
PLT Foreign Interface Manual

PLT (scheme@plt-scheme.org)

301
Released December 2006

Copyright notice

Copyright c©1996-2005 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby granted without
fee, provided that the above copyright notice, author, and this permission notice appear in all copies of this documen-
tation.

Contents

1 Introduction 1

2 Foreign Interface 2

2.1 Basic C Type Functions. 2

2.2 Simple Types. 3

2.2.1 Numeric Types. 3

2.2.2 String Types . 3

2.2.3 Pointer Types. 4

2.2.4 Type Constructors. 5

2.2.5 Misc Types. 5

2.3 Pointer Functions. 6

2.3.1 Memory Management. 7

2.4 Safe C Vectors. 8

2.4.1 SRFI-4 Vectors. 9

2.5 Foreign Libraries. 9

2.6 Tagged C Pointer Types. .10

2.7 C Struct Types. .11

2.7.1 C Struct Examples. .12

2.8 Function Types. .14

2.8.1 Custom Function Types. 15

2.9 Miscellaneous Support. .17

2.10 Functions in the C part. .18

Index 20

i

CONTENTS CONTENTS

ii

1. Introduction

MzScheme has includes functionality that makes it possible to interact with foreign data and foreign function, available
through theforeign.ss module in MzLib. Traditional Scheme code is usually safe: if the process crashes the blame is
always on C code. Using C extensions makes it possible to extend Scheme — the added code can lead to crashes, but
the blame for crashes is still at the C side.

The foreign capabilities of MzScheme makes it possible to use Scheme in situation that would otherwise require
writing a C extension, so Scheme code can be used to substitute C. Doing this is, obviously, as unsafe as writing C
— so a crash can be now blamed on either C or Scheme code which interacts with the foreign world. To make things
a bit safer, theforeign.ss module will not provide you with any of the unsafe operations by default. Instead, you
get an ‘unsafe! ’ macro, which you can use to make the unsafe operations available1. Using this macro should be
considered as a declaration that your code is itself unsafe, therefore can lead to serious problems in case of bugs: it
is your responsibility to provide a safe interface. By this we constrain the blame for crashes to either C code or such
unsafe Scheme code.

In rare cases you might want to provide an unsafe interface, for example, if you write a module that provides more
foreign-interaction functionality. In these cases you should use the ‘provide* ’ macro with ‘unsafe ’ bindings,
and the ‘define-unsafer ’ to provide anunsafe! -like macro that will make these bindings available. See the
foreign.ss source for details. Providing users with unsafe operations without this facility is considered a bug in your
code.

In addition to this manual,Inside PLT MzSchemecan be used to learn about the internals of MzScheme. Note that
usingffi-lib with #f instead of a file name will use the running process as a library, making all C-level functions
(including the standard library) available.

1For additional safety, theunsafe! is protected (see§9.4 inPLT MzScheme: Language Manual).

1

2. Foreign Interface

This is a description of the foreign interface. The interface has some parts implemented in C (plt/src/foreign/foreign.c)
which is available as a built-in#%foreign module. This module is not intended for general use as is, and further
documentation can be found in the source. The relevant functionality is provided via theforeign module in MzLib
(foreign.ss).

For examples of common usage patterns, see the defined interfaces in theffi collection.

2.1 Basic C Type Functions

C types are the main concept of the foreign interface (C is just used for conventions). They can roughly be divided into
primitive types and user-defined types. The foreign interface deals with primitive types internally, converting them
to/from C types. A user type is one that is made on top of existing primitive types (or other user types), by supplying
an existing type, and conversion functions that go from Scheme to that type and from that type to Scheme (‘Scheme’
is misleading here: the translation is from some Scheme objects to other objects that the system already knows how to
translate).

(make-ctype ctype scheme-to-C-proc C-to-scheme-proc) PROCEDURE

Create a new C type object, with the given conversions functions. The conversion functions can be#f meaning that
there is no conversion for the corresponding direction. If both functions are#f , ctype is returned.

(ctype? ctype) PROCEDURE

A predicate for C type objects (both primitive and user-defined).

(ctype-sizeof ctype) PROCEDURE

(ctype-alignof ctype) PROCEDURE

Functions that return the platform-dependent size and alignment of a givenctype .

(compiler-sizeof symbols) PROCEDURE

This procedure expects a description of a C type, which is a symbol that names a type. Possible values are’int ,
’char , ’short , ’long , ’* , ’void , ’float , ’double . It uses the Csizeof operator to return the size of the
named C type directly. It should be used to gather information about the current platform, for example, it is used to
define alias types to ones with know size (e.g., bindingint to int32).

2

2. Foreign Interface 2.2. Simple Types

2.2 Simple Types

2.2.1 Numeric Types

There are basic integer types at various sizes. These are:int8 , sint8 , uint8 , int16 , sint16 , uint16 ,
int32 , sint32 , uint32 , int64 , sint64 , and uint64 . The ‘s’ or ‘u’ prefix specifies a signed or an

unsigned integer respectively; the ones with no prefix are signed.

In addition, there are several type ‘aliases’ (extra bindings for some of the above types):

• byte , ubyte and sbyte : aliases for uint8 and sint8 (byte is unsigned),

• word , uword and sword : aliases for uint16 and sint16 (word is unsigned),

• short , ushort and sshort : aliases for the integer type that correspond to the platform’sshort type
(short is signed),

• int , uint and sint : aliases for the integer type that correspond to the platform’sint type (int is
signed),

• long , ulong and slong : aliases for the integer type that correspond to the platform’slong type (long
is signed),

In cases where speed matters, and you know that the integer is small enough, you can use thefixnum and
ufixnum , which are similar to long and ulong but assume that the quantities fit in MzScheme’s immediate

integers (not bignums). If you need this but you want to be sure that the C level integer is an integer (32 bit) size, then
use fixint and ufixint .

Finally, there are two floating point types,float and double for the corresponding C types; anddouble* that
implicitly coerces any non-complex number to a C double.

2.2.2 String Types

2.2.2.1 PRIMITIVE STRING TYPES

There are several built-in primitive string types.

bytes C TYPE

This is a type for Scheme byte-string, which corresponds to C’schar* type. In addition to translating byte strings,
#f corresponds to theNULLpointer. Note that this is also a custom-type macro, see section2.8.1below.

string/ucs-4 C TYPE

A type for MzScheme’s native Unicode strings, in UCS-4 format. These correspond to the Cmzchar* type used by
MzScheme.

string/utf-16 C TYPE

Unicode strings in UTF-16 format.

path C TYPE

Simplechar* strings, corresponding to MzScheme’s path strings.

3

2.2. Simple Types 2. Foreign Interface

symbol C TYPE

Simplechar* strings as Scheme symbols (encoded in UTF-8). Return values that use this type are interned.

2.2.2.2 ADDITIONAL STRING TYPES

In addition to the above string types, there are several bytes-based types that are provided.string/utf-8 ,
string/locale , and string/latin-1 are defined using the corresponding built-in conversion procedures

from strings (they do treat#f asNULL). string*/utf-8 , string*/locale , and string*/latin-1 are
similar but accept a wider range of values: byte strings are passed as is, and paths are converted usingpath->bytes .

2.2.2.3 THE string TYPE

The string/ucs-4 type is rarely useful when interacting with foreign code, but usingbytes is somewhat
unnatural since it forces users to use byte strings. The solution is thestring ‘type’.

string C TYPE

This is actually a syntax, which expands to a usage of thedefault- string-type parameter. Note that the
parameter is used when this identifier is evaluated, meaning that the parameter should be set before interface definition
are being made (which is when the types are used).

(It is not difficult to create a type that uses a customizable conversion, but this means that all usages of this type will
always use the same conversion, and that the result will take one more step when executing.)

(default- string-type [ctype]) PROCEDURE

This is a parameter that determines what is the currentstring type. It is initially set to string/*utf-8 . If you
need to change it, make sure you do sobeforeinterfaces are defined.

2.2.2.4 UTILITY STRING TYPES

file C TYPE

This is just like path , but when values go from Scheme to C,expand-path is used on the given value. As an
output value, it is identical topath .

string/eof C TYPE

This is similar to the string type (it is a syntax for the same reason), except that a foreign return value ofNULL
(#f) is translated to a Schemeeof value.

2.2.3 Pointer Types

pointer C TYPE

This type corresponds to Scheme ‘C pointer’ objects. These pointers can have an arbitrary Scheme object attached to
them as a type tag. The tag is ignored by built-in functionality, it is intended to be used by interfaces. See section2.6
for creating pointer types that use these tags for safety.

4

2. Foreign Interface 2.2. Simple Types

scheme C TYPE

This type can be used with any Scheme object, it corresponds to MzScheme’sScheme Object* type. It is useful
only for libraries that are aware of MzScheme’s objects.

fpointer C TYPE

This is similar to pointer , except that it should be used with function pointers. Using these pointers avoids one
dereferencing, which is the proper way of dealing with function pointers. This type should be used only in rare
situations where you need to pass a foreign function pointer to a foreign function — Using acprocedure type is
possible for such situations, but extremely inefficient as every call will go through Scheme. Otherwise,cprocedure
should be used (it is based onfpointer).

2.2.4 Type Constructors

Since types are first-class values, there are several type constructors that build type objects. These are just the simple
ones, more constructors are described below. Note that they are listed as procedures, but implemented as syntax, so it
is possible to use a name where the syntactical context implies one (they can also be used as values, but error messages
will not have a meaningful name in this case).

(enum symbols [basetype]) PROCEDURE

This procedure takes in a list of symbols and generates an enumeration type. The enumeration maps between the
givensymbols and integers, counting from 0. The list ofsymbols can also set the values of symbols, if a symbol
is followed by a ‘=’ symbol and an integer, not in nested form to make it easy to copy, paste & modify C code. For
example, the list’(x y = 10 z) maps’x to 0, ’y to 10, and’z to 11.

The optionalbasetype argument can specify the base type to use, defaulting toufixint .

(bitmask symbols [basetype]) PROCEDURE

This is similar to enum, but the resulting mapping translates a list of symbols to a number and back, using a logical
or. A single symbol can be given as an input to make things a little more convenient. The defaultbasetype for this
is uint , since high bits are often used for flags.

2.2.5 Misc Types

bool C TYPE

Translates#f to a 0 int , and any other value to 1.

void C TYPE

This type indicates a Scheme void return value, and it cannot be used to translate values to C (i.e., this type cannot be
used for function inputs).

5

2.3. Pointer Functions 2. Foreign Interface

2.3 Pointer Functions

(cpointer? x) PROCEDURE

A predicate for pointer values: returns#t for C pointer objects as well as other values that can be used as pointers —
#f (used as a NULL pointer), byte strings (used as memory blocks), and some additional internal objects (ffi-obj s
and callbacks, see section2.10). #f for other values.

(ptr-ref cptr ctype [[’abs] offset]) PROCEDURE

This function returns the object referenced bycptr , using the givenctype .

(ptr-set! cptr ctype [[’abs] offset] value) PROCEDURE

This function stores thevalue in the memorycptr points to, using the givenctype for the conversion. Returns
void.

offset defaults to 0 (which is the only value that should be used withffi-obj objects, see section2.10). If an
offset index is given, the value is stored at that location, considering the pointer as a vector ofctype s — so the
actual address is the pointer plus the size ofctype multiplied byoffset . In addition, a’abs flag can be used to
use theoffset as counting bytes rather then increments of the specifiedctype .

Caution: theptr-ref andptr-set! operations do not keep any meta-information on how pointers are used. It is
the programmers responsibility to use this facility only when appropriate. For example, on a little-endian machine:

> (define block (malloc int 5))
> (ptr-set! block int 0 196353)
> (map (lambda (i) (ptr-ref block byte i)) ’(0 1 2 3))
(1 255 2 0)

In addition, there is no way to detect when offsets beyond the size of the block are used, so segmentation faults are
easy to get.

(ptr-equal? cptr 1 cptr 2) PROCEDURE

Compares the values of the two pointers. (Note that two different Scheme pointer objects can contain the same pointer.)

(cpointer-tag cptr) PROCEDURE

Returns the Scheme object that is the tag of the givencptr pointer.

(set-cpointer-tag! cptr tag) PROCEDURE

Sets the tag of the givencptr . tag can be any arbitrary value, it is intended to be useful for users, and otherwise it
is ignored. When a cpointer value is printed, its tag is shown if it’s a symbol, a byte string, a string, or when it’s a pair
holding one of these in its car then that is shown. The reason for printing the car of a pair tag is to make it possible to
use tags that contain more information, e.g., as used bycpointer-has-tag? andcpointer-push-tag! .

6

2. Foreign Interface 2.3. Pointer Functions

2.3.1 Memory Management

(malloc bytes-or-type [type-or-bytes] [cptr] [mode] [’fail-ok]) PROCEDURE

This function allocates a memory block of a specified size. Returns acpointer to that location in memory. The four
arguments can appear in any order since they are all different types of Scheme objects, at the least, a size specification
is required:

• If a C typebytes-or-type is given, its size is used to the block allocation size.

• If an integerbytes-or-type is given, it specifies the required size in bytes.

• If both bytes-or-type and type-or-bytes are given, then the allocated size is for a vector of values
(the multiplication of the size of the C type and the integer).

• If a cptr pointer is given, its contents is copied to the new block, it is expected to be able to do so.

• A symbol mode argument can be given, which specifies what allocation function to use. It should be
one of ’nonatomic (uses scheme malloc), ’atomic (scheme malloc atomic), ’stubborn
(scheme malloc stubborn), ’uncollectable (scheme malloc uncollectable), ’eternal
(scheme malloc eternal), or ’raw (uses the operating system’smalloc , creating a GC-invisible block),

• If an additional’failok flag is given, thenscheme malloc fail ok is used to wrap the call.

If no mode is specified, then’nonatomic allocation will be used when the type is any pointer-based type, other-
wise, an’atomic allocation is used. Note that raw allocations is sometimes needed when dealing with memory
management issues (usually with the precise GC).

(free cpointer) PROCEDURE

Uses the operating system’sfree function for raw-allocated pointers, and for pointers that a foreign library allocated
and we should free. Note that this is useful as part of a finalizer (see below) procedure hook (e.g., on the Scheme
pointer object, freeing the memory when the pointer object is collected, but beware of aliasing).

(end-stubborn-change cpointer) PROCEDURE

Usesscheme end stubborn change on the given stubborn-allocated pointer (see the MzScheme documenta-
tion).

(register-finalizer obj finalizer-proc) PROCEDURE

Registers a finalizer procedurefinalizer-proc with the givenobj which can be any Scheme (GC-able) object.
The finalizer is registered with a will executor (see§13.3 inPLT MzScheme: Language Manual); it is invoked when
obj is about to be collected. (This is done by a thread that is in charge of triggering these will executors.)

This is mostly intended to be used with cpointer objects, for freeing unused memory that is not under GC control, but
it can be used with any Scheme object, even ones that have nothing to do with foreign code. Note, however, that the
finalizer is registered for theSchemeobject — if you intend to free a pointer object, then you have to be careful to not
register finalizers for two cpointers that point to the same address.

(make-sized-byte-string cptr length) PROCEDURE

This function returns a byte string made out of the given pointer and the given length. No copying is done. This can
be used as an alternative to make pointer values accessible in Scheme when the size is known.

7

2.4. Safe C Vectors 2. Foreign Interface

2.4 Safe C Vectors

(make-cvector ctype length) PROCEDURE

Creates a C vector using the givenctype andlength . This will allocate a memory block for the vector.

(cvector ctype vals · · ·) PROCEDURE

Creates a C vector using the givenctype , initialized to the given list of values.

(cvector? x) PROCEDURE

Predicate for C vectors.

(cvector-length cvec) PROCEDURE

Returns the length of a C vector.

(cvector-type cvec) PROCEDURE

Returns the C type object of a C vector.

(cvector-ref cvec idx) PROCEDURE

References theidx th element of thecvec C vector. The result will have the type that the C vector uses.

(cvector-set! cvec idx val) PROCEDURE

Sets theidx th element of thecvec C vector toval . val should be a value that can be used with the type that the C
vector uses.

(cvector->list cvec) PROCEDURE

Converts thecvec C vector object to a list of values.

(list->cvector list ctype) PROCEDURE

Converts the listlist to a C vector of the givenctype .

(make-cvector* cptr ctype length) PROCEDURE

This constructs a C vector using an existing pointer object. This operation is not safe, so it is intended to be used in
specific situations where thectype andlength are known.

cvector C TYPE

This can be used as an input type for C vectors, which uses the pointer to the memory block. Also, see thecvector
custom type in section2.8.1.

8

2. Foreign Interface 2.5. Foreign Libraries

2.4.1 SRFI-4 Vectors

SRFI-4 vectors are similar to the above C vector, except it defines different types of vectors, each with a hard-wired
type.

An internal ‘make-srfi-4 ’ macro defines and provides 8 functions for eachTAG type — a ‘make-TAGvector’
constructor, a ‘TAGvector’ constructor (uses its arguments), a ‘TAGvector? ’ predicate, a ‘TAGvector-length ’
function, a ‘TAGvector-ref ’ accessor and a ‘TAGvector-set! ’ setter, and conversions to and from a list,
‘TAGvector->list ’ and ‘list-> TAGvector ’. The functions are the same as the correspondingcvector
functions above, except that there is no type argument.

In addition, there is aTAGvector type similar to cvector that can be used when interfacing foreign functions.
Just like cvector , TAGvector can be used both as a simple type to pass a pointer value to foreign code, or as a
custom type, expecting a mode flag for input, output, or input-output, where output-mode requires specifying the size
of the result.

These following homogeneous vector types are defined, for a total of 80 functions.

• s8vector using int8 ,

• u8vector using uint8 ,

• s16vector using int16 ,

• u16vector using uint16 ,

• s32vector using int32 ,

• u32vector using uint32 ,

• s64vector using int64 ,

• u64vector using uint64 ,

• f32vector using float ,

• f64vector using double* .

2.5 Foreign Libraries

(ffi-lib path [version]) PROCEDURE

Opens a foreign library in an OS-specific way (usingLoadLibrary on Windows, anddlopen on Unix), and
returns an ffi-lib object. The path is not expected to contain the library suffix, which is added according to the current
platform. If this fails, several other filename variations are tried — retrying without an automatically added suffix and
using a full path of a file if it exists (dlopen always searches its path, unless the path is absolute).

An optionalversion string can be supplied, which is appended to the name.

(ffi-lib? x) PROCEDURE

A predicate forffi-lib objects.

(get-ffi-obj objname lib type [failure-thunk]) PROCEDURE

Looks for the given object nameobjname (a string, a byte string, or a symbol), in the givenlib library (a string, a
library object, or#f). Specifying a string for the library will look for the named library (usingffi-lib), and using

9

2.6. Tagged C Pointer Types 2. Foreign Interface

#f will open up the executable (the MzScheme or MrEd process) as a library — using this it is possible to use internal
(seeInside PLT MzScheme) functionality directly from Scheme. If the object is found, it is converted to Scheme using
the given type. This is most often used with function types (see section2.8).

If the object is not found,failure-thunk is used to produce a return value, or if it is not provided an exception is
raised. This can be used to find a foreign function, or provide an error stub if it is not there, for example:

(define foo
(get-ffi-obj "foo" foolib (fun int - > int)

(lambda ()
(lambda (x)

(error ’foolib
"your installed foolib version does not provide \"foo \"")))))

(Reminder:get-ffi-obj is an unsafe procedure, see the beginning of Chapter1 for details.)

(set-ffi-obj! objname lib type new) PROCEDURE

Looks for theobjname in lib similarly to get-ffi-obj , but then it stores the givennew value into the library,
converting it to a C value. This can be used for setting library customization variables that are part of its interface,
including Scheme callbacks.

(make-c-parameter objname lib ctype) PROCEDURE

Returns a parameter-like procedure that can either reference the specified foreign value, or set it. This is useful in case
Scheme code and library code interact through a library value. It can be used with any type, but it is not recommended
to use this for foreign functions since each reference through this will construct the low-level interface before the
actual call.

(define-c var lib type) SYNTAX

This syntax usesmake-c-parameter above: it defines avar syntax that behaves like a Scheme binding, referenc-
ing and setting it is achieved through such a C parameter (so the same comments apply). Thevar part is used both
for the Scheme binding and for the foreign object’s name.

(ffi-obj-ref objname lib) FAILURE-THUNK procedure

Returns a pointer object for the required foreign object. This is for rare cases wheremake-c-parameter is insuf-
ficient because there is no type to cast the foreign object to (e.g., a vector of numbers).

2.6 Tagged C Pointer Types

(cpointer-has-tag? cptr tag) PROCEDURE

(cpointer-push-tag! cptr tag) PROCEDURE

These two functions treat pointer tags as lists of tags. As described in Section2.3, a pointer tag does not have any
role except for Scheme code that uses it to distinguish pointers — these functions treat the tag value as a list of tags,
which makes it possible to construct pointer types that can be treated as other pointer types, mainly for implementing
inheritance via upcasts (when a struct contains a super struct as its first element).

10

2. Foreign Interface 2.7. C Struct Types

cpointer-has-tag? checks if the givencptr has thetag — a pointer has a tagt when its tag is eithereq? to
t or a list that contains (memq) t.

cpointer-push-tag! pushes the giventag value oncptr ’s tags. The main properties of this operation are:
(a) pushing any tag will make later calls tocpointer-has-tag? succeed with this tag, (b) the pushed tag will be
used when printing the pointer (until a new value is pushed). (Technically, pushing a tag will simply set it if there is
no tag set, otherwise push it on an existing list or an existing value (treated as a single-element list).)

(cpointer tag [ptr-type [scheme-to-C-proc C-to-scheme-proc]]) PROCEDURE

(cpointer/null tag [ptr-type [scheme-to-C-proc C-to-scheme-proc]]) PROCEDURE

These functions constructs a kind of a pointer that gets a specific tag when converted to Scheme, and accept only such
tagged pointers when going to C. An optionalptr-type can be given to be used as the base pointer type, instead of
pointer . (Seeset-cpointer-tag! andcpointer-tag in section2.3for more details.)

Pointer tags are checked withcpointer-has-tag? and changed withcpointer-push-tag! which means
that other tags are preserved. Specifically, if a baseptr-type is given and is itself acpointer , then the new type
will handle pointers that have the new tag in addition toptr-type ’s tag(s). When the tag is a pair, its first value is
used for printing, so the most recently pushed tag which corresponds to the inheriting type will be displayed.

Note that tags are compared witheq? (or memq), which means an interface can hide its value from users (e.g., not
provide thecpointer-tag accessor), which makes such pointers un-fake-able.

cpointer/null is similar to cpointer except that it tolerates NULL pointers both going to C and back. Note
that NULL pointers are represented as#f in Scheme, so they are not tagged.

(define-cpointer-type name [ptr-type [scheme-to-C-proc C-to-scheme-proc]]) SYN-
TAX

A macro version ofcpointer and cpointer/null above, using the defined name for a tag string, and defining
a predicate too. The name should look like ‘foo ’, the predicate will be ‘foo? ’, and the tag will be"foo" . In
addition, ‘foo-tag ’ will be bound to the tag. The optional arguments are the same as those ofcpointer . ‘ foo ’
will be bound to thecpointer type, and ‘foo/null ’ to the cpointer/null type.

2.7 C Struct Types

(make-cstruct-type ctypes) PROCEDURE

This is the primitive type constructor for creating new C struct types. These types are actually new primitive types —
they don’t have any conversion functions associated. The corresponding Scheme objects that are used for structs are
pointers, but when these types are used, the value that the pointerrefers tois used rather than the pointer itself. This
value is basically made of a number of bytes that is known according to the given list ofctypes list. There is no
other primitive support, the following wrap this in a more functional way.

(list-struct ctypes · · ·1) PROCEDURE

This is a type constructor that builds a struct type using the abovemake-cstruct-type function, and wraps it
in a type that marshals a struct as a list of its components. Note that space for structs needs to be allocated, and this
type immediately allocates and uses a list from the allocated space, which means that using it is inefficient — use
define-cstruct below for a more efficient approach.

11

2.7. C Struct Types 2. Foreign Interface

(define-cstruct name ((fieldname ctype) · · ·)) SYNTAX

This macro defines a new C struct type, but unlike ‘list-struct ’, the resulting type deals with C structs in binary
form rather than marshal them to Scheme values. It uses adefine-struct -like approach, providing accessor
functions for raw struct values (which are pointer objects). The new type uses pointer tags to guarantee that only
proper struct objects are used. The name must have a form of ‘foo ’. The form and the generated bindings are
intentionally similar todefine-struct only with type specification for the slots — the identifiers that will be
bound as a result are:

• foo : the new C type for this struct.

• foo-pointer : a pointer type that should be used when a pointer to values of this struct are used.

• foo? : a predicate for the new type.

• foo-tag : the tag string object that is used with these values.

• make-foo : a constructor, expects an argument for each type.

• foo-slot . . . : an accessor function for each slot.

• set-foo-slot! . . . : a mutator function for each slot.

Objects of this new type are actually cpointers, with a type tag that is a list that contains"foo" . Since structs are
implemented as pointers, they can be used for apointer input to a foreign function: their address will be used. To
make this a little safer, the corresponding cpointer type is defined asfoo-pointer . The foo type should not be
used when a pointer is expected — it will cause the struct to be copied rather than use the pointer value, leading to
memory corruption.

If the first slot is itself a cstruct type, its tag will be used in addition to the new tag. This supports common cases
of object inheritance, where a sub-struct is made by having a first field that is its super-struct. Instances of the sub-
struct can be considered as instances of the super-struct since they share the same initial layout. Using the tag of an
initial cstruct slot means that the same behavior is implemented in Scheme, for example, accessors and mutators of
the super-cstruct can be used with the new sub-cstruct. See Section2.7.1for an example.

Note that structs are allocated as atomic blocks, which means that the garbage collector ignores their content. Cur-
rently, there is no safe way to store pointers to GC-managed objects in structs (even if you keep a reference to avoid
collecting the referenced objects, a moving GC will invalidate the pointer’s value). This means that only non-pointer
values, and pointers to memory that is outside the GC’s control can be used.

(define-cstruct (name super) ((fieldname ctype) · · ·)) SYNTAX

This alternative form ofdefine-cstruct , is shorthand for using an initial slot namedsuper using super as its
type. Remember that the new struct will usesuper ’s tag in addition to its own tag, meaning that instances ofname
can be used as instances ofsuper . Aside from the syntactic sugar, the constructor function will be different when
this syntax is used: instead of expecting a first argument which is an instance ofsuper , it will expect arguments
for each of super ’s slots in addition for the new slots. This is, again, in analogy to using a super-struct with
define-struct .

2.7.1 C Struct Examples

A few examples will help understanding how to use structs. Assuming the following C code:
typedef struct { int x; char y; } A;
typedef struct { A a; int z; } B;

12

2. Foreign Interface 2.7. C Struct Types

A* makeA() {
A *p = malloc(sizeof(A));
p->x = 1;
p->y = 2;
return p;

}

B* makeB() {
B *p = malloc(sizeof(B));
p->a.x = 1;
p->a.y = 2;
p->z = 3;
return p;

}

char gety(A* a) {
return a->y;

}

First, using the simplelist-struct , you might expect this code to work:

(define makeB
(get-ffi-obj ’makeB "foo.so"

(fun - > (list-struct (list-struct int byte) int))))
(makeB) ; should return ((1 2) 3)

The problem here is thatmakeB returns a pointer to the struct rather than the struct itself. The following works as
expected:

(define makeB
(get-ffi-obj ’makeB "foo.so" (fun - > pointer)))

(ptr-ref (makeB) (list-struct (list-struct int byte) int))

As described above,list-struct s should be used in cases where efficiency is not an issue. We continue using
define-cstruct , first define a type for ‘A’ which makes it possible to use ‘makeA’:

(define-cstruct A ([x int] [y byte]))
(define makeA

(get-ffi-obj ’makeA "foo.so"
(fun - > A-pointer))) ; using A is a memory-corrupting bug!

(define a (makeA))
(list a (A-x a) (A-y a))

; -> (#<cpointer:A> 1 2)

‘gety ’ is also simple to use from Scheme:

(define gety
(get-ffi-obj ’gety "foo.so"

(fun A-pointer - > byte)))
(gety a)

; -> 2

We now define another C struct for ‘B’, and expose ‘makeB’ using it:

13

2.8. Function Types 2. Foreign Interface

(define-cstruct B ([a A] [z int]))
(define makeB

(get-ffi-obj ’makeB "foo.so"
(fun - > B-pointer)))

(define b (makeB))

We can access all values ofb using a naive approach:

(list (A-x (B-a b)) (A-y (B-a b)) (B-z b))

but this is inefficient as it allocates and copies an instance of ‘A’ on every access. Inspecting the tags
(cpointer-tag b) we can see thatA’s tag is included, so we can simply use its accessors and mutators, as
well as any function that is defined to take anA pointer:

(list (A-x b) (A-y b) (B-z b))
(gety b)

Constructing aB instance in Scheme requires allocating a temporaryA struct:

(define b (make-B (make-A 1 2) 3))

To make this more efficient, we switch to the alternativedefine-cstruct syntax, which creates a constructor that
expects arguments for both the super fields ands the new ones:

(define-cstruct (B A) ([z int]))
(define b (make-B 1 2 3))

2.8 Function Types

(cprocedure input-types output-type [wrapper-proc]) PROCEDURE

This is a procedure type constructor: it creates a new function type, specified by the giveninput-types list and
output-type . Usually, the fun syntax (described below) should be used instead, since it can deal with a wide
range of complicated cases.

The resulting type can be used to reference foreign functions (usuallyffi-obj s, but any pointer object can be
referenced with this type), generating a matching foreign callout object. Such objects are new primitive procedure
objects that can be used like any other Scheme procedure.

This type can also be used for passing Scheme procedures to foreign functions, which will generate a foreign function
pointer that calls the given Scheme procedure when it is used. There are no restrictions on the Scheme procedure,
specifically, its lexical context is properly preserved.

The optionalwrapper-proc , if provided, is expected to be a function that can change a callout procedure: when a
callout is generated, the wrapper is applied on the newly created primitive procedure, and its result is used as the new
function. This is provided as a hook that can perform various argument manipulations before the foreign function is
invoked, and return different results (for example, grabbing a value stored in an ‘output’ pointer and returning multiple
values). It can also be used for callbacks, as an additional layer that tweaks arguments from the foreign code before
they reach the Scheme procedure, and possibly changes the result values too.

(fun [args ::] input-type · · · -> output-type [-> output-expr])

Creates a new function type. This is a convenient syntax for thecprocedure type constructor, that can handle

14

2. Foreign Interface 2.8. Function Types

complicated cases of argument handling. In its simplest form, only theinput-type s and theoutput-type are
specified and each one is a simple expression, which creates a straightforward function type.

In its full form, the fun syntax provides an IDL-like language that can be used to create a wrapper function around
the primitive foreign function. These wrappers can implement complex foreign interfaces given simple specifications.
First, the full form of each of the types can include an optional label and an expression:

type-spec is one of
type
(label : type)
(type = expr)
(label : type = expr)

If an expression is provided, then the resulting function will be a wrapper that calculates the argument for that position
itself, meaning that it does not expect an argument for that position. The expression can use previous arguments if
they were labeled. In addition, the result of a function call need not be the value returned from the foreign call: if
the optionaloutput-expr is specified, or if an expression is provided for the output type, then this specifies an
expression that will be used as a return value. This expression can use any of the previous labels, including a label
given for the output which can be used to access the actual foreign return value.

In rare cases where complete control over the input arguments is needed, the wrapper’s argument list can be specified
asargs , in any form (including a ‘rest’ argument). Identifiers in this place are related to type labels, so if an argument
is there is no need to use an expression, for example:

(fun (n s) :: (s : string) (n : int) - > int)

specifies a function that receives an integer and a string, but the foreign function will get the string first.

2.8.1 Custom Function Types

The behavior of thefun type can be customized via custom function types. These are pieces of syntax that can
behave as C types and C type constructors, but they can interact with function calls in several ways that are not
possible otherwise. When thefun form is expanded, it tries to expand each of the given type expressions, and ones
that expand to certain keyword-value lists interact with the generation of the foreign function wrapper. This makes it
possible to construct a single wrapper function, avoiding the costs involved in compositions of higher-order functions.

Custom function types are macros that expand to a list that looks like: ‘(key: val ...) ’, where all of the
‘key: ’s are from a short list of known keys. Each key interacts with generated wrapper functions in a different way,
which affects how its corresponding argument is treated:

• type: specifies the foreign type that should be used, if it is#f then this argument does not participate in the
foreign call.

• expr: specifies an expression to be used for arguments of this type, removing it from wrapper arguments.

• bind: specifies a name that is bound to the original argument if it is required later (e.g.,box converts its
associated value to a C pointer, and later needs to refer back to the original box).

• 1st-arg: specifies a name that can be used to refer to the first argument of the foreign call (good for common
cases where the first argument has a special meaning, e.g., for method calls).

• prev-arg: similar to1st-arg: , but refers to the previous argument.

• pre: a pre-foreign code chunk that is used to change the argument’s value.

• post: a similar post-foreign code chunk.

15

2.8. Function Types 2. Foreign Interface

All of the special custom types that are described here are defined this way.

Most custom types are meaningful only in afun context, and will raise a syntax error if used elsewhere. A few such
types can be used in non-fun contexts: types which use onlytype: , pre: , post: , and no others. Such custom
types can be used outside afun by expanding them into a usage ofmake-ctype , using other keywords makes this
impossible — it means that the type has specific interaction with a function call.

(define-fun-syntax identifier transformer) SYNTAX

The results of expanding custom type macros is taken apart by thefun macro, which will lead to code certificate
problems. To solve this, do usedefine-fun-syntax instead ofdefine-syntax . It is used in the same way,
but will avoid such problems.

? CUSTOM C TYPE

This is not a conventional C type, it is a marker for expressions that should not be sent to the ffi function. Use this to
bind local values in a computation that is part of an ffi wrapper interface, or to specify wrapper arguments that are not
sent to the foreign function (e.g., an argument that is used for processing the foreign output).

(ptr mode type) CUSTOM C TYPE

This is for C pointers, wheremode indicates input or output pointers (or both).mode can be one of the following:

• ‘ i ’, indicating aninput pointer argument: the wrapper will arrange for the function call to receive a value that
can be used with thetype and to send a pointer to this value to the foreign function. After the call the value is
discarded.

• ‘o’, indicating anoutputpointer argument: the foreign function expects a pointer to a place where it will save
some value, and this value is accessible after the call, to be used by an extra return expression. Ifptr is used
in this mode, then the generated wrapper does not expect an argument since one will be freshly allocated before
the call.

• ‘ io ’ combines the above into aninput/outputpointer argument: the wrapper will get the Scheme value, allocate
and set a pointer using this value, and reference the value after the call. The ‘ptr ’ can be confusing here: it
means that the foreign function expects a pointer, but the generated wrapper uses an actual value. (Note that if
this is used with structs, a struct is created when calling the function, and a copy of the return value is made too
— inefficient, but ensures that structs are not modified by C code.)

For example, theptr type can be used in output mode to create a foreign function wrapper that returns more than a
single argument. The following type:

(fun (i : (ptr o int))
- > (d : double)
- > (values d i))

will create a function that calls the foreign function with a fresh integer pointer, and use the value that is placed there
as a second return value.

(box type) CUSTOM C TYPE

This is similar to a(ptr io type) argument, where the input is expected to be a box holding an appropriate
value, which is unboxed on entry and modified accordingly on exit.

16

2. Foreign Interface 2.9. Miscellaneous Support

(list mode type [len]) CUSTOM C TYPE

Similar to ptr , except that it is used for converting lists to/from C vectors. The optionallen argument is needed for
output values where it is used in the post code, and in the pre code of an output mode to allocate the block. In any case
it can refer to a previous binding for the length of the list which the C function will most likely require.

vector CUSTOM C TYPE

Same aslist , except that it uses Scheme vectors instead of lists.

bytes CUSTOM C TYPE

bytes can be used by itself as a simple type that uses a byte string as a C pointer. Alternatively, it can be used as a
‘ (bytes o len) ’ form is for a pointer return value, where the size should be explicitly specified. There is no need
for other modes: input or input/output would be just likebytes since the string carries its size information (there is
no real need for the ‘o’ part of the syntax, but it’s there for consistency with the above macros).

(cvector Custom C Type) SYNTAX

Like bytes , cvector can be used as a simple type that corresponds to a pointer that is managed as a safe C vector
on the Scheme side — this is described in section2.4above. The syntax specified here is an alternative that makes it
behave similarly to thelist and vector custom types, except that this is more efficient since no Scheme list or
vector are needed. (It can be used with all three modes.)

2.9 Miscellaneous Support

(regexp-replaces name substs) PROCEDURE

This is a function that is convenient for many interfaces where the foreign library has some naming convention that
you want to use in your interface as well. The firstname argument can be any value that will be used to name
the foreign object — a symbol, a string, a byte string etc. This is first converted into a string, and then modified
according to the givensubsts list in sequence, where each element in this list is a list of a regular expression and
a substitution string. Usually,regexp-replace* is used to perform the substitution, except for cases where the
regular expression begins with a “ˆ ” or ends with a “$” whereregexp-replace is used.

For example, the following makes it convenient to define Scheme bindings such asfoo-bar for foreign names like
MyLib foo bar :

(define mylib (ffi-lib "mylib"))
(define-syntax defmyobj

(syntax-rules (:)
[(name : type ...)

(define name
(get-ffi-obj (regexp-replaces ’name ’((#rx"-" " ") (#rx"ˆ" "MyLib ")))

mylib (fun type ...)))]))
(defmyobj foo-bar : int - > int)

(list->cblock list ctype) PROCEDURE

This function allocates a memory block of an appropriate size, and initializes it using values fromlist and the given
ctype . Thelist must hold values that can all be converted to C values according to the givenctype .

17

2.10. Functions in the C part 2. Foreign Interface

(cblock->list cblock ctype length) PROCEDURE

This function converts C pointerscblock to vectors ofctype , to Scheme lists. The arguments are the same as in
the list->cblock . length must be specified because there is no way to know where the block ends.

(vector->cblock vector ctype) PROCEDURE

Same as thelist->cblock function, only for Scheme vectors.

(cblock->vector cblock ctype length) PROCEDURE

Same as thecblock->vector function, only for Scheme vectors.

2.10 Functions in the C part

These functions are provided by the internal#%foreign , but not re-provided fromforeign . They are listed with
brief explanations. If you find any of these useful, please let us know.

(ffi-obj objname ffi-lib-or-libname) PROCEDURE

Pulls out a foreign object from a library, returning a Scheme value that can be used as a pointer. If a name is provided
instead of a library object,ffi-lib is used to create a library object.

(ffi-obj? x) PROCEDURE

(ffi-obj-lib ffi-obj) PROCEDURE

(ffi-obj-name ffi-obj) PROCEDURE

A predicate for objects returned byffi-obj , and accessor functions that return its corresponding library object and
name. These values can also be used as C pointer objects.

(ctype-basetype ctype) PROCEDURE

(ctype-scheme->c ctype) PROCEDURE

(ctype-c->scheme ctype) PROCEDURE

Accessors for the components of a C type object, made bymake-ctype . ctype-basetype returns#f for
primitive types (including cstruct types).

(ffi-call ptr in-types out-type) PROCEDURE

This is the primitive mechanism that creates Scheme ‘callout’ values. The givenptr (any pointer value, including
ffi-obj values) is wrapped in a Scheme-callable primitive function that uses the types to specify how values are
marshaled.

(ffi-callback proc in-types out-type) PROCEDURE

This operation is the symmetric counterpart offfi-call . It receives a Scheme procedure and creates a callback
object, which can also be used as a pointer. This object can be used as a C-callable function, which will invokeproc
using the types to specify how values are marshaled.

18

2. Foreign Interface 2.10. Functions in the C part

(ffi-callback? x) PROCEDURE

A predicate for callback values that are created byffi-callback .

19

Index

#%foreign , 2
?, 16
bitmask , 5
bool , 5
box , 16
byte , 3
bytes , 3, 17
cpointer , 11
cpointer/null , 11
cprocedure , 14
cvector , 17
cvector , 8
double , 3
double* , 3
enum, 5
file , 4
fixint , 3
fixnum , 3
float , 3
fpointer , 5
fun , 14
int , 3
int16 , 3
int32 , 3
int64 , 3
int8 , 3
list , 16
list-struct , 11
long , 3
path , 3
pointer , 4
ptr , 16
sbyte , 3
scheme , 5
short , 3
sint , 3
sint16 , 3
sint32 , 3
sint64 , 3
sint8 , 3
slong , 3
sshort , 3
string , 4
string*/latin-1 , 4
string*/locale , 4
string*/utf-8 , 4
string/eof , 4
string/latin-1 , 4
string/locale , 4

string/ucs-4 , 3
string/utf-16 , 3
string/utf-8 , 4
sword , 3
symbol , 4
ubyte , 3
ufixint , 3
ufixnum , 3
uint , 3
uint16 , 3
uint32 , 3
uint64 , 3
uint8 , 3
ulong , 3
ushort , 3
uword , 3
vector , 17
void , 5
word , 3

cblock->list , 18
cblock->vector , 18
compiler-sizeof , 2
cpointer-has-tag? , 10
cpointer-tag , 6
cpointer? , 6
ctype-alignof , 2
ctype-basetype , 18
ctype-c->scheme , 18
ctype-scheme->c , 18
ctype-sizeof , 2
ctype? , 2
cvector , 8
cvector->list , 8
cvector-length , 8
cvector-ref , 8
cvector-type , 8
cvector? , 8

default- string-type , 4
define-c , 10
define-cpointer-type , 11
define-cstruct , 11, 12
define-fun-syntax , 16
define-unsafer , 1

end-stubborn-change , 7

f32vector , 9

20

INDEX

f64vector , 9
ffi-call , 18
ffi-callback , 18
ffi-callback? , 19
ffi-lib , 9
ffi-lib? , 9
ffi-obj , 18
ffi-obj-lib , 18
ffi-obj-name , 18
ffi-obj-ref , 10
ffi-obj? , 18
free , 7

get-ffi-obj , 9

list->cblock , 17
list->cvector , 8

make-c-parameter , 10
make-cstruct-type , 11
make-ctype , 2
make-cvector , 8
make-cvector* , 8
make-sized-byte-string , 7
malloc , 7

provide* , 1
ptr-equal? , 6
ptr-ref , 6

regexp-replaces , 17
register-finalizer , 7

s16vector , 9
s32vector , 9
s64vector , 9
s8vector , 9

u16vector , 9
u32vector , 9
u64vector , 9
u8vector , 9

vector->cblock , 18

21

	1 Introduction
	2 Foreign Interface
	2.1 Basic C Type Functions
	2.2 Simple Types
	2.2.1 Numeric Types
	2.2.2 String Types
	2.2.3 Pointer Types
	2.2.4 Type Constructors
	2.2.5 Misc Types

	2.3 Pointer Functions
	2.3.1 Memory Management

	2.4 Safe C Vectors
	2.4.1 SRFI-4 Vectors

	2.5 Foreign Libraries
	2.6 Tagged C Pointer Types
	2.7 C Struct Types
	2.7.1 C Struct Examples

	2.8 Function Types
	2.8.1 Custom Function Types

	2.9 Miscellaneous Support
	2.10 Functions in the C part

	Index

