web content must
differ, use \texonly and \htmlonly. In cases where the web content must use raw HTML
features, use \rawhtml.

Use of these directives may seem to miss the point of TeX2page. \texonly and
\htmlonly violate the principle of avoiding writing two documents, one for HTML, the other
for TeX. \rawhtml violates the principle of avoiding writing raw HTML at all. \rawhtml in
particular is dangerous because it voids the guarantee that the output pages will be valid
HTML. Nevertheless, these directives are often useful, as the following examples show.

9.1 Example uses of TeX2page directives

Many TeX macros, while crucial for printed copy, are irrelevant to HTML, e.g., the statement
\parindent=10pt. Such macros are best enclosed in a \texonly, to avoid erroneous or
fruitless translation by TeX2page.13

The \evalsto command we saw above (sec 6.1) was rather shabby. A better alternative
would be to exploit TeX’s math symbols, i.e.,

\def\evalsto{\leavevmode\hbox{\Rightarrow}}

or, better still (section 8.6),

\imgdef\evalsto{\leavevmode\hbox{\Rightarrow}}

which avoids generating a separate image file for each use of \evalsto.
While this will work, using an image for this token is probably overkill for your HTML

output. So let’s make this definition TeX-only:

\texonly
\def\evalsto{\leavevmode\hbox{\Rightarrow}}

\endtexonly

Now, the DVI version typesets as expected, but the HTML verbatim has no access to any
definition for \evalsto. In such situations, TeX2page will use the name of the command.
Thus, given

\scm{
(cons 1 2) |evalsto (1 . 2)
}

the HTML output will be

(cons 1 2) \evalsto (1 . 2)

Obviously, this is no improvement over our previous \evalsto definition. While we do not
want the full-fledged TeX definition, we do want some sort of “poor man’s equivalent”, e.g.,

\htmlonly
\def\evalsto{\p{=>}}

\endhtmlonly

With these definitions in place, the verbatim will now translate, in HTML, to

(cons 1 2) => (1 . 2)

13 Actually, \parindent and other common print-specific statements are automatically
recognized as irrelevant for the Web by TeX2page without the need for an explicit \texonly.

24

While we may have relinquished TeX’s niceties for our HTML version of \evalsto, we can
certainly seek to compensate by using HTML’s own niceties. \rawhtml comes in handy for
this:

\htmlonly
\def\evalsto{\rawhtml<font

color=blue>=>\endrawhtml}
\endhtmlonly

The \evalsto token now has a higher contrast against the surrounding code.

10 Scheme as TeX’s extension language

The command \eval allows you to use arbitrary Scheme expressions, as opposed to just
TeX macros, to guide the course of the typesetter. The text written to standard output
by the Scheme code is substituted for the \eval statement. E.g., consider the following
complete document, root2.tex:

\input tex2page

The square root of 2 is
\eval{

(display (sqrt 2))

}.

\bye

Running TeX2page on root2.tex produces the following HTML output:

The square root of 2 is 1.4142135623730951.

In effect, TeX2page processes the \eval call using Scheme, producing some output in an
auxiliary TeX file, which is then re-inserted into the document at the location of the \eval.

A definition for \eval that TeX can use is provided in the macro file eval4tex.tex,
which is available in eval4tex [22] distribution. tex2page.tex will automatically load
eval4tex.tex if it finds it in TEXINPUTS. Thus, running TeX on root2.tex produces a
DVI file whose content matches the HTML version. (See sec. 10.1.)

It is clear that Scheme code via \eval can serve as a very powerful second extension
language for TeX, and that its benefits are available to both the DVI and the HTML outputs.
As we have seen, TeX2page implements a subset of the TeX macro language, and for those
cases where this macro language isn’t enough, Scheme can be used to fill the breach. More
generally, Scheme may be preferable to the TeX macro language even for just DVI, where
no HTML version of the document is contemplated. We’ll explore both of these aspects of
\eval.

Let us first look at a simple example where \eval lets you define an HTML version
of an already existing TeX macro that is either impossible or at least prohibitively difficult
to process using TeX2page’s mimicry of TeX. Consider a hypothetical \proto macro, used
to introduce the description of a Scheme operator by presenting a prototypical use of it.
Typical calls to \proto are:

\proto{cons}{a d}{procedure}
\proto{car}{c}{procedure}
\proto{cdr}{c}{procedure}

which typeset as follows:

25

(cons a d) ;procedure
(car c) ;procedure
(cdr c) ;procedure

The macro \proto takes three arguments: the operator name; the metavariables for its
operands; and the operator kind. In particular, it typesets the operator and the operands in
different fonts, surrounding the call in parens. Note the intervening space between operator
and operands.

In the case where there are no operands, the intervening space should not. Thus,

\proto{gentemp}{}{procedure}

should not produce
(gentemp) ;procedure

but rather
(gentemp) ;procedure

(I.e., no space between gentemp and the closing paren.)
The \proto macro can be written in TeX as follows:

\def\proto#1#2#3{\noindent
\hbox{{\tt(#1}\spaceifnotempty{#2}{\it#2}{\tt)}%
\qquad ;#3}\par}

where, \spaceifnotempty is a helper macro that expands to a space only if its argument is
not empty. TeX2page can expand this definition for \proto, provided it knows how to deal
with the \spaceifnotempty.

One way to write \spaceifnotempty in TeX is:

\newdimen\templen
\newbox\tempbox

\def\spaceifnotempty#1{%
\setbox\tempbox\hbox{#1}%
\templen\wd\tempbox
\ifdim\templen>0pt{\ }\fi}

This piece of box-measuring contortion is too much for TeX2page’s mimicry of the TeX
macro system. However, it’s easy enough to achieve the same effect using the string-
processing capabilities of Scheme:

\htmlonly

\eval{

(define all-blanks?
(lambda (s)
(andmap char-whitespace?
(string->list s))))

}

\def\spaceifnotempty{\eval{

(let ((x (ungroup (get-token))))
(if (not (all-blanks? x))

(display "\\space")))

}}

\endhtmlonly

26

\eval’s argument is a balanced-brace expression that is sent verbatim to Scheme, except
that the pipe character (‘|’) functions as the TeX escape. Use || to represent a single
pipe in the Scheme code. If you need to include an unmatched brace, simply put a bogus
matching brace inside a Scheme comment.

Later \evals can use definitions introduced in previous \evals, as with all-blanks?
in our example.

If being processed by TeX2page only (as in our example), the code inside \eval is
allowed to use not just general Scheme but also procedures like ungroup and get-token,
which are defined by TeX2page.

10.1 \eval without regard to HTML

The key thing to remember is that an \eval-call is replaced by whatever text the Scheme
code in that \eval-call writes to its standard output. This approach will work whether the
document is being processed by TeX2page to produce HTML or by TeX to produce DVI.

For those TeX documents that are not intended for HTML conversion, but nevertheless
use \eval, this macro is available in the macro file eval4tex.tex. Run TeX (or LaTeX)
on such a document, say jobname.tex, and then evaluate the resultant jobname.eval4tex
in Scheme, to create the necessary aux TeX files. Running TeX on the master document
a second time will insert these aux TeX files at the location of the corresponding \eval
calls. This is quite analogous to how TeX2page would have processed the \evals, except
that TeX requires you to explicitly call Scheme to create the aux files which it can use on
its second run, whereas TeX2page, being written in Scheme, creates and loads the aux files
immediately.

For complete details on using \eval with TeX, please consult the companion manual,
An \eval for TeX [22].

11 Recovery from errors

If TeX2page reports an error on your document, you may be able to deduce the cause from
the diagnostic information that TeX2page displays on standard output. If you failed to
look at this information as it was being displayed, you can always retrieve it from the log
file jobname.hlog. This is exactly analogous to TeX generating diagnostic information on
standard output and keeping a copy thereof in the file jobname.log.

The error message typically displays an error context, viz., a few consecutive lines from
the source document that contain the likely cause of the error. The number of context lines
so displayed is governed by the counter \errorcontextlines, which has a default value of
5. Thus, setting \errorcontextlines=7 will display seven lines. Note that error contexts
are often only approximate — be prepared to look a little above or below the reported
context.

Like TeX, TeX2page also gives you the option of immediately editing the file containing
the error, at the location of the error. It does so with the following prompt:

Type e to edit file at point of error; x to quit.
?

When you type e at this prompt, a text editor is fired up. What the editor is depends
on the environment variables TEXEDIT (which is also used by TeX) and EDITOR.

If TEXEDIT is set, its string value (e.g., “vim +%d %s”) is chosen as the entire editor
call, with %s replaced by the offending file’s name, and %d replaced by the number of the
line containing the error. If TEXEDIT is not set, or if it is mis-set, i.e., without %s or %d,
then the editor specified in the environment variable EDITOR is chosen. If EDITOR is also not
set, then the editor name is assumed to be vi. When using EDITOR or vi, the file and line

27

number are tacked on as arguments to the editor, with a + preceding the line number. This
argument style works for all vi and emacs clones.14

Sometimes, the diagnostic information in an error message may not be enough to
track down the error. TeX provides various commands for generating more diagnostics
— TeX2page recognizes the same syntax to provide its own diagnostics. For instance, the
tracing directives \tracingcommands and \tracingmacros produce more log information.
Setting \tracingcommands=1 tells TeX2page to log all calls to atomic commands. Setting
\tracingmacros=1 tells TeX2page to log all macro expansions. You may turn on these
traces at any point in your document. You may subsequently turn them off by setting
\tracingcommands=0 and \tracingmacros=0 respectively.

The command \tracingall turns on both \tracingcommands and \tracingmacros.
The TeX command \errmessage can be used to generate meaningful error messages.

TeX2page, like TeX, ceases processing the document on encountering \errmessage.
The TeX command \message can be used to print helpful information at selected break

points in the document. LaTeX users may prefer \typeout, which does the same thing.
All of these commands display their information on both standard output and in the

log file. Judicious use of these commands should pinpoint any error.

A Auxiliary files

Given an input TeX document whose main file is story.tex, the call

(tex2page "story")

typically produces at least one output HTML file story.html, and possibly some additional
HTML files, which are named story-Z-H-1.html, story-Z-H-2.html, and so on. Addi-
tional HTML files are created whenever the input document has commands requesting page
breaks in the HTML output.

This is about all you need to know. However, TeX2page does manipulate many other
little auxiliary files in order to communicate information both to external programs and
across successive runs of itself. The following briefly describes the functions of these auxiliary
files, should you ever need to look at them more closely, either out of curiosity or for
debugging your document.

TeX2page displays on standard output the log of its progress with story.tex. A copy
of this log is kept in the log file story.hlog.

If story.tex uses the external program BibTeX for its bibliography, TeX2page sends
information to BibTeX in the file story-Z-B.aux and receives information from BibTeX in
the file story-Z-B.bbl.

If story.tex contains \index commands, TeX2page will dump the unsorted index into
story-Z-I.idx and get from MakeIndex the sorted index story-Z-I.ind.

TeX2page uses the auxiliary files story-Z-L.scm and story-Z-A.scm to keep track of
labels and other internal cross-references. Each run of TeX2page loads the story-Z-L.scm
and story-Z-A.scm created by the previous run. If story.tex contains forward cross-
references, TeX2page must be rerun at least once.

For the image portions of story.tex, TeX2page creates the auxiliary TeX files story-Z-G-1.tex,
etc, and uses the external programs TeX, Dvips, Ghostscript and NetPBM to convert them
to the corresponding image files story-Z-G-1.gif, etc. This assumes you are using the
GIF format for images. Change the extension .gif to .png or .jpeg if your images are in
PNG or JPEG.

14 TeX itself uses just TEXEDIT. It does not fall back to EDITOR or vi if TEXEDIT is not
set. But most Unix programs that reach for an editor do tend to use EDITOR, and failing
that, vi, so TeX2page does the same.

28

The above are “single-use” images. story.tex may reuse some image files within itself.
Such image files have slightly different names and are numbered separately: story-Z-G-D-1.gif,
etc.

Occurrences of \eval in story.tex typically create the auxiliary Scheme files story-Z-E-1.scm,
etc. These are converted (by Scheme) into the corresponding auxiliary TeX files story-Z-E-1.tex,
etc, which are loaded back into story.tex on a subsequent run. Only the \evals that will
be processed by TeX (i.e., those that are not in \htmlonly) produce such numbered auxil-
iary files, since the numbering allows successive runs of TeX to access the correct file. Such
\evals and their files can also be shared by TeX2page and TeX, without the \evals that
occur in the \htmlonly portions throwing the numbering off. \evals in \htmlonly regions
of the document are processed without any memorable aux files, because TeX won’t use
them, and TeX2page (which, unlike TeX, can call Scheme in the current run) doesn’t need
them.

By default, all these files are created in the working directory. To avoid cluttering up
your working directory, you can specify a different target directory using one of the following
three files:

• jobname.hdir in the working directory, i.e., a file with the same basename as the
input document but with extension .hdir. For story.tex, this would be story.hdir.

• .tex2page.hdir in the working directory.
• .tex2page.hdir in the user’s HOME directory.

The first line of the first of these files that exists is taken to be the name of the target
directory. If none of these files exist, the current working directory is the target directory.

The .hdir file may contain the TeX control sequence \jobname, which expands to the
basename of the input TeX document.

B Bibliography

[1] Karl Berry et al. Eplain (http://www.tug.org/eplain).

[2] Pehong Chen and Michael A. Harrison. Index Preparation and Processing. Software
— Practice and Experience, 19(9):897–915, September 1988. Included with MakeIndex
in TeX distributions.

[3] Comprehensive TeX Archive Network (CTAN) (http://www.tug.org/ctan.html).

[4] Nikos Drakos. LaTeX2HTML: Bringing high-quality documents to the Web (http://
www.latex2html.org).

[5] Thomas Esser. teTeX (http://www.tug.org/teTeX).

[6] FSF. Texinfo: The GNU Documentation System (http://www.texinfo.org).

[7] Ghostscript, Ghostview and GSview (http://www.cs.wisc.edu/~ghost).

[8] The Gimp (http://www.gimp.org).

[9] John D. Hobby. MetaPost (http://www.tug.org/metapost.html).

[10] Donald E. Knuth. The METAFONTbook. Addison-Wesley, 1986.

[11] Donald E. Knuth. The TeXbook. Addison-Wesley, 1993.

[12] Leslie Lamport. MakeIndex: An Index Processor for LaTeX. Included with MakeIndex
in TeX distributions.

[13] Leslie Lamport. LaTeX: A Document Preparation System. Addison-Wesley, 2nd edition,
1994.

29

[14] Thomas E. Leathrum, Geoffrey Tobin, and Daniel H. Luecking. MFpic (http://comp
.uark.edu/~luecking/tex/mfpic.html).

[15] H̊akon Wium Lie and Bert Bos. Cascading Style Sheets. Addison Wesley Longman,
1999.

[16] MozPoint (http://mozpoint.mozdev.org).

[17] Netpbm home page (http://netpbm.sourceforge.net).

[18] Oren Patashnik. BibTeXing, 8 February 1988. Included with BibTeX in TeX distribu-
tions.

[19] John Pozadzides and Liam Quinn. Cascading Style Sheets (http://www.htmlhelp
.com/reference/css/).

[20] Tom Rokicki. Dvips (http://www.radicaleye.com/dvips.html).

[21] Christian Schenk. MiKTeX (http://www.miktex.org).

[22] Dorai Sitaram. An \eval for TeX (http://www.ccs.neu.edu/~dorai/eval4tex/
eval4tex-doc.html).

[23] PRAGMA Advanced Document Engineering (http://www.pragma-ade.com). Con-
TeXt.

[24] W3C. Cascading Style Sheets (http://www.w3.org/Style/CSS).

[25] W3C. W3C Core Styles (http://www.w3.org/StyleSheets/Core).

[26] Xfig (http://www.xfig.org).

C Concept index

$, 18
$$, 18
*

for unnumbered sections, 5
for visible verbatim space, 8

|, 9
\\, 5

in \urlh, 13

\appendix, 6
\author, 5
auxiliary files, 28

\batchmode, 19
\bibitem, 16
\bibliography, 15
\bibliographystyle, 15
BibTeX, 15, 28
btxmac.tex, 16
\bye, 2

cascading style sheet, 6
\centerline, 19
\chapter, 6
\cite, 15

30

\cleardoublepage, 6
\clearpage, 6
cmyk (color model), 7
colophon, 17
\color, 7
color.sty, 7
\convertMPtoPDF, 20
cross-references, 11

bibliographies, 15
footnotes, 15
indices, 16
table of contents, 15
URLs, 12

\cssblock, 6

\date, 5
debugging, 27
\def, 5, 9, 22, 24, 26
\definecolor, 7
diagrams, 17
dirty tricks, 25
\document, 5
\dosupereject, 6
Dvips, 17, 28
dvipsnam.def (LaTeX file), 8

EDITOR (environment variable), 27
\eject, 6
\else, 23
encapsulated PostScript, 19
\end, 2
\endcsslblock, 6
\endhtmlonly, 23
\endimgpreamble, 21
\endrawhtml, 23
\endtexonly, 23
epsf.tex, 19
\epsfbox, 19
epsfig.sty, 19
\epsfxsize, 20
\epsfysize, 20
\errmessage, 28
error recovery, 27
\errorcontextlines, 27
\errorstopmode, 19
\eval, 25, 29
\externaltitle, 5

\fi, 23
\footnote, 3, 15

Ghostscript, 17, 28
gif (image format), 17
Gimp, the, 19
graphicx.sty, 19
gray (color model), 7

31

.hdir file, 3, 29
--help (command-line option), 3
.hlog, see log file
\htmlcolophon, 17
\htmlimageformat, 17
\htmlmathstyle, 18
\htmlonly, 23, 29
\htmlpagebreak, 6
\htmlrefexternal, 15

\ifx, 23
image, 17

file, 17
format, 17
\magnification, 22
preamble, 21
recycling, 23
reuse, 22

\imgdef, 22–24
\imgpreamble, 21
\includeexternallabels, 14
\includegraphics, 19
\index, 16
\input, 4
\inputcss, 6
\inputexternallabels, 14
\inputindex, 17

\jobname, 3
jpeg (image format), 17

kpathsea, 2

\label, 11
LaTeX, 3
\let, 5
literate programming, 11
log file, 2, 27

\magnification, 22
\mailto, 14
\makehtmlimage, 20
MakeIndex, 16, 28
\maketitle, 5
mathematics, 17
\message, 28
METAFONT, 19
MetaPost, 19
MFpic, 19
MozPoint, 7

named (color model), 7
NetPBM, 17, 28
\newpage, 6
\nocite, 16
\noslatexlikecomments, 11
\nonstopmode, 19

32

\numfootnote, 15

page breaks, forcing good, 6
\pagebreak, 6
\paragraph, 5
\path, 9
\pdfximage, 20
picture (LaTeX environment), 17
pictures, 17
plain TeX, 3
png (image format), 17
presentations, 7
\printindex, 16

\rawhtml, 23
recovery from errors, 27
\ref, 11
RGB (color model), 7
rgb (color model), 7
\Romannumeral, 19
\romannumeral, 19
running TeX2page

from Scheme, 3
from system command-line, 1

\scheme, 11
{schemedisplay}, 11
\scm, 10
\scmbuiltin, 11
\scmdribble, 11
\scminput, 10
\scmkeyword, 11
\scmvariable, 11
\scrollmode, 19
\section, 5
\sectiond, 6
\shipout, 23
\slatexlikecomments, 11
story.tex, 1
style sheet, 6
\subparagraph, 5
\subsection, 5
\subsubsection, 5
\supereject, 6
supp-pdf.tex, 20
syntax highlighting, 10

.t2p file, 5
t2pslides.tex, 7
\tableofcontents, 15
\tag, 12
\tagref, 11
tex2page (command), 1
tex2page (Scheme file), 3
tex2page (Scheme procedure), 3
.tex2page.hdir file, 3

33

tex2page.sty, 4
tex2page.tex, 4

not using, 4, 23
TEXEDIT (environment variable), 27
texi2p.tex (TeX2page macro file), 3
TEXINPUTS (environment variable), 2
\texonly, 23
{thebibliography}, 16
TIIPINPUTS (environment variable), 2
timestamp, 17
\title, 5
\today, 5
\tracingall, 28
\tracingcommands, 28
\tracingmacros, 28

\url, 14
\urlh, 13
\urlhd, 12
\urlp, 14
\usepackage, 4

\verb, 8
\verb*, 8
{verbatim}, 9
{verbatim*}, 9
verbatim.sty, 9
\verbatiminput, 9
\verbescapechar, 9
\verbwrite, 10
\verbwritefile, 10
--version (command-line option), 3

\write, 10
to stream 18, 10

Xfig, 19

34

