
PLT mzc : MzScheme Compiler Manual

PLT (scheme@plt-scheme.org)

301
Released December 2006

Copyright notice

Copyright c©1996-2005 PLT

Permission to make digital/hard copies and/or distribute this documentation for any purpose is hereby granted without
fee, provided that the above copyright notice, author, and this permission notice appear in all copies of this documen-
tation.

Contents

1 About mzc 1

1.1 mzc Is... 1

1.1.1 Byte-Code Compilation. 1

1.1.2 Native-Code Compilation. 1

1.2 mzc Is Not... 2

1.3 Runningmzc . 2

1.4 Native Code Optimization frommzc . 2

2 Foreign-Function Interface to C 5

3 Compiling Individual Files with mzc 9

3.1 Compiling with Modules. 9

3.2 Compilation without Modules. 9

3.3 Autodetecting Compiled Files for Loading. 10

3.4 Compiling Multiple Files to a Single Native-Code Library. 10

4 Compiling Collections with mzc 12

5 Building a Stand-alone Executable 13

5.1 Stand-Alone Executables from Scheme Code. 13

5.2 Stand-Alone Executables from Native Code. 13

6 Creating Distribution Archives 15

7 info.ss File Format 17

Index 18

i

CONTENTS CONTENTS

ii

1. About mzc

1.1 mzc Is...

Themzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte-code com-
piled files (.zo files) or platform-specific native-code libraries (.so or .dll files) to be loaded into MzScheme (or MrEd).
In the latter mode,mzc provides limited support for interfacing directly to C libraries.

mzc works on either individual files or on collections. (Acollection is a group of files that conform to MzScheme’s
library collection system; see§ in PLT MzScheme: Language Manual). In general,mzc works best with code using
themodule form.

As a convenience for programmers writing low-level MzScheme extensions,mzc can compile and link plain C files
that use MzScheme’sescheme.h header. This facility is described inInside PLT MzScheme.

Finally, mzc can perform miscellaneous tasks, such as embedding Scheme code in a copy of the MzScheme (or MrEd)
binary to produce a stand-alone executable, or creating.plt distribution archives.

1.1.1 Byte-Code Compilation

A byte-code file typically uses the file extension.zo. The file starts with#∼ followed by the byte-code data.

Byte-code files are loaded into MzScheme in the same way as regular Scheme source files (e.g., withload). The#∼
marker causes MzScheme’s reader to load byte codes instead of normal Scheme expressions. When a.zo file exists in
a compiled subdirectory, it is sometimes loaded in place of a source file; see§3.3for details.

Byte-code programs produced bymzc run exactly the same as source code compiled by MzScheme directly (assuming
the same set of bindings are in place at compile time and load time). In other words, byte-code compilation does
not optimize the code any more than MzScheme’s normal evaluator. However, a byte-code file can be loaded into
MzScheme much faster than a source-code file.

1.1.2 Native-Code Compilation

A native-code file is a platform-specific shared library. Under Windows, native-code files use the extension.dll . Under
Mac OS X, native-code files use the extension.dylib . Under Unix, native-code files use the extension.so .

Native-code files are loaded into MzScheme with theload-extension procedure (see§ in PLT MzScheme: Lan-
guage Manual). When a native-code file exists in acompiled subdirectory, it is sometimes loaded in place of a source
file; see§3.3for details.

The native-code compiler attempts to optimize a source program so that it runs faster than the source-code or byte-
code version of the program. See§1.4for information on obtaining the best possible performance frommzc -compiled
programs.

Thecffi.ss library of thecompiler collection defines Scheme forms, such asc-lambda , for accessing C functions

1

1.2. mzc Is Not... 1. Aboutmzc

from Scheme. The forms produce run-time errors when interpreted directly or compiled to byte code. See§2 for
further information.

Native-code compilation produces C source code in an intermediate stage; your system must provide an external C
compiler to produce native code. Themzc compiler cannot produce native code directly from Scheme code.

• Under Unix and Mac OS X,gcc is used as the C compiler if it can be found in any of the directories listed in
the PATH environment variable. Ifgcc is not found,cc is used if it can be found.

• Under Windows,cl.exe , Microsoft Visual C, is used as the C compiler if it can be found in any of the directories
listed in the PATH environment variable. Ifcl.exe is not found, thengcc.exe is used if it can be found. If neither
cl.exe nor gcc.exe is found, thenbcc32.exe (Borland) is used if it can be found.

The C compiler and compiler flags used bymzc can be adjusted via command line flags.

1.2 mzc Is Not...

mzc does not generally produce stand-alone executables from Scheme source code. The compiler’s output is intended
to be loaded into MzScheme (or MrEd or DrScheme). However, see also§5 for information about embedding code
into a copy of the MzScheme (or MrEd) executable.

mzc does not translate Scheme code into similar C code. Native-code compilation produces C code that relies on
MzScheme to provide run-time support, which includes memory management, closure creation, procedure application,
and primitive operations.

1.3 Runningmzc

Runmzc from a shell, passing in flags and arguments on the command line.

In this manual, each example command line is shown as follows:

mzc --extension --prefix macros.ss file.ss

To run this example, type the command line into a shell (replacingmzc with the path tomzc on your system, if
necessary).

Simple on-line help is available formzc ’s command-line arguments by runningmzc with the-h or --help flag.

1.4 Native Code Optimization frommzc

Compiling a program to native code withmzc can provide significant speedups compared to interpreting byte code (or
running the program directly from source code), but only for certain kinds of programs. The speedup from native-code
compilation is typically due to two optimizations:

• Loop Optimization — Whenmzc statically detects a tail-recursive loop, it compiles the Scheme loop to a C
loop that has no interpreter overhead. For example, given the program

2

1. Aboutmzc 1.4. Native Code Optimization frommzc

(letrec ([odd (lambda (x)
(if (zero? x)

#f
(even (sub1 x))))]

[even (lambda (x)
(if (zero? x)

#t
(odd (sub1 x))))])

(odd 40000))

mzc can detect theodd –even loop and produce native code that runs twice as fast as byte-code interpretation.
In contrast, given a similar program using top-level definitions,

(define (odd x) ...)
(define (even x) ...)

the compiler cannot assume anodd –even loop, because the global variablesodd andeven can be redefined
at any time. Note thatdefine d variables in amodule expression are lexically scoped likeletrec variables,
andmodule definitions therefore permit loop optimizations.1

• Primitive Inlining — Whenmzc encounters the application of certain primitives, it inlines the primitive pro-
cedure. However, the compiler must be certain that a variable reference will resolve to a primitive procedure
when the code is loaded into MzScheme. In the preceding example, the compiler cannot inline the application
of sub1 because the global variablesub1 might be redefined. To encourage the inlining of primitives—which
produces native code that runs30 times fasterthan byte-code interpretation for the preceding example—the
programmer has three options:

– Usemodule — If the original example is encapsulated in a module that importsmzscheme, then each
primitive name, such assub1 , is guaranteed to access the primitive procedure (assuming that the name is
not lexically bound). The “modulized” version of the preceding program follows:

(module oe mzscheme
(letrec ([odd (lambda (x)

(if (zero? x)
#f
(even (sub1 x))))]

[even (lambda (x)
(if (zero? x)

#t
(odd (sub1 x))))])

(odd 40000)))
To run this program, theoe module must berequire d at the top level.

– Use a (require mzscheme) prefix — If the preceding example is prefixed with(require
mzscheme) , thensub1 refers not to the global variable, but to thesub1 export of themzscheme
module. See§3.2for more information about prefixing compilation.

– Use the--prim flag — The --prim flag alters the semantics of the language for compilation such
that every reference to a global variable that is built into MzScheme is converted to its keyword form.
Actually, specifying the--prim flag causesmzc to automatically prefix the program with(require
mzscheme) .

Programs that permit these optimizations also to encourage a host of other optimizations, such as procedure inlining
(for programmer-defined procedures) and static closure detection. In general,module -based programs provide the
most opportunities for optimization.

1The compiler cannot always prove thatmodule definitions have been evaluated before the corresponding variable is used in an expression.
Use the-v or --verbose flag to check whethermzc reports a “last known module binding” warning when compiling amodule expression,
which indicates that definitions after a particular line in the source file might be referenced before they are defined.

3

1.4. Native Code Optimization frommzc 1. Aboutmzc

Native-code compilation rarely produces significant speedup for programs that are not loop-intensive, programs that
are heavily object-oriented, programs that are allocation-intensive, or programs that exploit built-in procedures (e.g.,
list operations, regular expression matching, or file manipulations) to perform most of the program’s work.

4

2. Foreign-Function Interface to C

MzLib’s foreign.ss provides an interface to dynamic C libraries that requires no C compiler and works completely at
run time. SeePLT Foreign Interface Manualfor more information. The manualInside PLT MzScheme, meanwhile,
describes a C-level API for extending MzScheme.

Thecffi.ss library of thecompiler collection provides a third alternative (in conjuction withmzc). Thecffi.ss library
relies on a C compiler to statically construct an interface to C code through directives embedded in a Scheme program.
The library implements a subset of Gambit-C’s foreign-function interface (see Marc Feeley’sGambit-C, version 3.0).

The cffi.ss module defines three forms:c-lambda , c-declare , andc-include . When interpreted directly
or compiled to byte code,c-lambda produces a function that always raisesexn:fail , andc-declare and
c-include raiseexn:fail . When compiled bymzc , the forms provide access to C. Themzc compiler implicitly
importscffi.ss into the top-level environment.

The c-lambda form creates a Scheme procedure whose body is implemented in C. Instead of declaring argument
names, ac-lambda form declares argument types, as well as a return type. The implementation can be simply the
name of a C function, as in the following definition offmod :

(define fmod (c-lambda (double double) double "fmod"))

Alternatively, the implementation can be C code to serve as the body of a function, where the arguments are bound to
arg1 (three underscores), etc., and the result is installed intoresult (three underscores):

(define machine-string- >float
(c-lambda (char-string) float

" result = ∗(float ∗) arg1;"))

The c-lambda form provides only limited conversions between C and Scheme data. For example, the following
function does not reliably produce a string of four characters:

(define broken-machine-float- >string
(c-lambda (float) char-string

"char b[5]; ∗(float ∗)b = arg1; b[4] = 0; result = b;"))

because the representation of afloat can contain null bytes, which terminate the string. However, the full MzScheme
API, which is described inInside PLT MzScheme, can be used in a function body:

(define machine-float- >string
(c-lambda (float) scheme-object

"char b[4]; ∗(float ∗)b = arg1; result = scheme make sized byte string(b, 4, 1);"))

Thec-declare form declares arbitrary C code to appear afterescheme.h or scheme.h is included, but before any
other code in the compilation environment of the declaration. It is often used to declare C header file inclusions. For
example, a proper definition offmod needs themath.h header file:

(c-declare "#include <math.h >")
(define fmod (c-lambda (double double) double "fmod"))

5

2. Foreign-Function Interface to C

Thec-declare form can also be used to define helper C functions to be called throughc-lambda .

The c-include form expands to ac-declare form using the content of a specified file. Use(c-include
file) instead of(c-declare "#include file ") when it’s easier to have MzScheme resolve the file path
than to have the C compiler resolve it.

Theplt/collects/mzscheme/examples directory in the PLT distribution contains additional examples.

When compiling for MzScheme3m (seeInside PLT MzScheme), C code inserted byc-lambda , c-declare , and
c-include will be transformed in the same was asmzc ’s --xform mode (which may or may not be enough to
make the code work correctly in MzScheme3m; seeInside PLT MzSchemefor more information).

Thec-lambda , c-declare , andc-include forms are defined as follows:

• (c-lambda (argument-type ···) result-type funcname-or-body-string) creates a Scheme
procedure whose body is implemented in C. The procedure takes as many arguments as the supplied
argument-type s, and it returns one value. Ifreturn-type is void , the procedure’s result is always
void. Thefuncname-or-body-string is either the name of a C function (or macro) or the body of a C
function.

If funcname-or-body-string is a string containing only alphanumeric characters and, then the created
Scheme procedure passes all of its arguments to the named C function (or macro) and returns the function’s
result. Each argument to the Scheme procedure is converted according to the correspondingargument-type
(as described below) to produce an argument to the C function. Unlessreturn-type is void , the C func-
tion’s result is converted according toreturn-type for the Scheme procedure’s result.

If funcname-or-body-string contains more than alphanumeric characters and, then it must contain C
code to implement the function body. The converted arguments for the function will be in variablesarg1 ,

arg2 , . . . (with three underscores in each name) in the context where thefuncname-or-body-string
is placed for compilation. Unlessreturn-type is void , thefuncname-or-body-string code should
should assign a result to the variableresult (three underscores), which will be declared but not ini-
tialized. The funcname-or-body-string code should not return explicitly; control should always
reach the end of the body. If thefuncname-or-body-string code defines the pre-processor macro

AT END(with three leading underscores), then the macro’s value should be C code to execute after the value
result is converted to a Scheme result, but before the result is returned, all in the same block; defining
AT ENDis primarily useful for deallocating a string in result that has been copied by conversion. The

funcname-or-body-string code will start on a new line at the beginning of a block in its compilation
context, and AT ENDwill be undefined after the code.

In addition to arg1 , etc., the variableargc is bound infuncname-or-body-string to the number
of arguments supplied to the function, andargv is bound to aScheme Object* array of lengthargc
containing the function arguments as Scheme values. Theargv andargc variables are mainly useful for error
reporting (e.g., withscheme wrong type).

Eachargument-type must be one of the following:

– bool
Scheme range: any value
C type: int
Scheme to C conversion:#f ⇒ 0, anything else⇒ 1
C to Scheme conversion: 0⇒ #f , anything else⇒ #t

– char
Scheme range: character
C type:char
Scheme to C conversion: character’s ASCII value cast to signed byte
C to Scheme conversion: ASCII value from unsigned cast mapped to character

– unsigned-char
Scheme range: character

6

2. Foreign-Function Interface to C

C type:unsigned char
Scheme to C conversion: character’s ASCII value
C to Scheme conversion: ASCII value mapped to character

– signed-char
Scheme range: character
C type:signed char
Scheme to C conversion: character’s ASCII value cast to signed byte
C to Scheme conversion: ASCII value from unsigned cast mapped to character

– int
Scheme range: exact integer that fits into anint
C type: int
conversions: (obvious and precise)

– unsigned-int
Scheme range: exact integer that fits into anunsigned int
C type:unsigned int
conversions: (obvious and precise)

– long
Scheme range: exact integer that fits into along
C type: long
conversions: (obvious and precise)

– unsigned-long
Scheme range: exact integer that fits into anunsigned long
C type:unsigned long
conversions: (obvious and precise)

– short
Scheme range: exact integer that fits into ashort
C type:short
conversions: (obvious and precise)

– unsigned-short
Scheme range: exact integer that fits into anunsigned short
C type:unsigned short
conversions: (obvious and precise)

– float
Scheme range: real number
C type: float
Scheme to C conversion: number converted to inexact and cast tofloat
C to Scheme conversion: cast todouble and encapsulated as an inexact number

– double
Scheme range: real number
C type:double
Scheme to C conversion: number converted to inexact
C to Scheme conversion: encapsulated as an inexact number

– char-string
Scheme range: byte string or#f
C type:char*
Scheme to C conversion: string⇒ contained byte-array pointer,#f ⇒ NULL
C to Scheme conversion:NULL⇒ #f , anything else⇒ new byte string created by copying the string

– nonnull-char-string
Scheme range: byte string
C type:char*
Scheme to C conversion: byte string’s contained byte-array pointer
C to Scheme conversion: new byte string created by copying the string

– scheme-object

7

2. Foreign-Function Interface to C

Scheme range: any value
C type:Scheme Object*
Scheme to C conversion: no conversion
C to Scheme conversion: no conversion

– (pointer bytes)
Scheme range: an opaque c-pointer value, identified as typebytes , or #f
C type:bytes *
Scheme to C conversion:#f ⇒ NULL, c-pointer⇒ contained pointer cast tobytes *
C to Scheme conversion:NULL⇒ #f , anything else⇒ new c-pointer containing the pointer and identified
as typebytes

Thereturn-type must bevoid or one of thearg-type keywords.

• (c-declare code-string) declares arbitrary C code to appear afterescheme.h or scheme.h is in-
cluded, but before any other code in the compilation environment of the declaration. Ac-declare form can
appear only at the top-level or within a module’s top-level sequence.

The code-string code will appear on a new line in the file for C compilation. Multiplec-include
declarations are concatenated (with newlines) in order to produces a sequence of declarations.

• (c-include path-spec) expands to a use ofc-declare with the content ofpath-spec . The
path-spec has the same form as forinclude in MzLib’s include.ss .

8

3. Compiling Individual Files with mzc

To compile an individual file withmzc , provide the file name as the command line argument tomzc . To compile to
byte code, use the-k , --make , -z , or --zo flag; to compile to native code, use the-e or --extension flag. If
no compilation mode flag is specified,--extension is assumed.

The difference between-k /--make and-z /--zo is that the former works only on modules, it recursively compiles
imported modules, it reads and writes.dep files to manage dependencies, and it automatically places files in the right
directory for autodetection (see§3.3).

The input file must have a file extension that designates it as a Scheme file, either.ss or .scm . The output file will
have the same base name and same directory (by default) as the input file, but with an extension appropriate to the
type of the output file (either.zo, .dll , .so , or .dylib).

Example:

mzc --extension file.ss

Under Windows, the above command readsfile.ss from the current directory and producesfile.dll in the current
directory.

Multiple Scheme files can be specified for compilation at once. A separate compiled file is produced for each Scheme
file. By default, each compiled file is placed in the directory containing the corresponding input file. When multiple
non-module files are compiled at once, macros defined in a file are visible in the files that are compiled afterwards.

3.1 Compiling with Modules

In terms of both optimization and proper loading of syntax definitions,mzc works best with programs that are en-
capsulated within per-filemodule expressions. Using a singlemodule expression in a file eliminates the code’s
dependence on the top-level environment. Consequently, all dependencies of the code on loadable syntax extensions
are evident to the compiler.

When compiling a module thatrequire s another module (that is not built into MzScheme),mzc loads the required
module, but does not invoke it. Instead,mzc uses the loaded module only for its syntax exports, if any (which means
that mzc executes the transformer code in the module, but not any of its normal code). In--make mode,mzc
compiles imported modules before loading them for syntax exports.

3.2 Compilation without Modules

Outside of a module, top-leveldefine-syntax [es], module , require , require-for-syntax ,
begin-for-syntax , define [-values]-for-syntax , andbegin expressions are handled specially bymzc :
the compile-time portion of the expression is evaluated, because it might affect later expressions.1 For example, when
compiling the file containing

1The-m or --module flag turns off this special handling.

9

3.3. Autodetecting Compiled Files for Loading 3. Compiling Individual Files withmzc

(require (lib "etc.ss"))
(define f (opt-lambda (a [b 7]) (+ a b)))

theopt-lambda syntax from the"etc.ss" library must be bound in the compilation namespace at compile time.
Thus, therequire expression is both compiled (to appear in the output code) and evaluated (for further computation).

Many definition forms expand todefine-syntax . For example, define-signature expands to a
define-syntax definition. mzc detectsdefine-syntax and other expressions after expansion, so top-level
define-signature expressions affect the compilation of later expressions, as a programmer would expect.

In contrast, aload or eval expression in a source file is compiled—butnot evaluated!—as the source file is com-
piled. Even if theload expression loads syntax or signature definitions, these will not be loaded as the file is compiled.
The same is true of application expressions that affect the reader, such as(read-case-sensitive #t) .

mzc ’s -p or --prefix flag takes a file and loads it before compiling the source files specified on the command line.
In general, a better solution is to put all compiled code intomodule expressions, as explained in§3.1.

Note that MzScheme provides noeval-when form for controlling the evaluation of compiled code, becausemodule
provides a simpler and more consistent interface for separating compile-time and run-time code.

3.3 Autodetecting Compiled Files for Loading

When MzScheme’sload/use-compiled , load-relative , or require is used to load a file, MzScheme au-
tomatically detects an alternate byte-code and/or native-code file that resides near the requested file. Byte-code files are
found in acompiled subdirectory in the directory of the requested file. Native-code files are found in(build-path
dir "compiled" "native" (system-library-subpath)) wheredir is the directory of the requested
file. A byte-code or native-code file is used in place of the requested file only if its modification date is later than
the requested file, or if the requested file does not exist. If both byte-code and native-code files can be loaded, the
native-code file is loaded.

Example:

mzc --extension --destination compiled/native/i386-linux file.ss

Under Linux, the above command compilesfile.ss in the current directory and producescompiled/native/i386-
linux/file.so . Evaluating(load/use-compiled "file.ss") in MzScheme will then loadcompiled/native/i386-
linux/file.so instead offile.ss . If file.ss is changed without recreatingfile.so , thenload/use-compiled loads
file.ss , becausefile.so is out-of-date.

Use--auto-dir instead of--destination to havemzc compute the autodetect location from the input file’s
path:

mzc --extension --auto-dir file.ss

3.4 Compiling Multiple Files to a Single Native-Code Library

When the-o or --object flag is provided tomzc , .kp and.o/.obj files are produced instead of a loadable library.
The .o/.obj files contain the native code for a single source file. The.kp files contain information used for global
optimizations.

Multiple .kp and.o/.obj files are linked into a single library usingmzc with the -l or --link-extension flag.
All of the .kp and.o/.obj files to be linked together are provided on the command line tomzc . The output library is

10

3. Compiling Individual Files withmzc 3.4. Compiling Multiple Files to a Single Native-Code Library

always namedloader.so or loader.dll .

Example:

mzc --object file1.ss
mzc --object file2.ss
mzc --link-extension file1.kp file1.o file2.kp file2.o

Under Unix, the above commands produce aloader.so library that encapsulates bothfile1.ss andfile2.ss .

Loading loader into MzScheme is not quite the same as loading all of the Source files that are encapsulated by
loader . The return value from(load-extension " loader.so") is a procedure that takes a symbol or#t . If
a symbol is provided and it is the same as the base name of a source file (i.e., the name without a path or file extension)
encapsulated byloader , then a thunk is returned, along with a symbol (or#f) indicating a module name declared by
the file. Applying the thunk has the same effect as loading the corresponding source file. If a symbol is not recognized
by the loader procedure,#f is returned instead of a thunk. If#t is provided, a thunk is returned that “loads” all of
the files (using the order of the.o/.obj files provided tomzc) and returns the result from loading the last one.

The loader procedure can be called any number of times to obtain thunks, and each thunk can be applied
any number of times (where each application has the same effect as loading the source file again). Evaluating
(load-extension " loader.so") multiple times returns an equivalent loader procedure each time.

Given the loader.so constructed by the example commands above, the following Scheme expressions have the same
effect as loadingfile1.ss andfile2.ss :

(let-values ([(go modname) ((load-extension " loader.so") ’file1)]) (go))
(let-values ([(go modname) ((load-extension " loader.so") ’file2)]) (go))

or, equivalently:

(let-values ([(go modname) ((load-extension " loader.so") #t)]) (go))

The special loader convention is recognized by MzScheme’sload/use-compiled , load-relative , and
require . MzScheme automatically detectsloader.so or loader.dll in the same directory as individual native-code
files (see§3.3). If both an individual native-code file and aloader are available, theloader file is used.

11

4. Compiling Collections with mzc

A collection is a group of files that conform to MzScheme’s library collection system; see§ in PLT MzScheme:
Language Manualfor details. Every source file in a collection should contain a singlemodule declaration.

The --collection-zos and --collection-extension flags directmzc to compile a whole collec-
tion. The --collection-zos flag produces individual.zo files for each library in the collection. The
--collection-extension flag produces a singleloader library for the collection.

The (sub-)collection to compile is specified on the command line formzc . The specified collection must contain an
info.ss library that provides information about how to compile the collection. (See§7 for information on the format
of info.ss .)

To compile a collection,mzc extractsinfo.ss information for the following fields:

• name — the name of the collection as a string.

• compile-omit-files — a list of library filenames (without paths); all Scheme files in the collection are
compiled except for the files in this list. This information is optional.

• compile-zo-omit-files — a list of library filenames that should not be compiled to byte code (but
possibly to native code). This information is optional.

• compile-extension-omit-files — a list of library filenames that should not be compiled to native
code (but possibly to byte code). This information is optional.

• compile-subcollections — a list of sub-collection sub-paths, where each sub-path is a list of strings;
each full sub-collection path is formed by appending the sub-path to the path of the collection being compiled.
Each sub-collection is compiled in the same way as the current collection, using theinfo.ss library of the sub-
collection. This information is optional.

When compiling a collection to byte-code files,mzc automatically creates acompiled directory in the collection
directory and puts.zo files there.

When compiling a collection to native code,mzc automatically created acompiled directory in the collection direc-
tory, anative directory in thatcompiled directory, and a platform-specific directory innative using the directory name
returned bysystem-library-subpath . Intermediate.c and.kp files are kept innative . The platform-specific
directory gets intermediate.o/.obj files and the finalloader.so or loader.dll .

To compile a collection,mzc compiles only the library files that have changed since the last compilation. This form
of dependency checking is usually too weak. For example, when a signature file changes,mzc does not automatically
recompile all files that rely on the signatures. In this case, delete thecompiled directory when a macro or signature file
changes to ensure that the collection is compiled correctly. Alternately, for compiling to.zo, useSetup PLT instead of
mzc , becauseSetup PLT tracks dependencies reliably.

12

5. Building a Stand-alone Executable

Since the output ofmzc relies on MzScheme to provide all run-time support, there is no way to usemzc to obtainsmall
stand-alone executables. However, it is possible to produce alarge stand-alone executable that contains an embedded
copy of the MzScheme (or MrEd) run-time engine.

5.1 Stand-Alone Executables from Scheme Code

The command-line flag--exe directs mzc to embed a module (from source or byte code) into a copy of the
MzScheme executable. The created executable invokes the embedded module on startup. The--gui-exe flag
is similar, but copies the MrEd executable.

If the embedded module refers statically (i.e., throughrequire) to modules in MzLib or other collections, then those
modules are also included in the embedding executable.

Library modules that are referenced dynamically—througheval , load , ordynamic-require —are not automat-
ically embedded into the created executable, but they can be explicitly included usingmzc ’s --lib flag.

The--exe and--gui-exe flags work only withmodule -based programs. Theembed.ss library in thecompiler
collection provides a more general interface to the embedding mechanism.

5.2 Stand-Alone Executables from Native Code

Creating a stand-alone executable that embeds native code frommzc requires downloading the MzScheme source
code and using a C compiler and linker directly.

To build an executable with an embedded MzScheme engine:

• Download the source code fromhttp://www.drscheme.org/ and compile MzScheme.

• Recompile MzScheme’smain.c with the preprocessor symbolSTANDALONEWITH EMBEDDEDEXTENSION
defined. Under Unix, theMakefile distributed with MzScheme provides a targetee-main that performs this step.

The preprocessor symbol causes MzScheme’s startup code to skip command line parsing, the user’s ini-
tialization file, and theread-eval-print loop. Instead, the C functionscheme initialize
is called, which is the entry point intomzc -compiled Scheme code. After compilingmain.c with
STANDALONEWITH EMBEDDEDEXTENSIONdefined, MzScheme will not link by itself; it must be linked
with objects produced bymzc .

• Compile each Scheme source file in the program withmzc ’s -o or --object flag and the--embedded flag,
producing a set of.kp files and object (.o or .obj) files.

• After each Scheme file is compiled, runmzc with the -g or --link-glue and the--embedded flag,
providing all of the.kp files and object files on the command line. (Put the object files in the order that they
should be “loaded.”) The-g or --link-glue step produces a new object file,loader.o or loader.obj .

13

5.2. Stand-Alone Executables from Native Code 5. Building a Stand-alone Executable

Each of the Scheme source files in the program must have a different base name (i.e., the file name without its
directory path or extension), otherwiseloader cannot distinguish them. The files need not reside in the same
directory.

• Link all of the mzc -created object files with the MzScheme implementation (having compiledmain.c with
STANDALONEWITH EMBEDDEDEXTENSIONdefined) to produce a stand-alone executable.

Under Unix, theMakefile distributed with MzScheme provides a targetee-app that performs the final linking
step. To use the target, callmzmake with a definition for the makefile macroEEAPP to the output file name,
and a definition for the makefile macroEEOBJECTS to to the list ofmzc -created object files. (The example
below demonstrates how to define makefile variables on the command line.)

For example, under Unix, to create a standalone executableMyApp that is equivalent to

mzscheme -mv -f file1.ss -f file2.ss

unpack the MzScheme source code and perform the following steps:

cd plt/src/mzscheme
./mzmake
./mzmake ee-main
mzc --object --embedded file1.ss
mzc --object --embedded file2.ss
mzc --link-glue --embedded file1.kp file1.o file2.kp file2.o
./mzmake EEAPP=MyApp EEOBJECTS=”file1.o file2.o loader.o” ee-app

To produce an executable that embeds the MrEd engine, the procedure is essentially the same; MrEd’s main file is
mrmain.cxx instead ofmain.c . See the compilation notes in the MrEd source code distribution for more information.

14

6. Creating Distribution Archives

The command-line flags--plt and--collection-plt directmzc to create an archive for distributing files to
PLT users. A distribution archive usually has the suffix.plt , which Help Desk and DrScheme recognize as archives to
provide automatic unpacking facilities. The Setup PLT program also supports.plt unpacking.

An archive contains the following elements:

• a set of files and directories to be unpacked, and flags indicating whether they are to be unpacked relative to the
PLT add-ons directory (which is user-specific), the PLT installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line tomzc , either directly with--plt or
in the form of collection names with--collection-plt .

The --at-plt flag indicates that the files and directories should be unpacked relative to the user’s add-ons
directory, unless the user specifies the PLT installation directory when unpacking. The--collection-plt
flag implies--at-plt . The --all-users flag overrides--at-plt , and it indicates that the files and
directories should be unpacked relative to the PLT installation directory, always.

• a flag for each file indicating whether it overwrites an existing file when the archive is unpacked; the default is
to leave the old file in place, butmzc ’s --replace flag enables replacing for all files in the archive.

• a list of collections to be set-up (via Setup PLT) after the archive is unpacked;mzc ’s ++setup flag adds a
collection name to the archive’s list, but each collection for--collection-plt is added automatically.

• a name for the archive, which is reported to the user by the unpacking interface;mzc ’s --plt-name flag sets
the archive’s name, but a default name is determined automatically for--collection-plt .

• a list of required collections (with associated version numbers) and a list of conflicting collections;mzc always
names themzscheme collection in the required list (using the collection’s pack-time version),mzc names each
packed collection in the conflict list (so that a collection is not unpacked on top of a different version of the
same collection), andmzc extracts other requirements and conflicts from theinfo.ss files of collections for
--collection-plt .

Use the--plt flag to specify individual directories and files for the archive. Each file and directory must be specified
with a relative path. By default, if the archive is unpacked with Help Desk or DrScheme, the user will be prompted
for a target directory, and if Setup PLT is used to unpack the archive, the files and directories will be unpacked relative
to the current directory. If the--at-plt flag is provided tomzc , the files and directories will be unpacked relative
to the PLT add-ons directory, instead. Finally, if the--all-users flag is provided tomzc , the files and directories
will be unpacked relative to the PLT installation directory, instead.

Use the--collection-plt flag to pack one or more collections; sub-collections can be designated by using
a forward slash (“/”) as a path separator on all platforms. In this mode,mzc automatically uses paths relative to
the PLT installation or add-ons directory for the archived files, and the collections will be set-up after unpacking.
In addition, mzc consults each collection’sinfo.ss file, as described below, to determine the set of required and
conflicting collections. Finally,mzc consults the first collection’sinfo.ss file to obtain a default name for the archive.
For example, the following command creates asirmail.plt archive for distributing asirmail collection:

15

6. Creating Distribution Archives

mzc --collection-plt sirmail.plt sirmail

When packing collections,mzc checks the following fields of each collection’sinfo.ss file (see§7):

• requires — a list of the form(list (list coll-path vers) · · ·) where eachcoll-path is a
non-empty list of relative-path strings, and eachvers is a (possibly empty) list of exact integers. The indicated
collections must be installed at unpacking time, with version sequences that match as much of the version
sequence specified in the correspondingvers .

A collection’s version is indicated by aversion field in it’s info.ss file, and the default version is the empty
list. The version sequence generalized major and minor version numbers. For example, version’(2 5 4 7)
of a collection can be used when any of’() , ’(2) , ’(2 5) , ’(2 5 4) , or ’(2 5 4 7) is required.

• conflicts — a list of the form(list coll-path · · ·) where eachcoll-path is a non-empty list of
relative-path strings. The indicated collections mustnot be installed at unpacking time.

For example, theinfo.ss file in thesirmail collection might contain the followinginfo declaration:

(module info (lib "infotab.ss" "setup")
(define name "SirMail")
(define mred-launcher-libraries (list "sirmail.ss"))
(define mred-launcher-names (list "SirMail"))
(define requires (list (list "mred"))))

Then, thesirmail.plt file (created by the command-line example above) will contain the name “SirMail”. When the
archive is unpacked, the unpacker will check that the MrEd collection is installed (not just MzScheme), and that MrEd
has the same version as whensirmail.plt was created.

Although mzc ’s command-line interface is sufficient for most purposes, thepack.ss library of thesetup collection
provides a general interface for constructing archives.

16

7. info.ss File Format

An info.ss file provides general information about a collection. The file must have the following format:

(module info (lib "infotab.ss" "setup")
(define identifier info-expr)
· · ·)

info-expr is one of
(quote datum)
(quasiquote datum) ; with unquote and unquote-splicing
(info-primitive info-expr · · ·)
identifier ; an identifier defined in the info module
literal ; a string, number, boolean, etc.
(string-constant identifier) ; a string constant defined in

; the string-constants collection

info-primitive is one of
cons car cdr list
list* reverse append
build-path collection-path
system-library-subpath

For example, the following declaration is in theinfo.ss library of thehelp collection. It contains definitions for three
info tags:

(module info (lib "infotab.ss" "setup")
(define name "Help")
(define mred-launcher-libraries (list "help.ss"))
(define mred-launcher-names (list "Help Desk")))

Thesetup collection’sgetinfo.ss library defines aget-info function for extracting field values from a collection’s
info.ss file. See thesetup collection’s documentation for details.

17

Index

++setup , 15
--all-users , 15
--at-plt , 15
--auto-dir , 10
--collection-extension , 12
--collection-plt , 15
--collection-zos , 12
--embedded , 13
--exe , 13
--extension , 9
--gui-exe , 13
--help , 2
--lib , 13
--link-extension , 10
--link-glue , 13
--make , 9
--object , 10, 13
--plt , 15
--plt-name , 15
--prefix , 10
--prim , 3
--replace , 15
--xform , 6
--zo , 9
-e , 9
-g , 13
-h , 2
-k , 9
-l , 10
-o , 10, 13
-p , 10
-z , 9
.dll , 1
.dylib , 1
.plt , 15
.plt distribution archives,15
.scm , 9
.so , 1
.ss , 9
.zo, 1
loader.dll , 11
loader.so , 11

bool , 6
byte code,1

C compiler,2
c-declare , 5
c-include , 6

c-lambda , 5
cffi.ss , 1, 5
char , 6
char-string , 7
command line flags,2
compiling

collections,12
files,9
multiple files,10

double , 7

eval-when , 10

Feeley, Marc,5
float , 7
foreign-function interface (FFI),5

Gambit-C,5

help,2

info.ss , 12
info.ss format,17
infotab.ss library, 17
int , 7

loading compiled files,1, 10
long , 7

module , 9
mzc , 1

native code,1
nonnull-char-string , 7

pointer , 8

require , 9
runningmzc , 2

scheme-object , 7
scheme initialize , 13
short , 7
signed-char , 7
stand-alone executables,2, 13
STANDALONEWITH EMBEDDEDEXTENSION, 13
syntax,9

unsigned-char , 6
unsigned-int , 7
unsigned-long , 7
unsigned-short , 7

18

	1 About mzc
	1.1 mzc Is...
	1.1.1 Byte-Code Compilation
	1.1.2 Native-Code Compilation

	1.2 mzc Is Not...
	1.3 Running mzc
	1.4 Native Code Optimization from mzc

	2 Foreign-Function Interface to C
	3 Compiling Individual Files with mzc
	3.1 Compiling with Modules
	3.2 Compilation without Modules
	3.3 Autodetecting Compiled Files for Loading
	3.4 Compiling Multiple Files to a Single Native-Code Library

	4 Compiling Collections with mzc
	5 Building a Stand-alone Executable
	5.1 Stand-Alone Executables from Scheme Code
	5.2 Stand-Alone Executables from Native Code

	6 Creating Distribution Archives
	7 info.ss File Format
	Index

