
PLT Miscellaneous Libraries: Reference Manual

PLT (scheme@plt-scheme.org)

301
Released December 2006

Copyright notice

Copyright c©1996-2005 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby granted without
fee, provided that the above copyright notice, author, and this permission notice appear in all copies of this documen-
tation.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line atscheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Contents

1 Miscellaneous Libraries 1

2 Viewport Graphics 2

2.1 Basic Commands. 2

2.2 Position Operations. 2

2.3 Color Operations. 3

2.4 Draw, Clear and Flip Operations. 3

2.4.1 Viewports. 4

2.4.2 Pixels . 4

2.4.3 Lines . 4

2.4.4 Rectangles. 4

2.4.5 Ellipses. 5

2.4.6 Polygons . 5

2.4.7 Strings . 6

2.4.8 Pixmaps. 6

2.5 Miscellaneous Operations. 7

2.6 An Example. 7

2.7 A More Complicated Example. 7

2.8 Protecting Graphics Operations. 8

2.9 Mouse Operations. 8

2.10 Keyboard Operations. 9

2.11 Flushing. 9

2.12 Unitized Graphics. 9

3 Turtles 11

i

CONTENTS CONTENTS

3.1 Turtles. .11

3.2 Value Turtles .13

Index 15

ii

1. Miscellaneous Libraries

This manual documents miscellaneous libraries distributed with DrScheme.

1

2. Viewport Graphics

The viewport graphics library is a relatively simple toolbox of graphics commands. The library is not very powerful;
it is intended as a simplified alternative to MrEd’s full graphical toolbox.

The graphics library originated as SIXlib, a library of X Windows commands available within Chez Scheme at Rice
University. The functionality of that library has been reproduced (with backward compatibility) in this version.

To use the viewport graphics library in a PLT language, load it viarequire :

(require (lib "graphics.ss" "graphics"))

which loads thegraphics.ss library from thegraphics collection. All of the names defined in this chapter will then
be available.

2.1 Basic Commands

• (open-graphics)
Initializes the library’s graphics routines. It must be called before any other graphics operations.

• (close-graphics)
Closes all of the windows and untilopen-graphics is called again, no graphics routines will work.

• (open-viewport name horiz vert)
Takes a stringname and integershoriz andvert and creates a new window calledname. The window is
horiz pixels wide andvert pixels high. For backward compatibility, a singleposn value (see below) can be
submitted in the place ofhoriz andvert . open-viewport returns a viewport descriptor.

• (open-pixmap name horiz vert)
Like open-viewport , but the resulting viewport is not displayed on the screen. Offscreen pixmaps are useful
for executing a sequence of drawing commands and displaying them all at once withcopy-viewport .

Offscreen pixmaps are also useful in conjunction with viewport-¿snip (see below). This allows functions to
compute with graphical objects and view the graphics when results are returned to the interactions window.

• (close-viewport viewport)
Takes a viewport descriptor. It removes the viewport from the screen and makes subsequent operations dealing
with the viewport illegal.

2.2 Position Operations

A position is a pixel location within a viewport. The upper-left corner is pixel(0,0) and the orientation of the position
coordinates within a viewport is as follows:

2

2. Viewport Graphics 2.3. Color Operations

(0,0) r - increasingx

?
increasingy

• (make-posn x y)
Takes two integers and returns a position with the specifiedx andy coordinates.

• (posn-x p) , (posn-y p)
Return thex andy coordinates, respectively, of a position.

• (posn? v)
Reports whetherv is a position.

• ((get-pixel viewport) p)
Returns the color of the pixel at positionp in viewport ; 0 denotes white and 1 denotes not white.

• ((get-color-pixel viewport) p)
Returns an RGB value for color of the pixel at positionp in viewport .

• ((test-pixel viewport) color)
Returns the color that will actually be used ifcolor is used to draw.

2.3 Color Operations

A color can be represented in three ways: as a color index (an integer in 0 to 299, inclusive), as a color name string,
or as argb value. All drawing functions which take a color argument accept colors in any form. Anrgb value is
assigned to an index withchange-color .

• (make-rgb red green blue)
Takes three values in the range 0 (dark) to 1 (bright) and returns anrgb (a color).

• (rgb-red color)
(rgb-blue color)
(rgb-green color)
Return the red, green, and blue components, respectively, of a color.

• (rgb? v)
Reports whetherv is a color.

• (change-color index rgb)
Changes the color atindex in the color table to the color specified inrgb . Only the first twenty-one indices
are initialized; a color index should not be used until it has been initialized.

• (default-display-is-color?)
Returns#t if the default display screen for viewports is in color or#f otherwise.

2.4 Draw, Clear and Flip Operations

These are the basic graphics operations for drawing to a viewport. Each function takes a viewport as its argument and
returns a function operating within that viewport. Further arguments, if any, are curried. For example,(draw-line
viewport) returns a function, that can then be applied to the proper arguments to draw a line in the viewport
corresponding to viewport descriptorviewport . An example follows.

3

2.4. Draw, Clear and Flip Operations 2. Viewport Graphics

Where “draw-” commands make pixels black, “clear-” commands make them white.

Where “draw-” commands make pixels black, a “flip-” commands cause them to change.

2.4.1 Viewports

• ((draw-viewport viewport) color)
Takes a viewport descriptor. It returns a function that colors the entire contents ofviewport . The optional
color argument defaults to black.

• ((clear-viewport viewport))
Takes a viewport descriptor. It returns a function that whitens the entire contents ofviewport .

• ((flip-viewport viewport))
Takes a viewport descriptor. It returns a function that flips the contents ofviewport .

• (copy-viewport source-viewport destination-viewport)
Takes two viewport descriptors. It copies thesource-viewport into thedestination-viewport .

2.4.2 Pixels

• ((draw-pixel viewport) p color)
Takes a viewport descriptor. It returns a function that draws a pixel inviewport at the specified position. The
optionalcolor argument defaults to black.

• ((clear-pixel viewport) p)
Takes a viewport descriptor. It returns a function that clears a pixel inviewport at the specified position.

• ((flip-pixel viewport) p)
Takes a viewport descriptor. It returns a function that flips a pixel inviewport at the specified position.

2.4.3 Lines

• ((draw-line viewport) p1 p2 color)
Takes a viewport descriptor. It returns a function that draws a line in theviewport connecting positionsp1
andp2 . The optionalcolor argument defaults to black.

• ((clear-line viewport) p1 p2)
Takes a viewport descriptor. It returns a function that clears a line inviewport connecting positionsp1 and
p2 .

• ((flip-line viewport) p1 p2)
Takes a viewport descriptor. It returns a function that flips a line inviewport connecting positionsp1 and
p2 .

2.4.4 Rectangles

• ((draw-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that draws a rectangle border in theviewport with the top-
left of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

• ((clear-rectangle viewport) posn width height)
Takes a viewport descriptor. It returns a function that clears a rectangle border in theviewport with the top-
left of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

4

2. Viewport Graphics 2.4. Draw, Clear and Flip Operations

• ((flip-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a rectangle border in theviewport with the top-left
of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

• ((draw-solid-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that paints a solid rectangle in theviewport with the top-left
of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

• ((clear-solid-rectangle viewport) posn width height)
Takes a viewport descriptor. It returns a function that erases a solid rectangle in theviewport with the top-left
of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

• ((flip-solid-rectangle viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a solid rectangle in theviewport with the top-left
of the rectangle at the positionposn and with sideswidth across andheight tall. The optionalcolor
argument defaults to black.

2.4.5 Ellipses

• ((draw-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that draws an ellipse border in theviewport . Theposn ,
width , andheight arguments are as indraw-rectangle ; the ellipse is inscribed within the specified
rectangle. The optionalcolor argument defaults to black.

• ((clear-ellipse viewport) posn width height)
Takes a viewport descriptor. It returns a function that clears an ellipse border in theviewport . Theposn ,
width , andheight arguments are as inclear-rectangle ; the ellipse is inscribed within the specified
rectangle. The optionalcolor argument defaults to black.

• ((flip-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips an ellipse border in theviewport . The posn ,
width , andheight arguments are as inflip-rectangle ; the ellipse is inscribed within the specified
rectangle. The optionalcolor argument defaults to black.

• ((draw-solid-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that paints a solid ellipse in theviewport . The posn ,
width , andheight arguments are as indraw-rectangle ; the ellipse is inscribed within the specified
rectangle. The optionalcolor argument defaults to black.

• ((clear-solid-ellipse viewport) posn width height)
Takes a viewport descriptor. It returns a function that erases a solid ellipse in theviewport . The posn ,
width , andheight arguments are as inclear-rectangle ; the ellipse is inscribed within the specified
rectangle. The optionalcolor argument defaults to black.

• ((flip-solid-ellipse viewport) posn width height color)
Takes a viewport descriptor. It returns a function that flips a solid ellipse in theviewport . Theposn , width ,
andheight arguments are as inflip-rectangle ; the ellipse is be inscribed within the specified rectangle.
The optionalcolor argument defaults to black.

2.4.6 Polygons

• ((draw-polygon viewport) posn-list posn color)
Takes a viewport descriptor. It returns a function that draws a polygon border in theviewport using

5

2.4. Draw, Clear and Flip Operations 2. Viewport Graphics

posn-list for the polygon vertices andposn as an offset for the polygon. The optionalcolor argument
defaults to black.

• ((clear-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that erases a polygon border in theviewport using
posn-list for the polygon vertices andposn as an offset for the polygon.

• ((flip-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that flips a polygon border in theviewport using
posn-list for the polygon vertices andposn as an offset for the polygon.

• ((draw-solid-polygon viewport) posn-list posn color)
Takes a viewport descriptor. It returns a function that paints a solid polygon in theviewport using
posn-list for the polygon vertices andposn as an offset for the polygon. The optionalcolor argument
defaults to black.

• ((clear-solid-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that erases a solid polygon in theviewport using
posn-list for the polygon vertices andposn as an offset for the polygon.

• ((flip-solid-polygon viewport) posn-list posn)
Takes a viewport descriptor. It returns a function that flips a solid polygon in theviewport usingposn-list
for the polygon vertices andposn as an offset for the polygon.

2.4.7 Strings

• ((draw-string viewport) p string color)
Takes a viewport descriptor. It returns a function that draws a string at a specified location in theviewport .
The lower left of the string begins atp. The optionalcolor argument defaults to black.

• ((clear-string viewport) p string)
Takes a viewport descriptor. It returns a function that clears a string at a specified location inviewport . The
lower left of the string begins atp.

• ((flip-string viewport) p string)
Takes a viewport descriptor. It returns a function that flips a string at a specified location inviewport . The
lower left of the string begins atp.

2.4.8 Pixmaps

• (((draw-pixmap-posn filename type) viewport) posn color)

Draws a pixmap intoviewport with its upper left corner at positionposn . Thetype is an optional symbol,
one of’gif , ’gif/mask , ’xbm , ’xpm , ’bmp , ’pict , ’unknown , or ’unknown/mask , and defaults to
’unknown/mask . If type is ’unknown or ’unknown/mask , then the content of the file is examined to
determine the type. All formats are supported on all platforms, except’pict which is only supported under
Mac OS X. The’gif/mask and’unknown/mask types draw the bitmap with a transparent background if
filename refers to a GIF file with a transparent background.

The argumentcolor is only used when the pixmap is black and white. In that case, the color is used instead
of black in the drawn image.

• ((draw-pixmap viewport) filename p color)
Draws a pixmap intoviewport w with its upper left corner at positionp. If color is not#f it is passed to
set-viewport-pen with the viewport. It defaults to#f .

6

2. Viewport Graphics 2.5. Miscellaneous Operations

• ((save-pixmap viewport) filename type)
Saves the current content ofviewport to filename . Thetype is an optional symbol, one of’xbm , ’xpm ,
’bmp (Windows only), or’pict (Mac OS X only); the default is’xpm .

2.5 Miscellaneous Operations

• ((get-string-size viewport) string)
Takes a viewport descriptor. It returns a function that returns the size of a string as a list of two numbers: the
width and height.

• (viewport->snip viewport)
Takes a viewport descriptor. It returns an object that can be inserted into an editor buffer to display the current
image in the viewport. (Subsequent drawing to the viewport does not affect the snip’s image.)

When snips are the results of computations in the interactions window, DrScheme will print show the contents
of the viewport, right in the interactions window.

• (viewport-dc viewport)
Takes a viewport descriptor. It returns an object that can be used with the primitive MrEd toolbox func-
tions to draw into the viewport’s on-screen representation (if any). Mirror all such drawing to the result of
(viewport-offscreen-dc viewport) , too.

• (viewport-offscreen-dc viewport)
Takes a viewport descriptor. It returns an object that can be used with the primitive MrEd toolbox functions to
draw into the viewport’s off-screen representation. Mirror all such drawing to the result of(viewport-dc
viewport) , too.

2.6 An Example

(open-graphics)
;; nothing appears to happen, but the library is initialized...

(define w (open-viewport "practice" 300 300))
;; viewport appears

((draw-line w) (make-posn 30 30) (make-posn 100 100))
;; line appears

(close-viewport w)
;; viewport disappears

(close-graphics)
;; again, nothing appears to happen, but
;; unclosed viewports (if any) would disappear

2.7 A More Complicated Example

The use of multiple viewports, viewport descriptors, drawing operations for multiple viewports is as easy as the use of
a single viewport:

(open-graphics)
(let ∗ (;; w1 and w2 are viewport descriptors for different windows

[w1 (open-viewport "viewport 1" 300 300)]
[w2 (open-viewport "viewport 2" 200 500)]

7

2.8. Protecting Graphics Operations 2. Viewport Graphics

;; d1 and d2 are functions that draw lines in different viewports
[d1 (draw-line w1)]
[d2 (draw-line w2)])

;; draws a line in viewport labeled "viewport 1"
(d1 (make-posn 100 5) (make-posn 5 100))
;; draws a line in viewport labeled "viewport 2"
(d2 (make-posn 100 100) (make-posn 101 400)))

;; we no longer have access to viewports 1 and 2,
;; since their descriptors did not escape the let
(close-graphics)
;; removes the viewports

2.8 Protecting Graphics Operations

To guarantee the proper closing of viewports in cases of errors, especially when a program manages several viewports
simultaneously, a programmer should usedynamic-wind:

(let ([w (open-viewport "hello" 100 100)])
(dynamic-wind

;; what we want to happen first: nothing
void
;; the main program (errors constrained to this piece)
(lambda () (draw-pixel 13)) ; an error
;; what we would like to happen, whether the main program finishes
;; normally or not
(lambda () (close-viewport w))))

2.9 Mouse Operations

The graphics library contains functions that determine where the mouse is, if there are any clicks, etc. The functions
get-mouse-click andready-mouse-click first return a “mouse-click descriptor,” and then other functions
take the descriptor and return the mouse’s position, which button was pushed, etc. Mouse clicks are buffered and
returned in the same order in which they occurred. Thus, the descriptors returned byget-mouse-click and
ready-mouse-click may be from clicks that occurred long before these functions were called.

• (get-mouse-click viewport)
Takes a viewport descriptor and returns a mouse click descriptor. It returns the next mouse click in the
viewport , waiting for a click if necessary.

• (ready-mouse-click viewport)
Takes a viewport descriptor and returns either a mouse click descriptor, or else#f if none is available. Unlike
the previous function,ready-mouse-click returns immediately.

• (ready-mouse-release viewport)
Takes a viewport descriptor and returns either a click descriptor from a mouse-release (button-up) event, or else
#f if none is available.

• (query-mouse-posn viewport)
Takes a viewport descriptor and returns either the position of the mouse cursor within theviewport , or else
#f if the cursor is currently outside theviewport .

• (mouse-click-posn mouse-click)
Takes a mouse click descriptor and returns the position of the pixel where the click occurred.

8

2. Viewport Graphics 2.10. Keyboard Operations

• (left-mouse-click? mouse-click)
Takes a mouse click descriptor and returns#t if the click occurred with the left mouse button, or else#f .

• (middle-mouse-click? mouse-click)
Similar to left-mouse-click? .

• (right-mouse-click? mouse-click)
Similar to left-mouse-click? .

2.10 Keyboard Operations

The graphics library contains functions that report key presses from the keyboard. The functionsget-key-press
and ready-key-press return a “key-press descriptor,” and thenkey-value takes the descriptor and returns
a character or symbol (usually a character) representing the key that was pressed. Key presses are buffered and
returned in the same order in which they occurred. Thus, the descriptors returned byget-key-press and
ready-key-press may be from presses that occurred long before these functions were called.

• (get-key-press viewport)
Takes a viewport descriptor and returns a key press descriptor. It returns the next key press in theviewport ,
waiting for a click if necessary.

• (ready-key-press viewport)
Takes a viewport descriptor and returns either a key press descriptor, or else#f if none is available. Unlike the
previous function,ready-key-press returns immediately.

• (key-value key-press)
Takes a key press descriptor and returns a character or special symbol for the key that was pressed. For example,
the Enter key generates#\return , and the up-arrow key generates’up . For a complete list of possible return
values, seePLT MrEd: Graphical Toolbox Manual.

2.11 Flushing

• (viewport-flush-input viewport)
As noted above, key presses and mouse clicks are buffered.viewport-flush-input takes a viewport
descriptor and empties the input buffer of mouse and keyboard events.

2.12 Unitized Graphics

To use a unitized version of the graphics library (seePLT MzLib: Libraries Manualfor more information on units),
get the signaturesgraphicsˆ , graphics:posn-lessˆ , andgraphics:posnˆ with:

(require (lib "graphics-sig.ss" "graphics"))

The graphicsˆ signature includes all of the names defined in this chapter. Thegraphics:posn-lessˆ sig-
nature contains everything except theposn structure information, andgraphics:posnˆ contains only theposn
structure.

To obtain graphics@ , which importsmredˆ (all of the MrEd classes, functions, and constants) and exports
graphicsˆ :

(require (lib "graphics-unit.ss" "graphics"))

9

2.12. Unitized Graphics 2. Viewport Graphics

The graphics-posn-less-unit.ss library providesgraphics-posn-less@ , which importsgraphics:posnˆ
in addition to MrEd.

10

3. Turtles

3.1 Turtles

There are two ways to use the turtles in DrScheme. You can use it as a TeachPack (see the DrScheme manual for
details of TeachPacks) or as a library. Use theturtles.ss TeachPack.

In the MrEd language or in a module, load turtles with

(require (lib "turtles.ss" "graphics"))

The following are the turtle functions:

• (turtles b) shows and hides the turtles window based on the booleanb. The parameterb is optional; if it
is left out, it toggles the state of the turtles.

• (move n) moves the turtle n pixels.

• (draw n) moves the turtle n pixels and draws a line on that path.

• (erase n) moves the turtle n pixels and erases along that path.

• (move-offset h v) , (draw-offset h v) , (erase-offset h v) are just like move, draw and
erase, except they take a horizontal and vertical offset from the turtle’s current position.

• (turn theta) turns the turtle theta degrees counter-clockwise.

• (turn/radians theta) turns the turtle theta radians counter-clockwise.

• (clear) erases the turtles window.

Turtles also defines these syntactic forms:

• (split E) spawns a new turtle where the turtle is currently located. In order to distinguish the two turtles,
only the new one evaluates the expression E. For example, if you start with a fresh turtle-window and type:

(split (turn/radians (/ pi 2)))

you will have two turtles, pointing at right angles to each other. To see that, try this:

(draw 100)

You will see two lines. Now, if you evaluate those two expression again, you will have four turtles, etc

• (split* E ...) is similar to(split E ...) , except it creates as many turtles as there are expressions
and each turtles does one of the expression. For example, to create two turtles, one pointing atπ/2 and one at
π/3, evaluate this:

11

3.1. Turtles 3. Turtles

(split ∗ (turn/radians (/ pi 3)) (turn/radians (/ pi 2)))

• (tprompt E...) provides a way to limit the splitting of the turtles. Before the expression E is run, the state
of the turtles (how many, their positions and headings) is ”checkpointed,” then E is evaluated and the state of
the turtles is restored, but all drawing that may have occurred during execution of E remains.

For example, if you do this:

(tprompt (draw 100))

the turtle will move forward 100 pixels, draw a line there and then be immediately put back in it’s original
position. Also, if you do this:

(tprompt (split (turn/radians (/ pi 2))))

the turtle will split into two turtles, one will turn 90 degrees and then the turtles will be put back into their
original state – as if the split never took place.

The fern functions below demonstrate more advanced use oftprompt .

In the fileturtles-examples.ss in thegraphics library of your PLT distribution, you will find these functions and val-
ues defined, as example turtle programs. (The file is located in thegraphics subdirectory of thecollects subdirectory
of the PLT distribution).

• (regular-poly sides radius) draws a regular poly centered at the turtle with sides sides and with
radius radius.

• (regular-polys sides s) draws s regular polys spaced evenly outwards with sides sides.

• (radial-turtles n) places 2n turtles spaced evenly pointing radially outward

• (spaced-turtles n) places 2n turtles pointing in the same direction as the original turtle evenly spaced
in a line.

• (spokes) draws some spokes, using radial-turtles and spaced-turtles

• (spyro-gyra) draws a spyro-grya reminiscent shape

• (neato) as the name says. . .

• (graphics-bexam) draws a fractal that came up on an exam I took.

• serp-size a constant which is a good size for the serp procedures

• (serp serp-size) , (serp-nosplit serp-size) draws the Serpinski triangle in two different ways,
the first using split heavily. After running the first one, try executing(draw 10) .

• koch-size a constant which is a good size for the koch procedures

• (koch-split koch-size) ,(koch-draw koch-size) draws the same koch snowflake in two differ-
ent ways.

• (lorenz a b c) watch the lorenz ”butterfly” attractor with initial values a b and c.

• (lorenz1) a good setting for the lorenz attractor

• (peano1 peano-size)

This will draw the Peano space-filling curve, using split.

12

3. Turtles 3.2. Value Turtles

• (peano2 peano-size)

This will draw the Peano space-filling curve, without using split.

• fern-size a good size for the fern functions

• (fern1 fern-size) You will probably want to point the turtle up before running this one, with something
like:

(turn/radians (- (/ pi 2)))

• (fern2 fern-size) a fern – you may need to backup a little for this one.

3.2 Value Turtles

There are two ways to use the turtles in DrScheme. You can use it as a TeachPack (see the DrScheme manual for
details of TeachPacks) or as a library. Use thevalue-turtles.ss TeachPack.

In the MrEd language or in a module, load turtles with

(require (lib "value-turtles.ss" "graphics"))

The value turtles are a variation on the turtles library. Rather than having just a single window where each operation
changes the state of that window, in this library, the entire turtles window is treated as a value. This means that each
of the primitive operations accepts, in addition to the usual arguments, a turtles window value and instead of returning
nothing, returns a turtles window value.

The following are the value turtle functions:

• (turtles number number [number number number]) creates a new turtles window. The first
two arguments are the width and height of the turtles window. The remaining arguments specify the x,y position
of the initial turtle and the angle. The default to a turtle in the middle of the window, pointing to the right.

• (move n turtles) moves the turtle n pixels, returning a new turtles window.

• (draw n turtles) moves the turtle n pixels and draws a line on that path, returning a new turtles window.

• (erase n turtles) moves the turtle n pixels and erases along that path, returning a new turtles window.

• (move-offset h v turtles) , (draw-offset h v turtles) , (erase-offset h v turtles)
are just like move, draw and erase, except they take a horizontal and vertical offset from the turtle’s current po-
sition.

• (turn theta turtles) turns the turtle theta degrees counter-clockwise, returning a new turtles window.

• (turn/radians theta) turns the turtle theta radians counter-clockwise, returning a new turtles window.

• (merge turtles turtles)

The split and tprompt functionality provided by the imperative turtles implementation aren’t needed for
this, since the turtles window is itself a value.

Instead, themerge accepts two turtles windows and combines the state of the two turtles windows into a single
window. The new window contains all of the turtles of the previous two windows, but only the line drawings of
the first turtles argument.

13

3.2. Value Turtles 3. Turtles

In the filevalue-turtles-examples.ss in thegraphics library of your PLT distribution, you will find these functions
and values defined, as example turtle programs. (The file is located in thegraphics subdirectory of thecollects
subdirectory of the PLT distribution).

It contains a sampling of the examples from the normal turtles implementation, but translated to usemerge and the
values turtles.

14

Index

#/return , 9

Butterfly Attractor,12

change-color , 3
clear , 11
clear-ellipse , 5
clear-line , 4
clear-pixel , 4
clear-polygon , 6
clear-rectangle , 4
clear-solid-ellipse , 5
clear-solid-polygon , 6
clear-solid-rectangle , 5
clear-string , 6
clear-viewport , 4
close-graphics , 2
close-viewport , 2
copy-viewport , 4

default-display-is-color? , 3
draw , 11, 13
draw-ellipse , 5
draw-line , 4
draw-offset , 11, 13
draw-pixel , 4
draw-pixmap , 6
draw-pixmap-posn , 6
draw-polygon , 5
draw-rectangle , 4
draw-solid-ellipse , 5
draw-solid-polygon , 6
draw-solid-rectangle , 5
draw-string , 6
draw-viewport , 4

erase , 11, 13
erase-offset , 11, 13

Fern Fractal,13
flip-ellipse , 5
flip-line , 4
flip-pixel , 4
flip-polygon , 6
flip-rectangle , 5
flip-solid-ellipse , 5
flip-solid-polygon , 6
flip-solid-rectangle , 5
flip-string , 6
flip-viewport , 4

get-color-pixel , 3
get-key-press , 9
get-mouse-click , 8
get-pixel , 3
get-string-size , 7
graphics

simple,2
graphics.ss , 2
graphics:posn-lessˆ , 9
graphics:posnˆ , 9
graphics@ , 9
graphicsˆ , 9

key-value , 9
Koch Snowflake,12

left-mouse-click? , 9
Lorenz Attractor,12

make-posn , 3
make-rgb , 3
merge , 13
middle-mouse-click? , 9
mouse-click-posn , 8
move, 11, 13
move-offset , 11, 13

open-graphics , 2
open-pixmap , 2
open-viewport , 2

Peano space-filling curve,12
posn-x , 3
posn? , 3

query-mouse-posn , 8

ready-key-press , 9
ready-mouse-click , 8
ready-mouse-release , 8
rgb-red , 3
rgb? , 3
right-mouse-click? , 9

save-pixmap , 7
Serpinski Triangle,12
split , 11
split* , 11

test-pixel , 3

15

INDEX

tprompt , 12
turn , 11, 13
turn/radians , 11, 13
Turtles

Value,13
turtles , 11, 13
turtles.ss , 11

Value Turtles,13
value-turtles.ss , 13
viewport,2
viewport->snip , 7
viewport-dc , 7
viewport-flush-input , 9
viewport-offscreen-dc , 7

16

	1 Miscellaneous Libraries
	2 Viewport Graphics
	2.1 Basic Commands
	2.2 Position Operations
	2.3 Color Operations
	2.4 Draw, Clear and Flip Operations
	2.4.1 Viewports
	2.4.2 Pixels
	2.4.3 Lines
	2.4.4 Rectangles
	2.4.5 Ellipses
	2.4.6 Polygons
	2.4.7 Strings
	2.4.8 Pixmaps

	2.5 Miscellaneous Operations
	2.6 An Example
	2.7 A More Complicated Example
	2.8 Protecting Graphics Operations
	2.9 Mouse Operations
	2.10 Keyboard Operations
	2.11 Flushing
	2.12 Unitized Graphics

	3 Turtles
	3.1 Turtles
	3.2 Value Turtles

	Index

