Inside PLT MzScheme

Matthew Flatt (mflatt@plt-scheme.org)

350
Released June 2006

Copyright notice
Copyright©1995-2006 Matthew Flatt

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

libscheme: Copyrigh1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyrighi988, 1989 Hans-J. Boehm, Alan J. Demers. Copyrigth©91-1996
by Xerox Corporation. Copyrigh£1996-1999 by Silicon Graphics. Copyrig@1999-2001 by Hewlett Packard
Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyrigh®94 by Xerox Corporation. All rights reserved.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a liseheme@plt-scheme.orgvidence of interest

helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Some typesetting macros were originally taken from Julian SnReference Manual for wxWindows 1.60: a portable
C++ GUI toolkit.

Contents

1 Overview 1
1.1 Writing MzScheme EXtensions. e e e 1
1.2 Embedding MzSchemeintoa Program e 3
1.3 MzSchemeand Threads e e 5
1.4 MzScheme, Unicode, Characters,and Strings. i vt 5
1.5 INtegerS. . . o o e e e e e e e e 5

2 Values and Types 6
2.1 Standard TYPES. . . . v o v e e e e e e e e e e 6
2.2 Global Constants. 9
2.3 SHINGS. . . o e 9
2.4 Library FUNCLIONS. e e e e e e 9

3 Memory Allocation 15
3.1 CooperatingWith3m. e e e e e 16

3.1.1 Tagged Objects e e e e 16
3.1.2 Local Pointers. 17
3.1.3 LocalPointersandzc 20
3.2 Library FUNCLIONS. e e 21

4 Namespaces and Modules 25
4.1 Library FUNCLIONS. e e e 25

5 Procedures 27
5.1 Library FUNCLiONS. e e e e 27

6 Evaluation 29

CONTENTS CONTENTS

6.1 Top-level Evaluation Functions. e 29
6.2 Tail Evaluation e e e 29
6.3 MultipleValues. 30
6.4 Library FUNCLIONS. e e e e e 30

7 Exceptions and Escape Continuations 33
7.1 Temporarily Catching Error EScapes. o o 33
7.2 Enablingand Disabling Breaks. e 36
7.3 Library FUNCLiONS. e e e 36

8 Threads 39
8.1 Integrationwith Threads. e 39
8.2 Allowing Thread Switches. e 39
8.3 Blockingthe CurrentThread e e e 40
8.4 Threads in Embedded MzScheme with EventLoops 40
8.4.1 Callbacks forBlocked Threads i 41

8.5 Sleeping by Embedded MzScheme e 43
8.6 Library FUNCLIONS. 44

9 Parameterizations 49
9.1 Library FUNCLIONS. e e e e 50

10 Continuation Marks 52
10.1 Library FUNCLIONS. o o e e e 52

11 String Encodings 53
11.1 Library FUNCLIONS. e e 53
12 Bignums, Rationals, and Complex Numbers 56
12.1 Library FUNCLIONS. o o e e e e e e e e 56
13 Ports and the Filesystem 59
13.1 Library FUNCLIONS. e e 59

CONTENTS CONTENTS

14 Structures 70
14.1 Library FUNCLIONS. e e e e e e 70
15 Security Guards 72
15.1 Library FUNCLIONS. o o e e 72
16 Custodians 73
16.1 Library FUNCLIONS. e e 73
17 Miscellaneous Utilities 75
17.1 Library FUNCLIONS. o o e e e e e e e e 75
18 Flags and Hooks 79
License 80
Index 84

CONTENTS CONTENTS

1.

Overview

This manual describes MzScheme’s C interface, which allows the interpreter to be extended by a dynamically-loaded
library, or embedded within an arbitrary C/C++ program. The manual assumes familiarity with MzScheme, as de-
scribed inPLT MzScheme: Language Manual

For an alternative way of dealing with foreign code, 8&8 Foreign Interface Manualt describes thélib "for-
eign.ss”) module for manipulating low-level libraries and structures through Scheme code instead of C code.

1.1 Writing MzScheme Extensions

To write a C/C++-based extension for MzScheme, follow these steps:

For each C/C++ file that uses MzScheme library functi¢ims;lude the fileescheme.h .

This file is distributed with the PLT software in @rtlude directory, but ifmzc is used to compile, this path is
found automatically.

Define the C functioscheme _initialize , Which takes &cheme_Env * namespace (s€d) and returns
aScheme_Object * Scheme value.

This initialization function can install new global primitive procedures or other values into the namespace, or
it can simply return a Scheme value. The initialization function is called when the extension is loaded with

load-extension (the first time); the return value frostheme _initialize is used as the return value
for load-extension . The namespace providedd¢oheme _initialize is the current namespace when
load-extension is called.

Define the C function scheme_reload , which has the same arguments and return type as
scheme _initialize

This function is called ifoad-extension is called a second time (or more times) for an extension. Like
scheme _initialize , the return value from this function is the return valuelt@d-extension

Define the C functioscheme _module _name, which takes no arguments and returrScheme_Object *
value, either a symbol @acheme _false

The function should return a symbol when the effect of caliolgeme _initialize andscheme _reload
is only to declare a module with the returned name. This function is called when the extension is loaded to
satisfy arequire declaration.

Thescheme _module _name function may be called beforscheme _initialize andscheme _reload ,
after those functions, or both before and after, depending on how the extension is loaded and re-loaded.

Compile the extension C/C++ files to create platform-specific object files.

Themzc compiler, distributed with MzScheme, compiles plain C files whentbe flag is specified. More
precisely,mzc does not compile the files itself, but it locates a C compiler on the system and launches it with
the appropriate compilation flags. If the platform is a relatively standard Unix system, a Windows system with
either Microsoft’'s C compiler ogcc in the path, or a Mac OS X system with Apple’s developer tools installed,
then usingnzc is typically easier than working with the C compiler directly.

1.1. Writing MzScheme Extensions 1. Overview

e Link the extension C/C++ files witmzdyn.o (Unix, Mac OS X) ormzdyn.obj (Windows) to create a shared
object. The resulting shared object should use the extersiofunix), .dll (Windows), or.dylib (Mac OS X).

The mzdyn object file is distributed in the installationli directory. For Windows, the object file is in a
compiler-specific sub-directory oft\lib.

Themzc compiler links object files into an extension when tHd flag is specified, automatically locating
mzdyn .

e Load the shared object within Scheme usfluad-extension path) , wherepathis the name of the ex-
tension file generated in the previous step.

IMPORTANT: Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme
objects can be kept in registers, stack variables, or structures allocatesthétime _malloc . However, static vari-

ables that contain pointers to collectable memory must be registeredsabiegne _register ~ _extension _global

(sees3).

As an example, the following C code defines an extension that retuetls world" when it is loaded:

#include "escheme.h"
Scheme_Object *scheme_initialize(Scheme_Env *env) {
return scheme_make_string("hello world");
}
Scheme_Object *scheme_reload(Scheme_Env *env) {
return scheme_initialize(env); /* Nothing special for reload */
}
Scheme_Object *scheme_module_name() {
return scheme_false;

}

Assuming that this code is in the fitev.c, the extension is compiled under Unix with the following two commands:

mzc --CC hw.c
mzc --ld hw.so hw.o

(Note that the-cc and--Ild flags are each prefixed by two dashes, not one.)
Thecollects/mzscheme/examples directory in the PLT distribution contains additional examples.

MzScheme3m is a variant of MzScheme that uses precise garbage collection instead of conservative garbage collec-
tion, and it may move objects in memory during a collection. To build an extension to work with MzScheme3m, the
above instructions must be extended as follows:

e Adjust code to cooperate with the garbage collector as descridgdlinUsingmzc with the--xform might
convert your code to implement part of the conversion, as describdgdii

e In either your soure in the in compiler command liriefine MZ _PRECISE GC before includinges-
cheme.h . When usingnzc with the--cc and--3m flags,MZPRECISE GCis automatically defined.

e Link with mzdyn3m.o (Unix, Mac OS X) ormzdyn3m.obj (Windows) to create a shared object. The resulting
extension will work with MzScheme3m and MrEd3m, only. When usiteg with the--ld and--3m flags
links to these libraries.

For a relatively simple extensidiw.c, the extension is compiled under Unix for 3m with the following three com-
mands:

1. Overview 1.2. Embedding MzScheme into a Program

mzc --xform hw.c
mzc --3m --cC hw.3m.c
mzc --3m --ld hw.so hw.o

Some examples itollects/mzscheme/examples work with MzScheme3m in this way. A few examples are manually
instrumented, in which case thexform step should be skipped.

1.2 Embedding MzScheme into a Program

To embed MzScheme in a program, follow these steps:

e Locate or build the MzScheme libraries. For some Unix platforms, you must first download the MzScheme
source code and compile the libraries, because they are not included with a binary distribution. Under Windows
and Mac OS X, the standard binary distribution includes the libraries.

Under Unix, the libraries artbbmzscheme.a andlibgc.a (or libmzscheme.so andlibgc.so for a dynamic-
library build, with liomzscheme.la andlibgc.la files for use withlibtool). Building from source and in-
stalling places the libraries into the installatiotis directory.

Under Windows, stub libraries for use with Microsoft tools Bisszsch X.lib andlibmzgc x.lib (wherex repre-

sents the version number) are in a compiler-specific directgsly {iib . These libraries identify the bindings that

are provided byibmzsch x.dll andlibmzgc x.dll — which are typically installed iplt\lib. When linking with
Cygwin, link to libmzsch x.dll andlibmzgc x.dil directly. At run time, eithefiomzsch x.dll andlibmzgc x.dll

must be moved to a location in the standard DLL search path, or your embedding application must “delayload”
link the DLLs and explicitly load them before us@i4Scheme.exe andMrEd.exe use the latter strategy.)

Under Mac OS X, dynamic libraries are provided by #& _MzScheme framework, which is typically installed

in lib sub-directory of the installation. Supptiyamework PLT _MzScheme to gcc when linking, along withF

and a path to thib directory. At run time, eithePLT _MzScheme.framework must be moved to a location in the
standard framework search path, or your embedding executable must provide a specific path to the framework
(possibly an executable-relative path using the Mac&ecutable _path prefix).

For each C/C++ file that uses MzScheme library functi¢isglude the filescheme.h .

This file is distributed with the PLT software in the installatioimslude directory.

In your main program, obtain a global MzScheme environrBeheme_Env * by callingscheme _basic _env.
This function must be called before any other function in the MzScheme library (esaegrne _make_param).

e Access MzScheme througitheme _load , scheme _eval , and/or other top-level MzScheme functions de-
scribed in this manual.

Compile the program and link it with the MzScheme libraries.

Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme objects can
be kept in registers, stack variables, or structures allocatedsefteme _malloc . In an embedding application on

some platforms, static variables are also automatically registered as roots for garbage collection (but see notes below
specific to Mac OS X and Windows).

For example, the following is a simple embedding program which evaluates all expressions provided on the command
line and displays the results, then runead -eval -print loop:

#include "scheme.h"

1The C preprocessor symbSICHEMEDIRECT.EMBEDDEID> defined asl whenscheme.h is #include d, or asO whenescheme.h is
#include d.

1.2. Embedding MzScheme into a Program 1. Overview

int main(int argc, char *argv(])
{
Scheme_Env *e;
Scheme_Object *curout;
int i
mz_jmp_buf * volatile save, fresh;

scheme_set_stack _base(NULL, 1); /* required for OS X, only */
e = scheme_basic_env();
curout = scheme_get param(scheme_current_config(), MZCONFIG_OUTPUT_PORT);

for (i = 1; i < argc; i++) {
save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {
scheme_current_thread->error_buf = save;
return -1; /* There was an error */
} else {
Scheme_Object *v = scheme_eval_string(argv[i], e);
scheme_display(v, curout);
scheme_display(scheme_make_character('\n’), curout);
[* read-eval-print loop, implicitly uses the initial Scheme_Env: */
scheme_apply(scheme_builtin_value("read-eval-print-loop"), 0, NULL);
scheme_current_thread->error_buf = save;
}
}

return O;

}

Under Mac OS X, or under Windows when MzScheme is compiled to a DLL using Cygwin, the garbage collector
cannot find static variables automatically. In that casbeme _set _stack _base must be called with a non-zero
second argument before calling asgheme _ function.

Under Windows (for any other build mode), the garbage collector finds static variables in an embedding program by
examining all memory pages. This strategy fails if a program contains multiple Windows threads; a page may get
unmapped by a thread while the collector is examining the page, causing the collector to crash. To avoid this problem,
call scheme _set _stack _base with a non-zero second argument before calling setyeme _ function.

When an embedding application catisheme _set _stack _base with a non-zero second argument, it must reg-
ister each of its static variables witlZREGISTERSTATIC if the variable can contain a GCable pointer. For
example, ife above is madestatic , then MZREGISTERSTATIC(e) should be inserted before the call to
scheme _basic _env.

When building an embedded MzScheme to use SenoraGC (SGC) instead of the default cetleeine _set _stack _base
must be called both with a non-zero second argument and with a stack-base pointer in the first arguni@fiorSee
more information.

MzScheme3m can be embedded the same as MzScheme, as long as the embedding program cooperates with the
precise garbage collector as describegdri.

1. Overview 1.3. MzScheme and Threads

1.3 MzScheme and Threads

MzScheme implements threads for Scheme programs without aid from the operating system, so that MzScheme
threads are cooperative from the perspective of C code. Under Unix, stand-alone MzScheme uses a single OS-
implemented thread. Under Windows and Mac OS X, stand-alone MzScheme uses a few private OS-implemented
threads for background tasks, but these OS-implemented threads are never exposed by the MzScheme API.

In an embedding application, MzScheme can co-exist with additional OS-implemented threads, but the additional OS
threads must not call arscheme _ function. Only the OS thread that originally caisheme _basic _env can call
scheme _ functions? Whenscheme _basic _env is called a second time to reset the interpreter, it can be called

in an OS thread that is different from the original calldtheme _basic _env. Thereafter, all calls tescheme._
functions must originate from the new thread.

See§8 for more information about threads, including the possible effects of MzScheme’s thread implementation on
extension and embedding C code.

1.4 MzScheme, Unicode, Characters, and Strings

A character in MzScheme is a Unicode code point. In C, a character value hamzgpar , which is an alias for
unsigned — which is, in turn, 4 bytes for a properly compiled MzScheme. Thuazehar* string is effectively
a UCS-4 string.

Only a few MzScheme functions usezchar* . Instead, most functions accegtar* strings. When such byte
strings are to be used as a character strings, they are interpreted as UTF-8 encodings. A plain ASCII string is always
acceptable in such cases, since the UTF-8 encoding of an ASCII string is itself.

See als@2.3and§11.

1.5 Integers

MzScheme expects to be compiled in a mode wisbit is a 16-bit integerint is a 32-bit integer, antbng has

the same number of bits asid* . Themzlonglong type has 64 bits for compilers that support a 64-bit integer
type, otherwise it is the same g ; thus,mzlonglong tends to matclong long . Theumzlonglong type

is the unsigned version afizlonglong

2This restriction is stronger than saying all calls must be serialized across threads. MzScheme relies on properties of specific threads to avoid
stack overflow and garbage collection.

2. Values and Types

A Scheme value is represented by a pointer-sized value. The low bit is a mark bit: a 1 in the low bit indicates an
immediate integer, a 0 indicates a (word-aligned) pointer.

A pointer Scheme value references a structure that begins With@me_Object sub-structure, which in turn starts
with a tag that has the C tyggcheme_Type. The rest of the structure, following tt&cheme_Object header, is
type-dependent. MzScheme’s C interface gives Scheme values th8dhpene_Object * . (The “object” here
does not refer to objects in the sense of MzLib’s class library.)

Examples ofScheme_Type values includescheme _pair _type andscheme _symbol _type . Some of these are
implemented as instances®theme_Simple _Object , which is defined irscheme.h , but extension or embedding
code should never access this structure directly. Instead, the code should use macros SSlidEMECAR that
provide access to the data of common Scheme types.

For most Scheme types, a constructor is provided for creating values of the type. For exaimgtee _make_pair
takes twoScheme_Object * values and returns thmons of the values.

The macroSCHEMEYPE takes aScheme_Object * and returns the type of the object. This macro per-
forms the tag-bit check, and returessheme _integer _type when the value is an immediate integer; otherwise,
SCHEMHEYPE follows the pointer to get the type tag. Macros are provided to test for common Scheme types; for
example SCHEMBPAIRP returnsl if the value is a cons celf otherwise.

In addition to providing constructors, MzScheme defines six global constant Scheme vatlesne _true |,
scheme false , scheme _null , scheme _eof , scheme _void , andscheme _undefined . Each of these has
a type tag, but each is normally recognized via its constant address.

An extension or embedding application can create new a primitive data type by calieghe _make_type , which

returns a frestscheme_Type value. To create a collectable instance of this type, allocate memory for the instance
with scheme _malloc . From MzScheme’s perspective, the main constraint on the data format of such an instance
is that the firssizeof(Scheme _Object) bytes must correspond taSctheme_Object record; furthermore, the

first sizeof(Scheme _Type) bytes must contain the value returned dgheme make_type . Extensions with
modest needs can useheme _make_cptr , instead of creating an entirely new type.

Scheme values should never be allocated on the stack, and they should never contain pointers to values on the stack.
Besides the problem of restricting the value’s lifetime to that of the stack frame, allocating values on the stack creates
problems for continuations and threads, both of which copy into and out of the stack.

2.1 Standard Types

The following are theScheme_Type values for the standard types:

e scheme_bool _type — the constantscheme _true andscheme false are the only values of this type;
useSCHEMBE-ALSEPto recognizescheme false and useSCHEMBE RUEPto recognize anything except
scheme false ; test for this type wittSsCHEMEBOOLP

2. Values and Types 2.1. Standard Types

e scheme_char _type — SCHEMECHARVAL extracts the character (of typezchar); test for this type with
SCHEMECHARP

e scheme_integer _type — fixnum integers, which are identified via the tag bit rather than following a pointer
to thisScheme_Type value;SCHEMENT _VAL extracts the integer; test for this type wBCHEMBNTP

e scheme _double _type — flonum inexact numbersSCHEMHE-LOAT. VAL or SCHEMBDBL VAL extracts
the floating-point value; test for this type wiS8CHEMEDBLP

e scheme float _type — single-precision flonum inexact numbers, when specifically enabled when compiling
MzScheme;SCHEME-LOAT VAL or SCHEME-LT VAL extracts the floating-point value; test for this type
with SCHEME-LTP

e scheme _bighum _type — test for this type wittsCHEMBIGNUMP
e scheme _rational _type — test for this type wittSCHEMERATIONALP
e scheme_complex _type — test for this type oscheme _complex _izi _type with SCHEMECOMPLEXP

e scheme_complex _izi _type — complex number with an inexact zero imaginary part (so it counts as a real
number); test for this type specifically wiSCHEMECOMPLEXZIP

e scheme_char _string _type — SCHEMECHARSTRVAL extracts the string asrazchar* ; the string is
always nul-terminated, but may also contain embedded nul characters, and the Scheme string is modified if this
string is modified SCHEMECHARSTRLENVAL extracts the string length (in characters, not counting the nul
terminator); test for this type witSCHEMECHARSTRINGP

e scheme_byte string _type — SCHEMBYTESTRVAL extracts the string as ehar* ; the string is
always nul-terminated, but may also contain embedded nul characters, and the Scheme string is modified if
this string is modified SCHEMBYTE STRLENVAL extracts the string length (in bytes, not counting the nul
terminator); test for this type witSCHEMBYTESTRINGP

e scheme _path _type — SCHEMBPATHVAL extracts the path as ehar* ; the string is always nul-
terminated;SCHEMHBEPATHLEN extracts the path length (in bytes, not counting the nul terminator); test for
this type withSCHEMEPATHP

e scheme _symbol _type — SCHEMESYMVAL extracts the symbol’s string axhar* UTF-8 encoding (do
not modify this string) SCHEMESYMLEN extracts the number of bytes in the symbol name (not counting the
nul terminator); test for this type witRCHEMESYMBOLP3m: se€3.1for a caution abolBCHEMESYMVAL

e scheme keyword _type — SCHEMEKEYWORDAL extracts the keywors’s string (without the leading hash
colon) as a&har* UTF-8 encoding (do not modify this stringgCHEMBEKEYWORDEN extracts the number
of bytes in the keyword name (not counting the nul terminator); test for this typeSGHEMEKEYWORDP
3m: seg;3.1for a caution abouBCHEMEKEYWORDMAL

e scheme_box type — SCHEMBOXVAL extracts/sets the boxed value; test for this type with
SCHEMBOXP

e scheme _pair _type — SCHEMECARextracts/sets thear andSCHEMECDRextracts/sets thedr ; test for
this type withSCHEMEPAIRP

e scheme _vector _type — SCHEMBE/ECSIZE extracts the length anBCHEME/ECELS extracts the ar-
ray of Scheme values (the Scheme vector is modified when this array is modified); test for this type with
SCHEMEVECTORP3m: se€s3.1for a caution abouBCHEMB/ECELS

e scheme _structure _type — structure instances; test for this type WBBRHEMESTRUCTP
e scheme_struct _type _type — structure types; test for this type WiSCHEMESTRUCTTYPEP

e scheme_struct _property _type — structure type properties

2.1. Standard Types 2. Values and Types

e scheme_input _port _type — SCHEMHENPORT.VAL extracts/sets the user data pointer; test for this type
with SCHEMHNPORTP

e scheme _output _port type — SCHEMBEDUTPORINAL extracts/sets the user data pointer; test for this
type withSCHEMEDUTPORTP

e scheme _thread _type — thread descriptors; test for this type wB€CHEME HREADP
e scheme_sema._type — semaphores; test for this type WBCHEMESEMAP

e scheme_hash _table _type — test for this type wittBCHEMEHASHTP

e scheme _bucket _table _type — test for this type wittSCHEMBUCKTP

e scheme _weak _box _type — test for this type wittSCHEMBNVEAKPSCHEMBNEAKPTR extracts the con-
tained object, oNULL after the content is collected; do not set the content of a weak box

e scheme _namespace _type — namespaces; test for this type WBCHEMENAMESPACEP
e scheme _cpointer _type —void pointer with a type-describin§cheme_Object ; SCHEMECPTRVAL
extracts the pointer andCHEMECPTRTYPE extracts the type tag object; test for this type with

SCHEMECPTRP The tag is used when printing such objects when it's a symbol, a byte string, a string, or
a pair holding one of these in its car.

The following are the procedure types:

e scheme _prim _type — a primitive procedure, possibly with data elements

e scheme _closed _prim _type — an old-style primitive procedure with a data pointer
e scheme_compiled _closure _type — a Scheme procedure

e scheme_cont _type — a continuation

e scheme _escaping _cont _type — an escape continuation

e scheme_case _closure _type — acase-lambda procedure

e scheme_native _closure _type — a procedure with native code generated by the just-in-time compiler

The predicats CHEMBPROCReturns 1 for all procedure types and 0 for anything else.

The following are additional number predicates:

¢ SCHEMENUMBERP- all numerical types
e SCHEMEREALP— all non-complex numerical types, plasheme _complex _izi _type

e SCHEMEEXACTINTEGERP— fixnums and bignums

SCHEMEEXACTREALP— fixnums, bignums, and rationals

SCHEMB-LOATP— both single-precision (when enabled) and double-precision flonums

2. Values and Types 2.2. Global Constants

2.2 Global Constants

There are six global constants:

e scheme_null — test for this value wittCHEMBENULLP

e scheme _eof — test for this value wittCHEMEEOFP

e scheme _true

e scheme false — test for this value wittSCHEMB-ALSEP, testagainstit with SCHEMBE RUEP
e scheme _void — test for this value wittCHEME/OIDP

e scheme _undefined

2.3 Strings

As noted ing1.4, a MzScheme character is a Unicode code point representeshbgtaar value, and character strings
aremzchar arrays. MzScheme also supplies byte strings, whiclthae arrays.

For a character string, SCHEMECHARSTRVAL(S) produces a pointer tanzchar s, not char s. Con-

vert a character string to its UTF-8 encoding as byte string witheme _char _string _to _byte _string

For a byte stringbs SCHEMBBYTESTRVAL(bg produces a pointer tochar s. The function
scheme _byte _string _to _char _string decodes a byte string as UTF-8 and produces a character string. The
functionsscheme _char _string _to _byte _string _locale andscheme _byte _string _to _char _string _locale
are similar, but they use the current locale’s encoding instead of UTF-8.

For more fine-grained control over UTF-8 encoding, usesttfeeme _utf8 _decode andscheme _utf8 _encode
functions, which are described §i 1.

2.4 Library Functions

e Scheme_Object *scheme _make_char(mzchar ch)

Returns the character value. Televalue must be a legal Unicode code point (and not a surrogate, for example). The
first 256 characters are represented by constant Scheme values, and others are allocated.

e Scheme_Object *scheme _make_char _or _null(mzchar ch)
Like scheme _make_char , but the result iNULLIif chis not a legal Unicode code point.
e Scheme_Object *scheme _make_character(mzchar ch)

Returns the character value. This is a macro that directly accesses the array of constant charactérs essrthan
256.

e Scheme_Object *scheme _make_ascii _character(mzchar ch)
Returns the character value, assuming thas less than 256. (This is a macro.)

e Scheme_Object *scheme _make_integer(long i)

2.4. Library Functions 2. Values and Types

Returns the integer valuemust fit in a fixnum. (This is a macro.)

e Scheme_Object *scheme _make_integer _value(long i)

Returns the integer value. illoes not fit in a fixnum, a bignum is returned.

e Scheme_Object *scheme _make_integer _value _from _unsigned(unsigned long i)

Like scheme _make_integer _value , but for unsigned integers.

e Scheme_Object *scheme _make_integer _value _from _long _long(mzlonglong i)

Like scheme _make_integer _value , but formzlonglong values (se§l.5).

e Scheme_Object *scheme _make.integer _value _from _unsigned _long _long(umzlonglong i)
Like scheme _make_integer _value _from _long _long , but for unsigned integers.

e Scheme_Object *scheme _make.integer _value _from _long _halves(unsigned long hi,
unsigned long lo)

Creates an integer given the high and Immg s of a signed integer. Note that on 64-bit platforms wHerey
long is the same along , the resulting integer has 128 bits. (See 8k&.)

e Scheme_Object *scheme _make.integer _value _from _unsigned _long _halves(unsigned long hi,
unsigned long lo)

Creates an integer given the high and llerng s of an unsigned integer. Note that on 64-bit platforms whang
long is the same ang , the resulting integer has 128 bits.

e int scheme _get _int _val(Scheme _Object * o,long * i)

Extracts the integer value. Unlike tI®CHEMENT _VAL macro, this procedure will extract an integer that fits in a
long from a Scheme bignum. d fits in along , the extracted integer is placed*inand 1 is returned; otherwise, 0
is returned andi is unmodified.

e int scheme _get _unsigned _int _val(Scheme _Object * o, unsigned long * i)

Like scheme _get _int _val , but for unsigned integers.

e int scheme _get _llong _long _val(Scheme _Object * o, mzlonglong * i)

Like scheme _get _int _val , but formzlonglong values (seg§l.5).

eint scheme _get _unsigned _long _long _val(Scheme _Object * o, umzlonglong * i)

Like scheme _get _int _val , but for unsignedanzlonglong values (segl1.5).

e Scheme_Object *scheme _make_double(double d)

Creates a new floating-point value.

e Scheme_Object *scheme _make_float(float d)

10

2. Values and Types 2.4. Library Functions

Creates a new single-precision floating-point value. The procedure is available only when MzScheme is compiled with
single-precision numbers enabled.

e double scheme _real _to _double(Scheme _Object * 0)

Converts a Scheme real number to a double-precision floating-point value.

e Scheme_Object *scheme _make_pair(Scheme _Object * carv, Scheme_Object * cdrv)

Makes acons pair.

e Scheme_Object *scheme _make_byte _string(char * byteg

Makes a Scheme byte string from a nul-terminated C string.bjfesstring is copied.

e Scheme_Object *scheme _make_byte _string _without _copying(char * byteg

Like scheme _make_byte _string , but the string is not copied.

e Scheme_Object *scheme _make_sized _byte _string(char * byteslong len,int copy)

Makes a byte string value with siten. A copy of bytesis made ifcopyis not 0. The strindytesshould contairien
bytes;bytescan contain the nul byte at any position, and need not be nul-terminategyifs non-zero. However, if
lenis negative, then the nul-terminated lengthbgtesis used for the length, and dopyis zero, therbytesmust be
nul-terminated.

e Scheme_Object *scheme _make_sized _offset _byte _string(char * byteslong d,long len int copy)

Like scheme _make_sized _byte _string , exceptthdencharacters start from positiahin bytes If d is non-zero,
thencopymust be non-zero.

e Scheme_Object *scheme _alloc _byte _string(int size char fill)

Allocates a new Scheme byte string.

e Scheme_Object *scheme _append _byte _string(Scheme _Object * a, Scheme_Object * b)

Creates a new byte string by appending the two given byte strings.

e Scheme_Object *scheme _make_locale _string(char * bytes

Makes a Scheme string from a nul-terminated byte string that is a locale-specific encoding of a character string; a new
string is allocated during decoding. The “locale in the name of this function thus refeyset®and not the resulting

string (which is internally stored as UCS-4).

e Scheme_Object *scheme _make_utf8 _string(char * byte3

Makes a Scheme string from a nul-terminated byte string that is a UTF-8 encoding. A new string is allocated during
decoding. The “utf8” in the name of this function thus referytes and not the resulting string (which is internally

stored as UCS-4).

e Scheme_Object *scheme _make_sized _utf8 _string(char * byteslong len)

11

2.4. Library Functions 2. Values and Types

Makes a string value, based tam UTF-8-encoding bytes (so the resulting strindgis characters or less). The string

bytesshould contain at lea&n bytes;bytescan contain the nul byte at any position, and need not be null-terminated.

However, iflenis negative, then the nul-terminated lengttbgtesis used for the length.

e Scheme_Object *scheme _make_sized _offset _utf8 _string(char * byteslong d,long len)

Like scheme _make_sized _char _string , except thdencharacters start from positiahin bytes

e Scheme_Object *scheme _make_char _string(mzchar * charg

Makes a Scheme string from a nul-terminated UCS-4 string.chiaesstring is copied.

e Scheme_Object *scheme _make_char _string _without _copying(mzchar * char9

Like scheme _make_char _string , but the string is not copied.

e Scheme_Object *scheme _make_sized _char _string(mzchar * charslong len int copy

Makes a string value with siZen. A copy of charsis made ifcopyis not 0. The stringcharsshould contairien
charactersgharscan contain the nul character at any position, and need not be nul-terminatgalis non-zero.
However, iflenis negative, then the nul-terminated lengttcbérsis used for the length, and ébpyis zero, then the
charsmust be nul-terminated.

e Scheme_Object *scheme _make_sized _offset _char _string(mzchar * charslong d,long len,int

Like scheme _make_sized _char _string , exceptthdencharacters start from positiahin chars If dis non-zero,
thencopymust be non-zero.

e Scheme_Object *scheme _alloc _char _string(int size mzchar fill)

Allocates a new Scheme string.

e Scheme_Object *scheme _append _char _string(Scheme _Object * a, Scheme_Object * b)
Creates a new string by appending the two given strings.

e Scheme_Object *scheme _char _string _to _byte _string(Scheme _Object * 9)
Converts a Scheme character string into a Scheme byte string via UTF-8.

e Scheme_Object *scheme _byte _string _to _char _string(Scheme _Object * 9)
Converts a Scheme byte string into a Scheme character string via UTF-8.

e Scheme_Object *scheme _char _string _to _byte _string _locale(Scheme _Object * 9)
Converts a Scheme character string into a Scheme byte string via the locale’s encoding.

e Scheme_Object *scheme _byte _string _to _char _string _locale(Scheme _Object * 9)
Converts a Scheme byte string into a Scheme character string via the locale’s encoding.

e Scheme_Object *scheme _intern _symbol(char * namg

12

copy)

2. Values and Types 2.4. Library Functions

Finds (or creates) the symbol matching the given nul-terminated, ASCII string (not UTF-8). The cemmaib
(non-destructively) normalized before interningdéheme _case _sensitive is 0.

e Scheme_Object *scheme _intern _exact _symbol(char * nameint len)

Creates or finds a symbol given the symbol’s length in UTF-8-encoding bytes. The the nasessf not normalized.
e Scheme_Object *scheme _intern _exact _char _symbol(mzchar * nameint len)

Like scheme _intern _exact _symbol , but given a character array instead of a UTF-8-encoding byte array.
e Scheme_Object *scheme _make_symbol(char * namé

Creates an uninterned symbol from a nul-terminated, UTF-8-encoding string. The case is not normalized.

e Scheme_Object *scheme _make_exact _symbol(char * nameint len)

Creates an uninterned symbol given the symbol’s length in UTF-8-encoded bytes.

e Scheme_Object *scheme _intern _exact _keyword(char * nameint len)

Creates or finds a keyword given the keywords length in UTF-8-encoding bytes. The the naseesf not normal-
ized, and it should not include the leading hash and colon of the keyword’s printed form.

e Scheme_Object *scheme _intern _exact _char _keyword(mzchar * nameint len)

Like scheme_intern _exact _keyword , but given a character array instead of a UTF-8-encoding byte array.
e Scheme_Object *scheme _make_vector(int size Scheme_Object * fill)

Allocates a new vector.

e Scheme_Object *scheme _box(Scheme _Object * V)

Creates a new box containing the value

e Scheme_Object *scheme _make weak_box(Scheme _Object * V)

Creates a new weak box containing the value

e Scheme_Type scheme _make_type(char * nam§

Creates a new type (not a Scheme value).

e Scheme_Object *scheme _make_cptr(void * ptr, const Scheme _Object * typetag

Creates a C-pointer object that encapsulgirsand usestypetagto identify the type of the pointer. The
SCHEMECPTRPmacro recognizes objects createddspeme _make_cptr . The SCHEMECPTRVAL macro ex-
tracts the originaptr from the Scheme object, aBRCHEMECPTRTYPEextracts the type tag.

e void scheme _set _type _printer(Scheme _Type type Scheme_Type _Printer printer)

Installs a printer to be used for printing (or writing or displaying) values that have the typgpiag

13

2.4. Library Functions 2. Values and Types

The type ofprinter is defined as follows:
typedef void (*Scheme_Type_Printer)(Scheme_Object *v, int dis,
Scheme_Print_Params *pp);

Such a printer must print a representation of the value usthgme _print _bytes andscheme _print _string
The first argument to the printer, is the value to be printed. The second argument indicates wheih@rinted via
write ordisplay . The last argumentis to be passed oadbeme _print _bytes orscheme _print _string

to identify the printing context.

e void scheme _print _bytes(Scheme _Print _Params * pp, const char * str,int offsefint len)

Writes the content o$tr — starting fromoffsetand runninden bytes — into a printing context determined pp.
This function is for use by a printer that is installed wétheme _set _type _printer

e void scheme _print _string(Scheme _Print _Params * pp,const mzchar * str,int offsetint len)

Writes the content o$tr — starting fromoffsetand runninden characters — into a printing context determined by
pp. This function is for use by a printer that is installed wsttheme _set _type _printer

14

3. Memory Allocation

MzScheme uses bothalloc and allocation functions provided by a garbage collector. Embedding/extension C/C++
code may use either allocation method, keeping in mind that pointers to garbage-collectable bloekedn ed
memory are invisible (i.e., such pointers will not prevent the block from being garbage-collected).

By default MzScheme uses a conservative garbage collector. This garbage collector normally only recognizes pointers
to the beginning of allocated objects. Thus, a pointer into the middle of a GC-allocated string will normally not keep
the string from being collected. The exception to this rule is that pointers saved on the stack or in registers may point
to the middle of a collectable object. Thus, it is safe to loop over an array by incrementing a local pointer variable.

MzScheme3m uses a precise garbage collector that moves objects during collection, in which case the C code must be
instrumented to expose local pointer bindings to the collector, and to provide tracing procedures for (tagged) records
containing pointers. This instrumentation is described furthgBif

The basic collector allocation functions are:

e scheme_malloc — Allocates collectable memory that may contain pointers to collectable objects; for 3m,
the memory must be an array of pointers (though not necessarily to collectable objects). The newly allocated
memory is initially zeroed.

e scheme_malloc _atomic — Allocates collectable memory that does not contain pointers to collectable ob-
jects. If the memory does contain pointers, they are invisible to the collector and will not prevent an object from
being collected. Newly allocated atomic memory is not necessary zeroed.

Atomic memory is used for strings or other blocks of memory which do not contain pointers. Atomic memory
can also be used to store intentionally-hidden pointers.

e scheme_malloc _tagged — Allocates collectable memory that contains a mixture of pointers and atomic
data. With the conservative collector, this function is the sanselasme _malloc , but under 3m, the type tag
stored at the start of the block is used to determine the size and shape of the object for future garbage collection
(as described i§3.1).

e scheme_malloc _allow _interior — Allocates a large array of pointers such that references are allowed
into the middle of the block under 3m, and such pointers prevent the block from being collected. This procedure
is the same ascheme _malloc with the conservative collector, but in the that case, hawinlyg a pointer into
the interior will not prevent the array from being collected.

e scheme _malloc _uncollectable — Allocates uncollectable memory that may contain pointers to col-
lectable objects. There is no way to free the memory. The newly allocated memory is initially zeroed. This
function is not available in 3m.

If a MzScheme extension stores Scheme pointers in a global or static variable, then that variable must be registered
with scheme _register _extension _global ;this makes the pointer visible to the garbage collector. Registered
variables need not contain a collectable pointer at all times (even with 3m, but the variable must contain some pointer,
possibly uncollectable, at all times).

15

3.1. Cooperating with 3m 3. Memory Allocation

With conservative collection, no registration is needed for the global or static variables of an embedding pro-
gram, unless it callsscheme _set _stack _base with a non-zero second argumeént.In that case, global

and static variables containing collectable pointers must be registeredseVitme _register _static . The
MZREGISTERSTATIC macro takes any variable name and registers it witheme _register ~ _static . The
scheme _register _static function can be safely called even when it's not needed, but it must not be called
multiple times for a single memory address.

Collectable memory can be temporarily locked from collection by using the reference-counting function
scheme _dont _gc _ptr . Under 3m, such locking does not prevent the object from being moved.

Garbage collection can occur during any call into MzScheme or its allocator, on anytime that MzScheme has control,
except during functions that are documented otherwise. The predicate and accessor macro§Zistedwer trigger
a collection.

3.1 Cooperating with 3m

To allow 3m’s precise collector to detect and update pointers during garbage collection, all pointer values must be
registered with the collector, at least during the times that a collection may occur. The content of a word registered
as a pointer must contain eithitJLL, a pointer to the start of a collectable object, a pointer into an object allocated

by scheme _malloc _allow _interior , a pointer to an object currently allocated by another memory mamanger
(and therefore not into a block that is currently managed by the collector), or a pointer to an odd-numbered address
(e.g., a MzScheme fixnum).

Pointers are registered in three different ways:

e Pointersin static variables should be registered sdtheme _register _static orMZREGISTERSTATIC.

e Pointers in allocated memory are registered automatically when they are in an array allocated with
scheme _malloc , etc. When a pointer resides in an object allocated sétieme _malloc _tagged , etc. the
tag at the start of the object identifiers the object’s size and shape. Handling of tags is desdjibéd.in

e Local pointers (i.e., pointers on the stack or in registers) must be registered througliz GEDECLREG
etc. macros that are describecgin 1.2

A pointer must never refer to the interior of an allocated object (when a garbage collection is possible), unless the
object was allocated witsccheme _malloc _allow _interior . For this reason, pointer arithmetic must usually be
avoided, unless the variable holding the generated poinidld ed before a collection.

IMPORTANT: TheSCHEMESYMVAL, SCHEMEKEYWORDAL, SCHEME/ECELS, andSCHEMEPRIM_CLOSUREELS
macros produce pointers into the middle of their respective objects, so the results of these macros must not be held
during the time that a collection can occur. Incorrectly retaining such a pointer can lead to a crash.

3.1.1 Tagged Objects

As explained ir2, thescheme _make_type function can be used to obtain a new tag for a new type of object. These
new types are in relatively short supply for 3m; the maximum tag is 255, and MzScheme itself uses nearly 200.

After allocating a new tag in 3m (and before creating instances of the tafyg procedure, a mark procedure, and a
fixup procedure must be installed for the tag usil@Cregister _traversers

A size procedure simply takes a pointer to an object with the tag and returns its size in words (not bytes). The
gcBYTES. TO.WORD8$®acro converts a byte count to a word count.

1Under Mac OS Xscheme _set _stack _base must be called always.

16

3. Memory Allocation 3.1. Cooperating with 3m

A mark procedure is used to trace references among objects without moving any objects. The procedure takes a pointer
to an object, and it should apply tigeMARKmacro to every pointer within the object. The mark procedure should
return the same result as the size procedure.

A fixup procedure is used to update references to objects after or while they are moved. The procedure takes a pointer
to an object, and it should apply tigeFIXUP macro to every pointer within the object; the expansion of this macro
takes the address of its argument. The fixup procedure should return the same result as the size procedure.

Depending on the collector’s implementation, the mark or fixup procedure might not be used. For example, the
collector may only use the mark procedure and not actually move the object. Or it may use the fixup procedure to mark
and move objects at the same time. To dereference an object pointer during a fixup procedb@juge _self to

convert the address passed to the procedure to refer to the potentially moved object, Gadess#ve to convert

an address that is not yet fixed up to determine the object’s current location.

When allocating a tagged object in 3m, the tag must be installed immediately after the object is allocated — or, at
least, before the next possible collection.

3.1.2 Local Pointers

The 3m collector needs to know the address of every local or temporary pointer within a function call at any point
when a collection can be triggered. Beware that nested function calls can hide temporary pointers; for example, in
scheme_make_pair(scheme_make_pair(scheme_true, scheme_false),
scheme_make_pair(scheme_false, scheme_true))

the result from onescheme_make_pair call is on the stack or in a register during the other call to
scheme _make_pair ; this pointer must be exposed to the garbage collection and made subject to update. Simply
changing the code to
tmp = scheme_make_pair(scheme_true, scheme_false);
scheme_make_pair(tmp,
scheme_make_pair(scheme_false, scheme_true))

does not expose all pointers, sirtog must be evaluated before the second cadidoeme _make_pair . In general,
the above code must be converted to the form

tmpl = scheme_make_pair(scheme_true, scheme_false);

tmp2 = scheme_make_pair(scheme_true, scheme_false);

scheme_make_pair(tmpl, tmp2);

and this is converted form must be instrumented to regisipl. andtmp2. The final result might be

{
Scheme_Object *tmpl = NULL, *tmp2 = NULL, *result;
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmpl);
MZ_GC_VAR_IN_REG(1, tmp2);

MZ_GC_REG();

tmpl = scheme_make_pair(scheme_true, scheme_false);
tmp2 = scheme_make_pair(scheme_true, scheme_false);
result = scheme_make_pair(tmpl, tmp2);
MZ_GC_UNREGY();

return result;

17

3.1. Cooperating with 3m 3. Memory Allocation

}

Notice thatresult is not registered above. ThdZGCUNREGNacro cannot trigger a garbage collection, so the
result variable is never live during a potential collection. Note also thgtl andtmp2 are initialized withNULL,
so that they always contain a pointer whenever a collection is possible.

The MZGCDECLREGmacro expands to a local-variable declaration to hold information for the garbage collector.
The argument is the number of slots to provide for registration. Registering a simple pointer requires a single slot,
whereas registering an array of pointers requires three slots. For example, to register amppirstied an array of 10
char * s:
{
Scheme_Object *tmpl = NULL;
char *a[10];
int i
MZ_GC_DECL_REG(4);

MZ_GC_ARRAY_VAR_IN_REG(O, a, 10);
MZ_GC_VAR_IN_REG(3, tmp1l);

[* Clear a before a potential GC: */
for (i = 0; i < 10; i++) afil] = NULL;

%'(.a);
\

The MZGCARRAYVARIN _REGmacro registers a local array given a starting slot, the array variable, and an array
size. ThLeMZGCVARIN _REGakes a slot and simple pointer variable. A local variable or array must not be registered
multiple times.

In the above example, the first argumenmMd GCVARIN _REGis 3 because the information faruses the first three
slots. Even ifa is not used after the call fo, a must be registered with the collector during the entire cdll, toecause
f presumably uses until it returns.

The name used for a variable need not be immediate. Structure members can be supplied as well:
{
struct { void *s; int v; void *t; } x = {NULL, O, NULL}
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, X.s);
MZ_GC_VAR_IN_REG(0, x.t);

}

In general, the only constraint on the second argumeMZ&CVARIN _REGor MZGCARRAYVARIN _REGis
that& must produce the relevant address.

Pointer information is not actually registered with the collector until M GCREG macro is used. The
MZGCUNREGmacro de-registers the information. Each callMZ GCREGmust be balanced by one call to
MZGCUNREG

Pointer information need not be initialized wMzZ GCVARIN _-REGandMZGCARRAYVARIN _REGbefore calling
MZGCREG and the set of registered pointers can change at any time — as long as all relevent pointers are registered
when a collection might occur. The following example recycles slots and completely de-registers information when
no pointers are relevant. The example also illustrates M@ CUNREGs not needed when control escapes from

18

3. Memory Allocation 3.1. Cooperating with 3m

the function, such as whestheme _signal _error escapes.
{
Scheme_Object *tmpl = NULL, *tmp2 = NULL;
mzchar *a, *b;
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmp1l);
MZ_GC_VAR_IN_REG(1, tmp2);

tmpl = scheme_make utf8_string("foo");
MZ_GC_REG();

tmp2 = scheme_make utf8_string("bar");

tmpl = scheme_append_char_string(tmpl, tmp2);

if (SCHEME_FALSEP(tmp1))
scheme_signal_error("shouldn’t happen!™);

a = SCHEME_CHAR_VAL(tmp1);

MZ_GC_VAR_IN_REG(0, a);

tmp2 = scheme_make_pair(scheme_read_bignum(a, 0, 10), tmp2);
MZ_GC_UNREG();

if (SCHEME_INTP(tmp2)) {
return O;

}

MZ_GC_REG();
tmpl = scheme_make_pair(scheme_read_bignum(a, 0, 8), tmp2);
MZ_GC_UNREG();

return tmpl,;

}

A MZGCDECLREGcan be used in a nested block to hold declarations for the block’s variables. In that case, the
nestedMZ GCDECLREGmust have its owMZ GCREGandMZGCUNREGalls.

{

Scheme_Object *accum = NULL;
MZ_GC_DECL_REG(1);
MZ_GC_VAR_IN_REG(0, accum);
MZ_GC_REG();

accum = scheme_make_pair(scheme_true, scheme_null);
{
Scheme_Object *tmp = NULL;
MZ_GC_DECL_REG(1);
MZ_GC_VAR_IN_REG(0, tmp);
MZ_GC_REG();

tmp = scheme_make_pair(scheme_true, scheme_false);
accum = scheme_make pair(tmp, accum);

19

3.1. Cooperating with 3m 3. Memory Allocation

MZ_GC_UNREG():;
}

accum = scheme_make_pair(scheme_true, accum);

MZ_GC_UNREG();
return accum,;

}

Variables declared in a local block can also be registered together with variables from an enclosing block, but the
local-block variable must be unregistered before it goes out of scope MEE@CNQVARIN _REGmacro can be
used to unregister a variable or to initialize a slot as having no variable.
{
Scheme_Object *accum = NULL;
MZ_GC_DECL_REG(2);
MZ_GC_VAR_IN_REG(0, accum);
MZ_GC_NO_VAR_IN_REG(1);
MZ_GC_REG();

accum = scheme_make pair(scheme_true, scheme_null);

{
Scheme_Object *tmp = NULL;
MZ_GC_VAR_IN_REG(1, tmp);

tmp = scheme_make_pair(scheme_true, scheme_false);
accum = scheme_make pair(tmp, accum);

MZ_GC_NO_VAR_IN_REG(1);
}

accum = scheme_make_pair(scheme_true, accum);

MZ_GC_UNREG();
return accum,

}

The MZGC macros all expand to nothing whétZ PRECISE GCis not defined, so the macros can be placed into
code to be compiled for both conservative and precise collection.

The MZGCREGandMZ GCUNREGnacros must never be used in an OS thread other than MzScheme'’s thread.

3.1.3 Local Pointers andnzc

Whenmzc is run with the--xform flag and a source C program, it produces a C program that is instrumented in
the way described in the previous section (but with a slightly different set of macros). For each inparhéile, the
transformed output isame.3m.c.

The--xform mode formzc does not change allocation calls, nor does it generate size, mark, or fixup predocures. It
merely converts the code to register local pointers.

Furthermore, the-xform mode formzc does not handle all of C. It's ability to rearrange compound expressions

is particularly limited, becausexform merely converts expression text heuristically instead of parsing C. A future
version of the tool will correct such problems. For nowgzc in --xform mode attempts to provide reasonable

error messages when it is unable to convert a program, but beware that it can miss cases. To an even more limited

20

3. Memory Allocation 3.2. Library Functions

degree;-xform can work on C++ code. Inspect the outputofform mode to ensure that your code is correctly
instrumented.

Some specific limitations:
e The body of &or , while , ordo loop must be surrounded with curly braces. (A conversion error is normally
reported, otherwise.)

e Function calls may not appear on the right-hand side of an assignment within a declaration block. (A conversion
error is normally reported if such an assignment is discovered.)

e Multiple function callsin... ? ... : .. cannot be lifted. (A conversion error is normally re-
ported, otherwise.)

¢ In an assignment, the left-hand side must be a local or static variable, not a field selection, pointer dereference,
etc. (A conversion error is normally reported, otherwise.)

e The conversion assumes that all function calls use an immediate name for a function, as opposed to a compound
expression as ie->f() . The function name need not be a top-level function name, but it must be bound either

as an argument or local variable with the fotype id the syntaxet type (* id)(...) is not recgoinzed,
so bind the function type to a simple name wighedef | first: typedef rettype (* type(...);
type id

e Arrays and structs must be passed by address, only.
e GC-triggering code must not appear in system headers.

e Pointer-comparison expressions are not handled correctly when either of the compared expressions includes a
function call. For examplea() == b() is not converted correctly whemandb produce pointer values.

e Passing the address of a local pointer to a function works only when the pointer variable remains live after the

function call.
e Areturn; form can get converted tp stmt return; }, , which can break aif (...) return;
else ... pattern.

e Local instances of union types are generally not supported.

e Pointer arithmetic cannot be converted away, and is instead reported as an error.

3.2 Library Functions

evoid *scheme _malloc(size t n)

Allocatesn bytes of collectable memory, initially filled with zeros. In 3m, the allocated object is treated as an array of
pointers.

e void *scheme _malloc _atomic(size _t n)

Allocatesn bytes of collectable memory containing no pointers visible to the garbage collector. The objett is
initialized to zeros.

e void *scheme _malloc _uncollectable(size t n)

Non-3m, only. Allocates bytes of uncollectable memory.

21

3.2. Library Functions 3. Memory Allocation

e void *scheme _malloc _eternal(size t n)

Allocates uncollectable atomic memory. This function is equivalemhadioc , except that the memory cannot be
freed.

e void *scheme _calloc(size t numsize _t sizg

Allocatesnum* sizebytes of memory usingcheme _malloc .

e void *scheme _malloc _tagged(size _t n)

Like scheme _malloc , but in 3m, the type tag determines how the garbage collector traverses the obj§st; see
e void *scheme _malloc _allow _interior(size t n)

Like scheme _malloc , butin 3m, pointers are allowed to reference the middle of the object3see
e char *scheme _strdup(char * str)

Copies the null-terminated strirggr; the copy is collectable.

e char *scheme _strdup _eternal(char * str)

Copies the null-terminated strirggr; the copy will never be freed.

evoid *scheme _malloc _fail _ok(void *(* mallocf)(size _t sizg,size _t sizg

Attempts to allocatsizebytes usingmallocf. If the allocation fails, thexn:misc:out-of-memory exception is
raised.

e void scheme _register _extension _global(void * ptr,long siz@

Registers an extension’s global variable that can contain Scheme pointers. The address of the global ipwjven in
and its size in bytes isizeln addition to global variables, this function can be used to register any permanent memory
that the collector would otherwise treat as atomic. A garbage collection can occur during the registration.

e void scheme _set _stack _base(void * stackaddr,int no_auto.staticy

Overrides the GC'’s auto-determined stack base, and/or disables the GC’s automatic traversal of global and static
variables. Ifstackaddris NULL, the stack base determined by the GC is used. Otherwise, it should be the “deepest”
memory address on the stack where a collectable pointer might be stored. This function should be called only once,
and before any othexcheme _ function is called. It never triggers a garbage collection.

The following example shows a typical use for setting the stack base:
int main(int argc, char **argv) {
int dummy;
scheme_set_stack base(&dummy, O0);
real_main(argc, argv); /* calls scheme_basic_env(), etc. */

}
e void scheme _register _static(void * ptr,long sizg

Like scheme register _extension _global , for use in embedding applications in situations where the col-
lector does not automatically find static variables (i.e., whelmleme _set _stack _base has been called with a

22

3. Memory Allocation 3.2. Library Functions

non-zero second argument).

The macralZREGISTERSTATIC can be used directly on a static variable. It expands to a comment if statics need
not be registered, and a callsoheme _register ~ _static (with the address of the static variable) otherwise.

e void scheme _weak_reference(void ** 9)]

Registers the pointetp as a weak pointer; when no other (non-weak) pointers reference the same merpry as
references, thetp will be set toNULL by the garbage collector. The value*fpmmay change, but the pointer remains
weak with respect to the value tf at the timep was registered.

e void scheme _weak_reference _indirect(void ** p, void * V)
Like scheme _weak reference , but*p is cleared (regardless of its value) when there are no referenges to

evoid scheme _register _finalizer(void * p,void (*f)(void *p, void *data), void * data
void (**oldf)(void *p, void *data), void ** olddatd

Registers a callback function to be invoked when the memampuld otherwise be garbage-collected, and when no
“will-like finalizers are registered fop.

Thef argument is the callback function; when it is called, it will be passed the yedungl the data pointefata data
can be anything — it is only passed on to the callback functioraldf andolddataare notNULL, then*oldf and
*olddata are filled with with old callback informatiorf @nddatawill override this old callback).

To remove a registered finalizer, pa¢SLLfor f anddata

Note: registering a callback not only keepgrom collection until the callback is invoked, but it also keefzta
reachable until the callback is invoked.

e void scheme _add finalizer(void * p,void (*f)(void *p, void *data), void * datd)

Adds a finalizer to a chain of primitive finalizers. This chain is separate from the single finalizer installed with
scheme _register _finalizer ; all finalizers in the chain are called immediately after a finalizer that is installed
with scheme _register _finalizer

Seescheme _register _finalizer , above, for information about the arguments.

To remove an added finalizer, useheme _subtract _finalizer

e void scheme _add _scheme finalizer(void * p,void (*f)(void *p, void *data), void * data)

Installs a “will”-like finalizer, similar towill-register . Scheme finalizers are called one at a time, requiring

the collector to prove that a value has become inaccessible again before calling the next Scheme finalizer. Finalizers
registered withscheme _register _finalizer or scheme _add _finalizer are not called until all Scheme
finalizers have been exhausted.

Seescheme _register _finalizer , above, for information about the arguments.

There is currently no facility to remove a “will-like finalizer.

e void scheme _add finalizer _once(void * p,void (*f)(void *p, void *data), void * data)

Like scheme _add _finalizer , but if the combinatiori anddatais already registered as a (non-“will’-like) final-

izer forp, it is not added a second time.

23

3.2. Library Functions 3. Memory Allocation

e void scheme _add_scheme finalizer _once(void * p,void (*f)(void *p, void *data), void * data)

Like scheme _add _scheme finalizer , but if the combination of anddatais already registered as a “will"-like
finalizer forp, it is not added a second time.

e void scheme _subtract _finalizer(void * p, void (*f)(void *p, void *data), void * data)
Removes a finalizer that was installed wéttheme _add _finalizer
e void scheme _remove _all _finalization(void * p)

Removes all finalization (“will”-like or not) fomp, including wills added in Scheme withill-register and
finalizers used by custodians.

e void scheme _dont _gc_ptr(void * p)
Keeps the collectable blogkfrom garbage collection. Use this procedure when a referenzis tme stored somewhere
inaccessible to the collector. Once the reference is no longer used from the inaccessible region, de-register the lock

with scheme _gc _ptr _ok. A garbage collection can occur during the registration.

This function keeps a reference count on the pointers it registers, so two cadtsatme _dont _gc _ptr for the same
p should be balanced with two calls $ocheme _gc _ptr _ok.

e void scheme _gc_ptr _ok(void * p)
Seescheme _dont _gc _ptr .

e void scheme _collect _garbage()

Forces an immediate garbage-collection.

e void GC _register _traversers(short tag,
Size _Proc s, Mark _Proc m, Fixup _Proc f,

int is_constsizeint is_atomiq

3m only. Registers a size, mark, and fixup procedure for a given type tag de&for more information.

Each of the three procedures takes a pointer and returns an integer:
typedef int (*Size_Proc)(void *obj);
typedef int (*Mark_Proc)(void *obj);
typedef int (*Fixup_Proc)(void *obj);

If the result of the size procedure is a constant, then pass a non-zero valsednistsize If the mark and fixup
procedures are no-ops, then pass a non-zero valig &omic

24

4. Namespaces and Modules

A Scheme namespace (a top-level environment) is represented by a value 8€hgree Env * — which is also a
Scheme value, castableSecheme_Object * . Callingscheme _basic _env returns a namespace that includes all
of MzScheme'’s standard global procedures and syntax.

The scheme _basic _env function must be called once by an embedding program, before any other MzScheme
function is called (excepgcheme _-make_param). The returned namespace is the initial current namespace for the
main MzScheme thread. MzScheme extensions cannaa@ime _basic _env.

The current thread’s current namespace is available fmme _get _env, given the current parameterization (see
§9): scheme _get _env(scheme _config)

New values can be added as globals in a namespacesdierge _add _global . Thescheme _lookup _global
function takes a Scheme symbol and returns the global value for that naiMéeLaif the symbol is undefined.

A module’s set of top-level bindings is implemented using the same machinery as a namespace. Use
scheme _primitive ~ _module to create a necheme_Env * that represents a primitive module. The name pro-
vided toscheme _primitive ~ _module is subject to prefixing through theurrent-module-name-prefix

parameter (which is normally set by the module name resolver when auto-loading module files). After installing
variables into the module witscheme _add _global , etc., callscheme finish _primitive ~ _module on the
Scheme_Env * value to make the module declaration available. All defined variables are exported from the primitive
module.

The Scheme#%variable-reference form produces a value that is opaque to Scheme code. Use
SCHEMBEPTRVAL on the result of#%variable-reference to obtain the same kind of value as returned by
scheme _global _bucket (i.e., a bucket containing the variable’s valueNdJLL if the variable is not yet defined).

4.1 Library Functions

e void scheme _add _global(char * name Scheme_Object * val, Scheme_Env * eny

Adds a value to the table of globals for the namesmamgwherenameis a null-terminated string. (The string’s case
will be normalized in the same way as for interning a symbol.)

e void scheme _add _global _symbol(Scheme _Object * name Scheme_Object * val, Scheme_Env * eny)
Adds a value to the table of globals by symbol name instead of string name.

e Scheme_Object *scheme _lookup _global(Scheme _Object * symbo]Scheme Env * eny

Given a global variable name (as a symbol¥ym returns the current value.

e Scheme_Bucket *scheme _global _bucket(Scheme _Object * symbo] Scheme Env * eny)

25

4.1. Library Functions 4. Namespaces and Modules

Given a global variable name (as a symbolysim returns the bucket where the value is stored. When the value in
this bucket ifNULL, then the global variable is undefined.

The Scheme_Bucket structure is defined as:
typedef struct Scheme_ Bucket {
Scheme_Object so; /* so.type = scheme_ variable type */
void *key;
void *val;
} Scheme_Bucket;

e Scheme_Bucket *scheme _module _bucket(Scheme _Object * mod Scheme_Object * symbo]
int pos Scheme_Env * eny

Like scheme _global _bucket , but finds a variable in a module. Theod and symbolarguments are as for
dynamic-require in Scheme. Th@osargument should bel always. Theenvargument represents the name-
space in which the module is declared.

e void scheme _set _global _bucket(char * procnameScheme_Bucket * var, Scheme_Object * val,
int setundef)

Changes the value of a global variable. Tgrecnameargument is used to report errors (in case the global variable
is constant, not yet bound, or bound as syntax)selfundefis not 1, then the global variable must already have a
binding. (For exampleset! cannot set unbound variables, whilefine can.)

e Scheme_Object *scheme _builtin _value(const char * nameg

Gets the binding of a name as it would be defined in the initial namespace.

e Scheme_Env *scheme _get _env(Scheme _Config * config

Returns the current namespace for the given parameterization§9See more information. The current thread’s
current parameterization is availablesashieme _config

e Scheme_Env *scheme _primitive _module(Scheme _Object * name Scheme_Env * for_eny

Prepares a new primitive module whose name is the synmawhe (plus any prefix that is active via
current-module-name-prefix). The module will be declared within the namespé&meenv. The result is
aScheme_Env * value that can be used wittheme _add _global , etc., but it represents a module instead of a
namespace. The module is not fully declared wstileme _finish _primitive ~ _module is called, at which point
all variables defined in the module become exported.

e void scheme _finish _primitve _module(Scheme _Env * eny

Finalizes a primitive module and makes it available for use within the module’s namespace.

26

5. Procedures

A primitive procedure is a Scheme-callable procedure that is implemented in C. Primitive procedures are created in
MzScheme with the functioscheme _make_prim _w.arity , which takes a C function pointer, the name of the
primitive, and information about the number of Scheme arguments that it takes; it returns a Scheme procedure value.

The C function implementing the procedure must take two arguments: an integer that specifies the number of
arguments passed to the procedure, and an arragcbbme_Object * arguments. The number of argu-
ments passed to the function will be checked using the arity information. (The arity information provided to
scheme _make_prim _w.arity is also used for the Schenagity procedure.) The procedure implementation

is not allowed to mutate the input array of arguments, although it may mutate the arguments themselves when appro-
priate (e.g., a fill in a vector argument).

The functionscheme _make_prim _closure _w.arity is similar toscheme _make_prim _w.arity , but it takes

an additional count an8cheme_Object array that is copied into the created procedure; the procedure is passed
back to the C function when the closure is invoked. In this way, closure-like data from the C world can be associated
with the primitive procedure.

The functionscheme _make_closed _prim _w.arity is similar toscheme _make_prim _closure _w.arity
but it uses an older calling convention for passing closure data.

To work well with MzScheme threads, a C function that performs substantial or unbounded work should occasionally
call SCHEMBJSEFUEL, see§8.2for details.

5.1 Library Functions

e Scheme_Object *scheme _make_prim _w.arity(Scheme _Prim * prim,char * name
int minaint max3

Creates a primitive procedure value, given the C function poprier. The form ofprim is defined by:
typedef Scheme_Object *(Scheme_Prim)(int argc, Scheme_Object **argv);

The valueminashould be the minimum number of arguments that must be supplied to the procedure. Theasedue

should be the maximum number of arguments that can be supplied to the procedure, or -1 if the procedure can take
arbitrarily many arguments. Thrinaandmaxavalues are used for automatically checking the argument count before

the primitive is invoked, and also for the Scheardy procedure. Th@eameargument is used to report application

arity errors at run-time.

e Scheme_Object *scheme _make_folding _prim(Scheme _Prim * prim, char * name
int minagint maxashort folding)

Like scheme _make_prim _w.arity , but if folding is non-zero, the compiler assumes that an application of the

procedure to constant values can be folded to a constant. For exampdeo? , andstring-length are folding
primitives, butdisplay andcons are not.

27

5.1. Library Functions 5. Procedures

e Scheme_Object *scheme _make_prim(Scheme _Prim * prim)

Same ascheme _make_prim _w.arity , butthe arity (0, -1) and the name “UNKNOWN?" is assumed. This function
is provided for backward compatibility only.

e Scheme_Object *scheme _make_prim _closure _w.arity(Scheme _Prim _Closure _Proc * prim,
int ¢, Scheme_Object * vals
char * nameint minagint maxg

Creates a primitive procedure value that includescdhalues invals when the C functiorprim is invoked, the
generated primitive is passed as the last parameter. The fopnmofs defined by:

typedef Scheme_Object *(Scheme_Prim_Closure_Proc)(int argc,
Scheme_Object **argv,
Scheme_Object *prim);

The macrcSCHEMBEPRIM_CLOSUREELS takes a primitive-closure object and returns an array with the same length
and content agals (3m: se&3.1for a caution abouBCHEMEPRIM_CLOSUREELS.)

e Scheme_Object *scheme _make_closed _prim _w_arity(Scheme _Closed _Prim * prim,void * data,
char * nameint minagint max3g

Creates an old-style primitive procedure value; when the C fungtimnis invoked,datais passed as the first param-
eter. The form ofprim is defined by:

typedef Scheme_Object *(Scheme_Closed_Prim)(void *data, int argc,
Scheme_Object **argv);

e Scheme_Object *scheme _make_closed _prim(Scheme _Closed _Prim * prim,void * datd)

Creates a closed primitive procedure value without arity information. This function is provided for backward compat-
ibility only.

28

6. Evaluation

A Scheme S-expression is evaluated by callstheme_eval . This function takes an S-expression (as a
Scheme_Object *) and a namespace and returns the value of the expression in that namespace.

The functionscheme _apply takes aScheme_Object * that is a procedure, the humber of arguments to pass
to the procedure, and an array 8€heme_Object * arguments. The return value is the result of the applica-
tion. There is also a functioscheme _apply _to _list , which takes a procedure and a list (constructed with
scheme _make_pair) and performs the Schena@ply operation.

Thescheme _eval function actually callscheme _compile followed byscheme _eval _compiled

6.1 Top-level Evaluation Functions

The functionsscheme _eval , scheme _apply , etc., aretop-level evaluation functions. Continuation invocations
are confined to jumps within a top-level evaluation.

The functions_scheme _eval _compiled , _scheme _apply , etc. (with a leading underscore) provide the same
functionality without starting a new top-level evaluation; these functions should only be used within new primitive
procedures. Since these functions allow full continuation hops, calls to non-top-level evaluation functions can return
zero or multiple times.

Currently, escape continuations and primitive error escapes can jump out of all evaluation and application functions.
For more information, se§’.

6.2 Tail Evaluation

All of MzScheme’s built-in functions and syntax support proper tail-recursion. When a new primitive procedure or
syntax is added to MzScheme, special care must be taken to ensure that tail recursion is handled properly. Specifically,
when the final return value of a function is the result of an application, shbeme _tail _apply should be used

instead ofscheme _apply . Whenscheme _tail _apply is called, it postpones the procedure application until
control returns to the Scheme evaluation loop.

For example, consider the following implementation ahank-or primitive, which takes any number of thunks
and perform®r on the results of the thunks, evaluating only as many thunks as necessary.
static Scheme_Object *
thunk_or (int argc, Scheme_Object **argv)
{ . .
int i
Scheme_Object *v;

if (‘argc)
return scheme_false;

29

6.3. Multiple Values 6. Evaluation

for (i = 0; i < argc - 1; i++)
if (SCHEME_FALSEP((v = _scheme_apply(argv[i], 0, NULL))))
return v;

return scheme_tail_apply(argv[argc - 1], 0, NULL);
}

Thisthunk-or properly implements tail-recursion: if the final thunk is applied, then the resthuoik-or is the
result of that application, secheme _tail _apply is used for the final application.

6.3 Multiple Values

A primitive procedure can return multiple values by returning the result of calafgeme values . The func-

tions scheme _eval _compiled _multi , scheme_apply _multi , _scheme _eval _compiled _multi , and
_scheme _apply _multi potentially return multiple values; all other evaluation and applications procedures return a
single value or raise an exception.

Multiple return values are represented by #$wheme _multiple _values “value”. This quasi-value has the
type Scheme_Object * , but it is not a pointer or a fixnum. When the result of an evaluation or application is
scheme _multiple _values , the number of actual values can be obtainedad®me multiple _count and

the array ofScheme_Object * values asscheme _multiple _array . If any application or evaluation proce-
dure is called, thescheme _multiple _count andscheme _multiple _array variables may be modified, but
the array previously referenced bgheme _multiple _array is never re-used and should never be modified.

Thescheme _multiple _count andscheme _multiple _array variables only contain meaningful values when
scheme _multiple _values is returned.

6.4 Library Functions

e Scheme_Object *scheme _eval(Scheme _Object * expr, Scheme_Env * eny)
Evaluates the (uncompiled) S-expresséxprin the namespacenv.

e Scheme_Object *scheme _eval _compiled(Scheme _Object * obj)

Evaluates the compiled expressialn, which was previously returned frostheme _compile
e Scheme_Object *scheme _eval _compiled _multi(Scheme _Object * obj)
Evaluates the compiled expressiainj, possibly returning multiple values (sg@.3).

e Scheme_Object * _scheme _eval _compiled(Scheme _Object * obj)
Non-top-level version ofcheme _eval _compiled . (See§6.1)

e Scheme_Object * _scheme _eval _compiled _multi(Scheme _Object * obj)
Non-top-level version ofcheme _eval _compiled _multi . (See$6.1.)

e Scheme_Env *scheme _basic _env()

30

6. Evaluation 6.4. Library Functions

Creates the main namespace for an embedded MzScheme. This procedure must be called before other MzScheme
library function (excepscheme _make_param). Extensions to MzScheme cannot call this function.

If it is called more than once, this function resets all threads (replacing the main thread), parameters, ports, namespaces,
and finalizations.

e Scheme_Object *scheme _make_namespace(int argc, Scheme_Object ** argv)

Creates and returns a new namespace. This values can be Gdtetme Env * . It can also be installed in a
parameterization usirgcheme _set _param with MZCONFIGENV.

When MzScheme is embedded in an application, create the initial namespacschétine _basic _env before
calling this procedure to create new namespaces.

e Scheme_Object *scheme _apply(Scheme _Object * f,int ¢, Scheme_Object ** arg9

Applies the procedureto the given arguments.

e Scheme_Object *scheme _apply _multi(Scheme _Object * f,int ¢, Scheme_Object ** args)

Applies the procedureto the given arguments, possibly returning multiple values §6€%.

e Scheme_Object * _scheme _apply(Scheme _Object * f,int ¢, Scheme_Object ** arg9

Non-top-level version ofcheme _apply . (See$6.1)

e Scheme_Object * _scheme _apply _multi(Scheme _Object * f,int ¢, Scheme_Object ** args)
Non-top-level version o§cheme _apply _multi . (See§6.1)

e Scheme_Object *scheme _apply _to ist(Scheme _Object * f, Scheme_Object * args

Applies the procedurtto the list of arguments iargs

e Scheme_Object *scheme _eval _string(char * str, Scheme_Env * eny)

Reads a single S-expression fratn and evaluates it in the given namespace; the expression must return a single
value, otherwise an exception is raised. Blreargument is parsed as a UTF-8-encoded string of Unicode characters
(so plain ASCIl is fine).

e Scheme_Object *scheme _eval _string _multiichar * str, Scheme_Env * eny

Like scheme _eval _string , but returnsscheme _multiple _values when the expression returns multiple val-
ues.

e Scheme_Object *scheme _eval _string _all(char * str, Scheme_ Env *enyint all)

Like scheme _eval _string , butifall is not0, then expressions are read and evaluated swmntil the end of the
string is reached.

e Scheme_Object *scheme _tail _apply(Scheme _Object * f,int n, Scheme_Object ** args
Applies the procedure as a tail-call. Actually, this function just registers the given application to be invoked when

control returns to the evaluation loop. (Hence, this function is only useful within a primitive procedure that is returning

31

6.4. Library Functions 6. Evaluation

to its caller.)
e Scheme_Object *scheme _tail _apply _no_copy(Scheme _Object * f,int n, Scheme_Object ** arg9

Like scheme _tail _apply , but the arrayargsis not copied. Use this only wheargshas infinite extent and will not
be used again, or wheargswill certainly not be used again until the called procedure has returned.

e Scheme_Object *scheme _tail _apply _to _list(Scheme _Object * f, Scheme_Object * 1)
Applies the procedure as a tail-call.
e Scheme_Object *scheme _compile(Scheme _Object * form, Scheme_Env * eny)

Compiles the S-expressiorform in the given namespace. The returned value can be used with
scheme _eval _compiled etal.

e Scheme_Object *scheme _expand(Scheme _Object * form, Scheme_Env * eny
Expands all macros in the S-expressiorm using the given namespace.
e Scheme_Object *scheme _values(int n, Scheme_Object ** arg9

Returns the given values together as multiple return values. Unless 1, the result will always be
scheme _multiple _values .

32

7. Exceptions and Escape Continuations

When MzScheme encounters an error, it raises an exception. The default exception handler invokes the error display
handler and then the error escape handler. The default error escape handler escapésitiaeaerror escape, which

is implemented by callingcheme _longjmp(*scheme _current _thread->error _buf) .

An embedding program should install a fresh buffer istheme current _thread->error _buf and call
scheme _setjimp(*scheme _current _thread->error _buf) before any top-level entry into MzScheme
evaluation to catch primitive error escapes. When the new buffer goes out of scope, restore the orig-
inal in scheme _current _thread->error _buf . The macroscheme error _buf is a shorthand for
*scheme _current _thread->error _buf .

mz_jmp_buf * volatile save, fresh;

save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {

[* There was an error */
} else {

v = scheme_eval_string(s, env);

}

scheme_current_thread->error_buf = save;

New primitive procedures can raise a generic exception by catlimgme _signal _error . The arguments for
scheme _signal _error are roughly the same as for the standard C funqtigmtf . A specific primitive excep-
tion can be raised by callingcheme _raise _exn.

Full continuations are implemented in MzScheme by copying the C stack and ssivgne _setjimp and

scheme _longjmp . As long a C/C++ application invokes MzScheme evaluation through the top-level evaluation
functions écheme _eval , scheme _eval , etc., as opposed tscheme _eval , _scheme _apply , etc.), the code

is protected against any unusual behavior from Scheme evaluations (such as returning twice from a function) because
continuation invocations are confined to jumps within a single top-level evaluation. However, escape continuation
jumps are still allowed; as explained in the following sub-section, special care must be taken in extension that is
sensitive to escapes.

7.1 Temporarily Catching Error Escapes

When implementing new primitive procedure, it is sometimes useful to catch and handle errors that occur in eval-
uating subexpressions. One way to do this is the following: s@myeme _current _thread->error _buf

to a temporary variable, seicheme _current _thread->error _buf to the address of a stack-allocated
mzjmp _buf , invoke scheme _setjimp(scheme _error _buf) , perform the function’s work, and then restore
scheme _current _thread->error _buf before returning a value.

However, beware that the invocation of an escaping continuation looks like a primitive error escape, but the special

33

7.1. Temporarily Catching Error Escapes 7. Exceptions and Escape Continuations

indicator flagscheme _jumping _to _continuation is non-zero (instead of its normal zero value); this situation
is only visible when implementing a new primitive procedure. Honor the escape request by chaining to the previously
saved error buffer; otherwise, caltheme _clear _escape .

mz_jmp_buf * volatile save, fresh;
save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {
[* There was an error or continuation invocation */
if (scheme_jumping_to_continuation) {
[* It was a continuation jump */
scheme_longjmp(*save, 1);
/* To block the jump, instead: scheme_clear_escape(); */

} else {
[* It was a primitive error escape */
}
} else {
scheme_eval_string("x", scheme_env);

}

scheme_current_thread->error_buf = save;

This solution works fine as long as the procedure implementation only calls top-level evaluation functions
(scheme _eval , scheme _eval , etc., as opposed tscheme _eval , _scheme _apply , etc.). Otherwise, use
scheme _dynamic _wind to protect your code against full continuation jumps in the same wagytmamic-wind

is used in Scheme.

The above solution simply traps the escape; it doesn't report the reason that the escape occurred. To catch excep-
tions and obtain information about the exception, the simplest route is to mix Scheme code with C-implemented
thunks. The code below can be used to catch exceptions in a variety of situations. It implements the function
_apply _catch _exceptions , which catches exceptions during the application of a thunk. (This codecig-in
lects/mzscheme/examples/catch.c in the distribution.)

static Scheme_Object *exn_catching_apply, *exn_p, *exn_message;

static void init_exn_catching_apply()
{
if (‘exn_catching_apply) {
char *e =
"(lambda (thunk) "
"(with-handlers ([void (lambda (exn) (cons #f exn))]) "
"(cons #t (thunk))))";
/* make sure we have a namespace with the standard bindings: */
Scheme_Env *env = (Scheme_Env *)scheme_make_namespace(0, NULL);

scheme_register_extension_global(&exn_catching_apply, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_p, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_message, sizeof(Scheme_Object *));

exn_catching_apply = scheme_eval_string(e, env);

exn_p = scheme_lookup_global(scheme_intern_symbol("exn?"), env);
exn_message = scheme_lookup_global(scheme_intern_symbol("exn-message"), env);

34

7. Exceptions and Escape Continuations 7.1. Temporarily Catching Error Escapes

}

[* This function applies a thunk, returning the Scheme value if there’'s no exception,
otherwise returning NULL and setting *exn to the raised value (usually an exn
structure). */

Scheme_Object * apply _thunk _catch_exceptions(Scheme_Object *f, Scheme_Object **exn)

{

Scheme_Object *v;
init_exn_catching_apply();

v = _scheme_apply(exn_catching_apply, 1, &f);
[* v is a pair: (cons #t value) or (cons #f exn) */

if (SCHEME_TRUEP(SCHEME_CAR(V)))
return SCHEME_CDR(v);
else {
*exn = SCHEME_CDR(v);
return NULL,;
}
}

Scheme_Object *extract_exn_message(Scheme_Object *v)

{
init_exn_catching_apply();

if (SCHEME_TRUEP(_scheme_apply(exn_p, 1, &v)))
return _scheme_apply(exn_message, 1, &v);

else
return NULL; /* Not an exn structure */

}

In the following example, the above code is used to catch exceptions that occur during while evaluating source code
from a string.

static Scheme_Object *do_eval(void *s, int noargc, Scheme_Object **noargv)

{

return scheme_eval_string((char *)s, scheme_get _env(scheme_config));

}

static Scheme_Object *eval_string_or_get_exn_message(char *s)

{

Scheme_Object *v, *exn;

v = _apply_thunk_catch_exceptions(scheme_make_closed_prim(do_eval, s), &exn);
[* Got a value? */
if (V)

return v;

v = extract_exn_message(exn);
[* Got an exn? */
if (v)

return v;

35

7.2. Enabling and Disabling Breaks 7. Exceptions and Escape Continuations

[* ‘raise’ was called on some arbitrary value */
return exn;

}

7.2 Enabling and Disabling Breaks

When embedding MzScheme, asynchronous break exceptions are disabled by defadhebadl_set _can _break
(which is the same as calling the Scheme funciicrak-enabled) to enable or disable breaks. To enable or disable
breaks during the dynamic extent of another evaluation (where you woulditlisbreak-parameterization

in Scheme), usscheme _push _break _enable before andscheme _pop _break _enable after, instead.

7.3 Library Functions

e void scheme _signal _error(char * msg ..)

Raises a generic primitive exception. The parameters are roughly@adfr , but restricted to the following format
directives:

e %c— a Unicode character (of typazchar)

e %d— an integer

e %ld — along integer

e %f— afloating-poindouble

e %s— a nul-terminatechar string

e %5— a nul-terminatednzchar string

e %S— a MzScheme symbol (Bcheme_Object*)

e %t — achar string with along size (two arguments), possibly containing a non-terminating nul byte, and
possibly without a nul-terminator

e %u— amzchar string with along size (two arguments), possibly containing a non-terminating nul character,
and possibly without a nul-terminator

e %T— a MzScheme string (8cheme_Object*)
e %Q— a string, truncated to 253 characters, with ellipses printed if the string is truncated

e %Q— a MzScheme string (8cheme_Object*), truncated to 253 characters, with ellipses printed if the
string is truncated

e %V— a MzScheme value @&cheme_Object*), truncated according to the current error print width.
e %e— anerrno value, to be printed as a text message.
e %E— a platform-specific error value, to be printed as a text message.

e %Z— a potential platform-specific error value analar string; if the string is noNULL, then the error
value is ignored, otherwise the error value is used a%dér

e %% — a percent sign

36

7. Exceptions and Escape Continuations 7.3. Library Functions

The arguments following the format string must include no more than 25 strings and MzScheme values, 25 integers,
and 25 floating-point numbers. (This restriction simplifies the implementation with precise garbage collection.)

e void scheme _raise _exn(int exnid ..)

Raises a specific primitive exception. Thenid argument specifies the exception to be raised. If an instance of
that exception has fields, then the nexth — 2 arguments are values for those fields (skippingrtfessage and
debug-info fields). The remaining arguments start with an error string and proceed roughly@intbér ; see
scheme _signal _error above for more details.

Exception ids aré¢tdefine d using the same names as in Scheme, but prefixed with “MZ”, all letters are capitalized,
and all “’s’, “-"s, and “/"s are replaced with underscores. For exam@diBEXNFAIL _FILESYSTEMis the exception
id for a filesystem exception.

e void scheme _warning(char * msg ..)
Signals a warning. The parameters are roughly apriaotf ; seescheme _signal _error above for more detalils.
e void scheme _wrong _count(char * nameint mingint maxgint argc, Scheme Object ** argv)

This function is automatically invoked when the wrong number of arguments are given to a primitive procedure. It
signals that the wrong number of parameters was received and escapssi{bkee _signal _error). Thename
argument is the name of the procedure that was given the wrong number of argumianis;the minimum number

of expected argumentmaxcis the maximum number of expected arguments, or -1 if there is no maxiamgaand

argv contain all of the received arguments.

e void scheme _wrong _type(char * namechar * expectedint which
int argc, Scheme_Object ** argv)

Signals that an argument of the wrong type was received, and escapescflic@e _signal _error). Thename
argument is the name of the procedure that was given the wrong type of argexpatteds the name of the expected
type; whichis the offending argument in thergv array; argc andargv contain all of the received arguments. If the
original argc andargv are not available, provide -1 fevhichand a pointer to the bad valueangv; argcis ignored in
this case.

e void scheme _wrong _return _arity(char * nameint expectedint got, Scheme_Object ** argy,
const char * detall ...)

Signals that the wrong number of values were returned to a multiple-values contex@xgdwedirgument indicates

how many values were expectemtindicates the number received, aardv are the received values. THetail string

can beNULL or it can contain grintf -style string (with additional arguments) to describe the context of the error;
seescheme _signal _error above for more details about tpentf -style string.

e void scheme _unbound _global(char * nameg

Signals an unbound-variable error, whaemeis the name of the variable.

e char *scheme _make_provided _string(Scheme _Object * o,int countint * len)

Converts a Scheme value into a string for the purposes of reporting an error messageuriaegument specifies

how many Scheme values total will appear in the error message (so the string for this value can be scaled appropriately).

If lenis notNULL, it is filled with the length of the returned string.

e char *scheme _make_args _string(char * s, int which int argc, Scheme_Object ** argy,

37

7.3. Library Functions 7. Exceptions and Escape Continuations

long * len)

Converts an array of Scheme values into a byte string, skipping the array element indicadsdibyf his function is

used to specify the “other” arguments to a function when one argument is bad (thus giving the user more information
about the state of the program when the error occurred@nls notNULL, it is filled with the length of the returned

string.

e void scheme _check _proc _arity(char * whereint a,int which
int argc, Scheme_Object ** argv)

Checks thewvhichth argument irargv to make sure it is a procedure that can tak@guments. If there is an error,
thewhere which argc, andargv arguments are passed orsttheme _wrong _type . As inscheme _wrong _type ,
whichcan be -1, in which castargvis checked.

e Scheme_Object *scheme _dynamic _wind(void (* pre)(void *data) ,
Scheme_Object *(* action)(void *data) ,
void (* pos)(void *data) ,
Scheme_Object *(* jmp_handlen(void *data) ,
void * data)

Evaluates calls the functicactionto get a value for thecheme _dynamic _wind call. The functiongre andpost
are invoked when jumping into and outadtion respectively.

The functionjmp_handleris called when an error is signaled (or an escaping continuation is invoked) during the call
to action if jmp_handlerreturnsNULL, then the error is passed on to the next error handler, otherwise the return value
is used as the return value for tseheme _dynamic _wind call.

The pointerdatacan be anything; it is passed along in callgatdion, pre, post andjmp_handler.
e void scheme _clear _escape()

Clears the “jumping to escape continuation” flag associated with a thread. Call this function when blocking escape
continuation hops (see the first examplgl).

e void scheme _set _can _break(int on)

Enables or disables breaks in the same way as cdiliegk-enabled

e void scheme _push _break _enable(Scheme _Cont _Frame Data * cframeint on,int pre.checR

Use this function with scheme _pop_break _enable to enable or disable breaks in the same way as
with-break-parameterization ; this function writes t@frameto initialize it, andscheme _pop _break _enable
reads froncframe If pre_checkis non-zero and breaks are currently enabled, any pending break exception is raised.

e void scheme _pop _break _enable(Scheme _Cont _Frame Data * cframegint postcheck

Use this function withscheme _push _break _enable . If postcheckis non-zero and breaks are enabled after
restoring the previous state, then any pending break exception is raised.

38

8. Threads

The initializer functionscheme _basic _env creates the main Scheme thread; all other threads are created through
calls toscheme _thread

Information about each internal MzScheme thread is keptScleeme_Thread structure. A pointer to the current
thread’s structure is available ssheme _current _thread . A Scheme_Thread structure includes the following
fields:

e error _buf — This is themzjmp _buf value used to escape from errors. Téreor _buf value of the
current thread is available asheme _error _buf .

e Cjs.jumping _to _continuation — This flag distinguishes escaping-continuation invocations from
error escapes. Thejs.jumping _to _continuation value of the current thread is available as
scheme _jumping _to _continuation

e init _config — The thread’s initial parameterization. See &80
e cell _values — The thread’s values for thread cells (see &l8p

e next — The next thread in the linked list of threads; thitNiILL for the main thread.

The list of all threads is kept in a linked lisscheme _first _thread points to the first thread in the list. The last
thread in the list is always the main thread.

8.1 Integration with Threads

MzScheme'’s threads can break external C code under two circumstances:

e Pointers to stack-based values can be communicated between threadxample, if thread A stores a pointer
to a stack-based variable in a global variable, if thread B uses the pointer in the global variable, it may point to
data that is not currently on the stack.

e C functions that can invoke MzScheme (and also be invoked by MzScheme) depend on strict function-call nesting.
For example, suppose a function F uses an internal stack, pushing items on to the stack on entry and popping
the same items on exit. Suppose also that F invokes MzScheme to evaluate an expression. If the evaluation of
this expression invokes F again in a new thread, but then returns to the first thread before completing the second
F, then F’s internal stack will be corrupted.

If either of these circumstances occurs, MzScheme will probably crash.

8.2 Allowing Thread Switches

C code that performs substantial or unbounded work should occasionallsCHEMBJSE FUEL—actually a
macro—which allows MzScheme to swap in another Scheme thread to run, and to check for breaks on the current

39

8.3. Blocking the Current Thread 8. Threads

thread. In particular, if breaks are enabled, tB&§HEMBJSEFUEL may trigger an exception.

The macro consumes an integer argument. On most platforms, where thread scheduling is based on timer interrupts, the
argument is ignored. On some platforms, however, the integer represents the amount of “fuel” that has been consumed
since the last call tSCHEMBJSEFUEL For example, the implementation wéctor->list consumes a unit of

fuel for each created cons cell:

Scheme_Object *scheme_vector_to_list(Scheme_Object *vec)
{

int i;

Scheme_Object *pair = scheme_null;

i = SCHEME_VEC_SIZE(vec);

for (; i) {

SCHEME_USE_FUEL(1);

pair = scheme_make_pair(SCHEME_VEC_ELS(vec)[i], pair);
}

return pair;

}

The SCHEMBJSE FUEL macro expands to a C block, not an expression.

8.3 Blocking the Current Thread

Embedding or extension code sometimes needs to block, but blocking should allow other MzScheme threads to ex-
ecute. To allow other threads to run, block ussaheme _block _until . This procedure takes two functions: a
polling function that tests whether the blocking operation can be completed, and a prepare-to-sleep function that sets
bits infd _set s when MzScheme decides to sleep (because all MzScheme threads are blocked). Under Windows, an
“fd _set " can also accommodate OS-level semaphores or other handisshéeme _add _fd _handle .

Since the functions passed swheme _block _until are called by the Scheme thread scheduler, they must
never raise exceptions, caficheme _apply , or trigger the evaluation of Scheme code in any way. The
scheme _block _until function itself may call the current exception handler, however, in reaction to a break (if
breaks are enabled).

When a blocking operation is associated with an object, then the object might make sense as an argument
to object-wait-multiple . To extend the set of objects accepted diyject-wait-multiple , ei-

ther register polling and sleeping functions wiitheme _add _evt , or register a semaphore accessor with
scheme _add _evt _through _sema.

8.4 Threads in Embedded MzScheme with Event Loops

When MzScheme is embedded in an application with an event-based model (i.e., the execution of Scheme code in the
main thread is repeatedly triggered by external events until the application exits) special hooks must be set to ensure
that non-main threads execute correctly. For example, during the execution in the main thread, a new thread may be
created; the new thread may still be running when the main thread returns to the event loop, and it may be arbitrarily
long before the main thread continues from the event loop. Under such circumstances, the embedding program must
explicitly allow MzScheme to execute the non-main threads; this can be done by periodically calling the function
scheme _check _threads

Thread-checking only needs to be performed when non-main threads exist (or when there are active callback triggers).

40

8. Threads 8.4. Threads in Embedded MzScheme with Event Loops

The embedding application can set the global function posteeme _notify _multithread to a function that

takes an integer parameter and retwroisl . This function is be called with 1 when thread-checking becomes neces-
sary, and then with O when thread checking is no longer necessary. An embedding program can use this information
to prevent unnecessasgheme _check _threads polling.

The below code illustrates how MrEd formerly set sgheme _check _threads polling using the wxWindows
wxTimer class. (Any regular event-loop-based callback is appropriate.) stheme _notify _multithread
pointer is set tavirEdInstallThreadTimer . (MrEd no longer work this way, however.)

class MrEdThreadTimer : public wxTimer

{
public:
void Notify(void); /* callback when timer expires */

h

static int threads go;
static MrEdThreadTimer *theThreadTimer;
#define THREAD WAIT _TIME 40

void MrEdThreadTimer::Notify()

{
if (threads_go)
Start(THREAD_WAIT_TIME, TRUE);

scheme_check_threads();

}
static void MrEdInstallThreadTimer(int on)
{
if ('theThreadTimer)
theThreadTimer = new MrEdThreadTimer;
if (on)
theThreadTimer->Start(THREAD_WAIT_TIME, TRUE);
else

theThreadTimer->Stop();

threads_go = on;
if (on)
do_this_time = 1;
}

An alternate architecture, which MrEd now uses, is to send the main thread into a loop, which blocks until an event
is ready to handle. MzScheme automatically takes care of running all threads, and it does so efficiently because the
main thread blocks on a file descriptor, as explainetBis.

8.4.1 Callbacks for Blocked Threads

Scheme threads are sometimes blocked on file descriptors, such as an input file or the X event socket.
Blocked non-main threads do not block the main thread, and therefore do not affect the event loop, so
scheme _check _threads is sufficient to implement this case correctly. However, it is wasteful to poll these de-
scriptors withscheme _check _threads when nothing else is happening in the application and when a lower-level
poll on the file descriptors can be installed. If the global function poistéeme wakeup _on _input is set, then

41

8.4. Threads in Embedded MzScheme with Event Loops 8. Threads

this case is handled more efficiently by turning off thread checking and issuing a “wakeup” request on the blocking
file descriptors throughcheme _wakeup _on _input

A scheme _wakeup _on_input procedure takes a pointer to an array of thieeset s (sortof) and returnwoid .
The scheme _wakeup _on _input does not sleep; it just sets up callbacks on the specified file descriptors. When
input is ready on any of those file descriptors, the callbacks are removextheahe wake _up is called.

For example, the X Windows version of MrEd formerly seheme _wakeup _on_input to thisMrEdNeedWakeup:

static Xtlnputld *scheme_cb_ids = NULL;
static int num_cbs;

static void MrEdNeedWakeup(void *fds)
{

int limit, count, i, p;
fd_set *rd, *wr, *ex;

rd = (fd_set *)fds;
wr = ((fd_set *)fds) + 1;
ex = ((fd_set *)fds) + 2;

limit = getdtablesize();

/* See if we need to do any work, really: */

count = 0;
for (i = 0; i < limit; i++) {
if (MZ_FD_ISSET(i, rd))
count++;
if (MZ_FD_ISSET(i, wr))
count++;
if (MZ_FD_ISSET(i, ex))
count++;
}
if (‘count)
return;

/* Remove old callbacks: */
if (scheme_cb_ids)
for (i = 0; i < num_cbs; i++)
notify_set_input_func((Notify_client)NULL, (Notify func)NULL,
scheme_cb_ids[i]);

num_cbs = count;
scheme_cb_ids = new int[num_cbs];

/* Install callbacks */
p =0
for (i = 0; i < limit; i++) {
if (MZ_FD_ISSET(i, rd))
scheme_cb_ids[p++] = XtAppAddinput(wxAPP_CONTEXT, i,
(XtPointer *)XtlnputReadMask,

1To ensure maximum portability, uséZ FD_XXXinstead ofFD_XXX

42

8. Threads 8.5. Sleeping by Embedded MzScheme

(XtInputCallbackProc)MrEdWakeUp, NULL);
if (MZ_FD_ISSET(i, wr))
scheme_cb_ids[p++] = XtAppAddinput(wxAPP_CONTEXT, i,
(XtPointer *)XtlnputWriteMask,
(XtinputCallbackProc)MrEdWakeUp, NULL);
if (MZ_FD_ISSET(i, ex))
scheme_cb_ids[p++] = XtAppAddinput(wxAPP_CONTEXT, i,
(XtPointer *)XtlnputExceptMask,
(XtInputCallbackProc)MrEdWakeUp,
NULL);
}
}

/* callback function when input/exception is detected: */
Bool MrEdWakeUp(XtPointer, int * Xtlnputld *)
{

int i;

if (scheme_cb_ids) {
/* Remove all callbacks: */
for (i = 0; i < num_cbs; i++)
XtRemovelnput(scheme_cb _ids][i]);

scheme_cb_ids = NULL;

/* “wake up” */
scheme_wake_up();

}

return FALSE;

8.5 Sleeping by Embedded MzScheme

When all MzScheme threads are blocked, MzScheme must “sleep” for a certain number of seconds or until external
input appears on some file descriptor. Generally, sleeping should block the main event loop of the entire application.
However, the way in which sleeping is performed may depend on the embedding application. The global function
pointerscheme _sleep can be set by an embedding application to implement a blocking sleep, although MzScheme
implements this function for you.

A scheme _sleep function takes two arguments:fimat and avoid * . The latter is really points to an array

of three ‘fd _set " records (one for read, one for write, and one for exceptions); these records are described further
below. If thefloat argument is non-zero, then tseheme _sleep function blocks for the specified number of
seconds, at most. Tresheme _sleep function should block until there is input one of the file descriptors specified

in the “fd _set ,” indefinitely if thefloat argument is zero.

The second argument techeme _sleep is conceptually an array of threfel _set records, but always use
scheme _get fdset to get anything other than the zeroth element of this array, and manipulate fdactet' ”
with MZFD_XXXinstead ofFD_XXX

The following functionmzsleep is an appropriatecheme _sleep function for most any Unix or Windows appli-
cation. (This is approximately the built-in sleep used by MzScheme.)

void mzsleep(float v, void *fds)

43

8.6. Library Functions 8. Threads

{
it (v) {
sleep(v);
} else {
int limit;
fd_set *rd, *wr, *ex;
ifdef WIN32
limit = O;
else
limit = getdtablesize();
endif
rd = (fd_set *)fds;
wr = (fd_set *)scheme_get_fdset(fds, 1);
ex = (fd_set *)scheme_get fdset(fds, 2);
select(limit, rd, wr, ex, NULL);
}
}

8.6 Library Functions

e Scheme_Object *scheme _thread(Scheme _Object * thunk

Creates a new thread, just likeread

e Scheme_Object *scheme _thread _w.details(Scheme _Object * thunk Scheme_Config * config
Scheme_Thread _Cell _Table * cells
Scheme_Custodian * cust
int suspendo_kill)

Like scheme thread , except that the created thread belongsustinstead of the current custodian, it uses

the givenconfig for its initial configuration, it usesells for its thread-cell table, and $uspendo_kill is non-

zero, then the thread is merely suspended when it would otherwise be killed (throughkdittieread or
custodian-shutdown-all).

The configargument is typically obtained througlecheme _current _config or scheme _extend _config . A
configis immutable, so different threads can safely use the same valuecellhargument should be obtained from
scheme_inherit _cells ;itis mutable, and a particular cell table should be used by only one thread.

e Scheme_Object *scheme _make_sema(long V)

Creates a new semaphore.

e void scheme _post _sema(Scheme Object * sema

Posts tassema

e int scheme _wait _sema(Scheme _Object * semaint try)

Waits onsema If try is not O, the wait can fail and O is returned for failure, otherwise 1 is returned.

44

8. Threads 8.6. Library Functions

e void scheme _thread _block(float sleeptime)

Allows the current thread to be swapped out in favor of other threaddeéfptime positive, then the current thread
will sleep for at leassleeptimeseconds.

After calling this function, a program should almost always saleme _making _progress next. The exception
is whenscheme _thread _block is called in a polling loop that performs no work that affects the progress of other
threads. In that casecheme _making _progress should be called immediately after exiting the loop.

See alsscheme _block _until , and see also thHeCHEMBJSEFUEL macro in§8.2

e void scheme _thread _block _enable _break(float sleeptime, int breakon)
Like scheme _thread _block , but breaks are enabled while blockindieak onis true.
e void scheme _swap_thread(Scheme _Thread * thread

Swaps out the current thread in favortbfead

e void scheme _break _thread(Scheme _Thread * thread

Sends a break signal to the given thread.

e int scheme _break _waiting(Scheme _Thread * thread

Returnsl if a break frombreak-thread orscheme _break _thread has occurred in the specified thread but has
not yet been handled.

e int scheme _block _until(Scheme _Ready _Fun f, Scheme_Needs Wakeup_Fun fdf,
Scheme_Object * data float sleep

The Scheme_Ready _Fun andScheme_Needs _Wakeup_Fun types are defined as follows:

typedef int (*Scheme_Ready_ Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs Wakeup_Fun)(Scheme_Object *data, void *fds);

Blocks the current thread unfilwith datareturns a true value. Thefunction is called periodically—at least once

per potential swap-in of the blocked thread—and it may be called multiple times even after it returns a true value. If
f with data ever returns a true value, it must continue to return a true valuesattdme _block _until returns.

The argument tb is the samelataas provided tacheme _block _until , anddatais ignored otherwise. (Theata
argument is not actually required to b&eaheme_Object* value, because it is only used bwndfdf.)

If MzScheme decides to sleep, then tliefunction is called to sets bits fids, conceptually an array of thrég _set s:
one or reading, one for writing, and one for exceptions. &ideeme get _fdset to get elements of this array, and
manipulate anftl _set ” with MZFD_XXXinstead of~D_XXX Under Windows, anfl _set ” can also accommodate
OS-level semaphores or other handlessdaeme _add _fd _handle .

Thefdf argument can bHULL, which implies that the thread becomes unblocked feadychanges its result to true)
only through Scheme actions, and never through external processes (e.g., through a socket or OS-level semaphore).

If sleepis a positive number, therscheme block _until polls f at least everysleep seconds, but

scheme_block _until does not return until returns a true value. The call stheme _block _until can re-
turn beforesleepseconds if returns a true value.

45

8.6. Library Functions 8. Threads

The return value fronscheme _block _until is the return value of its most recent callftowhich enableg to
return some information to trecheme _block _until caller.

Seet§8.3for information about restrictions on tieandfdf functions.

e int scheme _block _untii _enable _break(Scheme _Ready_Fun f, Scheme_Needs Wakeup_Fun fdf,
Scheme_Object * data float sleep
int breakon)

Like scheme _block _until , but breaks are enabled while blockinditakonis true.

e int scheme _block _until _unless(Scheme _Ready_Fun f, Scheme_Needs _Wakeup_Fun fdf,
Scheme_Object * data float sleep
Scheme_Object * unlessevt int breakon)

Like scheme _block _until _enable _break , but the function returns itinlessevt becomes ready, whenn-
lessevtis a port progress eventimplementedsioheme _progress _evt _via _get . Seescheme _make_input _port
for more information.

e void scheme _check _threads()

This function is periodically called by the embedding program to give background processes time to exedjitel See
for more information.

e void scheme _wake _up()

This function is called by the embedding program when there is input on an external file descript@.53eemore
information.

e void *scheme _get _fdset(void * fds int pog

Extracts anfd _set " from an array passed t&cheme _sleep , a callback foscheme _block _until , or an input
port callback forscheme _make_input _port .

e void scheme _add_fd _handle(void * h,void * fdsint repos)

Adds an OS-level semaphore (Windows) or other waitable handle (Windows) tldtheet ” fds When MzScheme
performs a select " to sleep onfds it also waits on the given semaphore or handle. This feature makes it possible
for MzScheme to sleep until it is awakened by an external process.

MzScheme does not attempt to deallocate the given semaphore or handle, asdigkae “” call using fds may
be unblocked due to some other file descriptor or handfddnlif repostis a true value, theh must be an OS-level
semaphore, and if theselect " unblocks due to a post dm thenhis reposted; this allows clients to trdds-installed

semaphores uniformly, whether or not a post on the semaphore was consunseteoy “ .

The scheme_add _fd _handle function is useful for implementing the second procedure passed to
scheme _wait _until , or for implementing a custom input port.

Under Unix and Mac OS X, this function has no effect.
e void scheme _add _fd _eventmask(void * fdsint mask

Adds an OS-level event type (Windows) to the set of types in fde set " fds When MzScheme performs a
“select "to sleep orfds it also waits on events of them specified type. This feature makes it possible for MzScheme

46

8. Threads 8.6. Library Functions

to sleep until it is awakened by an external process.

The event mask is only used when some handle is installedsefittme _add _fd _handle . This awkward restriction
may force you to create a dummy semaphore that is never posted.

Under Unix, and Mac OS X, this function has no effect.

e void scheme _add_evt(Scheme _Type type Scheme_Ready_Fun ready
Scheme_Needs _Wakeup_Fun wakeup Scheme_Wait _Filter _Fun filter
int canredirec)

The argument types are defined as follows:

typedef int (*Scheme_Ready_ Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs Wakeup_Fun)(Scheme_Object *data, void *fds);
typedef int (*Scheme_Wait_Filter_Fun)(Scheme_Object *data);

Extends the set of waitable objects favject-wait-multiple to those with the type tatype If filter is non-
NULL, it constrains the new waitable set to those objects for wihiligh returns a non-zero value.

Thereadyandwakeupfunctions are used in the same way was the argumestshieme _block _until

The canredirectargument should b@.

e void scheme _add_evt _through _sema(Scheme _Type type Scheme Wait _SemaFun getsema
Scheme_Wait _Filter _Fun filter)

Like scheme _add _evt , but for objects where waiting is based on a semaphore. Instaaddjandwakeupfunc-
tions, thegetsemdunction extracts a semaphore for a given object:
typedef Scheme_Object *(*Scheme_Wait_Sema_Fun)(Scheme_Object *data, int *repost);

If a successful wait should leave the semaphore waited, dbtsemashould setrepostto 0. Otherwise, the given
semaphore will be re-posted after a successful wagetsemdunction should almost always seepostto 1.

e void scheme _making _progress()

Notifies the scheduler that the current thread is not simply cadlaigeme _thread _block in a loop, but that it is
actually making progress.

e int scheme _tls _allocate()

Allocates a thread local storage index to be used sdtieme _tls _set andscheme _tls _get .
e void scheme _tls _set(int index void * V)

Stores a thread-specific value using an index allocatedsgtieme _tls _allocate

e void *scheme _tIs _get(int index

Retrieves a thread-specific value installed wattheme _tls _set . If no thread-specific value is available for the
given index,NULLIis returned.

e Scheme_Object *scheme _call _enable _break(Scheme _Prim * prim,int argc, Scheme_Object ** argv)

47

8.6. Library Functions 8. Threads

Calls prim with the givenargc andargv with breaks enabled. Tharim function can block, in which case it might

be interrupted by a break. Theim function should not block, yield, or check for breaks after it succeeds, where
“succeeds” depends on the operation. For exanipteaccept/enable-break is implemented by wrapping
this function around the implementationtop-accept ; thetcp-accept implementation does not block or yield
after it accepts a connection.

e Scheme_Object *scheme _make_thread _cell(Scheme _Object * defval int preserved

Creates a thread cell, likeake-thread-cell

e Scheme_Object *scheme _thread _cell _get(Scheme _Object * cell,
Scheme_Thread _Cell _Table * cellg

Accesses a thread-specific value from a thread cell, thkead-cell-ref . The second argument is typically
scheme _current _thread->cell _values to get a value for the current thread.

e void scheme _thread _cell _set(Scheme _Object * cell,
Scheme_Thread _Cell _Table * cells Scheme_Object * V)

Sets a thread-specific value for a thread cell, likeead-cell-set! . The second argument is typically
scheme _current _thread->cell _values to set a value for the current thread.

e void scheme _start _atomic()

Prevents MzScheme thread swaps wstileme _end _atomic orscheme _end _atomic _no_swap is called. Start-
atomic and end-atomic pairs can be nested.

e void scheme _end _atomic()

Ends an atomic region with respect to MzScheme threads. The current thread may be swapped out immediately (i.e.,
the call toscheme _end _atomic is assumed to be a safe point for thread swaps).

e void scheme _end _atomic _no_swap()

Ends an atomic region with respect to MzScheme threads, and also prevents an immediate thread swap. (In other
words, no MzScheme thread swaps will occur until a future safe point.)

48

9. Parameterizations

A parameterization iS a set of parameter values. Each thread has its own initial parameterization, which is extended
functionally and superseded by parameterizations that are attached to a particular continuation mark.

Parameterization information is stored in Scheme_Config record. For the currently executing thread,
scheme _current _config returns the current parameterization.

To obtain parameter valuesSaheme_Config is combined with the current threaBisheme_Thread _Cell _Table ,
as stored in the thread recordsll _values field.

Parameter values for built-in parameters are obtained and modified (for the current threasglsing _get _param
andscheme _set _param. Each parameter is stored aSeheme_Object * value, and the built-in parameters are
accessed through the following indices:

MZCONFIGENV— current-namespace (usescheme _get _env)
MZCONFIGNPUT_PORT— current-input-port
MZCONFIGOUTPUTPORT— current-output-port
MZCONFIGERRORPORT— current-error-port
MZCONFIGERROBDISPLAY_HANDLER— error-display-handler
MZCONFIGERRORPRINT_VALUEHANDLER— error-value->string-handler
MZCONFIGEXIT _HANDLER— exit-handler

MZCONFIGEXNHANDLER— current-exception-handler
MZCONFIGDEBUGNFO_HANDLER— debug-info-handler
MZCONFIGEVAL HANDLER— current-eval
MZCONFIGLOADHANDLER— current-load
MZCONFIGPRINT_HANDLER— current-print
MZCONFIGPROMPIREADHANDLER— current-prompt-read
MZCONFIGCANREADGRAPH— read-accept-graph
MZCONFIGCANREADCOMPILED— read-accept-compiled
MZCONFIGCANREADBOX— read-accept-box
MZCONFIGCANREADTYPE SYMBOI— read-accept-type-symbol
MZCONFIGCANREADPIPE _QUOTE— read-accept-bar-quote
MZCONFIGPRINT_GRAPH— print-graph

MZCONFIGPRINT_STRUCT— print-struct

MZCONFIGPRINT_BOX— print-box

MZCONFIGCASESENS— read-case-sensitive
MZCONFIGSQUARBBRACKETSARE PARENS— read-square-brackets-as-parens
MZCONFIGCURLYBRACESARE PARENS— read-curly-braces-as-parens
MZCONFIGERRORPRINT_WIDTH— error-print-width
MZCONFIGCONFIGBRANCHHANDLER— parameterization-branch-handler
MZCONFIGALLOWSET_UNDEFINED— allow-compile-set!-undefined
MZCONFIGCUSTODIAN— current-custodian
MZCONFIGUSECOMPILEDKIND — use-compiled-file-kinds
MZCONFIGLOADDIRECTORY-— current-load-relative-directory
MZCONFIGCOLLECTIONPATHS— current-library-collection-paths

49

9.1. Library Functions 9. Parameterizations

e MZCONFIGPORTPRINT_HANDLER— global-port-print-handler
e MZCONFIGLOADEXTENSIONHANDLER— current-load-extension

To get or set a parameter value for a thread other than the current onschesee get _thread _param and
scheme _set _thread _param, each of which takes &cheme_Thread _Cell _Table to use in resolving or set-
ting a parameter value.

When installing a new parameter wischeme _set _param, no check is performed on the supplied value to ensure
that it is a legal value for the parameter; this is the responsibility of the callsctedme _set _param. Note that
Boolean parameters should only be set to the vaftieand#f .

New primitive parameter indices are created witheme _new_param and implemented witacheme _make_parameter
andscheme _param _config

9.1 Library Functions

e Scheme_Object *scheme _get _param(Scheme _Config * configint paramid)

Gets the current value (for the current thread) of the parameter specifigtdy.id.

e Scheme_Object *scheme _set param(Scheme _Config * configint paramid, Scheme_Object * V)

Sets the current value (for the current thread) of the parameter specifpeddm.id.

e Scheme_Object *scheme _get _thread _param(Scheme _Config * config
Scheme_Thread _Cell _Table * cells
int paramid)

Like scheme _get _param, but using an arbitrary thread’s cell-value table.

e Scheme_Object *scheme _set _thread _param(Scheme _Config * config
Scheme_Thread _Cell _Table * cells
int paramid, Scheme_Object * V)

Like scheme _set _param, but using an arbitrary thread’s cell-value table.

e Scheme_Object *scheme _extend _config(Scheme _Config * baseint paramid, Scheme_Object * V)

Creates and returns a parameterization that extesmsiawvith a new valuey (in all threads) for the parametearamid.
Usescheme _install _config to make this configuration active in the current thread.

evoid scheme _install _config(Scheme _Config * config

Adjusts the current thread’s continuation marks to me&wefigthe current parameterization. Typically, this func-
tion is called afterscheme _push _continuation _frame to establish a new continuation frame, and then
scheme _pop _continuation _frame is called later to remove the frame (and thus the parameterization).

e Scheme_Thread _Cell _Table *scheme _inherit _cells(Scheme _Thread _Cell _Table * cellg

Creates a new thread-cell-value table, copying values for preserved thread celtefiom

e int scheme _new_param()

50

9. Parameterizations 9.1. Library Functions

Allocates a new primitive parameter index. This function must be céléfdrescheme _basic _env, so it is only
available to embedding applications (i.e., hot extensions).

e Scheme_Object *scheme _register _parameter(Scheme _Prim * function char * nameint exnid

Use this function instead of the other primitive-constructing functionsslikeeme _make_prim , to create a primitive
parameter procedure. See alktheme _param _config , below. This function is only available to embedding
applications (i.e., not extensions).

e Scheme_Object *scheme _param _config(char * name Scheme_Object * param
int argc, Scheme_Object ** argy,
int arity, Scheme_Prim * checkchar * expected
int isboo)

Call this procedure in a primitive parameter procedure to implement the work of getting or setting the parameter. The

nameargument should be the parameter procedure name; it is used to report erropgrdin@argument is a fixnum
corresponding to the primitive parameter index returnedgsdlyeme _new_param. The argc and argv arguments

should be the un-touched and un-tested arguments that were passed to the primitive parameter. Argument-checking is

performed withinscheme _param _config usingarity, check expectedandisboot

e If arity is non-negative, potential parameter values must be able to accept the specified number of arguments.

The checkandexpectecairguments should HeULL

e If checkis notNULL, itis called to check a potential parameter value. The arguments passeztiare always
1 and an array that contains the potential parameter valusbdblis O andcheckreturnsscheme false ,
then a type error is reported usingmeandexpected If isboolis 1, then a type error is reported only when
checkreturnsNULL and any noNULL return value is used as the actual value to be stored for the parameter.

e Otherwisejsboolshould be 1. A potential procedure argument is then treated as a Boolean value.

This function is only available to embedding applications (i.e., not extensions).

51

10. Continuation Marks

A mark can be attached to the current continuation frame usihgme _set _cont _mark. To force the creation of
a new frame (e.g., during a nested function call within your function) sukeme _push _continuation _frame ,
and then remove the frame wiicheme _pop _continuation _frame .

10.1 Library Functions

e void scheme _set _cont _mark(Scheme _Object * key, Scheme_Object * val)
Add/sets a continuation mark in the current continuation.
e void scheme _push _continuation _frame(Scheme _Cont _Frame Data * datg)

Creates a new continuation frame. Td&tarecord need not be initialized, and it can be allocated on the C stack.
Supplydatato scheme _pop _continuation _frame to remove the continuation frame.

e void scheme _pop_continuation _frame(Scheme _Cont _Frame _Data * datg)

Removes a continuation frame createdsbilfeme _pop _continuation _frame .

52

11. String Encodings

Thescheme _utf8 _decode function decodes ehar array as UTF-8 into either a UCSrdzchar array ora UTF-
16short array. Thescheme _utf8 _encode function encodes either a UCSs#kchar array or a UTF-1&hort
array into a UTF-&har array.

These functions can be used to check or measure an encoding or decoding without actually producing the result
decoding or encoding, and variations of the function provide control over the handling of decoding errors.

11.1 Library Functions

e int scheme _utf8 _decode(const unsigned char * s int startint end
mzchar * usint dstartint dend
long * ipos char utfl6 int permissivg

Decodes a byte array as UTF-8 to produce either Unicode code pointssiihenutf16is zero) or UTF-16 code
units intouscast toshort* (whenutf16is non-zero). No nul terminator is addedus

The result is non-negative when all of the given bytes are decoded, and the result is the length of the decoding (in
mzchar s orshort s). A-2 result indicates an invalid encoding sequence in the given bytes (possibly because the
range to decode ended mid-encoding), ar8 aesult indicates that decoding stopped because not enough room was
available in the result string.

Thestartandendarguments specify a range ®fo be decoded. Iéndis negativestrlen(s) is used as the end.

If usis NULL, then decoded bytes are not produced, but the result is valid as if decoded bytes were writtéstanithe
anddendarguments specify a target rangeuisi(in mzchar or short units) for the decoding; a negative value for
dendindicates that any number of bytes can be writtemgowhich is normally sensible only whersis NULL for
measuring the length of the decoding.

If iposis nonNULL, it is filled with the first undecoded index withim If the function result is non-negative, then
*iposis set to the ending index (with endif non-negativestrlen(s) otherwise). If the resultisl or -2, then
* iposeffectively indicates how many bytes were decoded before decoding stopped.

If permissivas non-zero, it is used as the decoding of bytes that are not part of a valid UTF-8 encoding. Thus, the
function result can be2 only if permissives 0.

This function does not allocate or trigger garbage collection.

e int scheme _utf8 _decode _as prefix(const unsigned char * s int startint end
mzchar * usint dstart int dend
long * ipos char utfl6 int permissive

Like scheme _utf8 _decode , but the resultis always the number of the decasedhar s orshort s. If a decoding
error is encountered, the result is still the size of the decoding up until the error.

53

11.1. Library Functions 11. String Encodings

e int scheme _utf8 _decode _all(const unsigned char * s, int len,
mzchar * usint permissivg

Like scheme _utf8 _decode , but with fewer arguments. The decoding produces UGfedhar s. If the bufferus
is nonNULL, it is assumed to be long enough to hold the decoding (which cannot be longer than the length of the
input, though it may be shorter). [énis negativestrlen(s) is used as the input length.

e int scheme _utf8 _decode _prefix(const unsigned char * s int len,
mzchar * usint permissivg

Like scheme _utf8 _decode , but with fewer arguments. The decoding produces UQSzdhar s. If the bufferus
must be nonNULL, and it is assumed to be long enough to hold the decoding (which cannot be longer than the length
of the input, though it may be shorter).lénis negativestrlen(s) is used as the input length.

In addition to the result cdcheme _utf8 _decode , the result can bel to indicate that the input ended with a partial
(valid) encoding. A1 result is possible even wherermissivds non-zero.

e mzchar *scheme _utf8 _decode _to _buffer(const unsigned char * s int len,
mzchar * buf,int blen)

Like scheme _utf8 _decode _all with permissiveasO, but if buf is not large enough (as indicated bien) to hold
the result, a new buffer is allocated. Unlike other functions, this one adds a nul terminator to the decoding result. The
function result is eithebuf (if it was big enough) or a buffer allocated wislcheme _malloc _atomic .

e mzchar *scheme _utf8 _decode _to _buffer _len(const unsigned char * s int len,
mzchar * buf,int blenlong * ulen

Like scheme _utf8 _decode _to _buffer , but the length of the result (not including the terminator) is placed into
ulenif ulenis nonNULL

e int scheme _utf8 _decode _count(const unsigned char * s int startint end
int * stateint mightcontinugint permissivé

Like scheme _utf8 _decode , but without producing the decodedzchar s, and always returning the number of
decodednzchar s up until a decoding error (if any). thight.continueis non-zero, the a partial valid encoding at the
end of the input is not decoded whparmissives also non-zero.

If stateis nonNULL, it holds information about partial encodings; it should be set to zero for an initial call, and then
passed back techeme _utf8 _decode along with bytes that extend the given input (i.e., without any unused partial
encodings). Typically, this mode makes sense only whight continueandpermissiveare non-zero.

e int scheme _utf8 _encode(const mzchar * usint startint end
unsigned char * s,int dstart char utfl6)

Encodes the given UCS-4 arraymfchar s (if utf16is zero) or UTF-16 array aghort s (if utf16is non-zero) into
s. Theendargument must be no less thsiart.

The arraysis assumed to be long enough to contain the encoding, but no encoding is writtemNiJLL. Thedstart
argument indicates a starting placesito hold the encoding. No nul terminator is added.to

The result is the number of bytes produced for the encoding (or that would be prodegesihonNULL). Encoding
never fails.

This function does not allocate or trigger garbage collection.

54

11. String Encodings 11.1. Library Functions

e int scheme _utf8 _encode _all(const mzchar * us int len,
unsigned char * g

Like scheme _utf8 _encode with O for start, lenfor end O for dstartandO for utf16.

e char *scheme _utf8 _encode _to _buffer(const mzchar * s int len,
char * buf,int blen)

Like scheme _utf8 _encode _all , but the length obuf is given, and if it is not long enough to hold the encoding,
a buffer is allocated. A nul terminator is added to the encoded array. The result iseitloeran array allocated with
scheme _malloc _atomic .

e char *scheme _utf8 _encode _to _buffer _len(const mzchar * s int len,
char * buf,int blenlong * rlen)

Like scheme _utf8 _encode _to _buffer , butthe length of the resulting encoding (not including a nul terminator)
is reported irrleniif it is non-NULL

e unsigned short *scheme _ucs4 _to _utfl6(const mzchar * text int start, int end
unsigned short * buf,int bufsize
long * ulenint termsize

Converts a UCS-4 encoding (the indicated rangéerf) to a UTF-16 encoding. Thendargument must be no less
thanstart

A result buffer is allocated ibuf is not long enough (as indicated bufsizg. If ulenis nonNULL, it is filled with the
length of the UTF-16 encoding. Thermsizeargument indicates a number giort s to reserve at the end of the
result buffer for a terminator (but no terminator is actually written).

e mzchar *scheme _utfl6 _to _ucs4(const unsigned short * text int start int end
mzchar * buf,int bufsize
long * ulenint termsizg

Converts a UTF-16 encoding (the indicated rang¢eaf to a UCS-4 encoding. Thendargument must be no less
thanstart

A result buffer is allocated ibuf is not long enough (as indicated byfsiz@. If ulenis nonNULL, it is filled with the
length of the UCS-4 encoding. Therm.sizeargument indicates a number mizchar s to reserve at the end of the
result buffer for a terminator (but no terminator is actually written).

55

12. Bignums, Rationals, and Complex Numbers

MzScheme supports integers of an arbitrary magnitude; when an integer cannot be represented as a fixnum (i.e., 30 or
62 bits plus a sign bit), then it is represented by the MzSchemestsipeme _bignum _type . There is no overlap in
integer values represented by fixnums and bignums.

Rationals are implemented by the typeheme _rational _type , composed of a numerator and a denominator.
The numerator and denominator fixnums or bignums (possibly mixed).

Complex numbers are implemented by the typeseme _complex _type andscheme _complex _izi _type ,
composed of a real and imaginary part. The real and imaginary parts will either be both flonums, both exact num-
bers (fixnums, bignums, and rationals can be mixed in any way), or one part will be exact 0 and the other part
will be a flonum. If the inexact part is inexact 0, the typestcheme _complex _izi _type , otherwise the type is
scheme _complex _type ; this distinction make it easy to test whether a complex number should be treated as a real
number.

12.1 Library Functions

e int scheme _is _exact(Scheme _Object * n)

Returnsl if nis an exact numbeg otherwise need not be a number).

e int scheme _is _inexact(Scheme _Object * n)

Returnsl if nis an inexact numbe@ otherwise fi need not be a number).

e Scheme_Object *scheme _make_bignum(long V)

Creates a bignum representing the integemhis can create a bignum that otherwise fits into a fixnum. This must
only be used to create temporary values for use withbigpum functions. Final results can be normalized with
scheme _bignum _normalize . Only normalized numbers can be used with procedures that are not specific to
bignums.

e Scheme_Object *scheme _make_bignum _from _unsigned(unsigned long)]

Like scheme _make_bignum , but works on unsigned integers.

e double scheme _bignum _to _double(Scheme _Object * n)

Converts a bignum to a floating-point number, with reasonable but unspecified accuracy.

e float scheme _bignum _to _float(Scheme _Object * n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme _bignum _to _double .

56

12. Bignums, Rationals, and Complex Numbers 12.1. Library Functions

e Scheme_Object *scheme _bignum _from _double(double d)

Creates a bignum that is close in magnitude to the floating-point nudnFére conversion accuracy is reasonable but
unspecified.

e Scheme_Object *scheme _bignum _from _float(float f)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme _bignum _from _double .

e char *scheme _bignum _to _string(Scheme _Object * n,int radix)

Writes a bignum into a newly allocated byte string.

e Scheme_Object *scheme _read _bignum(mzchar * str,int offsetint radix)

Reads a bignum frommzchar string, starting from positionffsetin str. If the string does not represent an integer,
thenNULL will be returned. If the string represents a number that fits in 31 bits, ttemmeme _integer _type
object will be returned.

e Scheme_Object *scheme _read _bignum _bytes(char * str,int offsetint radix)

Like scheme _read _bignum , but from a UTF-8-encoding byte string.

e Scheme_Object *scheme _bignum _normalize(Scheme _Object * n)

If nfits in 31 bits, then &cheme _integer _type object will be returned. Otherwisa,is returned.

e Scheme_Object *scheme _make_rational(Scheme _Object * n, Scheme_Object * d)

Creates a rational from a numerator and denominator.nfdred parameters must be fixnums or bignums (possibly
mixed). The resulting will be normalized (thus, a bignum or fixnum might be returned).

e double scheme _rational _to _double(Scheme _Object * n)
Converts the rational to adouble .
o float scheme _rational _to _float(Scheme _Object * n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme _rational _to _double .

e Scheme_Object *scheme _rational _numerator(Scheme _Object * n)
Returns the numerator of the ratiomal

e Scheme_Object *scheme _rational _denominator(Scheme _Object * n)
Returns the denominator of the ratiomal

e Scheme_Object *scheme _rational _from _double(double d)

Converts the givedouble into a maximally-precise rational.

57

12.1. Library Functions 12. Bignums, Rationals, and Complex Numbers

e Scheme_Object *scheme _rational _from _float(float d)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme _rational _from _double .

e Scheme_Object *scheme _make_complex(Scheme _Object * r, Scheme_Object * i)

Creates a complex number from real and imaginary partsr Hmeli arguments must be fixnums, bignums, flonums,
or rationals (possibly mixed). The resulting number will be normalized (thus, a real number might be returned).

e Scheme_Object *scheme _complex _real _part(Scheme _Object * n)
Returns the real part of the complex number
e Scheme_Object *scheme _complex _imaginary _part(Scheme _Object * n)

Returns the imaginary part of the complex numier

58

13. Ports and the Filesystem

Ports are represented as Scheme values with thesgpesne _input _port _type andscheme _output _port _type .
The functionscheme _read takes an input port value and returns the next S-expression from the port. The function
scheme _write takes an output port and a value and writes the value to the port. Other standard low-level port
functions are also provided, suchsheme _getc .

File ports are created wittscheme _make_ file _input _port and scheme_make file _output _port ;
these functions take &ILE * file pointer and return a Scheme port. Strings are read or writ-
ten with scheme_make byte _string _input _port , which takes a nul-terminated byte string, and
scheme _make_byte _string _output _port , which takes no arguments. The contents of a string output port
are obtained witlscheme _get _byte _string _output

Custom ports, with arbitrary read/write handlers, are created vgitheme _make_input _port and
scheme _make_output _port .

When opening a file for any reason using a name provided from Schemachisme expand _filename to
normalize the filename and resolve relative paths.

13.1 Library Functions

e Scheme_Object *scheme _read(Scheme _Object * port)

Reads the next S-expression from the given input port.

e void scheme _write(Scheme _Object * obj, Scheme_Object * port)

write s the Scheme valugbj to the given output port.

evoid scheme _write _w.max(Scheme _Object * obj, Scheme_Object * port,int n)

Like scheme _write , but the printing is truncated to bytes. (If printing is truncated, the last bytes are printed as

“)

e void scheme _display(Scheme _Object * obj, Scheme_Object * port)

display sthe Scheme valuabjto the given output port.

e void scheme _display _w.max(Scheme _Object * obj, Scheme_Object * port,int n)

Like scheme _display , but the printing is truncated to bytes. (If printing is truncated, the last three bytes are
printed as “.".)

e void scheme _write _byte _string(char * str,long len, Scheme_Object * port)

59

13.1. Library Functions 13. Ports and the Filesystem

Writeslen bytes ofstr to the given output port.
e void scheme _write _char _string(mzchar * str,long len, Scheme_Object * port)
Writeslen characters o$tr to the given output port.
e long scheme _put _byte _string(const char * who, Scheme_Object * port,
char * str,long d,long len,

int rarely_blocK)

Writeslenbytes ofstr, starting with thedth character. Bytes are written to the given output port, and errors are reported
as fromwha

If rarely_blockis 0, the write blocks until allen bytes are written, possibly to an internal bufferrdfely_blockis 2,
the write never blocks, and written bytes are not bufferedarly_blockis 1, the write blocks only until at least one
byte is written (without buffering) or until part of an internal buffer is flushed.

Supplying0 for len corresponds to a buffer-flush requestdfely_blockis 2, the flush request is non-blocking, and if
rarely_blockis 0, it is blocking. (Ararely_blockof 1 is the same a8 in this case.)

Theresultisl if no bytes are written frorstr and unflushed bytes remain in the internal buffer. Otherwise, the return
value is the number of written characters.

e long scheme _put _char _string(const char * who, Scheme_Object * port,
char * str,long d,long len)

Like scheme _put _byte _string , but for amzchar string, and without the non-blocking option.
e char *scheme _write _to _string(Scheme _Object * obj,long * len)

Prints the Scheme valudbj usingwrite to a newly allocated string. Ienis notNULL, * lenis set to the length of
the bytes string.

e void scheme _write _to _string _w.max(Scheme _Object * obj,long * len,int n)

Like scheme _write _to _string , but the string is truncated to bytes. (If the string is truncated, the last three

bytes are “.".)
e char *scheme _display _to _string(Scheme _Object * obj,long * len)

Prints the Scheme valuwbj usingdisplay to a newly allocated string. IEnis notNULL * lenis set to the length
of the string.

evoid scheme _display _to _string _w.max(Scheme _Object * obj,long * len,int n)

Like scheme _display _to _string , but the string is truncated tobytes. (If the string is truncated, the last three
bytes are “.”.)

e void scheme _debug _print(Scheme _Object * obj)
Prints the Scheme valwbj usingwrite to the main thread’s output port.

e void scheme _flush _output(Scheme _Object * port)

60

13. Ports and the Filesystem 13.1. Library Functions

If portis a file port, a buffered data is written to the file. Otherwise, there is no effedtmust be an output port.
e int scheme _get _byte(Scheme _Object * port)
Get the next byte from the given input port. The result cakO¢:
e int scheme _getc(Scheme _Object * port)
Get the next character from the given input port (by decoding bytes as UTF-8). The resultE@if:be
e int scheme _peek byte(Scheme _Object * port)
Peeks the next byte from the given input port. The result caa®e
e int scheme _peekc(Scheme _Object * port)
Peeks the next character from the given input port (by decoding bytes as UTF-8). The resulE¢aih be
e int scheme _peek _byte _skip(Scheme _Object * port, Scheme_Object * skip
Like scheme _peek _byte , but with a skip count. The result can BOF
e int scheme _peekc _skip(Scheme _Object * port, Scheme_Object * skip)
Like scheme _peekc , but with a skip count. The result can BOF
e long scheme _get _byte _string(const char * who, Scheme_Object * port,
char * buffer,int offsetlong size
int onlyavail, int peek Scheme_Object * peekskip
Gets multiple bytes at once from a port, reporting errors with the nahte Thesizeargument indicates the number
of requested bytes, to be put into theffer array starting abffset The return value is the number of bytes actually
read, orEOFif an end-of-file is encountered without reading any bytes.
If only_avail is 0, then the function blocks untdizebytes are read or an end-of-file is reachecbrify_avail is 1, the
function blocks only until at least one byte is readoffly_avail is 2, the function never blocks. bnly_avail is -1 ,

the function blocks only until at least one byte is read but also allows breaks (with the guarantee that bytes are read or
a break is raised, but not both).

If peekis non-zero, then the port is peeked instead of read. pEekskip argument indicates a portion of the input
stream to skip as a non-negative, exact integer (fixnum or bignum). In this caselyaavail value of1 means to
continue the skip until at least one byte can be returned, even if it means multiple blocking reads to skip bytes.

If peekis zero, therpeekskipshould be eitheNULL (which means zero) or the fixnum zero.
e long scheme _get _char _string(const char * who, Scheme_Object * port,
char * buffer,int offseflong size
int peek Scheme_Object * peekskip)

Like scheme _get _byte _string , but for characters (by decoding bytes as UTF-8), and without the non-blocking
option.

e long scheme _get _bytes(Scheme _Object * port,long size char * buffer,int offse)

61

13.1. Library Functions 13. Ports and the Filesystem

For backward compatibility: callscheme _get _byte _string in essentially the obvious way wittnly_avail asO;
if sizeis negative, then it readsizebytes withonly_avail as1.

e void scheme _ungetc(int ch, Scheme_Object * port)

Puts the byteh back as the next character to be read from the given input port. The character need not have been read
from port, andscheme _ungetc can be called to insert up to five characters at the stgrodf

Use scheme _get _byte followed by scheme_ungetc only when your program will certainly call
scheme _get _byte again to consume the byte. Otherwise, asheme _peek _byte , because some a port may
implement peeking and getting differently.

e int scheme _byte _ready(Scheme _Object * port)

Returns 1 if a call techeme _get _byte is guaranteed not to block for the given input port.

e int scheme _char _ready(Scheme _Object * port)

Returns 1 if a call techeme _getc is guaranteed not to block for the given input port.

e void scheme _need _wakeup(Scheme _Object * port, void * fds

Requests that appropriate bits are sdtsto specify which file descriptors(s) the given input port reads frddsi$
sortof a pointer to afd _set struct; se€8.4.1)

e long scheme _tell(Scheme _Object * port)

Returns the current read position of the given input port, or the current file position of the given output port.
e long scheme _tell _line(Scheme _Object * port)

Returns the current read line of the given input port. If lines are not counted, -1 is returned.

e void scheme _count _lines(Scheme _Object * port)

Turns on line-counting for the given input port. To get accurate line counts, call this function immediately after creating
a port.

e long scheme _set file _position(Scheme _Object * port,long po9

Sets the file position of the given input or output port (from the start of the file). If the port does not support position
setting, an exception is raised.

e void scheme _close _input _port(Scheme _Object * port)
Closes the given input port.

evoid scheme _close _output _port(Scheme _Object * port)
Closes the given output port.

e int scheme _get _port _file _descriptor(Scheme _Object * port, long * fd)

62

13. Ports and the Filesystem 13.1. Library Functions

Fills * fd with a file-descriptor value foport if one is available (i.e., the port is a file-stream port and it is not closed).
The result is non-zero if the file-descriptor value is available, zero otherwise. Under Windows, a “file dscriptor” is a
file HANDLE

e int scheme _get _port _socket(Scheme _Object * port,long * 9)

Fills * swith a socket value foport if one is available (i.e., the port is a TCP port and it is not closed). The result is
non-zero if the socket value is available, zero otherwise. Under Windows, a socket value HfB@GHKET

e Scheme_Object *scheme _make_port _type(char * namg
Creates a new port subtype.

e Scheme_lnput _Port *scheme _make_input _port(Scheme _Object * subtype
void * data
Scheme_Object * name
Scheme_Get _String _Fun getbytesfun,
Scheme_Peek _String _Fun peekbytesfun,
Scheme_Progress _Evt _Fun progressevtfun,
Scheme_Peeked _Read_Fun peekedread fun,
Scheme_In _Ready _Fun char_readyfun,
Scheme_Close _Input _Fun closefun,
Scheme_Need_Wakeup_Input _Fun needwakeupfun,
int mustclosg

Creates a new input port with arbitrary control functions. Hubtypeis an arbitrary value to distinguish the
port's class. The pointedata will be installed as the port's user data, which can be extracted/set with the
SCHEMENPORT.VAL macro. Thenameobject is used as the port’s name (fiject-name and as the default
source name faread-syntax).

The functions are as follows:

e long (* getbytesfun)(Scheme _Input _Port * port, char * buffer, long offset long size int
nonblock Scheme _Object * unles3 — Reads bytes intbuffer, starting fromoffset up tosizebytes (i.e.,
bufferis at leasbffsett-sizelong). If nonblockis 0, then the function can block indefinitely, but it should return
when at least one byte of data is availablendhblockis 1, the function should never block. ffonblockis 2,

a port in unbuffered mode should return only bytes previously forced to be buffered; other ports should treat a
nonblockof 2 like 1. If nonblockis -1 , the function can block, but should enable breaks while blocking. The
function should retur® if no bytes are ready in non-blocking mode. It should reta®Fif an end-of-file is
reached (and no bytes were read ibtdfer). Otherwise, the function should return the number of read bytes.
The function can raise an exception to report an error.

Theunlessargument will be norNULL only whennonblockingis non-zero (except as noted below), and only

if the port supports progress events. ulilessis nonNULL, it will be a progress event specific to the port.
Thegetbytesfunfunction should returrsCHEMBUNLESSREADYinstead of reading bytes ifnlessbecomes
ready before bytes can be read. In particulet, bytesfun should checlkunlessbefore taking any action, and

it should checlunlessafter any operation that may allow Scheme thread swaps. If the read must block, then it
should unblock iunlesshecomes ready.

If scheme _progress _evt via _get is used for progressevtfun, then unless can be norNULL
even whennonblockingis 0. In all modes, getbytesfun must call scheme_unless _ready to
check unlessevt Furthermore, after any potentially thread-swapping operatigetbytesfun must
call scheme wait _input _allowed , because another thread may be attempting to commit, uand
lessevt must be checked aftescheme _wait _input _allowed returns. To block, the port should
use scheme _block _until _unless instead ofscheme _block _until . Finally, in blocking mode,

63

13.1. Library Functions 13. Ports and the Filesystem

getbytesfun must return afterimmediately reading data, without allowing a Scheme thread swap.

e long (* peekbytesfun)(Scheme _Input _Port * port, char * buffer, long offset long size
Scheme_Object * skip int nonblock Scheme _Object * unlessevi — Can beNULLto use a de-
fault implementation of peeking that usgst bytesfun. Otherwise, the protocol is the same asdet bytesfun,
except that an extrakip argument indicates the number of input elements to skip gkiptdoes not apply to
buffer). Theskipvalue will be a non-negative exact integer, either a fixnum or a bignum.

e Scheme_Object *(* progressevtfun)(Scheme _Input _Port * port) — Called to obtain a progress
event for the port, such as fqort-progress-evt . This function can beNULL if the port does not
support progress events. Upeogress _evt via _get to obtain a default implementation, in which case
peekedread fun should bepeeked read _via _get , andgetbytesfun andpeekbytesfun should handlein-
lessas described above.

e int (* peekedeadfun)(Scheme _Input _Port * port, long amount Scheme _Object * unlessevt,
Scheme_Object * targetch) — Called to commit previously peeked bytes, just like the sixth argument
to make-input-port . Usepeeked read via _get for the default implementation of commits when
progressevtfunis progress _evt via _get .

e int (* charreadyfun)(Scheme _Input _Port * port) — Returnsl when a non-blockingjetbytesfun
will return bytes or arEOF

e void (* closefun)(Scheme _Input _Port * port) — Called to close the port. The port is not considered
closed until the function returns.

e void (* needwakeupfun)(Scheme _Input _Port * port, void * fds) — Called when the port is
blocked on a readneedwakeupfun should set appropriate bits fids to specify which file descriptor(s) it
is blocked on. Thdédsargument is conceptually an array of thfde_set structs (one for read, one for write,
one for exceptions), but manipulate this array ussiobeme _get fdset to get a particular element of the
array, and usMZFD_XXXinstead ofFD_XXXto manipulate a singlefd _set ". Under Windows, the first
“fd _set " can also contain OS-level semaphores or other handleschiame _add _fd _handle .

If mustcloseis non-zero, the new port will be registered with the current custodianclasdfunis guaranteed to be
called before the port is garbage-collected.

Although the return type ocheme_make_input _port is Scheme_lnput _Port * , it can be cast into a
Scheme_Object *

e Scheme_Output _Port *scheme _make_output _port(Scheme _Object * subtype
void * data
Scheme_Object * name
Scheme Write _String _Evt _Fun write_bytesevtfun,
Scheme_ Write _String _Fun write_bytesfun,
Scheme_Out _Ready _Fun char_readyfun,
Scheme_Close _Output _Fun closefun,
Scheme_Need_Wakeup_Output _Fun needwakeupfun,
Scheme_Write _Special _Fun write_specialfun,
Scheme_ Write _Special _Evt _Fun write_specialevtfun,
Scheme_Write _Special _Fun write_specialfun,
int mustclose

Creates a new output port with arbitrary control functions. Fhbtypeis an arbitrary value to distinguish the

port’s class. The pointedata will be installed as the port's user data, which can be extracted/set with the
SCHEMBEDUTPORTNAL macro. Thenameobject is used as the port’'s name.

The functions are as follows:

64

13. Ports and the Filesystem 13.1. Library Functions

e long (* write_bytesevtfun)(Scheme _Output _Port * port, const char * buffer, long offset long
siz§ — Returns an event that writes updizebytes atomically when event is chosen in a synchronization. Sup-
ply NULLIf bytes cannot be written atomically, or supglgheme _write _evt _via _write to use the default
implementation in terms ofrrite _bytes _fun (with rarely_blockas?).

e long (* write_bytesfun)(Scheme _Output _Port * port, const char * buffer, long offset long
size int rarely_block int enablebreak — Write bytes frombuffer, starting fromoffset up to size
bytes (i.e.bufferis at leasbffset-sizelong). If rarely_blockis 0, then the function can block indefinitely, and
it can buffer output. Ifrarely_blockis 2, the function should never block, and it should not buffer output. If
rarely_blockis 1, the function should not buffer data, and it should block only until writing at least one byte,
either frombuffer or an internal buffer. The function should return the number of bytes froffer that were
written; whenrarely_blockis non-zero and bytes remain in an internal buffer, it should returnThesizeargu-
ment can b® whenrarely_blockis O for a blocking flush, and it can lif rarely_blockis 2 for a non-blocking
flush. If enablebreakis true, then it should enable breaks while blocking. The function can raise an exception
to report an error.

e int (* charreadyfun)(Scheme _Output _Port * port) — Returnsl when a non-blockingrite_bytesfun
will write at least one byte or flush at least one byte from the port’s internal buffer.

e void (* closefun)(Scheme _Output _Port * port) — Called to close the port. The port is not consid-
ered closed until the function returns. This function is allowed to block (usually to flush a buffer) unless
scheme _close _should _force _port _closed returns a non-zero result, in which case the function must
return without blocking.

e void (* needwakeupfun)(Scheme _Output _Port * port, void * fds) — Called when the port is
blocked on a writeneedwakeupfun should set appropriate bits fds to specify which file descriptor(s) it
is blocked on. Thdédsargument is conceptually an array of thfde set structs (one for read, one for write,
one for exceptions), but manipulate this array usscgeme _get _fdset to get a particular element of the
array, and usMZFD_XXXinstead ofFD_XXXto manipulate a singlefd _set . Under Windows, the first
“fd _set " can also contain OS-level semaphores or other handleschiame _add _fd _handle .

e int (* write_specialevtfun)(Scheme _Output _Port * port, Scheme Object * v) — Returns an
event that writess atomically when event is chosen in a synchronization. SupflL if specials cannot
be written atomically (or at all), or supplscheme _write _special _evt _via _write _special to use
the default implementation in termswfite _special _fun (with nonblockasl).

e int (* write_specialfun)(Scheme _Output _Port * port, Scheme _Object * v, int nonblock —

Called to write the special valudor write-special (whennon.blockis 0) or write-special-avail*
(when nonblock is 1). If NULL is supplied instead of a function pointer, themite-special and
write-special-avail* produce an error for this port.

If mustcloseis non-zero, the new port will be registered with the current custodianclasdfunis guaranteed to be
called before the port is garbage-collected.

Although the return type ofcheme _make_output _port is Scheme_Output _Port * , it can be cast into a
Scheme_Object *

e Scheme_Object *scheme _make_file _input _port(FILE * fp)
Creates a Scheme input file port from an ANSI C file pointer. The file must never block on reads.
e Scheme_Object *scheme _open _input _file(const char * filenameconst char * who)

Opensfilenamefor reading. In an exception is raised, the exception messagevisess the name of procedure that
raised the exception.

65

13.1. Library Functions 13. Ports and the Filesystem

e Scheme_Object *scheme _make_named.-file _input _port(FILE * fp, Scheme_Object * namg

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on readsariibargument
is used as the port’s name.

e Scheme_Object *scheme _open _output _file(const char * filenameconst char * who)

Opendilenamefor writing in 'truncate/replace mode. If an exception is raised, the exception messagentsess the
name of procedure that raised the exception.

e Scheme_Object *scheme _make_ file _output _port(FILE * fp)
Creates a Scheme output file port from an ANSI C file pointer. The file must never block on writes.

e Scheme_Object *scheme _make_fd _input _port(int fd, Scheme_Object * name
int regfile int win_textmodég

Creates a Scheme input port for a file descrifiorUnder Windowsfd can be eHANDLEHor a stream, and it should
never be a file descriptor from the C library or a WinSock socket.

Thenameobject is used for the port’'s name. Specify a non-zero valugefgdileonly if the file descriptor corresponds
to a regular file (which implies that reading never blocks, for example).

Under Windowswin_textmodecan be non-zero to make trigger auto-conversion (at the byte level) of CRLF combina-
tions to LF.

Closing the resulting port closes the file descriptor.

Instead of calling botlscheme make_fd _input _port andscheme_make_fd _output _port on the same file
descriptor, calscheme _make_fd _output _port with a non-zero last argument. Otherwise, closing one of the ports
causes the other to be closed as well.

e Scheme_Object *scheme _make_fd _output _port(int fd, Scheme_Object * name
int regfile int win_textmodeint readtoo)

Creates a Scheme output port for a file descriftotJnder Windowsfd can be aHANDLEor a stream, and it should
never be a file descriptor from the C library or a WinSock socket.

Thenameobject is used for the port’'s name. Specify a non-zero valugefdileonly if the file descriptor corresponds
to a regular file (which implies that reading never blocks, for example).

Under Windowswin_textmodecan be non-zero to make trigger auto-conversion (at the byte level) of CRLF combina-
tionsto LF.

Closing the resulting port closes the file descriptor.

If read toois non-zero, the function produces multiple values &8) instead of a single port. The first result is an
input port forfd, and the second is an output port fdr These ports are connected in that the file descriptor is closed
only when both of the ports are closed.

e Scheme_Object *scheme _make_byte _string _input _port(char * str)

Creates a Scheme input port from a byte string; successadchar s on the port return successive bytes in the
string.

66

13. Ports and the Filesystem 13.1. Library Functions

e Scheme_Object *scheme _make_byte _string _output _port()

Creates a Scheme output port; all writes to the port are kept in a byte string, which can be obtained with
scheme _get _byte _string _output

e char *scheme _get _byte _string _output(Scheme _Object * port)

Returns (in a newly allocated byte string) all data that has been written to the given string output port so far. (The
returned string is nul-terminated.)

e char *scheme _get sized _byte _string _output(Scheme _Object * port,long * len)

Returns (in a newly allocated byte string) all data that has been written to the given string output port so far and fills
in *len with the length of the string in bytes (not including the nul terminator).

e void scheme _pipe(Scheme _Object ** read, Scheme_Object ** write)

Creates a pair of ports, settifigead and* write; data written to* write can be read back out sfread. The pipe can
store arbitrarily many unread characters,

e void scheme _pipe _with _limit(Scheme _Object ** read Scheme_Object ** write,int limit)

Like scheme _pipe islimit isO. If limit is positive, creates a pipe that stores at rliost unread characters, blocking
writes when the pipe is full.

e int scheme _file _exists(char * name

Returns 1 if a file by the given name exists, 0 otherwis@alhespecifies a directory, FALSE is returned. Time
should be already expanded.

e int scheme _directory _exists(char * name
Returns 1 if a directory by the given name exists, 0 otherwise.nBineeshould be already expanded.

e char *scheme _expand _flename(const char * nameint len, const char * whergint * expanded
int check}

Expands the pathnanmame resolving relative paths with respect to the current directory parameter. Under Unix, this
expands A" into a user's home directory. ThHen argument is the length of the input string; if it is -1, the string is
assumed to be null-terminated. Tivaereargument is used to raise an exception if there is an error in the filename; if
this isNULL, an error is not reported adlULL is returned instead. Bxpandeds notNULL, *expandeds set to 1 if

some expansion takes place, or 0 if the input name is simply returned.

If guards is not 0, then scheme _security _check file (see §15) is called with name where and
checks(which implies thatwhere should never beNULL unlessguardsis 0). Normally, guards should be
SCHEMESUARLCFILE _EXISTS at a minimum. Note that a failed access check will result in an exception.

e char *scheme _expand _string _filename(Scheme _Object * nameconst char * whereint * expanded
int check$

Like scheme _expand _string , but given anamethat can be a character string or a path value.

e Scheme_Object *scheme _char _string _to _path(Scheme _Object *)

67

13.1. Library Functions 13. Ports and the Filesystem

Converts a Scheme character string into a Scheme path value.

e Scheme_Object *scheme _path _to _char _string(Scheme _Object * 9)

Converts a Scheme path value into a Scheme character string.

e Scheme_Object *scheme _make_path(char * byte3

Makes a path value given a byte string. Theesstring is copied.

e Scheme_Object *scheme _make_path _without _copying(char * byteg

Like scheme _make_path , but the string is not copied.

e Scheme_Object *scheme _make_sized _path(char * byteslong len,int copy)

Makes a path whose byte form has dige A copy of bytesis made ifcopyis not 0. The strindpytesshould contain
len bytes, and ittopyis zero,bytesmust have a nul terminator in addition.Ié&n is negative, then the nul-terminated
length ofbytesis used for the length.

e Scheme_Object *scheme _make_sized _path(char * byteslong d,long len,int copy)

Like scheme _make_sized _path , except thden bytes start from positiod in bytes If d is non-zero, therwopy
must be non-zero.

e char *scheme _build _macfilename(FSSpec * spegint isdir)

Mac OS X only: Converts aRSSpec record (defined by Mac OS X) into a pathname stringspéccontains only
directory information (via th@#RefNum andparlD fields),isdir should bel, otherwise it should b8.

e int scheme _mac_path _to _spec(const char * filenameFSSpec * speclong * type

Mac OS X only: Converts a pathname into8Spec record (defined by Mac OS X), returnirgif successful and
0 otherwise. litypeis notNULL andfilenameis a file that existstypeis filled with the file’s four-character Mac OS X
type. Iftypeis notNULL andfilenameis not a file that existdypeis filled with O.

e char *scheme _os _getcwd(char * buf,int buflenint * actlenint noexn

Gets the current working directory according to the operating system. This is separate from MzScheme’s current
directory parameter.

The directory path is written intbuf, of lengthbuflen if it fits. Otherwise, a new (collectable) string is allocated for
the directory path. Iactlenis notNULL, *actlenis set to the length of the current directory pathndfexnis no 0,
then an exception is raised if the operation fails.

e int scheme _os _setcwd(char * buf,int noexr)

Sets the current working directory according to the operating system. This is separate from MzScheme’s current
directory parameter.

If noexnis not 0, then an exception is raised if the operation fails.

e char *scheme _format(mzchar * formatint flenint argc, Scheme_Object ** argv,long * rlen)

68

13. Ports and the Filesystem 13.1. Library Functions

Creates a string like MzSchemdarmat procedure, using the format strifigrmat (of lengthflen) and the extra
arguments specified @rgc andargv. If rlenis notNULL, * rleniis filled with the length of the resulting string.

e void scheme _printf(char * format int flen int argc, Scheme_Object ** argv)

Writes to the current output port like MzSchemptintf procedure, using the format strifigrmat (of lengthflen)
and the extra arguments specifiecangc andargv.

e char *scheme _format _utf8(char * formatint flenint argc, Scheme_Object ** argy, long * rlen)
Like scheme _format , but takes a UTF-8-encoding byte string.

evoid scheme _printf _utf8(char * formatint flenint argc, Scheme_Object ** argv)

Like scheme _printf | but takes a UTF-8-encoding byte string.

e int scheme _close _should _force _port _closed()

This function must be called by the close function for a port createdseiteme _make_output _port .

69

14. Structures

A new Scheme structure type is created wsitheme _make_struct _type . This creates the structure type,

but does not generate the constructor, etc. procedures. sdifteme _make_struct _values function takes a
structure type and creates these procedures. stheme_make_struct _names function generates the stan-

dard structure procedures names given the structure type's name. Instances of a structure type are created with
scheme _make_struct _instance and the functiorscheme_is _struct _instance tests a structure’s type.
Thescheme _struct _ref andscheme _struct _set functions access or modify a field of a structure.

The the structure procedure values and names generasetiéme _make_struct _values andscheme_make_struct _names
can be restricted by passing any combination of these flags:

SCHEMESTRUCTNQTYPE— the structure type value/name is not returned.
SCHEMESTRUCTNQCONSTR- the constructor procedure value/name is not returned.
SCHEMESTRUCTNQPRED- the predicate procedure value/name is not returned.
SCHEMETRUCTNQGET— the selector procedure values/names are not returned.
SCHEMESTRUCTNQSET — the mutator procedure values/names are not returned.
SCHEMESTRUCTGENGET— the field-independent selector procedure value/name is returned.
SCHEMESTRUCTGENSET — the field-independent mutator procedure value/name is returned.

When all values or names are returned, they are returned as an array with the following order: structure type, construc-
tor, predicate, first selector, first mutator, second selector, etc., field-independent select, field-independent mutator.
When particular values/names are omitted, the array is compressed accordingly.

14.1 Library Functions

e Scheme_Object *scheme _make_struct _type(Scheme _Object * basename Scheme_Object * supertype
Scheme_Object * inspectorint numinit_fields
int numautafields Scheme_Object * autaval,
Scheme_Object * properties Scheme_Object * guard)

Creates and returns a new structure type. Basenameargument is used as the name of the new structure type; it
must be a symbol. Theupertypeargument should blMULL or an existing structure type to use as the super-type. The
inspectorargument should bBIULL or an inspector to manage the type. Thaminit_fieldsargument specifies the
number of fields for instances of this structure type that have corresponding constructor arguments. (If a super-type
is used, this is the number of additional fields, rather than the total numberfufhauto fieldsargument specifies

the number of additional fields that have no corresponding constructor arguments, and they are initialitesdb
Thepropertiesargument is a list of property-value pairs. Tdgard argument is either NULL or a procedure to use as

a constructor guard.

e Scheme_Object **scheme _make_struct _names(Scheme _Object * basename Scheme_Object * field.names
int flagsint * countout)

Creates and returns an array of standard structure value name symbolsmsEmameargument is used as the name
of the structure type; it should be the same symbol passed to the associatedschéinte _make_struct _type .

70

14. Structures 14.1. Library Functions

Thefield.namesargument is a (Scheme) list of field name symbols. fldmgsargument specifies which names should
be generated, anddbuntoutis notNULL, countoutis filled with the number of hames returned in the array.

e Scheme_Object **scheme _make_struct _values(Scheme _Object * structtype

Scheme_Object ** names

int countint flag9
Creates and returns an array of the standard structure value and procedure vasitescftype The structtype
argument must be a structure type value createdcdyeme _make_struct _type . The namesprocedure must be
an array of name symbols, generally the array returneddmeme _make_struct _names. Thecountargument
specifies the length of theamesarray (and therefore the number of expected return values) arfthtfsargument
specifies which values should be generated.

e Scheme_Object *scheme _make_struct _instance(Scheme _Object * structtypeint argc,
Scheme_Object ** argv)

Creates an instance of the structure tgpecttype Theargcandargvarguments provide the field values for the new
instance.

e int scheme _is _struct _instance(Scheme _Object * structtype Scheme_Object * V)
Returns 1 ifv is an instance odtructtypeor O otherwise.

e Scheme_Object *scheme _struct _ref(Scheme _Object * s int n)

Returns thanth field (counting from 0) in the structuse

e void scheme _struct _set(Scheme _Object * s,int n, Scheme_Object * V)

Sets theith field (counting from 0) in the structusgto v.

71

15. Security Guards

Before a primitive procedure accesses the filesystem or creates a network connection, it should first consult the current
security guard to determine whether such access is allowed for the current thread.

File access is normally preceded by a calbéheme _expand _filename , which accepts flags to indicate the kind
of filesystem access needed, so that the security guard is consulted automatically.

An explicit filesystem-access check can be made by caflafgeme _security _check _file . Similarly, an ex-
plicit network-access check is performed by callsapeme _security _check _network .

15.1 Library Functions

e void scheme _security _check _file(const char * who, char * filenameint guard9

Consults the current security manager to determine whether access is alldilathtoe Theguardsargument should
be a bitwise combination of the following:

e SCHEMESUARLCFILE _READ

e SCHEMESUARLCFILE WRITE

e SCHEMESUARLCFILE EXECUTE

e SCHEMESUARLCFILE DELETE

e SCHEMESUARELCFILE _EXISTS (do not combine with other values)

Thefilenameargument can bRIULL (in which caseé#f is sent to the security manager’s procedure), guadsshould
be SCHEMESUARLCFILE _EXISTS in that case.

If access is denied, an exception is raised.
e void scheme _security _check _network(const char * who, char * hostint portno

Consults the current security manager to determine whether access is allowed for creating a client conrrexgton to
on port numbeportno. If hostis NULL, the security manager is consulted for creating a server at port nyratian.

If access is denied, an exception is raised.

72

16. Custodians

When an extension allocates resources that must be explicitly freed (in the same way that a port must be explicitly
closed), a Scheme object associated with the resource should be placed into the management of the current custodian
with scheme _add _managed.

Before allocating the resource, catlheme _custodian _check _available to ensure that the relevant custodian
is not already shut down. If itischeme _custodian _check _available will raise an exception. If the custodian
is shut down wherscheme _add _managed is called, the close function provided $aheme _add _managed will

be called immediately, and no exception will be reported.

16.1 Library Functions

e Scheme_Custodian *scheme _make_custodian(Scheme _Custodian * m)

Creates a new custodian as a subordinata.df mis NULL, then the main custodian is used as the new custodian’s
supervisor. Do not useULL for munless you intend to create an especially privileged custodian.

e Scheme_Custodian _Reference *scheme _add_managed(Scheme _Custodian * m, Scheme_Object * o,
Scheme_Close _Custodian _Client * f,void * data
int strong

Places the value into the management of the custodianIf mis NULL, the current custodian is used.

Thef function is called by the custodian if it is ever asked to “shutdown” its valoesyddata are passed on
which has the type

typedef void (*Scheme_Close_Custodian_Client)(Scheme_Object *o, void *data);

If strongis non-zero, then the newly managed value will be remembered until either the custodian shuts it down or
scheme _remove _managed is called. Ifstrongis zero, the value is allowed to be garbaged collected (and automati-
cally removed from the custodian).

The return value fronscheme _add _managed can be used to refer to the value’'s custodian later in a call to
scheme _remove _-managed. A value can be registered with at most one custodian.

If m (or the current custodian ihis NULL)is shut down, thef is called immediately, and the resultNdJLL

e void scheme _custodian _check _available(Scheme _Custodian * m,const char * name
const char * resnamg

Checks whethem is already shut down, and raises an error if somlis NULL, the current custodian is used. The
nameargument is used for error reporting. Tiesnamergument will likely be used for checking pre-set limits in the
future; pre-set limits will have symbolic names, and tbenamestring will be compared to the symbols.

e void scheme _remove managed(Scheme _Custodian _Reference * mref, Scheme_Object * 0)

73

16.1. Library Functions 16. Custodians

Removeso from the management of its custodian. Tineref argument must be a value returned by
scheme _add _managed or NULL

e void scheme _close _managed(Scheme _Custodian * m)
Instructs the custodiam to shutdown all of its managed values.
e void scheme _add _atexit _closer(Scheme _Exit _Closer _Func f)

Installs a function to be called on each custodian-registered item and its closer when MzScheme is about to exit. The
registered function has the type

typedef void (*Scheme_Exit_Closer_Func)(Scheme_Object *o,
Scheme_Close_Custodian_Client *f,
void *d);

whered is the second argument for

74

17. Miscellaneous Utilities

The MZSCHEMEERSION preprocessor macro is defined as a string describing the version of MzScheme. The
MZSCHEMEERSIONMAJORaNdMZSCHEMEERSIONMINORmMacros are defined as the major and minor ver-
sion numbers, respectively.

17.1 Library Functions

e int scheme _eq(Scheme _Object * objl, Scheme_Object * o0bj2)

Returns 1 if the Scheme values aa? .

e int scheme _eqv(Scheme _Object * objl, Scheme_Object * o0bj2)
Returns 1 if the Scheme values aqv? .

e int scheme _equal(Scheme _Object * objl, Scheme_Object * o0bj2)
Returns 1 if the Scheme values agual? .

e Scheme_Object *scheme _build _list(int ¢, Scheme_Object ** elem$
Creates and returns a list of lengthwvith the elementglems

e int scheme _list _length(Scheme _Object * list)

Returns the length of the list. list is not a proper list, then the lastir counts as an item. If there is a cyclelist
(involving only cdr s), this procedure will not terminate.

e int scheme _proper _ist _length(Scheme _Object * list)

Returns the length of the list, or -1 if it is not a proper list. If there is a cyclésin(involving only cdr s), this
procedure returns -1.

e Scheme_Object *scheme _car(Scheme _Object * pair)
Returns thecar of the pair.

e Scheme_Object *scheme _cdr(Scheme _Object * pair)
Returns theedr of the pair.

e Scheme_Object *scheme _cadr(Scheme _Object * pair)

Returns thecadr of the pair.

75

17.1. Library Functions 17. Miscellaneous Utilities

e Scheme_Object *scheme _caddr(Scheme _Object * pair)

Returns theeaddr of the pair.

e Scheme_Object *scheme _vector _to _list(Scheme _Object * veQ

Creates a list with the same elements as the given vector.

e Scheme_Object *scheme _ist _to _vector(Scheme _Object * list)

Creates a vector with the same elements as the given list.

e Scheme_Object *scheme _append(Scheme _Object * Istx, Scheme_Object * Isty)

Non-destructively appends the given lists.

e Scheme_Object *scheme _unbox(Scheme _Object * obj)

Returns the contents of the given box.

e void scheme _set _box(Scheme _Object * b, Scheme_Object * V)

Sets the contents of the given box.

e Scheme_Object *scheme _load(char * file)

Loads the specified Scheme file, returning the value of the last expression loablkdl, loif the load fails.

e Scheme_Object *scheme _load _extension(char * filenamé@

Loads the specified Scheme extension file, returning the value provided by the extension’s initialization function.
e Scheme_Hash _Table *scheme _make_hash _table(int type

Creates a hash table. Thgeargument must be eith&CHEMHEash _ptr or SCHEMEhash _string , which
determines how keys are compared (unless the hash and compare functions are modified in the hash table record; see
below). ASCHEMHash _ptr table hashes on a key’s pointer address, WBI#HEMEhash _string uses a key as

achar * and hashes on the null-terminated string content. Since a hash table creat8s@wWEMEhash _string
(instead ofSCHEMHEhash _ptr) does not use a key as a Scheme value, it cannot be used from Scheme code.

Although the hash table interface uses the t§obeme_Object * for both keys and values, the table functions
never inspect values, and they inspect keys onySlIBHEMEhash _string hashing. Thus, the actual types of the
values (and keys, f@CHEMEhash _ptr tables) can be anything.

The public portion of th&cheme_Hash _Table type is defined roughly as follows:
typedef struct Scheme_Hash_Table {
Scheme_Type type; /* = scheme_variable type */
r* ¥
int size; /* size of keys and vals arrays */
int count; /* number of mapped keys */
Scheme_Object **keys;
Scheme_Object **vals;
void (*make_hash_indices)(void *v, long *hl, long *h2);
int (*compare)(void *v1, void *v2);

76

17. Miscellaneous Utilities 17.1. Library Functions

* .
} Scheme_Hash_Table;

Themake_hash _indices andcompare function pointers can be set to arbitrary hashing and comparison functions
(before any mapping is installed into the table). A hash function shouldifiith a primary hash value art@® with
a secondary hash value; the values are for double-hashing, where the caller takes appropriate modulos.

To traverse the hash table content, iterate &egsandvalsin parallel fromO to size-1 , and ignorekeyswhere the
correspondingalsentry isSNULL

e Scheme_Hash _Table *scheme _make_hash _table _equal()

Like scheme _make_hash _table , except that keys are treated as Scheme values and hashed baspthlh
instead ofeq?.

e void scheme _hash _set(Scheme _Hash_Table * table Scheme_Object * key, Scheme_Object * val)
Sets the current value faeyin tableto val. If valis NULL, thekeyis unmapped itable

e Scheme_Object *scheme _hash _get(Scheme _Hash_Table * table Scheme_Object * key)

Returns the current value f&eyin table, or NULLIf keyhas no value.

e Scheme_Bucket _Table *scheme _make_bucket _table(int sizehint, int type

Like make_hash _table , but bucket tables are somewhat more flexible, in that hash buckets are accessible and weak
keys are supported. (They also consume more space than hash tables.)

The type argument must be eith&@CHEMEhash _ptr , SCHEMEhash _string , or SCHEMEhash _weak _ptr .
The first two are the same as for hash tables. The last iSIMeEMEhash _ptr , but the keys are weakly held.

The public portion of thé&scheme_Bucket _Table type is defined roughly as follows:
typedef struct Scheme_Bucket Table {
Scheme_Type type; /* = scheme_variable type */
* ..
int size; [* size of buckets array */
int count; /* number of buckets, >= number of mapped keys */
Scheme_Bucket **buckets;
void (*make_hash_indices)(void *v, long *h1, long *h2);
int (*compare)(void *v1, void *v2);
* .
} Scheme_Bucket_Table;

Themake_hash _indices andcompare functions are used as for hash tables. NoteSGEMEhash _weak _ptr
supplied as the initial type makes keys weak even if the hash and comparison functions are changed.

Seescheme _bucket _from _table for information on buckets.
e void scheme _add_to _table(Scheme _Bucket _Table * table const char * keyvoid * val int cons)
Sets the current value féeyin tableto val. If constis non-zero, the value fdeeymust never be changed.

e void scheme _change _in _table(Scheme _Bucket _Table * table const char * key void * val)

77

17.1. Library Functions 17. Miscellaneous Utilities

Sets the current value féeyin tableto val, but only if keyis already mapped in the table.

e void *scheme _lookup _in _table(Scheme _Bucket _Table * table const char * key)

Returns the current value feeyin table or NULLIif keyhas no value.

e Scheme_Bucket *scheme _bucket _from _table(Scheme _Bucket _Table * table const char * key)

Returns the bucket fdeeyin table TheScheme_Bucket structure is defined as:

typedef struct Scheme_ Bucket {
Scheme_Type type; /* = scheme_bucket type */
* ..
void *key;
void *val;
} Scheme_Bucket;

Settingval to NULLunmaps the bucket's key, akdycan beNULLin that case as well. If the table holds keys weakly,
thenkeypoints to a (weak) pointer to the actual key, and the weak pointer’s value ddbllble

e long scheme _double _to _int(char * where double d)

Returns a fixnum value for the given floating-point numbeif d is not an integer or if it is too large, then an error
message is reportedameis used for error-reporting.

e long scheme _get _milliseconds()

Returns the current “time” in milliseconds, just likarrent-milliseconds

e long scheme _get _process _milliseconds()

Returns the current process “time” in milliseconds, just kerent-process-milliseconds
e char *scheme _banner()

Returns the string that is used as the MzScheme startup banner.

e char *scheme _version()

Returns a string for the executing version of MzScheme.

78

18. Flags and Hooks

These flags and hooks are available when MzScheme is embedded:

e scheme_exit — This pointer can be set to a function that takes an integer argument and natidnsthe
function will be used as the default exit handler. The defaulug L

e scheme _make_stdin , scheme_make_stdout , scheme_make_stderr , — These pointers can be set to
a function that takes no arguments and returns a Schem&gploeime_Object * to be used as the starting
standard input, output, and/or error port. The defaultsNloéL. Setting the initial error port is particularly
important for seeing unexpected error messagst@ldrr output goes nowhere.

e scheme_console _output — This pointer can be set to a function that takes a string alwh@ string
length; the function will be called to display internal MzScheme warnings and messages that possibly contain
non-terminating nuls. The defaultMULL.

e scheme _check _for _break — This points to a function of no arguments that returns an integer. Itis used as
the default user-break polling procedure in the main thread. A non-zero return value indicates a user break, and
each time the function returns a non-zero value, it counts as a new break signal (though the break signal may be
ignored if a previous signal is still pending). The defaulNidLL

e scheme _case _sensitive — If this flag is set to a non-zero value befmeheme _basic _env is called,
then MzScheme will not ignore capitalization for symbols and global variable names. The value of this flag
should not change once it is set. The default is zero.

e scheme _allow _set _undefined — This flag determines the initial value cdmpile-allow-set!-undefined
The default is zero.

e scheme _console _printf ~ — This function pointer was left for backward compatibility. The default builds
a string and callscheme _console _output

79

License

GNU Library General Public License
Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]
Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

80

18. Flags and Hooks

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries
themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and madification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d) Ifafacility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

81

18. Flags and Hooks

4.

10.

82

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms

of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked

with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work

containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing

the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not

covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may notimpose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

18. Flags and Hooks

11.

12.

13.

14.

15.

16.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

83

Index

--3m , 2

--cc ,1

-ld ,2

--xform ,2
#%variable-reference , 25

_scheme _apply , 29, 31

_scheme _apply _multi , 30, 31
_scheme _eval _compiled , 29, 30
_scheme _eval _compiled _multi , 30

allocation,2, 3, 15
allow-compile-set
allow-compile-set
-undefined , 49
apply , 29
arity , 27

bignums 56

caddr ,76

cadr , 75

car , 7,75

case-lambda ,8

cdr , 7,75

cell _values , 39

cjs.jumping _to _continuation , 39

compile-allow-set
compile-allow-set

-undefined , 79

cons, 6,11

constantsg, 9

continuations29, 33, 39

current directoryp8

current-custodian , 49

current-error-port , 49

current-eval , 49
current-exception-handler , 49
current-input-port , 49
current-library-collection-paths , 49
current-load , 49

current-load-extension , 50
current-load-relative-directory , 49
current-namespace 49
current-output-port , 49

current-print , 49

current-prompt-read , 49

custodians/3

debug-info-handler , 49

84

display ,59

embedding MzSchemg,
environments25
eq?,75
equal? ,75
eqv?,75
error-display-handler ,49
error-print-width , 49
error-value->string-handler , 49
error _buf , 39
escheme.h, 1
evaluation29

top-level functions29
event loops40
exceptions33, 39

catching temporarily33
exit-handler , 49
extending MzSchemé,

fd _set , 62, 64, 65
files,59
FSSpec, 68

garbage collectiorseeallocation
GCfixup _self ,17
GCregister _traversers 16,24
GCresolve ,17
gcBYTES.TO.WORDS.6
gcFIXUP, 17
gcMARK 17
global-port-print-handler , 50
globals,25

in extension codel5

header files], 3

init _config ,39
initialization, 25
int ,5

libgc.a, 3

libgc.la , 3

libgc.so , 3
libmzscheme.a , 3
libmzscheme.la , 3
libmzscheme.so , 3
long ,5

malloc , 15

INDEX

memory,seeallocation

modules25

multiple values30, 32

MZFD_XXX 64, 65

MZGCARRAYVARIN _REG 18
MZGCDECLREG 18

MZGCNQVARIN _REG 20

MZGCREG 18

MZGCUNREG18

MZGCVARIN REG 18

mzjmp _buf , 39

MZREGISTERSTATIC, 4, 16, 23

mzc, 1

mzchar , 5,7
MZCONFIGALLOWSET.UNDEFINED49
MZCONFIGCANREADBOX 49
MZCONFIGCANREADCOMPILED49
MZCONFIGCANREADGRAPHA49
MZCONFIGCANREADPIPE _QUOTE49
MZCONFIGCANREADTYPESYMBOL49
MZCONFIGCASESENS 49
MZCONFIGCOLLECTIONPATHS 49
MZCONFIGCONFIGBRANCHHANDLER49
MZCONFIGCURLYBRACESAREPARENS49
MZCONFIGCUSTODIAN49
MZCONFIGDEBUGNFO_HANDLER49
MZCONFIGENY, 31, 49
MZCONFIGERRORDISPLAY_HANDLER49
MZCONFIGERRORPORT 49
MZCONFIGERRORPRINT_VALUEHANDLER49
MZCONFIGERRORPRINT_WIDTH 49
MZCONFIGEVAL HANDLER49
MZCONFIGEXIT _HANDLER49
MZCONFIGEXNHANDLER49
MZCONFIGANPUT_PORT49
MZCONFIGLOADDIRECTORY49
MZCONFIG.OADEXTENSIONHANDLERS50
MZCONFIGLOADHANDLER49
MZCONFIGOUTPUTPORT 49
MZCONFIGPORTPRINT_HANDLER50
MZCONFIGPRINT_BOX 49
MZCONFIGPRINT_GRAPH49
MZCONFIGPRINT_HANDLER49
MZCONFIGPRINT_STRUCT49
MZCONFIGPROMPIREADHANDLER49
MZCONFIGSQUARBBRACKETSAREPARENS49
MZCONFIGUSECOMPILEDKIND, 49
mzdyn.o , 2

mzdyn.obj , 2

mzdyn3m.o , 2

mzdyn3m.obj , 2

mzlonglong ,5

MzScheme3m2

MZSCHEMEERSION 75
MZSCHEMEERSIONMAJOR75
MZSCHEMEERSIONMINOR 75

next , 39
numbers56

object-wait-multiple , 40

parameterization-branch-handler , 49
parameterizationg9, 49
ports,59
custom,59
print-box , 49
print-graph , 49
print-struct , 49
proceduresg, 27
primitive, 27

read-accept-bar-quote , 49
read-accept-box 49
read-accept-compiled , 49
read-accept-graph , 49
read-accept-type-symbol , 49
read-case-sensitive , 49
read-curly-braces-as-parens , 49
read-square-brackets-as-parens , 49
representatiorg

scheme.h, 3

scheme _add _atexit _closer ,74
scheme _add _evt , 40, 47

scheme _add _evt _through _sema, 40, 47
scheme _add _fd _eventmask , 46
scheme _add _fd _handle , 46

scheme _add finalizer , 23

scheme _add _finalizer _once, 23
scheme _add _global , 25

scheme _add _global _symbol , 25
scheme _add _managed, 73

scheme _add _scheme _finalizer , 23
scheme _add _scheme _finalizer _once, 24
scheme _add _to _table ,77

scheme _alloc _byte _string ,11
scheme _alloc _char _string ,12
scheme _allow _set _undefined ,79
scheme _append , 76

scheme _append _byte _string ,11
scheme _append _char _string ,12
scheme _apply , 29, 31

scheme _apply _multi , 30, 31

scheme _apply _to _list ,29 31

scheme _banner , 78

scheme _basic _env, 3, 25, 30, 31, 39, 51, 79

85

INDEX

scheme _bignum _from _double , 57
scheme _bignum _from _float ,57
scheme _bignum _normalize , 57
scheme _bignum _to _double , 56
scheme _bignum _to float ,56
scheme _bignum _to _string , 57
scheme _bignum _type , 56
SCHEMBIGNUMPR7

scheme _block _until , 40, 45
scheme _block _until _enable _break , 46
scheme _block _until _unless , 46

SCHEMBOOLP6

scheme _box, 13

SCHEMBOXVAL, 7

SCHEMBOXR 7

scheme _break _thread , 45

scheme _break _waiting , 45

Scheme_Bucket , 26, 78

scheme _bucket _from _table ,78

Scheme_Bucket _Table , 77

SCHEMBUCKTRS8

scheme _build _list ,75

scheme _build _mac_filename ,68

scheme _builtin ~ _value , 26

scheme _byte _ready , 62

SCHEMBBYTESTRVAL, 7

scheme _byte _string _to _char _string ,12

scheme _byte _string _to _char _string
12

SCHEMBYTESTRINGPR, 7

SCHEMBBYTESTRLENVAL, 7

scheme _caddr , 76

scheme _cadr , 75

scheme _call _enable _break ,47

scheme_calloc , 22

SCHEMECAR 7

scheme _car , 75

scheme _case _sensitive

SCHEMECDR 7

scheme _cdr , 75

scheme _change _in _table ,77

scheme _char _ready , 62

SCHEMECHARSTRVAL, 7

scheme _char _string _to _byte _string ,12

scheme _char _string _to _byte _string
12

scheme _char _string _to _path , 67

SCHEMECHARSTRINGR, 7

SCHEMECHARSTRLENVAL, 7

SCHEMECHARVAL, 7

SCHEMECHARP7

scheme _check _for _break , 79

scheme _check _proc _arity , 38

, 13,79

86

_locale

_locale

scheme _check _threads , 40, 41, 46
scheme _clear _escape , 34, 38
scheme _close _input _port , 62
scheme _close _managed, 74
scheme _close _output _port ,62

scheme _close _should _force _port _closed ,69

Scheme_Closed _Prim , 28

scheme _collect _garbage , 24
scheme _compile , 29, 32

scheme _complex _imaginary _part ,58
scheme _complex _izi _type ,56
SCHEMECOMPLEXZIP , 7

scheme _complex _real _part ,58
scheme _complex _type , 56
SCHEMECOMPLEXFY
Scheme_Config , 49

scheme _config , 26

scheme _console _output , 79
scheme _console _printf 79
scheme _count _ines ,62
SCHEMECPTRTYPE 8§, 13
SCHEMECPTRVAL, 8, 13
SCHEMECPTRR 8, 13

scheme _current _config , 49
scheme _current _thread , 39
scheme _current _thread->error _buf , 33
scheme _custodian _check _available ,73
SCHEMBBL.VAL, 7
SCHEMIDBLR, 7

scheme _debug _print , 60
SCHEMBDIRECT_EMBEDDE3
scheme _directory _exists , 67
scheme _display , 59

scheme _display _to _string , 60
scheme _display _to _string _w.max, 60
scheme _display _w.max, 59
scheme _dont _gc _ptr , 16,24
scheme _double _to _int ,78
scheme _dynamic _wind , 34, 38
scheme _end _atomic , 48

scheme _end _atomic _no_swap, 48
Scheme_Env *, 25

scheme _eof , 6

SCHEMEEOFR 9

scheme _eq, 75

scheme _equal , 75

scheme _eqv, 75

scheme _error _buf , 33,39

scheme _eval , 3, 29, 30

scheme _eval _compiled , 29, 30
scheme _eval _compiled _multi , 30
scheme _eval _string ,31

scheme _eval _string _all ,31

INDEX

scheme _eval _string _multi ,31 scheme_inherit _cells ,50
SCHEMEEXACTINTEGERR 8 scheme _initialize 1
SCHEMEEXACTREALR 8 SCHEMENPORT.VAL, 8, 63

scheme _exit , 79 SCHEMHENPORTPR, 8

scheme _expand , 32 Scheme_lnput _Port * , 64

scheme _expand _filename ,59, 67, 72 scheme_input _port _type ,59

scheme _expand _string _filename , 67 scheme_install _config ,50

scheme _extend _config ,50 SCHEMEBNT _VAL, 7, 10

scheme false ,6 scheme_integer _type ,6

SCHEMHE-ALSER, 9 scheme_intern _exact _char _keyword , 13
scheme file _exists ,67 scheme_intern _exact _char _symbol , 13
scheme finish _primitive ~ _module , 25, 26 scheme_intern _exact _keyword , 13
scheme first _thread , 39 scheme_intern _exact _symbol , 13
SCHEMB-LOAT. VAL, 7 scheme_intern _symbol , 12
SCHEMHBE-LOATR 8 SCHEMBNTP, 7

SCHEMHE-LT_VAL, 7 scheme_is _exact , 56

SCHEME-LTP, 7 scheme_is _inexact ,56

scheme flush _output , 60 scheme_is _struct _instance ,70,71
scheme _format , 68 scheme _jumping _to _continuation , 34,39
scheme format _utf8 , 69 SCHEMEKEYWORDEN, 7

scheme _gc _ptr _ok, 24 SCHEMEKEYWORDAL, 7, 16

scheme _get _byte ,61 SCHEMEKKEYWORDP

scheme _get _byte _string ,61 scheme_list _length ,75

scheme _get _byte _string _output ,59, 67 scheme _list _to _vector ,76

scheme _get _bytes , 61 scheme _load , 3,76

scheme _get _char _string ,61 scheme _load _extension ,76

scheme _get _env, 25, 26, 49 scheme _longjmp , 33

scheme _get fdset , 46, 64, 65 scheme _lookup _global ,25

scheme _get _int _val , 10 scheme _lookup _in _table ,78

scheme _get _long _long _val , 10 scheme _mac_path _to _spec, 68

scheme _get _milliseconds , 78 scheme _make_args _string , 37

scheme _get _param, 49, 50 scheme _make_ascii _character ,9
scheme _get _port _file _descriptor ,62 scheme _make_bignum , 56

scheme _get _port _socket , 63 scheme _make_bignum _from _unsigned , 56
scheme _get _process _milliseconds ,78 scheme _make_bucket _table ,77

scheme _get _sized _byte _string _output , 67 scheme _make_byte _string ,11

scheme _get _thread _param, 50 scheme _make_byte _string _input _port ,59,66
scheme _get _unsigned _int _val ,10 scheme _make_byte _string _output _port , 59,
scheme _get _unsigned _long _long _val , 10 67

scheme _getc , 59, 61 scheme _make_byte _string _without _copying ,
scheme _global _bucket , 25 11

SCHEMESUARLCFILE _DELETE 72 scheme _make_char , 9

SCHEMESUARLCFILE _EXECUTE72 scheme _make_char _or _null ,9
SCHEMESUARELCFILE _EXISTS, 72 scheme _make_char _string ,12
SCHEMESUARLCFILE _READ 72 scheme _make_char _string _without _copying ,
SCHEMESUARLCFILE WRITE, 72 12

scheme _hash _get , 77 scheme _make_character ,9

SCHEMHBhash _ptr , 76,77 scheme _make_closed _prim , 28

scheme _hash _set , 77 scheme _make_closed _prim _w.arity , 27,28
SCHEMHhash _string , 76, 77 scheme _make_complex , 58

Scheme_Hash _Table , 76 scheme _make_cptr , 6,13

SCHEMEHash _weak ptr , 77 scheme _make_custodian , 73
SCHEMHEHASHTRS8 scheme _make_double , 10

87

INDEX

scheme _make_exact _symbol , 13

scheme _make_fd _input _port , 66

scheme _make_fd _output _port , 66

scheme _make_file _input _port ,59, 65

scheme _make_file _output _port ,59, 66

scheme _make_float , 10

scheme _make_folding _prim , 27

scheme _make_hash _table , 76

scheme _make_hash _table _equal , 77

scheme _make_input _port , 59, 63

scheme _make_integer ,9

scheme _make_integer _value , 10

scheme _make_integer
10

scheme _make_integer
10

scheme _make_integer
10

scheme _make_integer
10

scheme _make_integer
10

scheme _make_locale _string , 11

scheme _make_named_file

scheme _make_namespace, 31

scheme _make_output _port , 59, 64

scheme _make_pair , 11, 29

scheme _make_parameter , 50

scheme _make_path , 68

scheme _make_path _without _copying , 68

scheme _make_port _type , 63

scheme _make_prim , 28

scheme _make_prim _closure _w.arity
scheme _make_prim _w.arity , 27, 28
scheme _make_provided _string , 37
scheme _make_rational ,57

scheme _make_sema, 44

scheme _make_sized _byte _string ,11
scheme _make_sized _char _string ,12
scheme _make_sized _offset _byte _string
scheme _make_sized _offset _char _string
scheme _make_sized _offset _utf8 _string
scheme _make_sized _path , 68

scheme _make_sized _utf8 _string ,11
scheme _make_stderr , 79

scheme _make_stdin , 79

scheme _make_stdout , 79

scheme _make_struct _instance , 70,71
scheme _make_struct _names, 70
scheme _make_struct _type , 70

scheme _make_struct _values , 70,71
scheme _make_symbol , 13
scheme _make_thread _cell , 48

88

_input _port , 66

_value _from _long _halves |,
_value _from _long _long ,

_value _from _unsigned ,

_value _from _unsigned _long _$mhgme _notify

, 27,28

, 11
, 12
, 12

scheme _make_type , 6, 13
scheme _make_utf8 _string ,11
scheme _make_vector ,13
scheme _make_weak_box, 13
scheme _making _progress , 45, 47
scheme _malloc , 2, 3, 15, 21
scheme _malloc _allow _interior
scheme _malloc _atomic , 15,21
scheme _malloc _eternal ,22
scheme_malloc _fail _ok, 22
scheme _malloc _tagged , 15, 22
scheme _malloc _uncollectable
scheme _module _bucket , 26
scheme _module _name, 1

, 15,21

scheme _multiple _array , 30
scheme _multiple _count , 30
scheme _multiple _values , 30
SCHEMBENAMESPACER

_value _from _unsigned _long _bethezse .need wakeup, 62

scheme _new_param, 50
_multithread ~ , 41
scheme_null ,6

SCHEMENULLP, 9
SCHEMENUMBERRB
Scheme_Object , 6
Scheme_Object * |1

scheme _open _input _file ,65
scheme _open _output _file ,66
scheme _os _getcwd , 68
scheme _os _setcwd , 68
SCHEMBDUTPORTNAL, 8, 64
SCHEMBEODUTPORTHB
Scheme_Output _Port * , 65
scheme _output _port _type , 59
SCHEMPBPAIRP, 7

scheme _param _config , 50, 51
SCHEMBPATHLEN, 7

scheme _path _to _char _string , 68
SCHEMBPATHVAL, 7
SCHEMBPATHR 7

scheme _peek _byte , 61

scheme _peek _byte _skip , 61
scheme _peekc , 61

scheme _peekc _skip , 61

scheme _pipe , 67

scheme _pipe _with _limit , 67
scheme _pop _break _enable , 36, 38
scheme _pop _continuation _frame , 52
scheme _post _sema, 44
Scheme_Prim , 27
SCHEMBEPRIM_CLOSUREELS, 16, 28
Scheme_Prim _Closure _Proc , 28
scheme _primitive ~ _module , 25, 26

, 15, 16, 22

INDEX

scheme _print _bytes , 14
scheme _print _string , 14
scheme _printf , 69

scheme _printf _utf8 , 69

SCHEMBPROCPRS
scheme _proper _list _length ,75
scheme _push _break _enable , 36, 38

scheme _push _continuation _frame , 52
scheme _put _byte _string , 60
scheme _put _char _string , 60

scheme_raise _exn, 33, 37
scheme_rational _denominator ,57
scheme_rational _from _double , 57

scheme _rational _from _float ,58

scheme_rational _numerator ,57

scheme _rational _to _double ,57

scheme_rational _to float ,57

scheme _rational _type , 56

SCHEMERATIONALR 7

scheme_read , 59

scheme _read _bignum , 57

scheme _read _bignum _bytes , 57

scheme _real _to _double , 11

SCHEMEREALR 8

scheme _register _extension _global , 2, 15
22

scheme _register _finalizer , 23

scheme _register _parameter ,51

scheme _register _static , 16, 22

scheme_reload ,1

scheme _remove _all _finalization , 24

scheme _remove _managed, 73

scheme _security _check _file ,72

scheme _security _check _network , 72
SCHEMESEMARS

scheme _set _box, 76

scheme _set _can _break , 38

scheme _set _cont _mark, 52

scheme _set file _position ,62
scheme _set _global _bucket , 26
scheme _set _param, 31, 49, 50

scheme _set _stack _base, 4, 16, 22
scheme _set _thread _param, 50

scheme _set _type _printer ,13
scheme _setjmp , 33

scheme _signal _error , 33, 36
Scheme_Simple _Object ,6
scheme _sleep , 43

scheme _start _atomic , 48
scheme _strdup , 22

scheme _strdup _eternal , 22

SCHEMESTRUCTGENGET, 70
SCHEMESTRUCTGENSET, 70

SCHEMESTRUCTNQCONSTR70
SCHEMESTRUCTINQGET, 70
SCHEMESTRUCTNQPRED 70
SCHEMESTRUCTINQSET, 70
SCHEMESTRUCTINQTYPE 70

scheme _struct
scheme _struct

_ref , 70,71
_set , 70,71

SCHEMESTRUCTTYPER 7
SCHEMESTRUCTR7

scheme _subtract
scheme _swap _th

_finalizer
read ,45

SCHEMESYMLEN, 7
SCHEMESYMVAL, 7, 16

SCHEMESYMBO
scheme _tall
scheme _tail
scheme _tall
scheme _tell
scheme _tell
Scheme_Thread
scheme _thread
scheme _thread
scheme _thread
scheme _thread
scheme _thread
scheme _thread

LP7

_apply ,29-31
_apply _no_copy, 32
_apply _to _list
, 62
_line

,62

, 39

, 39,44

_block , 45, 47

_block _enable _break ,45

_cell
_cell
_w_details

_get , 48
_set , 48

SCHEMHEHREADPS

scheme _tls
scheme _tls _get
scheme_tls _set
scheme _true ,6

_allocate

47
, 47
47

SCHEMHRUER 9

SCHEMHEYPE, 6
Scheme_Type, 6

Scheme_Type _Printer

, 14

scheme_ucs4 _to _utf16 ,55

scheme _unbound _global

, 37

scheme _unbox , 76
scheme _undefined , 6

scheme _ungetc

, 62

SCHEMBJUNLESSREADY 63
SCHEMBUSEFUEL, 39

scheme _utfl6
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8
scheme _utf8

_to _ucs4 ,55
_decode , 53
_decode _all
_decode _as _prefix
_decode _count , 54
_decode _prefix
_decode _to _buffer
_decode _to _buffer
_encode , 54
_encode _all
_encode _to _buffer

, 54

, 55

, 24

32

, 44

, 54

, 53

,54
_len , 54

, 95

89

INDEX

scheme _utf8 _encode _to _buffer _len ,55 working directory,68
scheme _values , 30, 32 write , 59
SCHEMEVECELS, 7, 16
SCHEMEVECSIZE, 7
scheme _vector _to list ,76
SCHEME/ECTORP7?
scheme _version , 78
scheme _void , 6
SCHEME/OIDP, 9
scheme _wait _sema, 44
scheme _wake _up, 46
scheme _wakeup _on_input ,41
scheme _warning , 37
SCHEMBNEAKPTR 8
scheme _weak _reference , 23
scheme _weak _reference _indirect ,23
SCHEMBNEAKPS
scheme _write , 59
scheme _write _byte _string ,59
scheme _write _char _string , 60
scheme _write _evt _via _write , 65
scheme _write _special _evt via _write _special
65

scheme _write _to _string , 60
scheme _write _to _string _w.max, 60
scheme _write _w.max, 59
scheme _wrong _count , 37
scheme _wrong _return _arity , 37
scheme _wrong _type , 37
security guards{2
short ,5
sleeping43
strings

conversion to C7

reading and writing59
structuresy0

tail recursion29

threadsb, 39
blocking,40
giving time, 40
interaction with C39
sleeping43

types
creating,6
standardf

umzlonglong ,5

Unicode,5

use-compiled-file-kinds , 49
user breaks79

values,6

90

	1 Overview
	1.1 Writing MzScheme Extensions
	1.2 Embedding MzScheme into a Program
	1.3 MzScheme and Threads
	1.4 MzScheme, Unicode, Characters, and Strings
	1.5 Integers

	2 Values and Types
	2.1 Standard Types
	2.2 Global Constants
	2.3 Strings
	2.4 Library Functions

	3 Memory Allocation
	3.1 Cooperating with 3m
	3.1.1 Tagged Objects
	3.1.2 Local Pointers
	3.1.3 Local Pointers and mzc

	3.2 Library Functions

	4 Namespaces and Modules
	4.1 Library Functions

	5 Procedures
	5.1 Library Functions

	6 Evaluation
	6.1 Top-level Evaluation Functions
	6.2 Tail Evaluation
	6.3 Multiple Values
	6.4 Library Functions

	7 Exceptions and Escape Continuations
	7.1 Temporarily Catching Error Escapes
	7.2 Enabling and Disabling Breaks
	7.3 Library Functions

	8 Threads
	8.1 Integration with Threads
	8.2 Allowing Thread Switches
	8.3 Blocking the Current Thread
	8.4 Threads in Embedded MzScheme with Event Loops
	8.4.1 Callbacks for Blocked Threads

	8.5 Sleeping by Embedded MzScheme
	8.6 Library Functions

	9 Parameterizations
	9.1 Library Functions

	10 Continuation Marks
	10.1 Library Functions

	11 String Encodings
	11.1 Library Functions

	12 Bignums, Rationals, and Complex Numbers
	12.1 Library Functions

	13 Ports and the Filesystem
	13.1 Library Functions

	14 Structures
	14.1 Library Functions

	15 Security Guards
	15.1 Library Functions

	16 Custodians
	16.1 Library Functions

	17 Miscellaneous Utilities
	17.1 Library Functions

	18 Flags and Hooks
	License
	Index

