
PLT MzLib: Libraries Manual

PLT (scheme@plt-scheme.org)

350
Released June 2006

Copyright notice

Copyright c©1996-2006 PLT

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line atscheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Contributors to MzLib include Dorai Sitaram, Bruce Hauman, Jens Axel Søgaard, Gann Bierner, and Kurt Howard
(working from Steve Moshier’s Cephes library). Publicly available packages have been assimilated from others,
including Andrew Wright (match) and Marc Feeley (original pretty-printing implementation).

This manual was typeset using LATEX, SLATEX, andtex2page . Some typesetting macros were originally taken from
Julian Smart’sReference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on June 18, 2006.

Contents

1 MzLib 1

2 async-channel.ss : Buffered Asynchronous Channels 3

3 awk.ss : Awk-like Syntax 4

4 class.ss : Classes and Objects 5

4.1 Object Example. 6

4.2 Creating Interfaces. 8

4.3 Creating Classes. 9

4.3.1 Initialization Variables. 11

4.3.2 Fields. .12

4.3.3 Methods .13

4.4 Creating Objects .16

4.5 Field and Method Access. .17

4.5.1 Methods .17

4.5.2 Fields. .19

4.5.3 Generics .19

4.6 Mixins .20

4.7 Object Serialization. .20

4.8 Object, Class, and Interface Utilities. 21

4.9 Expanding to a Class Declaration. 22

5 class100.ss : Version-100-Style Classes 24

6 cm.ss : Compilation Manager 26

7 cm-accomplice.ss : Compilation Manager Hook for Syntax Transformers 28

i

CONTENTS CONTENTS

8 cmdline.ss : Command-line Parsing 29

9 cml.ss : Concurrent ML Compatibility 33

10 compat.ss : Compatibility 34

11 compile.ss : Compiling Files 36

12 contract.ss : Contracts 37

12.1 Flat Contracts. .37

12.2 Function Contracts. .42

12.3 Lazy Data-structure Contracts. 45

12.4 Object and Class Contracts. .47

12.5 Attaching Contracts to Values. 48

12.6 Contract Utility .49

13 date.ss : Dates 51

14 deflate.ss : Deflating (Compressing) Data 52

15 defmacro.ss : Non-Hygienic Macros 53

16 etc.ss : Useful Procedures and Syntax 54

17 file.ss : Filesystem Utilities 59

18 foreign.ss : Foreign Interface 63

19 include.ss : Textually Including Source 64

20 inflate.ss : Inflating Compressed Data 66

21 integer-set.ss : Integer Sets 67

22 kw.ss : Keyword Arguments 70

22.1 Required Arguments. .71

22.2 Optional Arguments. .71

ii

CONTENTS CONTENTS

22.3 Keyword Arguments. .71

22.4 Rest and Rest-like Arguments. 72

22.5 Body Argument. .73

22.6 Mode Keywords. .74

22.7 Property Lists. .75

23 list.ss : List Utilities 76

24 match.ss : Pattern Matching 80

24.1 Patterns. .82

24.2 Extending Match. .83

24.3 Examples. .84

25 math.ss : Math 86

26 md5.ss : MD5 Message Digest 87

27 os.ss : System Utilities 88

28 package.ss : Local-Definition Scope Control 89

29 pconvert.ss : Converted Printing 94

30 pconvert-prop.ss : Converted Printing Property 97

31 plt-match.ss : Pattern Matching 98

32 port.ss : Port Utilities 100

33 pregexp.ss : Perl-Style Regular Expressions 106

33.1 Introduction. .106

33.2 Regexp procedures. .106

33.2.1 pregexp .107

33.2.2 pregexp-match-positions .107

33.2.3 pregexp-match .108

iii

CONTENTS CONTENTS

33.2.4 pregexp-split .108

33.2.5 pregexp-replace .108

33.2.6 pregexp-replace* .109

33.2.7 pregexp-quote .109

33.3 The regexp pattern language. .109

33.3.1 Basic assertions. .109

33.3.2 Characters and character classes. .110

33.3.3 Quantifiers .112

33.3.4 Clusters. .113

33.3.5 Alternation .116

33.3.6 Backtracking. .116

33.3.7 Looking ahead and behind. .117

33.4 An extended example. .118

34 pretty.ss : Pretty Printing 120

35 process.ss : Process and Shell-Command Execution 125

36 restart.ss : Simulating Stand-alone MzScheme 127

37 sendevent.ss : AppleEvents 128

37.1 AppleEvents. .128

38 serialize.ss : Serializing Data 130

39 shared.ss : Graph Constructor Syntax 135

40 string.ss : String Utilities 136

41 struct.ss : Structure Utilities 139

42 stxparam.ss : Syntax Parameters 140

43 surrogate.ss : Proxy-like Design Pattern 141

iv

CONTENTS CONTENTS

44 tar.ss : Creating tar Files 143

45 thread.ss : Thread Utilities 144

46 trace.ss : Tracing Top-level Procedure Calls 146

47 traceld.ss : Tracing File Loads 147

48 transcr.ss : Transcripts 148

49 unit.ss : Core Units 149

49.1 Creating Units. .149

49.2 Invoking Units .151

49.3 Linking Units and Creating Compound Units. .152

49.4 Unit Utilities .154

50 unitsig.ss : Units with Signatures 155

50.1 Importing and Exporting with Signatures. .155

50.2 Signatures. .156

50.3 Signed Units. .157

50.4 Linking with Signatures. .158

50.5 Restricting Signatures. .159

50.6 Embedded Units. .160

50.7 Signed Compound Units. .160

50.8 Invoking Signed Units .162

50.9 Extracting a Primitive Unit from a Signed Unit. .163

50.10Adding a Signature to Primitive Units. .163

50.11Expanding Signed Unit Expressions. .164

51 zip.ss : Creating zip Files 166

License 167

Index 171

v

CONTENTS CONTENTS

vi

1. MzLib

The MzLib collection consists of several libraries, each of which provides a set of procedures and syntax.

To use a MzLib library, either at the top-level or within a module, import it with

(require (lib libname))

For example, to use thelist.ss library:

(require (lib "list.ss"))

The MzLib collection provides the following libraries:

• async-channel.ss — buffered channels
• awk.ss — AWK-like syntax
• class.ss — object system
• cm.ss — compilation manager
• cm-accomplice.ss — compilation support hook syntax transformers
• cmdline.ss — command-line parsing
• cml.ss — Concurrent ML compatibility
• compat.ss — compatibility procedures and syntax
• compile.ss — bytecode compilation
• contract.ss — programming by contract
• date.ss — date-processing procedures
• deflate.ss — gzip
• defmacro.ss — define-macro anddefmacro
• etc.ss — semi-standard procedures and syntax
• file.ss — file-processing procedures
• include.ss — textual source inclusion
• inflate.ss — gunzip
• integer-set.ss — sets of exact integers
• kw.ss — keyword argument procedures
• list.ss — list-processing procedures
• match.ss — pattern matching (backwards compatible library)
• math.ss — arithmetic procedures and constants
• md5.ss — MD5 message-digest algorithm
• os.ss — system utilities
• package.ss — local-definition scope control
• pconvert.ss — print values as expressions
• pconvert-prop.ss — property to adjust printed form
• plt-match.ss — pattern matching (improved syntax for patterns)
• port.ss — port utilities
• pregexp.ss – Perl-style regular expressions
• pretty.ss — pretty-printer

1

1. MzLib

• restart.ss — stand-alone MzScheme emulator
• sendevent.ss — AppleEvents
• serialize.ss — serialization of data
• shared.ss — graph constructor syntax
• string.ss — string-processing procedures
• struct.ss — structure unilities
• stxparam.ss — support for parameter-like syntax bindings
• surrogate.ss — a proxy-like design pattern
• tar.ss — createtar files
• thread.ss — thread utilities
• trace.ss — procedure tracing
• traceld.ss — file-load tracing
• transcr.ss — transcripts
• unit.ss — component system
• unitsig.ss — component system with signatures
• zip.ss — createzip files

2

2. async-channel.ss : Buffered Asynchronous Channels

To load:(require (lib "async-channel.ss"))

This library implemented buffered asynchronous channels to complement MzScheme’s synchronous channels (see
§7.5 inPLT MzScheme: Language Manual).

(make-async-channel [limit-k]) PROCEDURE

Returns an asynchronous channel with a buffer limit oflimit-k items. A get operation blocks when the channel is
empty, and a put operation blocks when the channel haslimit-k items already.

If limit-k is #f (the default), the channel buffer has no limited (so a put never blocks). Otherwise,limit-k must
be a positive exact integer.

The asynchronous channel value can be used directly withsync (see§7.7 in PLT MzScheme: Language Manual).
The channel blocks untilasync-channel-get would return a value, and the unblock result is the received value.

(async-channel-get async-channel) PROCEDURE

Blocks until at least one value is available inasync-channel , and then returns the first of the values that was put
into async-channel .

(async-channel-try-get async-channel) PROCEDURE

If at least one value is immediately available inasync-channel , returns the first of the values that was put into
async-channel . If async-channel is empty, the result is#f .

(async-channel-put async-channel v) PROCEDURE

Putsv into async-channel , blocking if async-channel ’s buffer is full until space is available. The result is
void.

(async-channel-put-evt async-channel v) PROCEDURE

Returns a synchronizable event that is blocked while(async-channel-put async-channel v) would
block. The unblock result is the event itself. See also§7.7 inPLT MzScheme: Language Manual.

3

3. awk.ss : Awk-like Syntax

To load:(require (lib "awk.ss"))

This library defines theawk macro from Scsh:

(awk next-record-expr
(record field-variable · · ·)
counter-variable/optional
((state-variable init-expr) · · ·)
continue-variable/optional

clause · · ·)

counter-variable/optional is either empty or
variable

continue-variable/optional is either empty or
variable

clause is one of
(test body-expr · · ·1)
(test => procedure-expr)
(/ regexp-str / (variable-or-false · · ·1) body-expr · · ·1)
(range exclusive-start-test exclusive-stop-test body-expr · · ·1)
(:range inclusive-start-test exclusive-stop-test body-expr · · ·1)
(range: exclusive-start-test inclusive-stop-test body-expr · · ·1)
(:range: inclusive-start-test inclusive-inclusive-stop-test body-expr · · ·1)
(else body-expr · · ·1)
(after body-expr · · ·1)

test is one of
integer
regexp-str
expr

variable-or-false is one of
variable
#f

For detailed information aboutawk, see Olin Shivers’sScsh Reference Manual. In addition toawk, the Scsh-
compatible proceduresmatch:start , match:end , match:substring , and regexp-exec are defined.
Thesematch: procedures must be used to extract match information in a regular expression clause when using
the=> form.

4

4. class.ss : Classes and Objects

To load:(require (lib "class.ss"))

A class specifies

• a collection of fields;

• a collection of methods;

• initial value expressions for the fields; and

• initialization variables that are bound to initialization arguments.

An object is a collection of bindings for fields that are instantiated according to a class description.

The object system allows a program to define a new class (aderived class) in terms of an existing class (thesuperclass)
using inheritance, overriding, and augmenting:

• inheritance: An object of a derived class supports methods and instantiates fields declared by the derived class’s
superclass, as well as methods and fields declared in the derived class expression.

• overriding: Some methods declared in a superclass can be replaced in the derived class. References to the
overridden method in the superclass use the implementation in the derived class.

• augmenting: Some methods declared in a superclass can be merely extended in the derived class. The superclass
method specifically delegates to the augmenting method in the derived class.

An interface is a collection of method names to be implemented by a class, combined with a derivation requirement.
A classimplements an interface when it

• declares (or inherits) a public method for each variable in the interface;

• is derived from the class required by the interface, if any; and

• specifically declares its intention to implement the interface.

A class can implement any number of interfaces. A derived class automatically implements any interface that its su-
perclass implements. Each class also implements an implicitly-defined interface that is associated with the class. The
implicitly-defined interface contains all of the class’s public method names, and it requires that all other implementa-
tions of the interface are derived from the class.

A new interface canextend one or more interfaces with additional method names; each class that implements the
extended interface also implements the original interfaces. The derivation requirements of the original interface must
be consistent, and the extended interface inherits the most specific derivation requirement from the original interfaces.

Classes, objects, and interfaces are all first-class Scheme values. However, a MzScheme class or interface is not a
MzScheme object (i.e., there are no “meta-classes” or “meta-interfaces”).

5

4.1. Object Example 4.class.ss : Classes and Objects

4.1 Object Example

The following example conveys the object system’s basic style.

(define stack <%> (interface () push! pop! none?))

(define stack%
(class ∗ object% (stack <%>)

; Declare public methods that can be overridden:
(public push! pop! none?)
; Declare a public method that can be augmented, only:
(pubment print-name)

(define stack null) ; A private field
(init-field (name ’stack)) ; A public field

; Method implementations:
(define (push! v)

(set! stack (cons v stack)))
(define (pop!)

(let ([v (car stack)])
(set! stack (cdr stack))
v))

(define (none?)
(null? stack))

(define (print-name)
(display name)
(inner (void) print-name) ; Let subclass print more
(newline))

; Call superclass initializer:
(super-new)))

(define fancy-stack%
(class stack%

; Declare override
(override push!)
; Implement override:
(define (push! v)

(super push! (cons ’fancy v)))

; Add inherited field to local environment
(inherit-field name)

; Declare augment
(augment print-name)
; Implement augment
(define (print-name)

(when (equal? name ’Bob)
(display ", Esq."))

(inner (void) print-name))

(super-new)))

6

4. class.ss : Classes and Objects 4.1. Object Example

(define double-stack%
(class stack%

(inherit push!)

(public double-push!)
(define (double-push! v) (push! v) (push! v))

; Always supply name
(super-new (name ’double-stack))))

(define-values (make-safe-stack-class is-safe-stack?)
(let ([safe-stack <%> (interface (stack <%>))])

(values
(lambda (super%)

(class ∗ super% (safe-stack <%>)
(inherit none?)
(override pop!)
(define (pop!)

(if (none?)
#f
(super pop!)))

(super-new)))
(lambda (obj)

(is-a? obj safe-stack <%>)))))

(define safe-stack% (make-safe-stack-class stack%))

The interfacestack <%>1 defines the ever-popular stack interface with the methodspush! , pop! , andnone? .
Since it has no superinterfaces, the only derivation requirement ofstack <%> is that its classes are derived from
the built-in empty class,object% . The classstack% 2 is derived fromobject% and implements thestack <%>
interface. Three additional classes are derived from the basicstack% implementation:

• The classfancy-stack% defines a stack that overridespush! to tag each item as fancy. It also augments
print-name to add an “Esq.” suffix if the stack’s name is’Bob .

• The classdouble-stack% extends the functionalitystack% with a new method,double-push! . It also
supplies a specificname to stack% .

• The classsafe-stack% overrides thepop! method ofstack% , ensuring that#f is returned whenever the
stack is empty.

In each derived class, the(super-new ...) form causes the superclass portion of the object to be initialized,
including the initialization of its fields.

The creation ofsafe-stack% illustrates the use of classes as first-class values. Applyingmake-safe-stack-class
to fancy-stack% or double-stack% — indeed,anyclass withpush , pop! , andnone? methods — creates
a “safe” version of the class. A stack object can be recognized as a safe stack by testing it withis-safe-stack? ;
this predicate returns#t only for instances of a class created withmake-safe-stack-class (because only those
classes implement thesafe-stack <%> interface).

In each of the example classes, the fieldnamecontains the name of the class. Thename instance variable is introduced
as a new instance variable instack% , and it is declared there with theinit-field keyword, which means that

1A bracketed percent sign (“<%>”) is used by convention in MzScheme to indicate that a variable’s value is an interface.
2A percent sign (“%”) is used by convention in MzScheme to indicate that a variable’s value is a class.

7

4.2. Creating Interfaces 4.class.ss : Classes and Objects

an instantiation of the class can specify the initial value, but it defaults to’stack . The double-stack% class
providesname when initializing thestack% part of the object, so a name cannot be supplied when instantiating
double-stack% . When theprint-name method of an object fromdouble-stack% is invoked, the name
printed to the screen is always “double-stack”.

While all of fancy-stack% , double-stack% , andsafe-stack% inherit thepush! method ofstack% , it is
declared withinherit only in double-stack% ; new declarations infancy-stack% andsafe-stack% do
not need to refer topush! , so the inheritance does not need to be declared. Similarly, onlysafe-stack% needs to
declare(inherit none?) .

Thefancy-stack% class overridespop! to extend the implementation ofpop! . The new definition ofpop! must
accesses the originalpop! method that is defined instack% through thesuper form.

Thestack% class declares itsprint-name method usingpubment , which means that the method is public, but
it can only be augmented in subclasses, and not overridden. The implementation ofprint-name usesinner to
execute a subclass-supplied augmenting method. If no such augmenting method is available, the(void) expression
is evaluated, instead. Thefancy-stack% classes usesaugment to declare an augmentation ofprint-name , and
also usesinner to allow further augmenting in later subclasses.

The instantiate form, thenew form, and themake-object procedure all create an object from a class. The
instantiate form supports initialization arguments by both position and name, thenew form only supports by
name initialization arguments, andmake-object supports initialization arguments by position only. The following
examples create objects using the classes above:

(define stack (make-object stack%))
(define fred (new stack% (name ’Fred)))
(define joe (instantiate stack% () (name ’Joe)))
(define double-stack (make-object double-stack%))
(define safe-stack (new safe-stack% (name ’safe)))

The send form calls a method on an object, finding the method by name. The following example uses the objects
created above:

(send stack push! fred)
(send stack push! double-stack)
(let loop ()

(if (not (send stack none?))
(begin

(send (send stack pop!) print-name)
(loop))))

This loop displays’double-stack and’Fred to the standard output port.

4.2 Creating Interfaces

The interface form creates a new interface:

(interface (super-interface-expr · · ·) identifier · · ·)

All of the identifier s must be distinct.

Eachsuper-interface-expr is evaluated (in order) when theinterface expression is evaluated. The result
of eachsuper-interface-expr must be an interface value, otherwise theexn:fail:object exception is
raised. The interfaces returned by thesuper-interface-expr s are the new interface’s superinterfaces, which

8

4. class.ss : Classes and Objects 4.3. Creating Classes

are all extended by the new interface. Any class that implements the new interface also implements all of the superin-
terfaces.

The result of aninterface expression is an interface that includes all of the specifiedidentifier s, plus all
identifiers from the superinterfaces. Duplicate identifier names among the superinterfaces are ignored, but if a super-
interface contains one of theidentifier s in theinterface expression, theexn:fail:object exception is
raised.

If no super-interface-expr s are provided, then the derivation requirement of the resulting interface is trivial:
any class that implements the interface must be derived fromobject% . Otherwise, the implementation requirement
of the resulting interface is the most specific requirement from its superinterfaces. If the superinterfaces specify
inconsistent derivation requirements, theexn:fail:object exception is raised.

4.3 Creating Classes

The built-in classobject% has no methods fields, implements only its own interface(class->interface
object%) , and is transparent (i.e,. its inspector is#f , so all immediate instances areequal?). All other classes are
derived fromobject% .

Theclass ∗ form creates a new class:

(class ∗ superclass-expr (interface-expr · · ·)
class-clause
· · ·)

class-clause is one of
(inspect inspector-expr)
(init init-declaration · · ·)
(init-field init-declaration · · ·)
(field field-declaration · · ·)
(inherit-field optionally-renamed-id · · ·)
(init-rest id)
(init-rest)
(public optionally-renamed-id · · ·)
(pubment optionally-renamed-id · · ·)
(public-final optionally-renamed-id · · ·)
(override optionally-renamed-id · · ·)
(overment optionally-renamed-id · · ·)
(override-final optionally-renamed-id · · ·)
(augment optionally-renamed-id · · ·)
(augride optionally-renamed-id · · ·)
(augment-final optionally-renamed-id · · ·)
(private id · · ·)
(inherit optionally-renamed-id · · ·)
(rename-super renamed-id · · ·)
(rename-inner renamed-id · · ·)
method-definition
definition
expr
(begin class-clause · · ·)

init-declaration is one of
identifier
(optionally-renamed-id)

9

4.3. Creating Classes 4.class.ss : Classes and Objects

(optionally-renamed-id default-value-expr)

field-declaration is
(optionally-renamed-id default-value-expr)

optionally-renamed-id is one of
identifier
renamed-id

renamed-id is
(internal-id external-id)

method-definition is
(define-values (identifier) method-procedure)

method-procedure is
(lambda formals expr · · ·1)
(case-lambda (formals expr · · ·1) · · ·)
(let-values (((identifier) method-procedure) · · ·) method-procedure)
(letrec-values (((identifier) method-procedure) · · ·) method-procedure)
(let-values (((identifier) method-procedure) · · ·1) identifier)
(letrec-values (((identifier) method-procedure) · · ·1) identifier)

The superclass-expr expression is evaluated when theclass ∗ expression is evaluated. The result must
be a class value (possiblyobject%), otherwise theexn:fail:object exception is raised. The result of the
superclass-expr expression is the new class’s superclass.

The interface-expr expressions are also evaluated when theclass ∗ expression is evaluated, after
superclass-expr is evaluated. The result of eachinterface-expr must be an interface value, otherwise
the exn:fail:object exception is raised. The interfaces returned by theinterface-expr s are all imple-
mented by the class. For each identifier in each interface, the class (or one of its ancestors) must declare a public
method with the same name, otherwise theexn:fail:object exception is raised. The class’s superclass must
satisfy the implementation requirement of each interface, otherwise theexn:fail:object exception is raised.

An inspect class-clause selects an inspector (see§4.5 in PLT MzScheme: Language Manual) for the class
extension. Theinspector-expr must evaluate to an inspector or#f when theclass ∗ form is evaluated. Just as
for structure types, an inspector controls access to the class’s fields, including private fields, and also affects compar-
isons usingequal? . If no inspect clause is provided, access to the class is controlled by the parent of the current
inspector (see§4.5 in PLT MzScheme: Language Manual). A syntax error is reported if more than oneinspect
clause is specified.

The otherclass-clause s define initialization arguments, public and private fields, and public and private meth-
ods. For eachidentifier or optionally-renamed-id in a public , override , augment , pubment ,
overment , augride , public-final , override-final , augment-final , or private clause, there
must be onemethod-definition . All other definitionclass-clause s create private fields. All remaining
expr s are initialization expressions to be evaluated when the class is instantiated (see§4.4).

The result of aclass ∗ expression is a new class, derived from the specified superclass and implementing the specified
interfaces. Instances of the class are created with theinstantiate form ormake-object procedure, as described
in §4.4.

Eachclass-clause is (partially) macro-expanded to reveal its shapes. If aclass-clause is abegin expres-
sion, its sub-expressions are lifted out of thebegin and treated asclass-clause s, in the same way thatbegin
is flattened for top-level and embedded definitions.

10

4. class.ss : Classes and Objects 4.3. Creating Classes

Within a class ∗ form for instances of the new class,this is bound to the object itself;super-instantiate ,
super-make-object , andsuper-new are bound to forms to initialize fields in the superclass (see§4.4); super
is available for calling superclass methods (see§4.3.3.1); andinner is available for calling subclass augmentations
of methods (see§4.3.3.1).

Thepublic , override , augment , pubment , overment , augride , public-final , override-final ,
augment-final , private , inherit , rename-super , rename-inner this , super , inner ,
super-instantiate , super-make-object , andsuper-new keywords are all exported byclass.ss as syn-
tactic forms that raise an error when used outside of a class declaration.

Theclass form is likeclass ∗, but omits theinterface-expr s, for the case that none are needed:

(class superclass-expr
class-clause
· · ·)

The public ∗, pubment ∗, public-final ∗, override ∗, overment ∗, override-final ∗, augment ∗,
augride ∗, augment-final ∗, andprivate ∗ forms abbreviate apublic , etc. declaration and a sequence of
definitions:

(public ∗ (name expr) · · ·)
=expands=>
(begin
(public name · · ·)
(define name expr) · · ·)

etc.

Thedefine/public , define/pubment , define/public-final , define/override , define/overment ,
define/override-final , define/augment , define/augride , define/augment-final , and
define/private forms similarly abbreviate apublic , etc. declaration with a definition:

(define/public name expr)
=expands=>
(begin
(public name)
(define name expr))

(define/public (header . formals) expr)
=expands=>
(begin
(public name)
(define (header . formals) expr))

etc.

4.3.1 Initialization Variables

A class’s initialization variables, declared withinit , init-field , andinit-rest , are instantiated for each ob-
ject of a class. Initialization variables can be used in the initial value expressions of fields, default value expressions for
initialization arguments, and in initialization expressions. Only initialization variables declared withinit-field
can be accessed from methods; accessing any other initialization variable from a method is a syntax error.

The values bound to initialization variables are

11

4.3. Creating Classes 4.class.ss : Classes and Objects

• the arguments provided withinstantiate or passed tomake-object , if the object is created as a direct
instance of the class; or,

• the arguments passed to the superclass initialization form or procedure, if the object is created as an instance of
a derived class.

If an initialization argument is not provided for an initialization variable that has an associateddefault-value-expr ,
then the default-value-expr expression is evaluated to obtain a value for the variable. A
default-value-expr is only evaluated when an argument is not provided for its variable. The environment
of default-value-expr includes all of the initialization variables, all of the fields, and all of the methods of the
class. If multipledefault-value-expr s are evaluated, they are evaluated from left to right. Object creation and
field initialization are described in detail in§4.4.

If an initialization variable has nodefault-value-expr , then the object creation or superclass initialization call
must supply an argument for the variable, otherwise theexn:fail:object exception is raised.

Initialization arguments can be provided by name or by position. The external name of an initialization variable can be
used withinstantiate or with the superclass initialization form. Those forms also accept by-position arguments.
Themake-object procedure and the superclass initialization procedure accept only by-position arguments.

Arguments provided by position are converted into by-name arguments using the order ofinit andinit-field
clauses and the order of variables within each clause. When ainstantiate form provides both by-position and
by-name arguments, the converted arguments are placed before by-name arguments. (The order can be significant; see
also§4.4.)

Unless a class contains aninit-rest clause, when the number of by-position arguments exceeds the number of
declared initialization variables, the order of variables in the superclass (and so on, up the superclass chain) determines
the by-name conversion.

If a class expression contains aninit-rest clause, there must be only one, and it must be last. If it declares
a variable, then the variable receives extra by-position initialization arguments as a list (similar to a dotted “rest
argument” in a procedure). Aninit-rest variable can receive by-position initialization arguments that are left
over from a by-name conversion for a derived class. When a derived class’s superclass initialization provides even
more by-position arguments, they are prefixed onto the by-position arguments accumulated so far.

If too few or too many by-position initialization arguments are provided to an object creation or superclass initializa-
tion, then theexn:fail:object exception is raised. Similarly, if extra by-position arguments are provided to a
class with aninit-rest clause, theexn:fail:object exception is raised.

Unused (by-name) arguments are to be propagated to the superclass, as described in§4.4. Multiple initialization argu-
ments can use the same name if the class derivation contains multiple declarations (in different classes) of initialization
variables with the name. See§4.4for further details.

See also§4.3.3.3for information about internal and external names.

4.3.2 Fields

Eachfield , init-field , and non-methoddefine-values clause in a class declares one or more new fields for
the class. Fields declared withfield or init-field are public. Public fields can be accessed and mutated by sub-
classes usinginherit-field . Public fields are also accessible outside the class viaclass-field-accessor
and mutable viaclass-field-mutator (see§4.5). Fields declared withdefine-values are accessible only
within the class.

A field declared withinit-field is both a public field and an initialization variable. See§4.3.1for information
about initialization variables.

12

4. class.ss : Classes and Objects 4.3. Creating Classes

An inherit-field declaration makes a public field defined by a superclass directly accessible in the class ex-
pression. If the indicated field is not defined in the superclass, theexn:fail:object exception is raised when
the class expression is evaluated. Every field in a superclass is present in a derived class, even if it is not declared
with inherit-field in the derived class. Theinherit-field clause does not control inheritance, but merely
controls lexical scope within a class expression.

When an object is first created, all of its fields have the undefined value (see§3.1 in PLT MzScheme: Language
Manual). The fields of a class are initialized at the same time that the class’s initialization expressions are evaluated;
see§4.4for more information.

See also§4.3.3.3for information about internal and external names.

4.3.3 Methods

4.3.3.1 METHOD DEFINITIONS

Eachpublic , override , augment , pubment , overment , augride , public-final , override-final ,
augment-final , andprivate clause in a class declares one or more method names. Each method name must
have a correspondingmethod-definition . The order ofpublic , etc. clauses and their corresponding defini-
tions (among themselves, and with respect to other clauses in the class) does not matter.

As shown in§4.3, a method definition is syntactically restricted to certain procedure forms, as defined by the grammar
for method-procedure ; in the last two forms ofmethod-procedure , the bodyidentifier must be one
of the identifier s bound bylet-values or letrec-values . A method-procedure expression is not
evaluated directly. Instead, for each method, a class-specific method procedure is created; it takes an initial object
argument, in addition to the arguments the procedure would accept if themethod-procedure expression were
evaluated directly. The body of the procedure is transformed to access methods and fields through the object argument.

A method declared withpublic , pubment , or public-final introduces a new method into a class. The method
must not be present already in the superclass, otherwise theexn:fail:object exception is raised when the class
expression is evaluated. A method declared withpublic can be overridden in a subclass that usesoverride ,
overment , or override-final . A method declared withpubment can be augmented in a subclass that uses
augment , augride , or augment-final . A method declared withpublic-final cannot be overridden or
augmented in a subclass.

A method declared withoverride , overment , oroverride-final overrides a definition already present in the
superclass. If the method is not already present, theexn:fail:object exception is raised when the class expres-
sion is evaluated. A method declared withoverride can be overridden again in a subclass that usesoverride ,
overment , or override-final . A method declared withoverment can be augmented in a subclass that uses
augment , augride , or augment-final . A method declared withoverride-final cannot be overridden
further or augmented in a subclass.

A method declared withaugment , augride , or augment-final augments a definition already present in the
superclass. If the method is not already present, theexn:fail:object exception is raised when the class expres-
sion is evaluated. A method declared withaugment can be augmented further in a subclass that usesaugment ,
augride , or augment-final . A method declared withaugride can be overridden in a subclass that uses
override , overment , or override-final . (Such an override merely replaces the augmentation, not the
method that is augmented.) A method declared withaugment-final cannot be overridden or augmented further
in a subclass.

A method declared withprivate is not accessible outside the class expression, cannot be overridden, and never
overrides a method in the superclass.

When a method is declared withoverride , overment , or override-final , then the superclass implementa-

13

4.3. Creating Classes 4.class.ss : Classes and Objects

tion of the method can be called usingsuper form:

(super identifier arg-expr · · ·)

Such asuper call always accesses the superclass method, independent of whether the method is overridden again in
subclasses.

When a method is declared withpubment , augment , or overment , then a subclass augmenting method can be
called using theinner form:

(inner default-expr identifier arg-expr · · ·)

If the object’s class does not supply an augmenting method, thendefault-expr is evaluated, and thearg-expr s
are not evaluated. Otherwise, the augmenting method is called with thearg-expr results as arguments, and
default-expr is not evaluated. If noinner call is evaluated for a particular method, then augmenting meth-
ods supplied by subclasses are never used. (The only difference betweenpublic-final andpubment without
a correspondinginner is thatpublic-final prevents the declaration of augmenting methods that would be ig-
nored.)

4.3.3.2 INHERITED AND SUPERCLASSMETHODS

Eachinherit , rename-super , andrename-inner clause declares one or more methods that are defined in
the class, but must be present in the superclass. Therename-super andrename-inner declarations are rarely
used, since superclass and augmenting methods are typically accessed throughsuper andinner in a class that also
declares the methods.

Methods declared withinherit access overriding declarations, if any, at run time. Methods declared
with rename-super always access the superclass’s implementation at run-time. Methods declared with
rename-inner access a subclass’s augmenting method, if any, and must be called with the form

(identifier (lambda () default-expr) arg-expr · · ·)

so that adefault-expr is available to evaluate when no augmenting method is available. In such a form,lambda
is a keyword to separate thedefault-expr from thearg-expr . When an augmenting method is available, it
receives the results of thearg-expr s as arguments.

Methods that are present in the superclass but not declared withinherit or rename-super are not directly
accessible in the class (through they can be called withsend). Every public method in a superclass is present in a
derived class, even if it is not declared withinherit in the derived class. Theinherit clause does not control
inheritance, but merely controls lexical scope within a class expression.

If a method declared withinherit , rename-super , or rename-inner is not present in the superclass, the
exn:fail:object exception is raised when the class expression is evaluated.

4.3.3.3 INTERNAL AND EXTERNAL NAMES

Each method declared withpublic , override , augment , pubment , overment , augride , public-final ,
override-final , augment-final , inherit , rename-super , and rename-inner can have separate
internal and external names when(internal-id external-id) is used for declaring the method. The internal
name is used to access the method directly within the class expression (including withinsuper or inner forms),
while the external name is used withsend andgeneric (see§4.5). If a single identifier is provided for a
method declaration, the identifier is used for both the internal and external names.

Method inheritance, overriding, and augmentation are based external names, only. Separate internal and external
names are required forrename-super andrename-inner (for historical reasons, mainly).

14

4. class.ss : Classes and Objects 4.3. Creating Classes

Eachinit , init-field , field , or inherit-field variable similarly has an internal and an external name.
The internal name is used within the class to access the variable, while the external name is used outside the class when
providing initialization arguments (e.g., toinstantiate), inheriting a field, or accessing a field externally (e.g.,
with class-field-accessor). As for methods, when inheriting a field withinherit-field , the external
name is matched to an external field name in the superclass, while the internal name is bound in theclass expression.

A single identifier can be used as an internal identifier and an external identifier, and it is possible to use the same iden-
tifier as internal and external identifiers for different bindings. Furthermore, within a single class, a single name can be
used as an external method name, an external field name, and an external initialization argument name. Overall, each
internal identifier must be distinct from all other internal identifiers, each external method name must be distinct from
all other method names, each external field name must be distinct from all other field names, and each initialization
argument name must be distinct from all other initialization argument names

By default, external names have no lexical scope, which means, for example, that an external method name matches
the same syntactic symbol in all uses ofsend . The define-local-member-name form introduces a set of
scoped external names:

(define-local-member-name identifier · · ·)

Unless it appears as the top-level definition, this form binds eachidentifier so that, within the scope of the
definition, each use of eachidentifier as an external name is resolved to a hidden name generated by the
define-local-member-name declaration. Thus, methods, fields, and initialization arguments declared with
such external-nameidentifier s are accessible only in the scope of thedefine-local-member-name dec-
laration. As a top-level definition,define-local-member-name bindsidentifier to its symbolic form.

The binding introduced bydefine-local-member-name is a syntax binding that can be exported and imported
with modules (see§5 in PLT MzScheme: Language Manual). Each execution of adefine-local-member-name
declaration generates a distinct hidden name (except as a top-level definitions). Theinterface->method-names
procedure (see§4.8) does not expose hidden names.

Example:

(define o (let ()
(define-local-member-name m)
(define c% (class object%

(define/public (m) 10)
(super-new))

(define o (new c%))

(send o m) ; ⇒ 10
o))

(send o m) ; ⇒ error: no method m

Thedefine-local-name form maps a single external name to an external name that is determined by an expres-
sion:

(define-member-name identifier key-expr)

The value ofkey-expr must be the result of either amember-name-key expression,

(member-name-key identifier)

or (generate-member-key) . The latter produces a hidden name, just like the binding fordefine-local-member-name .
The(member-name-key identifier) form produces a representation of the external name foridentifier
in the environment of themember-name-key expression.

15

4.4. Creating Objects 4.class.ss : Classes and Objects

Example:

(define (make-c% key)
(define-member-name m key)
(class object%

(define/public (m) 10)
(super-new)))

(send (new (make-c% (member-name-key m))) m) ; ⇒ 10
(send (new (make-c% (member-name-key p))) m) ; ⇒ error: no method m
(send (new (make-c% (member-name-key p))) p) ; ⇒ 10

(define (fresh-c%)
(let ([key (generate-member-name)])

(values (make-c% key) key)))

(define-values (fc% key) (fresh-c%))
(send (new fc%) m) ; ⇒ error: no method m
(let ()

(define-member-name p key)
(send (new fc%) p)) ; ⇒ 10

When aclass expression is compiled, identifiers used in place of external names must be symbolically distinct (when
the corresponding external names are required to be distinct), otherwise a syntax error is reported. When no external
name is bound bydefine-member-name , then the actual external names are guaranteed to be distinct whenclass
expression is evaluated. When any external name is bound bydefine-member-name , theexn:fail:object
exception is raised byclass if the actual external names are not distinct.

4.4 Creating Objects

Themake-object procedure creates a new object with by-position initialization arguments:

(make-object class init-v · · ·)

An instance ofclass is created, and theinit-v s are passed as initialization arguments, bound to the initial-
ization variables ofclass for the newly created object as described in§4.3.1. If class is not a class, the
exn:fail:contract exception is raised.

Thenew form creates a new object with by-name initialization arguments:

(new class-expr (identifier by-name-expr) · · ·)

An instance of the value ofclass-expr is created, and the value of eachby-name-expr is provided as a by-name
argument for the correspondingidentifier .

The instantiate form creates a new object with both by-position and by-name initialization arguments:

(instantiate class-expr (by-pos-expr · · ·) (identifier by-name-expr) · · ·)

An instance of the value ofclass-expr is created, and the values of theby-pos-expr s are provided as by-
position initialization arguments. In addition, the value of eachby-name-expr is provided as a by-name argument
for the correspondingidentifier .

16

4. class.ss : Classes and Objects 4.5. Field and Method Access

All fields in the newly created object are initially bound to the special undefined value (see§3.1 in PLT MzScheme:
Language Manual). Initialization variables with default value expressions (and no provided value) are also initial-
ized to undefined. After argument values are assigned to initialization variables, expressions infield clauses,
init-field clauses with no provided argument,init clauses with no provided argument, private field defini-
tions, and other expressions are evaluated. Those expressions are evaluated as they appear in the class expression,
from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must be executed once by using
thesuper-instantiate form:

(super-instantiate (by-position-super-init-expr · · ·) (identifier by-name-super-init-expr · · ·) · · ·)

or by using the procedure produced by thesuper-make-object form:

(super-make-object super-init-v · · ·)

or by usingsuper-new form:

(super-new (identifier by-name-super-init-expr · · ·) · · ·)

Theby-position-super-init-expr s,by-name-super-init-exp s, andsuper-init-v s are mapped
to initialization variables in the same way as forinstantiate , make-object , andnew.

By-name initialization arguments to a class that have no matching initialization variable are implicitly added as by-
name arguments to asuper-instantiate , super-make-object , or super-new invocation, after the ex-
plicit arguments. If multiple initialization arguments are provided for the same name, the first (if any) is used, and
the unused arguments are propagated to the superclass. (Note that converted by-position arguments are always placed
before explicit by-name arguments.) The initialization procedure for theobject% class accepts zero initialization
arguments; if it receives any by-name initialization arguments, thenexn:fail:object exception is raised.

Fields inherited from a superclass will not be initialized until the superclass’s initialization procedure is invoked. In
contrast, all methods are available for an object as soon as the object is created; the overriding of methods is not affect
by initialization (unlike objects in C++).

It is an error to reach the end of initialization for any class in the hierarchy without invoking superclasses initialization;
the exn:fail:object exception is raised in such a case. Also, if superclass initialization is invoked more than
once, theexn:fail:object exception is raised.

4.5 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of the class all part of the
environment. Within a method body, only the fields and other methods of the class can be referenced; a reference to
any other class-introduced identifier is a syntax error. Elsewhere within the class, all class-introduced identifiers are
available, and fields and initialization variables can be mutated withset! .

4.5.1 Methods

Method names within a class can only be used in the procedure position of an application expression; any other use is
a syntax error. To allow methods to be applied to lists of arguments, a method application can have the form

(method-id arg-expr · · · . arg-list-expr)
(super method-id arg-expr · · · . arg-list-expr)
(inner default-expr method-id arg-expr · · · . arg-list-expr)

17

4.5. Field and Method Access 4.class.ss : Classes and Objects

which calls the method in a way analogous to(apply method-id arg-expr · · · arg-list-expr) . The
arg-list-expr must not be a parenthesized expression, otherwise the dot and the parentheses will cancel each
other.

Methods are called from outside a class with thesend andsend/apply forms:

(send obj-expr method-name arg-expr · · ·)
(send obj-expr method-name arg-expr · · · . arg-list-expr)
(send/apply obj-expr method-name arg-expr · · · arg-list-expr)

where the last two forms apply the method to a list of argument values; in the second form,arg-list-expr
cannot be a parenthesized expression. For anysend or send/apply , if obj-expr does not produce an ob-
ject, theexn:fail:contract exception is raised. If the object has no public methodmethod-name , the
exn:fail:object exception is raised.

Thesend ∗ form calls multiple methods of an object in the specified order:

(send ∗ obj-expr msg · · ·)

msg is one of
(method-name arg-expr · · ·)
(method-name arg-expr · · · . arg-list-expr)

wherearg-list-expr is not a parenthesized expression.

Example:

(send ∗ edit (begin-edit-sequence)
(insert "Hello")
(insert #\newline)
(end-edit-sequence))

which is the same as

(let ([o edit])
(send o begin-edit-sequence)
(send o insert "Hello")
(send o insert #\newline)
(send o end-edit-sequence))

Thewith-method form extracts a method from an object and binds a local name that can be applied directly (in the
same way as declared methods within a class):

(with-method ((identifier (object-expr method-name)) · · ·)
expr · · ·1)

Example:

(let ([s (new stack%)])
(with-method ([push (s push!)]

[pop (s pop!)])
(push 10)
(push 9)
(pop)))

18

4. class.ss : Classes and Objects 4.5. Field and Method Access

which is the same as

(let ([s (new stack%)])
(send s push! 10)
(send s push! 9)
(send s pop!))

4.5.2 Fields

Theget-field form,

(get-field identifier object-expr)

extracts the field named byidentifier from the value of theobject-expr .

Thefield-bound? form,

(field-bound? identifier object-expr)

produces#t if object-expr evaluates to an object that has a field namedidentifier , #f otherwise.

If you have access to the class of an object, theclass-field-accessor andclass-field-mutator forms
provide efficient access to the object’s fields.

• (class-field-accessor class-expr field-name) returns an accessor procedure that takes an
instance of the class produced byclass-expr and returns the value of the object’sfield-name field.

• (class-field-mutator class-expr field-name) returns a mutator procedure that takes an in-
stance of the class produced byclass-expr and a new value for the field, mutates the field in the object
named byfield-name , then returns void.

4.5.3 Generics

A generic can be used instead of a method name to avoid the cost of relocating a method by name within a class. The
make-generic procedure andgeneric form create generics:

• (make-generic class-or-interface symbol) returns a generic that works on instances of
class-or-interface (or an instance of a class/interface derived fromclass-or-interface) to call
the method named bysymbol .

If class-or-interface does not contain a method with the (external and non-scoped) namesymbol , the
exn:fail:object exception is raised.

• (generic class-or-interface-expr name) is analogous to(make-generic class-or-interface-expr
’ name) , except thatnamecan be a scoped method name declared bydefine-local-member-name (see
§4.3.3.3).

A generic is applied withsend-generic :

(send-generic obj-expr generic-expr arg-expr · · ·)
(send-generic obj-expr generic-expr arg-expr · · · . arg-list-expr)

where the value ofobj-expr is an object and the value ofgeneric-expr is a generic.

19

4.6. Mixins 4.class.ss : Classes and Objects

4.6 Mixins

A mixin is a class parameterization modeled on a paper published by Flatt, Felleisen, and Krishnamurthi, available at
http://www.ccs.neu.edu/scheme/pubs/#popl98-fkf .

The implementation of these mixins in MzScheme is with the combination oflambda and class . This macro
simplifies the checking and implementation of these mixins. Its syntax is very similar to the syntax forclass ∗. The
shape of a mixin is:

(mixin (interface-expr ...) (interface-expr ...)
class-clause ...)

This macro expands into a procedure that accepts a class. The argument passed to this procedure must match the
interfaces of the firstinterface-expr s expressions. The procedure returns a class that is derived from its ar-
gument. This result class must match the interfaces specified in the secondinterface-expr s section; it has
clauses specified byinstance-variable-clause s. The syntax of theinitialization-variables and
instance-variable-clause are exactly the same asclass ∗/names .

The mixin macro does some checking to be sure that variables that theinstance-variable-clause s refer
to in their super class are in the interfaces. That checking and the checking that the input class matches the declared
interfaces aside, the mixin macro’s expansion is something like this:

(mixin (i <%> ...) (j <%> ...)
class-clause ...)

=
(lambda (%)

(class ∗ % (j <%> ...)
class-clause ...))

The i <%> interfaces do not appear in the output because they are only used for the error checking and are discarded
by the time the class is created.

4.7 Object Serialization

Thedefine-serializable-class anddefine-serializable-class ∗ forms define classes whose in-
stances are serializable usingserialize (see§38).

(define-serializable-class class-id superclass-expr
class-clause
· · ·)

(define-serializable-class ∗ class-id superclass-expr (interface-expr · · ·)
class-clause
· · ·)

These forms can only be used at the top level, either within a module or outside. Theclass-id identifier is bound
to the new class, anddeserialize-info: class-id is also defined; if the definition is within a module, then
the latter is provided from the module. Thesuperclass-expr , interface-expr s, andclass-clause s are
as forclass andclass ∗ (see§4.3).

Serialization for the class works in one of two ways:

• If the class implements the built-in interfaceexternalizable<%> , then an object is serialized by calling its
externalize method; the result can be anything that is serializable (but, obviously, should not be the object

20

4. class.ss : Classes and Objects 4.8. Object, Class, and Interface Utilities

itself). Deserialization creates an instance of the class with no initialization arguments, and then calls the object’s
internalize method with the result ofexternalize (or, more precisely, a deserialized version of the
serialized result of a previous call). Theexternalizable<%> interface includes only theexternalize
andinternalize methods.

To support this form of serialization, the class must be instantiable with no initialization arguments. Further-
more, cycles involving only instances of the class (and other such classes) cannot be serialized.

• If the class does not implementexternalizable<%> , then every superclass of the class must be either
serializable or transparent (i.e,. have#f as its inspector). Serialization and deserialization are fully automatic,
and may involve cycles of instances.

To support cycles of instances, deserialization may create an instance of the call with all fields as the undefined
value, and then mutate the object to set the field values. Serialization support does not otherwise make an
object’s fields mutable.

In the second case, a serializable subclass can implementexternalizable<%> , in which case theexternalize
method is responsible for all serialization (i.e., automatic serialization is lost for instances of the subclass). In the first
case, all serializable subclasses implementexternalizable<%> , since a subclass implements all of the interfaces
of its parent class.

In either case, if an object is an immediate instance of a subclass (that is not itself serializable), the object is serialized
as if it was an immediate instance of the serializable class. In particular, overriding declarations of theexternalize
method are ignored for instances of non-serializable subclasses.

4.8 Object, Class, and Interface Utilities

(object? v) returns#t if v is an object,#f otherwise.

(class? v) returns#t if v is a class,#f otherwise.

(interface? v) returns#t if v is an interface,#f otherwise.

(object=? object [object]) determines if two objects are the same object, or not (useseq? , but also works
properly with contracts).

(object->vector object [opaque-v]) returns a vector representingobject that shows its inspectable
fields, analogous tostruct->vector (see§4.8 inPLT MzScheme: Language Manual).

(class->interface class) returns the interface implicitly defined byclass (see the overview at the begin-
ning of Chapter4).

(object-interface object) returns the interface implicitly defined by the class ofobject .

(is-a? v interface) returns#t if v is an instance of a class that implementsinterface , #f otherwise.

(is-a? v class) returns#t if v is an instance ofclass (or of a class derived fromclass), #f otherwise.

(subclass? v class) returns#t if v is a class derived from (or equal to)class , #f otherwise.

(implementation? v interface) returns#t if v is a class that implementsinterface , #f otherwise.

(interface-extension? v interface) returns#t if v is an interface that extendsinterface , #f oth-
erwise.

(method-in-interface? symbol interface) returns#t if interface (or any of its ancestor inter-

21

4.9. Expanding to a Class Declaration 4.class.ss : Classes and Objects

faces) includes a member with the namesymbol , #f otherwise.

(interface->method-names interface) returns a list of symbols for the method names ininterface ,
including methods inherited from superinterfaces, but not including methods whose names are local (i.e., declared
with define-local-member-names).

(object-method-arity-includes? object symbol k) returns#t if object has a method named
symbol that acceptsk arguments,#f otherwise.

(field-names object) returns a list of all of the names of the fields bound inobject , includ-
ing fields inherited from superinterfaces, but not including fields whose names are local (i.e., declared with
define-local-member-names).

(object-info object) returns two values, analogous to the return values ofstruct-info (see§4.5 inPLT
MzScheme: Language Manual):

• class : a class or#f ; the result is#f if the current inspector does not control any class for which theobject
is an instance.

• skipped? : #f if the first result corresponds to the most specific class ofobject , #t otherwise.

(class-info class) returns seven values, analogous to the return values ofstruct-type-info (see§4.5
in PLT MzScheme: Language Manual):

• name-symbol : the class’s name as a symbol;

• field-k : the number of fields (public and private) defined by the class;

• field-name-list : a list of symbols corresponding to the class’s public fields; this list can be larger than
field-k because it includes inherited fields;

• field-accessor-proc : an accessor procedure for obtaining field values in instances of the class; the
accessor takes an instance and a field index between0 (inclusive) andfield-k (exclusive);

• field-mutator-proc : a mutator procedure for modifying field values in instances of the class; the mutator
takes an instance, a field index between0 (inclusive) andfield-k (exclusive), and a new field value;

• super-class : a class for the most specific ancestor of the given class that is controlled by the current inspec-
tor, or#f if no ancestor is controlled by the current inspector;

• skipped? : #f if the sixth result is the most specific ancestor class,#t otherwise.

4.9 Expanding to a Class Declaration

Theclass/derived form is like class ∗, but it includes a sub-expression to use used as the source for all syntax
errors within the class definition. For example,define-serializable-class expands toclass/derived
so that error in the body of the class are reported in terms ofdefine-serializable-class instead ofclass .

(class/derived original-datum
(name-id super-expr (interface-expr ...) deserialize-id-expr)
class-clause
· · ·)

Theoriginal-datum is the original expression to use for reporting errors.

22

4. class.ss : Classes and Objects 4.9. Expanding to a Class Declaration

Thename-id is used to name the resulting class; if it is#f , the class name is inferred.

Thesuper-expr , interface-expr s, andclass-clause s are as forclass ∗ (see§4.3).

If the deserialize-id-expr is not literally #f , then a serializable class is generated, and the result is two
values instead of one: the class and a deserialize-info structure produced bymake-deserialize-info . The
deserialize-id-expr should produce a value suitable as the second argument tomake-serialize-info ,
and it should refer to an export whose value is the deserialize-info structure.

Future optional forms may be added to the sequence that currently ends withdeserialize-id-expr .

23

5. class100.ss : Version-100-Style Classes

To load:(require (lib "class100.ss"))

Theclass100 andclass100 ∗ forms provide a syntax close to that ofclass andclass ∗ in MzScheme versions
100 through 103, but with the semantics of the currentclass.ss system (see Chapter4). For a class defined with
class100 , keyword-based initialization arguments can be propagated to the superclass, but by-position arguments
are not (i.e., the expansion ofclass100 to class always includes aninit-rest clause).

Theclass100 form uses keywords (e.g.,public) that are defined by theclass library, so typicallyclass.ss must
be imported into any context that importsclass100.ss .

Theclass100 ∗ form creates a new class:

(class100 ∗ superclass-expr (interface-expr · · ·) initialization-ids
class100-clause
· · ·)

initialization-ids is one of
variable
(variable · · · variable-with-default · · ·)
(variable · · · variable-with-default · · · . variable)

variable-with-default is
(variable default-value-expr)

class100-clause is one of
(sequence expr · · ·)
(public public-method-declaration · · ·)
(override public-method-declaration · · ·)
(augment public-method-declaration · · ·)
(pubment public-method-declaration · · ·)
(overment public-method-declaration · · ·)
(augride public-method-declaration · · ·)
(private private-method-declaration · · ·)
(private-field private-var-declaration · · ·)
(inherit inherit-method-declaration · · ·)
(rename rename-method-declaration · · ·)

public-method-declaration is one of
((internal-id external-id) method-procedure)
(identifier method-procedure)

private-method-declaration is one of
(identifier method-procedure)

private-var-declaration is one of

24

5. class100.ss : Version-100-Style Classes

(identifier initial-value-expr)
(identifier)
identifier

inherit-method-declaration is one of
identifier
(internal-instance-id external-inherited-id)

rename-method-declaration is
(internal-id external-id)

In local-names , if super-instantiate-id is not provided, theinstantiate -like superclass initialization
form will not be available in theclass100 ∗/names body.

Theclass100 macro omits theinterface-expr s:

(class100 superclass-expr initialization-ids
class100-clause
· · ·)

(class100-asi superclass instance-id-clause · · ·) SYNTAX

Like class100 , but all initialization arguments are automatically passed on to the superclass initialization procedure
by position.

(class100 ∗-asi superclass interfaces instance-id-clause · · ·) SYNTAX

Like class100 ∗, but all initialization arguments are automatically passed on to the superclass initialization proce-
dure by position.

(super-init init-arg-expr · · ·) SYNTAX

An alias forsuper-make-object in class.ss .

25

6. cm.ss : Compilation Manager

To load:(require (lib "cm.ss"))

(make-compilation-manager-load/use-compiled-handler) PROCEDURE

Returns a procedure suitable as a value for thecurrent-load/use-compiled parameter (see§7.9.1.6
in PLT MzScheme: Language Manual). The returned procedure passes it arguments on to the current
current-load/use-compiled procedure (i.e., the one installed when this procedure is called), but first it auto-
matically compiles source files to a.zo file if

• the file is expected to contain a module (i.e., the second argument to the handler is a symbol);

• the value of each ofcurrent-eval , current-load , andcurrent-namespace is the same as when
make-compilation-manager-load/use-compiled-handler was called;

• the value ofuse-compiled-file-paths contains the first path that was present whenmake-compilation-manager-load/use-compiled-handler
was called;

• the value ofcurrent-load/use-compiled is the result of this procedure; and

• one of the following holds:

– the source file is newer than the.zo file in the first sub-directory listed inuse-compiled-file-paths
(at the time thatmake-compilation-manager-load/use-compiled-handler was called)

– no .dep file exists next to the.zo file;
– the version recorded in the.dep file does not match the result of(version) ;
– one of the files listed in the.dep file has a.zo timestamp newer than the one recorded in the.dep file.

After the handler procedure compiles a.zo file, it creates a corresponding.dep file that lists the current ver-
sion, plus the.zo timestamp for every file that isrequire d by the module in the compiled file (including
require-for-syntax es andrequire-for-template s).

The handler caches timestamps when it checks.dep files, and the cache is maintained across calls to the same handler.
The cache is not consulted to compare the immediate source file to its.zo file, which means that the caching behavior
is consistent with the caching of the default module name resolver (see§5.4 inPLT MzScheme: Language Manual).

If use-compiled-file-paths contains an empty list whenmake-compilation-manager-load/use-compiled-handler
is called, thenexn:fail:contract exception is raised.

Do not install the result ofmake-compilation-manager-load/use-compiled-handler when the cur-
rent namespace contains already-loaded versions of modules that may need to be recompiled — unless the already-
loaded modules are never referenced by not-yet-loaded modules. References to already-loaded modules may produce
compiled files with inconsistent timestamps and/or.dep files with incorrect information.

(managed-compile-zo file) PROCEDURE

Compiles the given module source file to a.zo, installing a compilation-manager handler while the file is com-

26

6. cm.ss : Compilation Manager

piled (so that required modules are also compiled), and creating a.dep file to record the timestamps of immedi-
ate files used to compile the source (i.e., filesrequire d in the source, includingrequire-for-syntax es and
require-for-template s).

(trust-existing-zos on? [procedure])

A parameter that is intended for use bySetup PLT when installing with pre-built.zo files. It causes a compilation-
manager load/use-compiled handler to “touch” out-of-date.zo files instead of re-compiling from source.

(make-caching-managed-compile-zo) PROCEDURE

Returns a procedure that behaves likemanaged-compile-zo , but a cache of timestamp information is preserved
across calls to the procedure.

(manager-compile-notify-handler [notify-proc]) PROCEDURE

A parameter for a procedure of one argument that is called whenever a compilation starts. The argument to the
procedure is the file’s path.

(manager-trace-handler [notify-proc]) PROCEDURE

A parameter for a procedure of one argument that is called to report compilation-manager actions, such as checking a
file. The argument to the procedure is a string.

27

7. cm-accomplice.ss : Compilation Manager Hook for Syntax
Transformers

To load:(require (lib "cm-accomplice.ss"))

(register-external-file file) PROCEDURE

Registers the complete pathfile with a compilation manager, if one is active. The compilation manager then records
the path as contributing to the implementation of the module currently being compiled. Afterward, if the registered
file is modified, the compilation manager will know to recompile the module.

The include macro, for example, calls this procedure with the path of an included file as it expands aninclude
form.

28

8. cmdline.ss : Command-line Parsing

To load:(require (lib "cmdline.ss"))

(command-line program-name-expr argv-expr clause · · ·) SYNTAX

Parses a command line according to the specification in theclause s. Theprogram-name-expr should produce
a string to be used as the program name for reporting errors when the command-line is ill-formed. Theargv-expr
must evaluate to a list or a vector of strings; typically, it is(current-command-line-arguments) or the cdr
of an argument to amain procedure (when using ‘-C ’ to invoke a script).

The command-line is disassembled into flags (possibly with flag-specific arguments) followed by (non-flag) argu-
ments. Command-line strings starting with “-” or “+” are parsed as flags, but arguments to flags are never parsed as
flags, and integers and decimal numbers that start with “-” or “+” are not treated as flags. Non-flag arguments in the
command-line must appear after all flags and the flags’ arguments. No command-line string past the first non-flag
argument is parsed as a flag. The built-in-- flag signals the end of command-line flags; any command-line string past
the-- flag is parsed as a non-flag argument.

For defining the command line, eachclause has one of the following forms:

(multi flag-spec · · ·)
(once-each flag-spec · · ·)
(once-any flag-spec · · ·)
(final flag-spec · · ·)
(help-labels string · · ·)
(args arg-formals body-expr · · ·1)
(=> finish-proc-expr arg-help-expr help-proc-expr unknown-proc-expr)

flag-spec is one of
(flags variable · · · help-str · · ·1 body-expr · · ·1)
(flags => handler-expr help-expr)

flags is one of
flag-str
(flag-str · · ·1)

arg-formals is one of
variable
(variable · · ·)
(variable · · ·1 . variable)

A multi , once-each , once-any , or final clause introduces a set of command-line flag specifications. The
clause tag indicates how many times the flag can appear on the command line:

• multi — Each flag specified in the set can be represented any number of times on the command line; i.e., the
flags in the set are independent and each flag can be used multiple times.

29

8. cmdline.ss : Command-line Parsing

• once-each — Each flag specified in the set can be represented once on the command line; i.e., the flags in
the set are independent, but each flag should be specified at most once. If a flag specification is represented in
the command line more than once, theexn:fail exception is raised.

• once-any — Only one flag specified in the set can be represented on the command line; i.e., the flags in the set
are mutually exclusive. If the set is represented in the command line more than once, theexn:fail exception
is raised.

• final — Like multi , except that no argument after the flag is treated as a flag. Note that multiplefinal
flags can be specified if they have short names; for example, if-a is a final flag, then--aa combines two
instances of-a in a single command-line argument.

A normal flag specification has four parts:

1. flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent. Each
flag string must be of the form"- x " or "+ x " for some characterx , or "-- x " or "++ x " for some sequence
of charactersx . An x cannot contain only digits or digits plus a single decimal point, since simple (signed)
numbers are not treated as flags. In addition, the flags"--" , "-h" , and"--help" are predefined and cannot
be changed.

2. variable s — variables that are bound to the flag’s arguments. The number of variables specified here de-
termines how many arguments can be provided on the command line with the flag, and the names of these
variables will appear in the help message describing the flag. Thevariable s are bound to string values in the
body-expr s for handling the flag.

3. help-str — a string that describes the flag. This string is used in the help message generated by the handler
for the built-in-h (or --help) flag. If multiplehelp-str s are provided, the rest are displayed on subsequent
lines.

4. body-expr s — expressions that are evaluated when one of theflags appears on the command line. The
flags are parsed left-to-right, and each sequence ofbody-expr s is evaluated as the corresponding flag is
encountered. When thebody-expr s are evaluated, thevariable s are bound to the arguments provided for
the flag on the command line.

A flag specification using=> escapes to a more general method of specifying the handler and help strings. In this
case, the handler procedure and help string list returned byhandler-expr andhelp-expr are embedded directly
in the table forparse-command-line , the procedure used to implement command-line parsing.

A help-labels clause inserts text lines into the help table of command-line flags. Each string in the clause provides
a separate line of text.

An args clause can be specified as the last clause. The variables inarg-formals are bound to the leftover
command-line strings in the same way that variables are bound to theformals of a lambda expression. Thus,
specifying a singlevariable (without parentheses) collects all of the leftover arguments into a list. The effective
arity of thearg-formals specification determines the number of extra command-line arguments that the user can
provide, and the names of the variables inarg-formals are used in the help string. When the command-line is
parsed, if the number of provided arguments cannot be matched to variables inarg-formals , the exn:fail
exception is raised. Otherwise,args clause’sbody-expr s are evaluated to handle the leftover arguments, and the
result of the lastbody-expr is the result of thecommand-line expression.

Instead of anargs clause, the=> clause can be used to escape to a more general method of handling the left-
over arguments. In this case, the values of the expressions with=> are passed on directly as arguments to
parse-command-line . Thehelp-proc-expr andunknown-proc-expr expressions are optional.

Example:

30

8. cmdline.ss : Command-line Parsing

(command-line "compile" (current-command-line-arguments)
(once-each

[("-v" "--verbose") "Compile with verbose messages"
(verbose-mode #t)]

[("-p" "--profile") "Compile with profiling"
(profiling-on #t)])

(once-any
[("-o" "--optimize-1") "Compile with optimization level 1"

(optimize-level 1)]
["--optimize-2" "" ; show help on separate lines

"Compile with optimization level 2,"
"which implies all optimizations of level 1"
(optimize-level 2)])

(multi
[("-l" "--link-flags") lf ; flag takes one argument

"Add a flag for the linker"
(link-flags (cons lf (link-flags)))])

(args (filename) ; expects one command-line argument: a filename
filename)) ; return a single filename to compile

(parse-command-line progname argv table finish-proc arg-help [help-proc unknown-proc])
PROCEDURE

Parses a command-line using the specification intable . For an overview of command-line parsing, see the
command-line form. Thetable argument to this procedural form encodes the information incommand-line ’s
clauses, except for theargs clause. Instead, arguments are handled by thefinish-proc procedure, and help in-
formation about non-flag arguments is provided inarg-help . In addition, thefinish-proc procedure receives
information accumulated while parsing flags. Thehelp-proc andunknown-proc arguments allow customization
that is not possible withcommand-line .

When there are no more flags, thefinish-proc procedure is called with a list of information accumulated for
command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity of the
finish-proc procedure determines the number of non-flag arguments accepted and required from the command-
line. For example, iffinish-proc accepts either two or three arguments, then either one or two non-flag arguments
must be provided on the command-line. Thefinish-proc procedure can have any arity (see§3.12.1 inPLT
MzScheme: Language Manual) except0 or a list of0s (i.e., the procedure must at least accept one or more arguments).

The arg-help argument is a list of strings identifying the expected (non-flag) command-line arguments, one for
each argument. (If an arbitrary number of arguments are allowed, the last string inarg-help represents all of them.)

Thehelp-proc procedure is called with a help string if the-h or --help flag is included on the command line.
If an unknown flag is encountered, theunknown-proc procedure is called just like a flag-handling procedure (as
described below); it must at least accept one argument (the unknown flag), but it may also accept more arguments. The
defaulthelp-proc displays the string and exits and the defaultunknown-proc raises theexn:fail exception.

A table is a list of flag specification sets. Each set is represented as a list of two items: a mode symbol and a
list of either help strings or flag specifications. A mode symbol is one of’once-each , ’once-any , ’multi ,
’final , or ’help-labels , with the same meanings as the corresponding clause tags incommand-line . For
the ’help-labels mode, a list of help string is provided. For the other modes, a list of flag specifications is
provided, where each specification maps a number of flags to a single handler procedure. A specification is a list of
three items:

1. A list of strings for the flags defined by the spec. Seecommand-line for information about the format of flag

31

8. cmdline.ss : Command-line Parsing

strings.

2. A procedure to handle the flag and its arguments when one of the flags is found on the command line. The arity
of this handler procedure determines the number of arguments consumed by the flag: the handler procedure is
called with a flag string plus the next few arguments from the command line to match the arity of the handler
procedure. The handler procedure must accept at least one argument to receive the flag. If the handler accepts
arbitrarily many arguments, all of the remaining arguments are passed to the handler. A handler procedure’s arity
must either be a number or anarity-at-least value (see§3.12.1 inPLT MzScheme: Language Manual).

The return value from the handler is added to a list that is eventually passed tofinish-proc . If the handler
returns void, no value is added onto this list. For all non-void values returned by handlers, the order of the values
in the list is the same as the order of the arguments on the command-line.

3. A non-empty list for constructing help information for the spec. The first element of the list describes the flag;
it can be a string or a non-empty list of strings, and in the latter case, each string is shown on its own line.
Additional elements of the main list must be strings to name the expected arguments for the flag. The number
of extra help strings provided for a spec must match the number of arguments accepted by the spec’s handler
procedure.

The following example is the same as the example forcommand-line , translated to the procedural form:

(parse-command-line "compile" (current-command-line-arguments)
‘((once-each

[("-v" "--verbose")
,(lambda (flag) (verbose-mode #t))
("Compile with verbose messages")]

[("-p" "--profile")
,(lambda (flag) (profiling-on #t))
("Compile with profiling")])

(once-any
[("-o" "--optimize-1")

,(lambda (flag) (optimize-level 1))
("Compile with optimization level 1")]

[("--optimize-2")
,(lambda (flag) (optimize-level 2))
(("Compile with optimization level 2,"

"which implies all optimizations of level 1"))])
(multi
[("-l" "--link-flags")

,(lambda (flag lf) (link-flags (cons lf (link-flags))))
("Add a flag for the linker" "flag")]))

(lambda (flag-accum file) file) ; return a single filename to compile
’("filename")) ; expects one command-line argument: a filename

32

9. cml.ss : Concurrent ML Compatibility

To load:(require (lib "cml.ss"))

This library defines a number of procedures that wrap MzScheme concurrency procedures. The wrapper procedures
have names and interfaces that more closely match those of Concurrent ML.

(spawn thunk) PROCEDURE

Equivalent to(thread/suspend-to-kill thunk) (see§7.1 inPLT MzScheme: Language Manual).

(channel) procedure

Equivalent to(make-channel) (see§7.5 inPLT MzScheme: Language Manual).

(channel-recv-evt channel) PROCEDURE

Equivalent tochannel .

(channel-send-evt channel v) PROCEDURE

Equivalent to(channel-put-evt channel v) (see§7.5 inPLT MzScheme: Language Manual).

(thread-done-evt thread) PROCEDURE

Equivalent to(thread-dead-waitable thread) (see§7.2 inPLT MzScheme: Language Manual).

(current-time) PROCEDURE

Equivalent to(current-inexact-milliseconds) (see§15.1 inPLT MzScheme: Language Manual).

(time-evt x) PROCEDURE

Equivalent to(alarm-evt x) (see§7.6 inPLT MzScheme: Language Manual).

33

10. compat.ss : Compatibility

To load:(require (lib "compat.ss"))

This library defines a number of procedures and syntactic forms that are commonly provided by other Scheme imple-
mentations. Most of the procedures are aliases for built-in MzScheme procedures, as shown in the table below. The
remaining procedures and forms are described below.

Compatible MzScheme
=? =
<? <
>? >

<=? <=
>=? >=
1+ add1
1- sub1

gentemp gensym
flush-output-port flush-output

real-time current-milliseconds

(atom? v) PROCEDURE

Same as(not (pair? v)) .

(define-structure (name-identifier field-identifier · · ·)) SYNTAX

Like define-struct , except that thename-identifier is moved inside the parenthesis for fields. A second
form of define-structure , below, supports initial-value expressions for fields.

(define-structure (name-identifier field-identifier ···) ((init-field-identifier
init-expr) · · ·)) SYNTAX

Like define-struct , except that thename-identifier is moved inside the parenthesis for fields, and addi-
tional fields can be specified with initial-value expressions.

The init-field-identifier s do not have corresponding arguments for themake- name-identifier
constructor. Instead, theinit-field-identifier ’s init-expr is evaluated to obtain the field’s
value when the constructor is called. Thefield-identifier s are bound ininit-expr s, but not the
init-field-identifier s.

Example:

(define-structure (add left right) ([sum (+ left right)]))
(add-sum (make-add 3 6)) ; ⇒ 9

34

10. compat.ss : Compatibility

(getprop sym property default) PROCEDURE

Gets a property value associated with the symbolsym. Theproperty argument is also a symbol that names the
property to be found. If the property is not found,default is returned. If thedefault argument is omitted,#f is
used as the default.

(new-cafe [eval-handler]) PROCEDURE

Emulates Chez Scheme’snew-cafe .

(putprop sym property value) PROCEDURE

Installs a value forproperty of the symbolsym. Seegetprop above.

35

11. compile.ss : Compiling Files

To load:(require (lib "compile.ss"))

(compile-file src [dest filter]) PROCEDURE

Compiles the Scheme filesrc and saves the compiled code todest . If dest is not specified, a filename is con-
structed by takingsrc ’s directory path, adding acompiled subdirectory, and then addingsrc ’s filename with its
suffix replaced by.zo. Also, if dest is not provided and thecompiled subdirectory does not already exist, the sub-
directory is created. If thefilter procedure is provided, it is applied to each source expression and the result is
compiled (otherwise, the identity function is used as the filter). The result ofcompile-file is the destination file’s
path.

Thecompile-file procedure is designed for compiling modules files; each expression insrc is compiled inde-
pendently. Ifsrc does not contain a singlemodule expression, then earlier expressions can affect the compilation of
later expressions whensrc is loaded directly. An appropriatefilter can make compilation behave like evaluation,
but the problem is also solved (as much as possible) by thecompile-zos procedure provided by thecompiler
collection’scompiler.ss module.

See alsomanaged-compile-zo in §6.

36

12. contract.ss : Contracts

To load:(require (lib "contract.ss"))

MzLib’s contract.ss library defines new forms of expression that specify contracts and new forms of expression that
attach contracts to values.

This section describes three classes of contracts: contracts for flat values (described in section12.1), contracts for
functions (described in section12.2), and contracts for objects and classes (described in section12.4).

In addition, this section describes how to establish a contract, that is, how to indicate that a particular contract should
be enforced at a particular point in the program (in section12.5).

12.1 Flat Contracts

A contract for a flat value can be a predicate that accepts the value and returns a boolean indicating if the contract
holds.

(flat-contract predicate) FLAT-CONTRACT

Constructs a contract frompredicate .

(flat-named-contract type-name predicate) FLAT-CONTRACT

For better error reporting, a flat contract can be constructed withflat-named-contract , a procedure that accepts
two arguments. The first argument must be a string that describes the type that the predicate checks for. The second
argument is the predicate itself.

any/c FLAT-CONTRACT

any/c is a flat contract that accepts any value.

If you are using this predicate as the result portion of a function contract, consider usingany instead. It behaves the
same, but in that one restrictive context has better memory performance.

(or/c contract · · ·) OR/C

or/c accepts any number of predicates and at most one function contract and returns a contract that accepts any value
that any one of the contracts accepts, individually.

If all of the arguments are predicates or flat contracts, it returns a flat contract.

or/c tests any values by applying the contracts in order, from left to right, with the exception that it always moves
the non-flat contract (if any) to the end, applying it last.

37

12.1. Flat Contracts 12.contract.ss : Contracts

(and/c contract · · ·) CONTRACT

and/c accepts any number of flat contracts and at most one function contract and returns a contract that checks that
accepts any value that satisfies all of the contracts, simultaneously.

If all of the arguments are predicates or flat contracts,and/c produces a flat contract.

and/c tests any values by applying the contracts in order, from left to right, with the exception that it always moves
the non-flat contract (if any) to the end, applying it last.

(not/c flat-contract) FLAT-CONTRACT

not/c accepts a flat contracts or a predicate and returns a flat contract that checks the inverse of the argument.

(=/c number) FLAT-CONTRACT

=/c accepts a number and returns a flat contract that requires the input to be a number and equal to the original input.

(>=/c number) FLAT-CONTRACT

>=/c accepts a number and returns a flat contract that requires the input to be a number and greater than or equal to
the original input.

(<=/c number) FLAT-CONTRACT

<=/c accepts a number and returns a flat contract that requires the input to be a number and less than or equal to the
original input.

(between/c number number) FLAT-CONTRACT

between/c accepts two numbers and returns a flat contract that requires the input to between the two numbers (or
equal to one of them).

(>/c number) FLAT-CONTRACT

>/c accepts a number and returns a flat contract that requires the input to be a number and greater than the original
input.

(</c number) FLAT-CONTRACT

</c accepts a number and returns a flat contract that requires the input to be a number and less than the original input.

(integer-in number number) FLAT-CONTRACT

integer-in accepts two numbers and returns a flat contract that recognizes if integers between the two inputs, or
equal to one of its inputs.

(real-in number number) FLAT-CONTRACT

real-in accepts two numbers and returns a flat contract that recognizes real numbers between the two inputs, or
equal to one of its inputs.

38

12. contract.ss : Contracts 12.1. Flat Contracts

natural-number/c FLAT-CONTRACT

natural-number/c is a contract that recognizes natural numbers (i.e., an integer that is either positive or zero).

(string/len number) FLAT-CONTRACT

string/len accepts a number and returns a flat contract that recognizes strings that have fewer than that number of
characters.

false/c FLAT-CONTRACT

false/c is a flat contract that recognizes#f .

printable/c FLAT-CONTRACT

printable/c is a flat contract that recognizes values that can be written out and read back in withwrite and
read .

(one-of/c value · · ·1) FLAT-CONTRACT

one-of/c accepts any number of atomic values and returns a flat contract that recognizes those values, usingeqv?
as the comparison predicate. For the purposes ofone-of/c , atomic values are defined to be: characters, symbols,
booleans, null keywords, numbers, void, and undefined.

(symbols symbol · · ·1) FLAT-CONTRACT

symbols accepts any number of symbols and returns a flat contract that recognizes those symbols.

(is-a?/c class-or-interface) FLAT-CONTRACT

is-a?/c accepts a class or interface and returns a flat contract that recognizes if objects are subclasses of the class
or implement the interface.

(implementation?/c interface) FLAT-CONTRACT

implementation?/c accepts an interface and returns a flat contract that recognizes if classes are implement the
given interface.

(subclass?/c class) FLAT-CONTRACT

subclass?/c accepts a class and returns a flat-contract that recognizes classes that are subclasses of the original
class.

(listof flat-contract) FLAT-CONTRACT

listof accepts a flat contract (or a predicate which is converted to a flat contract) and returns a flat contract that
checks for lists whose elements match the original flat contract.

(list-immutableof contract) CONTRACT

list-immutableof accepts a contract (or a predicate which is converted to a flat contract) and returns a

39

12.1. Flat Contracts 12.contract.ss : Contracts

contract that checks for immutable lists whose elements match the original contract. In contrast tolistof ,
list-immutableof accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not beeq? to the input.

(vectorof flat-contract) FLAT-CONTRACT

vectorof accepts a flat contract (or a predicate which is converted to a flat contract viaflat-contract) and
returns a predicate that checks for vectors whose elements match the original flat contract.

(vector-immutableof contract) CONTRACT

vector-immutableof accepts a contract (or a predicate which is converted to a flat contract) and returns a
contract that checks for immutable lists whose elements match the original contract. In contrast tovectorof ,
vector-immutableof accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not beeq? to the input.

(vector/c flat-contract · · ·) FLAT-CONTRACT

vector/c accepts any number of flat contracts (or predicates which are converted to flat contracts via
flat-contract) and returns a flat-contract that recognizes vectors. The number of elements in the vector must
match the number of arguments supplied tovector/c and the elements of the vector must match the corresponding
flat contracts.

(vector-immutable/c contract · · ·) CONTRACT

vector-immutable/c accepts any number of contracts (or predicates which are converted to flat contracts via
flat-contract) and returns a contract that recognizes vectors. The number of elements in the vector must match
the number of arguments supplied tovector-immutable/c and the elements of the vector must match the corre-
sponding contracts.

In contrast tovector/c , vector-immutable/c accepts arbitrary contracts, not just flat contracts. Beware,
however, that when a value is applied to this contract, the result will not beeq? to the input.

(box/c flat-contract) FLAT-CONTRACT

box/c accepts a flat contract (or predicate that is converted to a flat contract viaflat-contract) and returns a
flat contract that recognizes for boxes whose contents matchbox/c ’s argument.

(box-immutable/c contract) CONTRACT

box-immutable/c one contracts (or a predicate that is converted to a flat contract viaflat-contract)
and returns a contract that recognizes boxes. The contents of the box must match the contract passed to to
box-immutable/c .

In contrast tobox/c , box-immutable/c accepts an arbitrary contract, not just a flat contract. Beware, however,
that when a value is applied to this contract, the result will not beeq? to the input.

(cons/c flat-contract flat-contract) FLAT-CONTRACT

cons/c accepts two flat contracts (or predicates that are converted to flat contracts viaflat-contract) and

40

12. contract.ss : Contracts 12.1. Flat Contracts

returns a flat contract that recognizes cons cells whose car and cdr correspond tocons/c ’s two arguments.

(cons-immutable/c contract contract) CONTRACT

cons-immutable/c accepts two contracts (or predicates that are converted to flat contracts viaflat-contract)
and returns a contract that recognizes immutable cons cells whose car and cdr correspond tocons-immutable/c ’s
two arguments. In contrast tocons/c , cons-immutable/c accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not beeq? to the input.

(list/c flat-contract · · ·) FLAT-CONTRACT

list/c accepts an arbitrary number of flat contracts (or predicates that are converted to flat contracts via
flat-contract) and returns a flat contract that recognizes for lists whose length is the same as the number of
arguments tolist/c and whose elements match those arguments.

(list-immutable/c contract · · ·) CONTRACT

list-immutable/c accepts an arbitrary number of contracts (or predicates that are converted to flat contracts
via flat-contract) and returns a contract that recognizes for lists whose length is the same as the number of
arguments tolist-immutable/c and whose elements match those contracts.

In contrast tolist/c , list-immutable/c accepts arbitrary contracts, not just flat contracts. Beware, however,
that when a value is applied to this contract, the result will not beeq? to the input.

(syntax/c flat-contract) FLAT-CONTRACT

syntax/c accepts a flat contract and produces a flat contract that recognizes syntax objects whose contents match
the argument tosyntax/c .

(struct/c struct-name flat-contract ...) FLAT-CONTRACT

struct/c accepts a struct name and as many flat contracts as there are fields in the named struct. It returns a contract
that accepts instances of that struct whose fields match the given contracts.

(flat-rec-contract name flat-contract · · ·) SYNTAX

Eachflat-rec-contract form constructs a flat recursive contract. The first argument is the name of the contract
and the following arguments are flat contract expressions that may refer toname.

As an example, this contract:

(flat-rec-contract sexp
(cons/c sexp sexp)
number?
symbol?)

is a flat contract that checks for (a limited form of) s-expressions. It says that ansexp is either twosexp combined
with cons , or a number, or a symbol.

Note that if the contract is applied to a circular value, contract checking will not terminate.

41

12.2. Function Contracts 12.contract.ss : Contracts

(flat-murec-contract ([name flat-contract · · ·] · · ·) body · · ·) SYNTAX

The flat-murec-contract form is a generalization offlat-rec-contracts for defining several mutually
recursive flat contracts simultaneously.

Each of the names is visible in the entireflat-murec-contract and the result of the final body expression is the
result of the entire form.

Note that if the contract is applied to a circular value, contract checking will not terminate.

12.2 Function Contracts

This section describes the contract constructors for function contracts. This is their shape:

contract-expr :: ==
| (case- > arrow-contract-expr · · ·)
| arrow-contract-expr

arrow-contract-expr :: ==
| (- > expr · · · expr)
| (- > expr · · · any)
| (- > expr · · · (values expr · · ·))

| (- >∗ (expr · · ·) (expr · · ·))
| (- >∗ (expr · · ·) any)
| (- >∗ (expr · · ·) expr (expr · · ·))
| (- >∗ (expr · · ·) expr any)

| (- >d expr · · · expr)
| (- >d∗ (expr · · ·) expr)
| (- >d∗ (expr · · ·) expr expr)

| (- >r ((id expr) · · ·) expr)
| (- >r ((id expr) · · ·) any)
| (- >r ((id expr) · · ·) (values (id expr) · · ·))
| (- >r ((id expr) · · ·) id expr expr)
| (- >r ((id expr) · · ·) id expr any)
| (- >r ((id expr) · · ·) id expr (values (id expr) · · ·))

| (- >pp ((id expr) · · ·) pre-expr expr res-id post-expr)
| (- >pp ((id expr) · · ·) pre-expr any)
| (- >pp ((id expr) · · ·) pre-expr (values (id expr) · · ·) post-expr)

| (- >pp-rest ((id expr) · · ·) id expr pre-expr expr res-id post-expr)
| (- >pp-rest ((id expr) · · ·) id expr pre-expr any)
| (- >pp-rest ((id expr) · · ·) id expr pre-expr (values (id expr) · · ·) post-expr)

| (opt- > (expr · · ·) (expr · · ·) expr)
| (opt- >∗ (expr · · ·) (expr · · ·) any)
| (opt- >∗ (expr · · ·) (expr · · ·) (expr · · ·))

whereexpr is any expression.

(- > expr · · ·) SYNTAX

42

12. contract.ss : Contracts 12.2. Function Contracts

(- > expr · · ·any) SYNTAX

The- > contract is for functions that accept a fixed number of arguments and return a single result. The last argument
to - > is the contract on the result of the function and the other arguments are the contracts on the arguments to
the function. Each of the arguments to- > must be another contract expression or a predicate. For example, this
expression:

(integer? boolean? . - > . integer?)

is a contract on functions of two arguments. The first must be an integer and the second a boolean and the function
must return an integer. (This example uses MzScheme’s infix notation so that the- > appears in a suggestive place;
see§11.2.4 inPLT MzScheme: Language Manual).

If any is used as the last argument to- >, no contract checking is performed on the result of the function, and
tail-recursion is preserved. Except for the memory performance, this is the same as usingany/c in the result.

The final case of- > expressions treatsvalues as a local keyword – that is, you may not return multiple values to
this position, instead if the wordvalues syntactically appears in the in the last argument to- > the function is treated
as a multiple value return.

(- >∗ (expr · · ·) (expr · · ·)) SYNTAX

(- >∗ (expr · · ·) any) SYNTAX

(- >∗ (expr · · ·) expr (expr · · ·)) SYNTAX

(- >∗ (expr · · ·) expr any) SYNTAX

The - >∗ expression is for functions that return multiple results and/or have rest arguments. If two arguments are
supplied, the first is the contracts on the arguments to the function and the second is the contract on the results of the
function. These situations are also covered by- >.

If three arguments are supplied, the first argument contains the contracts on the arguments to the function (excluding
the rest argument), the second contains the contract on the rest argument to the function and the final argument is the
contracts on the results of the function. The final argument can beany which, like - > means that no contract is
enforced on the result of the function and tail-recursion is preserved.

(- >d expr · · ·) SYNTAX

(- >d∗ (expr · · ·) expr)) SYNTAX

(- >d∗ (expr · · ·) expr expr) SYNTAX

The- >d and- >d∗ contract constructors are like theird-less counterparts, except that the result portion is a function
that accepts the original arguments to the function and returns the range contracts. The range contract function for
- >d∗ must return multiple values: one for each result of the original function. As an example, this is the contract for
sqrt :

(number?
. - >d .
(lambda (in)

(lambda (out)
(and (number? out)

43

12.2. Function Contracts 12.contract.ss : Contracts

(abs (− (∗ out out) in) 0.01)))))

It says that the input must be a number and that the difference between the square of the result and the original number
is less than0.01 .

(- >r ([id expr] · · ·) expr) SYNTAX

The- >r contract allows you to build a contract where the arguments to a function may all depend on each other and
the result of the function may depend on all of the arguments.

Each of theid s names one of the actual arguments to the function with the contract. Each of the names is available to
all of the other contracts. For example, to define a function that accepts three arguments where the second argument
and the result must both be between the first, you might write:

(- >r ([x number?] [y (and/c (>=/c x) (<=/c z))] [z number?])
(and/c number? (>=/c x) (<=/c z)))

(- >r ([id expr] · · ·) any) SYNTAX

This variation on- >r does not check anything about the result of the function, which preserves tail recursion.

(- >r ([id expr] · · ·) (values [id expr] ...)) SYNTAX

This variation on- >r allows multiple value return values. Theid s for the domain are bound in all of theexpr s, but
the id s for the range (the ones insidevalues) are only bound in theexprs inside thevalues .

As an example, this contract:

(- >r () (values [x number?]
[y (and/c (>=/c x) (<=/c z))]
[z number?]))

matches functions that accept no arguments and that return three numeric values that are in ascending order.

(- >r ([id expr] · · ·) id expr expr) SYNTAX

(- >r ([id expr] · · ·) id expr any) SYNTAX

(- >r ([id expr] · · ·) id expr (values [id expr] ...)) SYNTAX

These three forms of the- >r contract are just like the previous ones, except that the functions they matches must
accept arbitrarily many arguments. The extraid and theexpr just following it specify the contracts on the extra
arguments. The value ofid will alway be a list (of the extra arguments).

(- >pp ([id expr] · · ·) pre-expr expr res-id post-expr) SYNTAX

(- >pp ([id expr] · · ·) pre-expr any) SYNTAX

(- >pp ([id expr] · · ·) pre-expr (values [id expr] ...) post-expr) SYNTAX

(- >pp-rest ([id expr] · · ·) id expr pre-expr expr res-id post-expr) SYNTAX

44

12. contract.ss : Contracts 12.3. Lazy Data-structure Contracts

(- >pp-rest ([id expr] · · ·) id expr pre-expr any) SYNTAX

(- >pp-rest ([id expr] ···) id expr pre-expr (values [id expr] ...) post-expr) SYN-
TAX

These six shapes of- >pp match up to the six shapes of- >r forms explained above, with the addition that the extra
pre- and post-condition expressions must not evaluate to#f .

If the pre-condition evaluates to#f , the caller is blamed and if the post-condition expression evaluates to#f the
function itself is blamed.

The argument variables are bound in thepre-expr and thepost-expr and the variables in thevalues result
clauses are bound in thepost-expr .

Additionally, the variableres-id is bound to the result in the first- >pp case and in the first- >pp-rest case.

(case- > arrow-contract-expr · · ·) CONTRACT-CASE-¿

Thecase- > expression constructs a contract for case-λ function. It’s arguments must all be function contracts, built
by one of- >, - >d, - >∗, or - >d∗.

(opt- > (req-contracts · · ·) (opt-contracts · · ·) res-contract)) SYNTAX

(opt- >∗ (req-contracts · · ·) (opt-contracts · · ·) (res-contracts · · ·)) SYNTAX

(opt- >∗ (req-contracts · · ·) (opt-contracts · · ·) any) SYNTAX

The opt- > expression constructs a contract for anopt-lambda function. The first arguments are the re-
quired parameters, the second arguments are the optional parameters and the final argument is the result. The
req-contracts expressions, theopt-contracts expressions, and theres-contract expressions can be
any expression that evaluates to a contract value.

Eachopt- > expression expands intocase- >.

Theopt- >∗ expression constructs a contract for anopt-lambda function. The only difference betweenopt- >
andopt- >∗ is that multiple return values are permitted withopt- >∗ and they are specified in the last clause of an
opt- >∗ expression. A result ofany means any value or any number of values may be returned, and the contract
does not inhibit tail-recursion.

12.3 Lazy Data-structure Contracts

Typically, constracts on data structures can be written using flat contracts. For example, one might write a sorted
list contract as a function that accepts a list and traverses it, ensuring that the elements are in order. Such contracts,
however, can change the asymptotic running time of the program, since the contract may end up exploring more of a
function’s input than the function itself does. To circumvent this problem, thedefine-contract-struct form
introduces contract combinators that arelazy that is, they only verify the contract holds for the portion of some data
structure that is actually inspected. More precisely, a lazy data structure contract on a struct is not checked until a
selector extracts a field of a struct.

The form

(define-contract-struct struct-name (field ...))

45

12.3. Lazy Data-structure Contracts 12.contract.ss : Contracts

is like the correspondingdefine-struct , with two differences: it does not define field mutators and it does define
two contract constructors:struct-name/c andstruct-name/dc . The first is a procedure that accepts as many
arguments as there are fields and returns a contract for struct values whose fields match the arguments. The second is
a syntactic form that also produces contracts on the structs, but the contracts on later fields may depend on the values
of earlier fields. It syntax is:

(struct-name/dc field-spec ...)

where eachfield-spec is one of the following two lines:

[field contract-expr]
[field (field ...) contract-expr]

In each case, the first field name specifies which field the contract applies to, and the fields must be specified in the
same order as the originaldefine-contract-struct . The first case is for when the contract on the field does
not depend on the value of any other field. The second case is for when the contract on the field does depend on some
other fields, and the field names in middle second indicate which fields it depends on. These dependencies can only
be to fields that come earlier in the struct.

As an example consider this module:

(module product mzscheme
(require (lib "contract.ss"))

(define-contract-struct kons (hd tl))

;; sorted-list/gt : number -> contract
;; produces a contract that accepts
;; sorted kons-lists whose elements
;; are all greater than ‘num’.
(define (sorted-list/gt num)

(or/c null?
(kons/dc [hd (>=/c num)]

[tl (hd) (sorted-list/gt hd)])))

;; product : kons-list -> number
;; computes the product of the values
;; in the list. if the list contains
;; zero, it avoids traversing the rest
;; of the list.
(define (product l)

(cond
[(null? l) 1]
[else
(if (zero? (kons-hd l))

0
(∗ (kons-hd l)

(product (kons-tl l))))]))

(provide kons? make-kons kons-hd kons-tl)
(provide/contract [product (- > (sorted-list/gt −inf.0) number?)]))

It provides a single function,product whose contract indicates that it accepts sorted lists of numbers and produces
numbers. Using an ordinary flat contract for sorted lists, the product function cannot avoid traversing having its
entire argument be traversed, since the contract checker will traverse it before the function is called. As written above,

46

12. contract.ss : Contracts 12.4. Object and Class Contracts

however, when the product function aborts the traversal of the list, the contract checking also stops, since thekons/dc
contract constructor generates a lazy contract.

12.4 Object and Class Contracts

This section describes contracts on classes and objects. Here is the basic shape of an object contract:

contract-expr :: == · · ·
| (object-contract meth/field-spec · · ·)

meth/field-spec :: ==
(meth-name meth-contract)

| (field field-name contract-expr)

meth-contract :: ==
(opt- > (required-contract-expr · · ·)

(optional-contract-expr · · ·)
any)

(opt- > (required-contract-expr · · ·)
(optional-contract-expr · · ·)
result-contract-expr)

| (opt- >∗ (required-contract-expr · · ·)
(optional-contract-expr · · ·)
(result-contract-expr · · ·))

| (case- > meth-arrow-contract · · ·)
| meth-arrow-contract

meth-arrow-contract :: ==
(- > dom-contract-expr · · · rng-contract-expr)

| (- > dom-contract-expr · · · (values rng-contract-expr · · ·))
| (- >∗ (dom-contract-expr · · ·) (rng-contract-expr · · ·))
| (- >∗ (dom-contract-expr · · ·) rest-arg-contract-expr (rng-contract-expr · · ·))
| (- >d dom-contract-expr · · · rng-contract-proc-expr)
| (- >d∗ (dom-contract-expr · · ·) rng-contract-proc-expr)
| (- >d∗ (dom-contract-expr · · ·) rest-contract-expr rng-contract-proc-expr)
| (- >r ((id expr) · · ·) expr)
| (- >r ((id expr) · · ·) id expr expr)
| (- >pp ((id expr) · · ·) pre-expr expr res-id post-expr)
| (- >pp ((id expr) · · ·) pre-expr any)
| (- >pp ((id expr) · · ·) pre-expr (values (id expr) · · ·) post-expr)
| (- >pp-rest ((id expr) · · ·) id expr pre-expr expr res-id post-expr)
| (- >pp-rest ((id expr) · · ·) id expr pre-expr any)
| (- >pp-rest ((id expr) · · ·) id expr pre-expr (values (id expr) · · ·) post-expr)

Each of the contracts for methods has the same semantics as the corresponding function contract (discussed above),
but the syntax of the method contract must be written directly in the body of the object-contract (much like the way that
methods in class definitions use the same syntax as regular function definitions, but cannot be arbitrary procedures).

The only exception is that the- >r , - >pp , and- >pp-rest contracts implicitly bindthis to the object itself.

mixin-contract CONTRACT

mixin-contract is a contract that recognizes mixins. It is a function contract. It guarantees that the input to the
function is a class and the result of the function is a subclass of the input.

47

12.5. Attaching Contracts to Values 12.contract.ss : Contracts

(make-mixin-contract class-or-interface · · ·) CONTRACT

make-mixin-contract is a function that constructs mixins contracts. It accepts any number of classes and
interfaces and returns a function contract. The function contract guarantees that the input to the function implements
the interfaces and is derived from the classes and that the result of the function is a subclass of the input.

12.5 Attaching Contracts to Values

There are three special forms that attach contract specification to values:provide/contract , define/contract ,
andcontract .

(provide/contract p/c-item · · ·) SYNTAX

p/c-item is one of
(struct identifier ((identifier contract-expr) · · ·))
(struct (identifier identifier) ((identifier contract-expr) · · ·))
(rename id id contract-expr)
(id contract-expr)

A provide/contract form can only appear at the top-level of a module (see§5 in PLT MzScheme: Language
Manual). As with provide , each identifier is provided from the module. In addition, clients of the module must live
up to the contract specified bycontract-expr .

Theprovide/contract form treats modules as units of blame. The module that defines the provided variable is
expected to meet the positive (co-variant) positions of the contract. Each module that imports the provided variable
must obey the negative (contra-variant) positions of the contract.

Only uses of the contracted variable outside the module are checked. Inside the module, no contract checking occurs.

Therename form of aprovide/contract exports the first variable (the internal name) with the name specified
by the second variable (the external name).

Thestruct form of aprovide/contract clause provides a structure definition. Each field has a contract that
dictates the contents of the fields.

If the struct has a parent, the secondstruct form (above) must be used, with the first name referring to the struct
itself and the second name referring to the parent struct. Unlikedefine-struct , however, all of the fields (and
their contracts) must be listed. The contract on the fields that the sub-struct shares with its parent are only used in the
contract for the sub-struct’s maker, and the selector or mutators for the super-struct are not provided.

Note that the struct definition must come before the provide clause in the module’s body.

(define/contract id contract-expr init-value-expr) SYNTAX

Thedefine/contract form attaches the contractcontract-expr to init-value-expr and binds that to
id .

Thedefine/contract form treats individual definitions as units of blame. The definition itself is responsible for
positive (co-variant) positions of the contract and each reference toid (including those in the initial value expression)
must meet the negative positions of the contract.

Error messages withdefine/contract are not as clear as those provided byprovide/contract because
define/contract cannot detect the name of the definition where the reference to the defined variable occurs.
Instead, it uses the source location of the reference to the variable as the name of that definition.

48

12. contract.ss : Contracts 12.6. Contract Utility

(contract contract-expr to-protect-expr positive-blame negative-blame) SYNTAX

(contract contract-expr to-protect-expr positive-blame negative-blame contract-source)
SYNTAX

Thecontract special form is the primitive mechanism for attaching a contract to a value. Its purpose is as a target
for the expansion of some higher-level contract specifying form.

Thecontract form has this shape:

(contract expr to-protect-expr positive-blame negative-blame contract-source)

The contract expression adds the contract specified by the first argument to the value in the second argument.
The result of acontract expression is the result of theto-protect-expr expression, but with the con-
tract specified bycontract-expr enforced onto-protect-expr . The expressionspositive-blame and
negative-blame must be symbols indicating how to assign blame for positive and negative positions of the con-
tract specified bycontract-expr . Finally, contract-source , if specified, indicates where the contract was
assumed. It must be a syntax object specifying the source location of the location where the contract was assumed.
If the syntax object wraps a symbol, the symbol is used as the name of the primitive whose contract was assumed. If
absent, it defaults to the source location of thecontract expression.

12.6 Contract Utility

contract? PREDICATE

The procedurecontract? returns#t if its argument is a contract (ie, constructed with one of the combinators
described in this section).

flat-contract? PREDICATE

This predicate returns true when its argument is a contract that has been constructed withflat-contract (and
thus is essentially just a predicate).

(flat-contract-predicate value) SELECTOR

This function extracts the predicate from a flat contract.

(contract-violation->string [violation-renderer]) PROCEDURE

This is a parameter that is used when constructing a contract violation error. Its value is procedure that accepts six
arguments: the value that the contract applies to, a syntax object representing the source location where the contract
was established, the names of the two parties to the contract (as symbols) where the first one is the guilty one, an
sexpression representing the contract, and a message indicating the kind of violation. The procedure then returns a
string that is put into the contract error message. Note that the value is often already included in the message that
indicates the violation.

(recursive-contract contract) SYNTAX

Unfortunately, the standard contract combinators (like- >, etc) evaluate their arguments eagerly, leading to either
references to undefined variables or infinite loops, while building recursive contracts.

Therecursive-contract form delays the evaluation of its argument until the contract is checked, making recur-

49

12.6. Contract Utility 12.contract.ss : Contracts

sive contracts possible.

50

13. date.ss : Dates

To load:(require (lib "date.ss"))

See also§15.1 inPLT MzScheme: Language Manual.

(date->string date [time?]) PROCEDURE

Converts a date structure value (such as returned by MzScheme’sseconds->date) to a string. The returned string
contains the time of day only iftime? is a true value; the default is#f . See alsodate-display-format .

(date-display-format [format-symbol]) PROCEDURE

Parameter that determines the date display format, one of’american , ’chinese , ’german , ’indian , ’irish ,
’iso-8601 , ’rfc2822 , or ’julian . The initial format is’american .

(find-seconds second minute hour day month year) PROCEDURE

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of thedate
structure. If the platform cannot represent the specified date, an error is signaled, otherwise an integer is returned.

(date->julian/scalinger date) PROCEDURE

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is not a strict
Julian number, but rather Scalinger’s version, which is off by one for easier calculations.

(julian/scalinger->string date) PROCEDURE

Converts a Julian number (Scalinger’s off-by-one version) into a string.

51

14. deflate.ss : Deflating (Compressing) Data

To load:(require (lib "deflate.ss"))

(gzip in-filename [out-filename]) PROCEDURE

Compresses data to the same format as the GNUgzip utility, writing the compressed data directly to a file. The
in-filename argument is the name of the file to compress. The default output file name isin-filename with
.gz appended. If the file named byout-filename exists, it will be overwritten. The return value is void.

(gzip-through-ports in out orig-filename timestamp) PROCEDURE

Reads the portin for data and compresses it toout , outputting the same format as the GNUgzip utility. The
orig-filename string is embedded in this output;orig-filename can be#f to omit the filename from the
compressed stream. Thetimestamp number is also embedded in the output stream, as the modification date of
the original file (in Unix seconds, asfile-or-directory-modify-seconds would report under Unix). The
return value is void.

(deflate in out) PROCEDURE

Writespkzip -format “deflated” data to the portout , compressing data from the portin . The data in a file created
by gzip uses this format (preceded with some header information).

The result is three values: the number of bytes read fromin , the number of bytes written toout , and a cyclic
redundancy check (CRC) value for the input.

52

15. defmacro.ss : Non-Hygienic Macros

To load:(require (lib "defmacro.ss"))

(define-macro identifier expr) SYNTAX

(define-macro (identifier . formals) expr · · ·1) SYNTAX

Defines a (non-hygienic) macroidentifier as a procedure that manipulates S-expressions (as opposed to syntax
objects). In the first form,expr must produce a procedure. In the second form,formals determines the formal
arguments of the procedure, as inlambda , and theexpr s are the procedure body. In both cases, the procedure is
generated in the transformer environment, not the normal environment (see§12 inPLT MzScheme: Language Manual).

In a use of the macro,

(identifier expr · · ·)

syntax-object->datum is applied to the expression (see§12.2.2 inPLT MzScheme: Language Manual), and the
macro procedure is applied to thecdr of the resulting list. If the number ofexpr s does not match the procedure’s
arity (see§3.12.1 inPLT MzScheme: Language Manual) or if identifier is used in a context that does not match
the above pattern, then a syntax error is reported.

After the macro procedure returns, the result is compared to the procedure’s arguments. For each value that appears
exactly once within the arguments (or, more precisely, within the S-expression derived from the original source syntax),
if the same value appears in the result, it is replaced with a syntax object from the original expression. This heuristic
substitution preserves source location information in many cases, despite the macro procedure’s operation on raw
S-expressions.

After substituting syntax objects for preserved values, the entire macro result is converted to syntax with
datum->syntax-object (see§12.2.2 inPLT MzScheme: Language Manual). The original expression supplies
the lexical context and source location for converted elements.

(defmacro identifier formals expr · · ·1) SYNTAX

Same as(define-macro (identifier . formals) expr · · ·1) .

Important: define-macro is still restricted by MzScheme’s phase separation rules. This means that a macro
cannot access run-time bindings because it is executed in the syntax expansion phase. Translating code that involves
define-macro or defmacro from an implementation without this restriction usually implies separating macro re-
lated functionality into abegin-for-syntax or a module (that will be imported withrequire-for-syntax)
and properly distinguishing syntactic information from run-time information.

53

16. etc.ss : Useful Procedures and Syntax

To load:(require (lib "etc.ss"))

(begin-lifted expr · · ·1) SYNTAX

Lifts theexpr s so that they are evaluated once at the “top level” of the current context, and the result of the lastexpr
is used for every evaluation of thebegin-lifted form.

When this form is used as a run-time expression within a module, the “top level” corresponds to the module’s top
level, so that eachexpr is evaluated once for each invocation of the module. When it is used as a run-time expression
outside of a module, the “top level” corresponds to the true top level. When this form is used in adefine-syntax ,
letrec-syntax , etc. binding, the “top level” corresponds to the beginning of the binding’s right-hand side. Other
forms may redefine “top level” (usinglocal-expand/capture-lifts) for the expressions that they enclose.

(begin-with-definitions defn-or-expr · · ·) SYNTAX

Supports a mixture of expressions and mutually recursive definitions, much like amodule body. Unlike in amodule ,
however, syntax definitions cannot be used to generate other immediate definitions (though they can be used for
expressions).

The result of thebegin-with-definitions form is the result of the lastdefn-or-expr if it is an expression,
void otherwise. If nodefn-or-expr is provided (after flatteningbegin forms), the result is void.

(boolean=? bool1 bool2) PROCEDURE

Returns#t if bool1 andbool2 are both#t or both#f , and returns#f otherwise. If eitherbool1 or bool2 is
not a Boolean, theexn:fail:contract exception is raised.

(build-list n f) PROCEDURE

Creates a list ofn elements by applyingf to the integers from0 to n−1 in order, wheren is a non-negative integer.
If r is the resulting list,(list-ref r i) is (f i) .

(build-string n f) PROCEDURE

Creates a string of lengthn by applyingf to the integers from0 to n−1 in order, wheren is a non-negative integer
andf returns a character for then invocations. Ifr is the resulting string,(string-ref r i) is (f i) .

(build-vector n f) PROCEDURE

Creates a vector ofn elements by applyingf to the integers from0 to n−1 in order, wheren is a non-negative integer.
If r is the resulting vector,(vector-ref r i) is (f i) .

54

16. etc.ss : Useful Procedures and Syntax

(compose f · · ·1) PROCEDURE

Returns a procedure that composes the given functions, applying the lastf first and the firstf last. The composed
functions can consume and produce any number of values, as long as each function produces as many values as the
preceding function consumes.

For example,(compose f g) returns the equivalent of(lambda l (call-with-values (lambda ()
(apply g l)) f)) .

(define-syntax-set (identifier · · ·) defn · · ·) SYNTAX

This form is similar todefine-syntaxes , but instead of a single body expression, a sequence of definitions
follows the sequence of defined identifiers. For eachidentifier , the defn s should include a definition for
identifier /proc . The value foridentifier /proc is used as the (expansion-time) value foridentifier .

The define-syntax-set form is especially useful for defining a set of syntax transformers that share helper
functions.

Example:

(define-syntax-set (let-current-continuation let-current-escape-continuation)
(define (mk call-id)

(lambda (stx)
(syntax-case stx ()

[(id body1 body ...)
(with-syntax ([call call-id])

(syntax (call (lambda (id) body1 body ...))))])))
(define let-current-continuation/proc (mk (quote-syntax call/cc)))
(define let-current-escape-continuation/proc (mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr · · ·) · · ·1) SYNTAX

Theevcase form is similar tocase , except that expressions are provided in each clause instead of a sequence of
data. Afterkey-expr is evaluated, eachvalue-expr is evaluated until a value is found that iseqv? to the key
value; when a matching value is found, the correspondingbody-expr s are evaluated and the value(s) for the last is
the result of the entireevcase expression.

A value-expr can be the special identifierelse . This identifier is recognized as incase (see§2.3 in PLT
MzScheme: Language Manual).

false BOOLEAN

Boolean false.

(identity v) PROCEDURE

Returnsv .

(let+ clause body-expr · · ·1) SYNTAX

A new binding construct that specifies scoping on a per-binding basis instead of a per-expression basis. It helps
eliminate rightward-drift in programs. It looks similar tolet , except each clause has an additional keyword tag
before the binding variables.

55

16. etc.ss : Useful Procedures and Syntax

Eachclause has one of the following forms:

• (val target expr) bindstarget non-recursively toexpr .

• (rec target expr) bindstarget recursively toexpr .

• (vals (target expr) · · ·) thetarget s are bound to theexpr s. The environment of theexpr s is the
environment active before this clause.

• (recs (variable expr) · · ·) the targets s are bound to theexpr s. The environment of theexpr s
includes all of thetargets s.

• (expr · · ·) evaluates theexpr s without binding any variables.

The clauses bind left-to-right. Eachtarget above can either be an identifier or(values variable · · ·) . In the
latter case, multiple values returned by the corresponding expression are bound to the multiple variables.

Examples:

(let + ([val (values x y) (values 1 2)])
(list x y)) ; ⇒ ’(1 2)

(let ([x 1])
(let + ([val x 3]

[val y x])
y)) ; ⇒ 3

(local (definition · · ·) body-expr · · ·1) SYNTAX

This is a binding form similar toletrec , except that eachdefinition is adefine-values expression (after
partial macro expansion). Thebody-expr s are evaluated in the lexical scope of these definitions.

(loop-until start done? next f) PROCEDURE

Repeatedly invokes thef procedure until thedone? procedure returns#t . The procedure is best described by its
implementation:

(define loop-until
(lambda (start done? next f)

(let loop ([i start])
(unless (done? i)

(f i)
(loop (next i))))))

(namespace-defined? symbol) PROCEDURE

Returns#t if namespace-variable-value would return a value forsymbol , #f otherwise. See§8.2 inPLT
MzScheme: Language Manualfor further information.

(nand expr · · ·) SYNTAX

Returns(not (and expr · · ·)) .

56

16. etc.ss : Useful Procedures and Syntax

(nor expr · · ·) SYNTAX

Returns(not (or expr · · ·)) .

(opt-lambda formals body-expr · · ·1) SYNTAX

The opt-lambda form is like lambda , except that default values are assigned to arguments (C++-
style). Default values are defined in theformals list by replacing eachvariable by [variable
default-value-expression] . If a variable has a default value expression, then all (non-aggregate) variables
after it must have default value expressions. A final aggregate variable can be used as inlambda , but it cannot be
given a default value. Each default value expression is evaluated only if it is needed. The environment of each default
value expression includes the preceding arguments.

For example:

(define f
(opt-lambda (a [b (add1 a)] . c)

...))

In the example,f is a procedure which takes at least one argument. If a second argument is specified, it is the value of
b, otherwiseb is (add1 a) . If more than two arguments are specified, then the extra arguments are placed in a new
list that is the value ofc .

See also§22 for a library that generalizes both optional and keyword arguments.

(recur name bindings body-expr · · ·1) SYNTAX

This is equivalent to a namedlet : (let name bindings body-expr · · ·1) .

(rec name value-expr) SYNTAX

This is equivalent to aletrec expression that returns its binding:(letrec ((name value-expr)) name) .

(symbol=? symbol1 symbol2) PROCEDURE

Returns#t if symbol1 andsymbol2 are equivalent (as determined byeq?), #f otherwise. If eithersymbol1 or
symbol2 is not a symbol, theexn:fail:contract exception is raised.

(this-expression-source-directory) SYNTAX

Expands to an expression that evaluates to the name of the directory of the file containing the source expression. The
source expression’s file is determined through source location information associated with the syntax if it is present.
Otherwise,current-load-relative-directory is used if it is not#f , andcurrent-directory is used
if all else fails. The expression is a simple(bytes->path #"...") , unless the directory is in the PLT home,
which will make an expression that uses ‘plthome ’ to get the PLT home path determined at runtime, therefore not
hard-wiring the path to the resulting syntax.

(this-expression-file-name) SYNTAX

Expands to an expression that evaluates to the file name of the source expression. The source expression’s file name
is determined through source location information associated with the syntax if it is present. If this information is
missing, or is not a path (e.g., for a standard-input expression), then#f will be used instead.

57

16. etc.ss : Useful Procedures and Syntax

true BOOLEAN

Boolean true.

(hash-table ’flag ...(key value) ...) SYNTAX

This creates a new hash-table providing the quoted flags (if any) tomake-hash-table , and make each of the keys
map to the corresponding values. (Flags must be specified by a quoted form.)

58

17. file.ss : Filesystem Utilities

To load:(require (lib "file.ss"))

See also§11.3 inPLT MzScheme: Language Manual.

(build-absolute-path base path · · ·) PROCEDURE

Like build-path (see§11.3 inPLT MzScheme: Language Manual), but base is required to be an absolute path-
name. Ifbase is not an absolute pathname,error is called.

(build-relative-path base path · · ·) PROCEDURE

Like build-path (see§11.3 inPLT MzScheme: Language Manual), butbase is required to be a relative pathname.
If base is not a relative pathname,error is called.

(call-with-input-file* pathname proc flag-symbol · · ·) PROCEDURE

Like call-with-input-file , except that the opened port is closed if control escapes from the body ofproc .

(call-with-output-file* pathname proc flag-symbol · · ·) PROCEDURE

Like call-with-output-file , except that the opened port is closed if control escapes from the body ofproc .

(copy-directory/files src-path dest-path) PROCEDURE

Copies the file or directorysrc-path to dest-path , raisingexn:fail:filesystem if the file or directory
cannot be copied, possibly becausedest-path exists already. Ifsrc-path is a directory, the copy applies recur-
sively to the directory’s content. If a source is a link, the target of the link is copied rather than the link itself.

(delete-directory/files path) PROCEDURE

Deletes the file or directory specified bypath , raisingexn:fail:filesystem if the file or directory cannot be
deleted. Ifpath is a directory, thendelete-directory/files is first applied to each file and directory inpath
before the directory is deleted. The return value is void.

(explode-path path) PROCEDURE

Returns the list of directories that constitutepath . The path argument must be normalized in the sense of
normalize-path (see below).

(file-name-from-path path) PROCEDURE

If path is a file pathname, returns just the file name part without the directory path.

59

17. file.ss : Filesystem Utilities

(filename-extension path) PROCEDURE

Returns a byte string that is the extension part of the filename inpath . If path is (syntactically) a directory,#f is
returned.

(find-files predicate [start-pathname]) PROCEDURE

Traverses the filesystem starting atstart-pathname and creates a list of all files and directories for which
predicate returns true. Ifstart-pathname is #f (the default), then the traversal starts from the current direc-
tory (as determined bycurrent-directory ; see§7.9.1.1 inPLT MzScheme: Language Manual). The resulting
list has directories precede their contents.

The predicate procedure is called with a single argument for each file or directory. Ifstart-pathname is
#f , the argument is a pathname string that is relative to the current directory. Otherwise, it is a pathname that starts
with start-pathname . Consequently, supplying(current-directory) for start-pathname is different
from supplying#f , becausepredicate receives complete paths in the former case and relative paths in the latter.
Another difference is thatpredicate is not called for the current directory whenstart-pathname is #f .

The find-files traversal follows soft links. To avoid following links, use the more generalfold-files proce-
dure.

If start-pathname does not refer to an existing file or directory, thenpredicate will be called exactly once
with start-pathname as the argument.

(pathlist-closure path-list) PROCEDURE

This procedure consumes a list of paths, either absolute or relative to the current directory. The paths in the given
path-list are all expected to be path names of existing directories and files. The return value is a list of paths such
that

• if a nested path is given, all of its ancestors are also included in the result (but the same ancestor is not added
twice);

• if a path points at a directory, all of its descendants are also included in the result;

• ancestor directories come before their descendants.

(find-library name collection) PROCEDURE

Returns the path of the specified library (see Chapter 16 inPLT MzScheme: Language Manual), returning#f if the
specified library or collection cannot be found. Thecollection argument is optional, defaulting to"mzlib" .

(find-relative-path basepath path) PROCEDURE

Finds a relative pathname with respect tobasepath that names the same file or directory aspath . Bothbasepath
andpath must be normalized in the sense ofnormalize-path (see below). Ifpath is not a proper subpath of
basepath (i.e., a subpath that is strictly longer),path is returned.

(fold-files proc init-val [start-pathname follow-links?]) PROCEDURE

Traverses the filesystem starting atstart-pathname , calling proc on each discovered file, directory, and link.
If start-pathname is #f (the default), then the traversal starts from the current directory (as determined by
current-directory ; see§7.9.1.1 inPLT MzScheme: Language Manual).

60

17. file.ss : Filesystem Utilities

Theproc procedure is called with three arguments for each file, directory, or link:

• If start-pathname is #f , the first argument is a pathname string that is relative to the current directory.
Otherwise, the first argument is a pathname that starts withstart-pathname . Consequently, supplying
(current-directory) for start-pathname is different from supplying#f , becauseproc receives
complete paths in the former case and relative paths in the latter. Another difference is thatproc is not called
for the current directory whenstart-pathname is #f .

• The second argument is a symbol, either’file , ’dir , or ’link . The second argument can be’link only
when follow-links? is #f , in which case the filesystem traversal does not follow links. The default for
follow-links? is #t .

• The third argument is the accumulated result. For the first call toproc , the third argument isinit-val . For
the second call toproc (if any), the third argument is the result from the first call, and so on. The result of the
last call toproc is the result offold-files .

If start-pathname does not refer to an existing file or directory, thenproc will be called exactly once with
start-pathname as the first argument,’file as the second argument, andinit-val as the third argument.

(get-preference name [failure-thunk flush-cache? filename]) PROCEDURE

Extracts a preference value from the file designated by(find-system-path ’pref-file) (see§11.3 inPLT
MzScheme: Language Manual), or by filename if it is provided and is not#f . In the former case, if the preference
file doesn’t exist,get-preferences attempts to read aplt-prefs.ss file in the defaults collection, instead. If
neither file exists, the preference set is empty.

The preference file should contain a symbol-keyed association list (written to the file with the default parameter
settings). Keys starting withmzscheme: , mred: , andplt: in any letter case are reserved for use by PLT.

The result ofget-preference is the value associated withname if it exists in the association list, or the result of
calling failure-thunk otherwise. The defaultfailure-thunk returns#f .

Preference settings from the standard preference file are cached (weakly) across calls toget-preference ; if
flush-cache? is provided as#f , the cache is used instead of the re-consulting the preferences file.

See alsoput-preferences . The framework collection supports a more elaborate preference system; seePLT
Framework: GUI Application Frameworkfor details.

(make-directory* path) PROCEDURE

Creates directory specified bypath , creating intermediate directories as necessary.

(make-temporary-file [format-string copy-from-filename directory]) PROCEDURE

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a fresh file
name, the file is actually created; this prevents other threads or processes from picking the same temporary name.
If copy-from-filename is provided as path, the temporary file is created as a copy of the named file (us-
ing copy-file). If copy-from-filename is #f or not provided, the temporary file is created as empty. If
copy-from-filename is ’directory , then the temporary “file” is created as a directory. Ifdirectory is
provided and is not#f , then the file name generated fromformat-string is combined withdirectory to
obtain a full path.

When a temporary file is created, it is not opened for reading or writing when the pathname is returned. The client
program callingmake-temporary-file is expected to open the file with the desired access and flags (probably

61

17. file.ss : Filesystem Utilities

using the’truncate flag; see§11.1.3 inPLT MzScheme: Language Manual) and to delete it when it is no longer
needed.

If format-string is specified, it must be a format string suitable for use withformat and one additional
string argument (where the string contains only digits). If the resulting string is a relative path, it is combined with
the result of(find-system-path ’temp-dir) , unlessdirectory is provided and non-#f . The default
format-string is "mztmp ∼a" .

(normalize-path path wrt) PROCEDURE

Returns a normalized, complete version ofpath , expanding the path and resolving all soft links. Ifpath is relative,
then the pathnamewrt is used as the base path. Thewrt argument is optional; if is omitted, then the current directory
is used as the base path.

Letter case isnot normalized bynormalize-path . For this and other reasons, the result ofnormalize-path is
not suitable for comparisons that determine whether two paths refer to the same file (i.e., the comparison may produce
false negatives).

An error is signaled bynormalize-path if the input path contains an embedded path for a non-existent directory,
or if an infinite cycle of soft-links is detected.

(path-only path) PROCEDURE

If path is a filename, the file’s path is returned. Ifpath is syntactically a directory,#f is returned.

(put-preferences name-list val-list [locked-proc filename]) PROCEDURE

See alsoget-preference .

Installs a set of preference values and writes all current values to the preference file designated by
(find-system-path ’pref-file) (see§11.3 inPLT MzScheme: Language Manual), or filename if it is
supplied and not#f . Thename-list argument must be a list of symbols for the preference names, andval-list
must have the same length asname-list . Each element ofval-list must be an instance of a built-in data type
whosewrite output isread able (i.e., theprint-unreadable parameter is set to#f while writing preferences;
see§7.9.1.4 inPLT MzScheme: Language Manual).

Current preference values are read from the preference file before updating, and an update “lock” is held starting
before the file read, and lasting until after the preferences file is updated. The lock is implemented by the existence
of a file in the same directory as the preference file. If the directory of the preferences file does not already exist, it is
created.

If the update lock is already held (i.e., the lock file exists), thenlocked-proc is called with a single argument: the
path of the lock file. The defaultlocked-proc reports an error; an alternative thunk might wait a while and try
again, or give the user the choice to delete the lock file (in case a previous update attempt encountered disaster).

If filename is #f or not supplied, and the preference file does not already exist, then values read from thedefaults
collection (if any) are written for preferences that are not mentioned inname-list .

62

18. foreign.ss : Foreign Interface

To load:(require (lib "foreign.ss"))

The foreign.ss module provides functionality for interfacing with foreign functions and data, as well as making
some of MzScheme’s internal functionality available from Scheme. Unlike other modules in this manual,foreign.ss
is intended to be used as a substitute for C extensions, making it inherently unsafe — code that uses such unsafe
functionality can crashthe running process. It is therefore documented in its own manual:PLT Foreign Interface
Manual.

63

19. include.ss : Textually Including Source

To load:(require (lib "include.ss"))

(include path-spec) SYNTAX

Inlines the syntax in the designated file in place of theinclude expression.

Thepath-spec can be any of the following:

• a literal string that specifies a path to include (parsed according to the platform’s conventions).

• a path construction of the form(build-path elem ···1) , wherebuild-path ismodule-identifier=?
either to thebuild-path export frommzscheme or to the top-levelbuild-path , and where eachelem
is a path string,up (unquoted), orsame (unquoted). Theelem s are combined in the same way as for the
build-path function (see§11.3.1 inPLT MzScheme: Language Manual) to obtain the path to include.

• a path construction of the form(lib file-string collection-string · · ·) , wherelib is free
or refers to a top-levellib variable. Thecollection-string s are passed tocollection-path to
obtain a directory; if nocollection-string s are supplied,"mzlib" is used. Thefile-string is
then appended to the directory usingbuild-path to obtain the path to include.

If path-spec specifies a relative path to include, the path is resolved relative to the source for theinclude
expression, if that source is a complete path string. If the source is not a complete path string, thenpath-spec is
resolved relative to the current load relative directory if one is available, or to the current directory otherwise.

The included syntax is given the lexical context of theinclude expression.

(include-at/relative-to context source path-spec) SYNTAX

Like include , except that the lexical context ofcontext is used for the included syntax, and a relative
path-spec is resolved with respect to the source ofsource . The context andsource elements are other-
wise discarded by expansion.

(include-at/relative-to/reader context source path-spec reader-expr) SYNTAX

Combinesinclude-at/relative-to andinclude/reader .

(include/reader path-spec reader-expr) SYNTAX

Like include , except that the procedure produced by the expressionreader-expr is used to read the included
file, instead ofread-syntax .

The reader-expr is evaluated at expansion time in the transformer environment. Since it serves as a replacement
for read-syntax , the expression’s value should be a procedure that consumes two inputs—a string representing

64

19. include.ss : Textually Including Source

the source and an input port—and produces a syntax object oreof . The procedure will be called repeatedly until it
produceseof .

The syntax objects returned by the procedure should have source location information, but usually no lexical context;
any lexical context in the syntax objects will be ignored.

65

20. inflate.ss : Inflating Compressed Data

To load:(require (lib "inflate.ss"))

(gunzip file [output-name-filter]) PROCEDURE

Extracts data that was compressed using the GNUgzip utility (or gzip in thedeflate.ss library; see§14), writing
the uncompressed data directly to a file. Thefile argument is the name of the file containing compressed data. The
default output file name is the original name of the compressed file as stored infile . If a file by this name exists,
it will be overwritten. If no original name is stored in the source file,"unzipped" is used as the default output file
name.

The output-name-filter procedure is applied to two arguments — the default destination file name and a
Boolean that is#t if this name was read fromfile — before the destination file is created. The return value of the file
is used as the actual destination file name (opened with the’truncate flag). The defaultoutput-name-filter
procedure returns its first argument.

The return value is void. If the compressed data is corrupted, theexn:fail exception is raised.

(gunzip-through-ports in out) PROCEDURE

Reads the portin for compressed data that was created using the GNUgzip utility, writing the uncompressed data
to the portout .

The return value is void. If the compressed data is corrupted, theexn:fail exception is raised.

(inflate in out) PROCEDURE

Readspkzip -format “deflated” data from the portin and writes the uncompressed (“inflated”) data to the portout .
The data in a file created bygzip uses this format (preceded with some header information).

The return value is void. If the compressed data is corrupted, theexn:fail exception is raised.

66

21. integer-set.ss : Integer Sets

To load:(require (lib "integer-set.ss"))

The integer-set.ss module provides functions for working with finite sets of integers. This module is designed for
sets that are compactly represented as groups of intervals, even when their cardinality is large. For example, the set
of integers from−1000000 to 1000000 except for 0, can be represented as{[−1000000,−1], [1,1000000]}. This
data structure would not be a good choice for the set of all odd integers between 0 and 1000000 (which would be
{[1,1], [3,3], . . . [999999,999999]}).

In addition to theinteger-set abstract type, we define awell-formed-set to be a list of pairs of exact
integers, where each pair represents a closed range of integers, and the entire set is the union of the ranges. The ranges
must be disjoint and increasing. Further, adjacent ranges must have at least one integer between them. For example:
’((-1 . 2) (4 . 10)) is a well-formed-set as is’((1 . 1) (3 . 3)) , but ’((1 . 5) (6 . 7)) ,
’((1 . 5) (-3 . -1)) , ’((5 . 1)) , and’((1 . 5) (3 . 6)) are not.

(make-integer-set well-formed-set) PROCEDURE

Creates an integer set from a well-formed set.

(integer-set-contents integer-set) PROCEDURE

Produces a well-formed set from an integer set.

(set-integer-set-contents! integer-set well-formed-set) PROCEDURE

Mutates an integer set.

(integer-set? v) PROCEDURE

Returns#t if v is an integer set,#f otherwise.

(make-range) make-range/empty

Produces an empty integer set.

(make-range k) PROCEDURE

Produces an integer set containing onlyk .

(make-range start-k end-k) PROCEDURE

Produces an integer set containing the integers fromstart-k to end-k inclusive, wherestart-k <= end-k .

67

21. integer-set.ss : Integer Sets

(intersect x-integer-set y-integer-set) PROCEDURE

Returns the intersection of the given sets.

(difference x-integer-set y-integer-set) PROCEDURE

Returns the difference of the given sets (i.e., elements inx-integer-set that are not iny-integer-set).

(union x-integer-set y-integer-set) PROCEDURE

Returns the union of the given sets.

(split x-integer-set y-integer-set) PROCEDURE

Produces three values: the first is the intersection ofx-integer-set andy-integer-set , the second is the
differencex-integer-set removey-integer-set , and the third is the differencey-integer-set remove
x-integer-set .

(complement integer-set start-k end-k) PROCEDURE

Returns the a set containing the elements betweenstart-k to end-k inclusive that are not ininteger-set ,
wherestart-k <= end-k .

(xor x-integer-set y-integer-set) PROCEDURE

Returns an integer set containing every member ofx-integer-set andy-integer-set that is not in both sets.

(member? k integer-set) PROCEDURE

Returns#t if k is in integer-set , #f otherwise.

(get-integer integer-set) PROCEDURE

Returns a member ofinteger-set , or #f if integer-set is empty.

(foldr proc base-v integer-set) PROCEDURE

Applies proc to each member ofinteger-set in ascending order, where the first argument toproc is the set
member, and the second argument is the fold result starting withbase-v . For example,(foldr cons null x)
returns a list of all the integers inx , sorted in increasing order.

(partition integer-set-list) PROCEDURE

Returns the coarsest refinement of the sets ininteger-set-list such that the sets in the result list are pairwise
disjoint. For example, partitioning the sets that represent’((1 . 2) (5 . 10)) and ’((2 . 2) (6 . 6)
(12 . 12)) produces the a list containing the sets for’((1 . 1) (5 . 5) (7 . 10)) ’((2 . 2) (6
. 6)) , and’((12 . 12)) .

(card integer-set) PROCEDURE

Returns the number of integers in the given integer set.

68

21. integer-set.ss : Integer Sets

(subset? x-integer-set y-integer-set) PROCEDURE

Returns true if every integer inx-integer-set is also iny-integer-set , otherwise#f .

69

22. kw.ss : Keyword Arguments

To load:(require (lib "kw.ss"))

Thekw.ss library provides thelambda/kw anddefine/kw forms.

(lambda/kw formals body-expr · · ·1) SYNTAX

Like lambda , but with optional and keyword-based argument processing. This form is similar to an extended ver-
sion of Common Lisp procedure arguments (but note the differences below). When used with plain variable names,
lambda/kw expands to a plainlambda , solambda/kw is suitable for a language module that will use it to replace
lambda . Also, when used with only optionals, the resulting procedure is similar toopt-lambda (but a bit faster).
This facility uses MzScheme keyword values (see§3.8 inPLT MzScheme: Language Manual) for its implementation.

In addition tolambda/kw , this library provides adefine/kw form that is similar to the built-indefine (see§2.8.1
in PLT MzScheme: Language Manual), except that theformals are as inlambda/kw . Like define , this form
can be used with nested parenthesis for curried functions (the MIT-style generalization of§2.8.1 inPLT MzScheme:
Language Manual).

The syntax oflambda/kw is the same aslambda , except for the list of formal argument specifications. These
specifications can hold (zero or more) plain argument names, then an optionals (and defaults) section that begins after
an#:optional marker, then a keyword section that is marked by#:keyword , and finally a section holding rest
and “rest-like” arguments which are described below, together with argument processing flag directives. Each section
is optional, but the order of the sections must be as listed.

More formally, the syntax is:

(lambda/kw kw-formals body ...)

kw-formals is one of
variable
(variable · · · [#:optional optional-spec · · ·]

[#:key key-spec · · ·]
[rest/mode-spec · · ·])

(variable · · · . variable)

optional-spec is one of
variable
(variable default-expr)

key-spec is one of
variable
(variable default-expr)
(variable keyword default-expr)

rest/mode-spec is one of
#:rest variable

70

22. kw.ss : Keyword Arguments 22.1. Required Arguments

#:other −keys variable
#:other −keys +body variable
#:all −keys variable
#:body kw-formals
#:allow −other −keys
#:forbid −other −keys
#:allow −duplicate −keys
#:forbid −duplicate −keys
#:allow −body
#:forbid −body
#:allow −anything
#:forbid −anything

Of course, all boundidentifier s must be unique. The following section describes each part of thekw-formals .

22.1 Required Arguments

Required arguments correspond toidentifier s that appear before any keyword marker in the argument list. They
determine the minimum arity of the resulting procedure.

22.2 Optional Arguments

The optional-arguments section follows an#:optional marker in thekw-formals . Each optional argument can
take the form of a parenthesized variable and a default expression; the latter is used if a value is not given at the call
site. The default expression can be omitted (along with the parentheses), in which case#f is the default.

The default expression’s environment includes all previous arguments, both required and optional names. With
k optionals aftern required arguments, and with no keyword arguments or rest-like arguments, the resulting
procedure has an arity’(n+ k ... n+ 1 n) . Adding keywords or rest-like arguments makes the first arity
(make-arity-at-least n+k) .

The treatment of optionals is efficient, with an important implication: default expressions appear multiple times in the
resultingcase-lambda . For example, the default expression for the last optional argument appearsk−1 times (but
no expression is ever evaluated more than once in a procedure call). This expansion risks exponential blow-up is if
lambda/kw is used in a default expression of alambda/kw , etc. The bottom line, however, is thatlambda/kw is
a sensible choice, due to its enhanced efficiency, even when you need only optional arguments.

Using both optional and keyword arguments is possible, but note that the resulting behavior differs from traditional
keyword facilities (including the one in Common Lisp). See the following section for details.

22.3 Keyword Arguments

A keyword argument section is marked by a#:key . If it is used with optional arguments, then the keyword spec-
ifications must follow the optional arguments (which mirrors the use in call sites; where optionals are given before
keywords).

When a procedure accepts both optional and keyword arguments, the argument-handling convention is slightly dif-
ferent than in traditional keyword-argument facilities: a keyword after required arguments marks the beginning of
keyword arguments, no matter how many optional arguments have been provided before the keyword. This conven-
tion restricts the procedure’s non-keyword optional arguments to non-keyword values, but it also avoids confusion
when mixing optional arguments and keywords. For example, when a procedure that takes two optional arguments

71

22.4. Rest and Rest-like Arguments 22.kw.ss : Keyword Arguments

and a keyword argument#:x is called with#:x 1 , then the optional arguments get their default values and the key-
word argument is bound to1. (The traditional behavior would bind#:x and1 to the two optional arguments.) When
the same procedure is called with1 #:x 2 , the first optional argument is bound to1, the second optional argument is
bound to its default, and the keyword argument is bound to2. (The traditional behavior would report an error, because
2 is provided where#:x is expected.)

Like optional arguments, each keyword argument is specified as a parenthesized variable name and a default expres-
sion. The default expression can be omitted (with the parentheses), in which case#f is the default value. The keyword
used at a call site for the corresponding variable has the same name as the variable; a third form of keyword arguments
has three parts — a variable name, a keyword, and a default expression — to allow the name of the locally bound
variable to differ from the keyword used at call sites.

When calling a procedure with keyword arguments, the required argument (and all optional arguments, if specified)
must be followed by an even number of arguments, where the first argument is a keyword that determines which
variable should get the following value, etc. If the same keyword appears multiple times (and if multiple instances of
the keyword are allowed; see§22.6), the value after the first occurrence is used for the variable:

((lambda/kw (#:key x [y 2] [z #:zz 3] #:allow −duplicate −keys) (list x y z))
#:x ’x #:zz ’z #:x "foo")

⇒ ’(x 2 z)

Default expressions are evaluated only for keyword arguments that do not receive a value for a particular call. Like op-
tional arguments, each default expression is evaluated in an environment that includes all previous bindings (required,
optional, and keywords that were specified on its left).

See§22.6for information on when duplicate or unknown keywords are allowed at a call site.

22.4 Rest and Rest-like Arguments

The lastkw-formals section — after the required, optional, and keyword arguments — may contain specifications
for rest-like arguments and/or mode keywords. Up to five rest-like arguments can be declared, each with avariable
to bind:

• #:rest — the variable is bound to the list of “rest” arguments, which is the list of all values after the required
and the optional values. This list includes all keyword-value pairs, exactly as they are specified at the call site.

Scheme’s usual dot-notation is accepted inkw-formals only if no other meta-keywords are specified, since
it is not clear whether it should specify the same binding as a#:rest or as a#:body . The dot notation is
allowed without meta-keywords to make thelambda/kw syntax compatible withlambda .

• #:body — the variable is bound to all arguments after keyword–value pairs. (This is different from Common
Lisp’s &body , which is a synonym for&rest .) More generally, a#:body specification can be followed by
anotherkw-formals , not just a singlevariable ; see§22.5for more information.

• #:all-keys — the variable is bound to the list of all keyword-values from the call site, which is always a
proper prefix of a#:rest argument. (If no#:body arguments are declared, then#:all-keys binds the
same as#:rest .) See alsokeyword-get in §22.7.

• #:other-keys — the variable is bound like an#:all-keys variable, except that all keywords specified in
thekw-formals are removed from the list. When a keyword is used multiple times at a call cite (and this is
allowed), only the first instances is removed for the#:other-keys binding.

• #:other-keys+body — the variable is bound like a#:rest variable, except that all keywords specified
in thekw-formals are removed from the list. When a keyword is used multiple times at a call site (and this

72

22. kw.ss : Keyword Arguments 22.5. Body Argument

is allowed), only the first instance us removed for the#:other-keys+body binding. (When no#:body
variables are specified, then#:other-keys+body is the same as#:other-keys .)

In the following example, all rest-like arguments are used and have different bindings:

((lambda/kw (#:key x y
#:rest r
#:other −keys +body rk
#:all −keys ak
#:other −keys ok
#:body b)

(list r rk b ak ok))
#:z 1 #:x 2 2 3 4)

⇒
’((#:z 1 #:x 2 2 3 4)

(#:z 1 2 3 4)
(2 3 4)
(#:z 1 #:x 2)
(#:z 1))

Note that the following invariants always hold:

• rest = (append all-keys body)

• other-keys+body = (append other-keys body)

To write a procedure that uses a few keyword argument values, and that also calls another procedure with the same
list of arguments (including all keywords), use#:other-keys (or #:other-keys+body). The Common Lisp
approach is to specify:allow-other-keys , so that the second procedure call will not cause an error due to
unknown keywords, but the:allow-other-keys approach risks confusing the two layers of keywords.

22.5 Body Argument

The most notable divergence from Common Lisp inlambda/kw is the#:body argument, and the fact that it is
possible at a call site to pass plain values after keyword–value pairs. The#:body binding is useful for procedure calls
that use keyword–value pairs as sort of an attribute list before the actual arguments to the procedure. For example,
consider a procedure that accepts any number of numeric arguments and will apply a procedure to them, but the
procedure can be specified as an optional keyword argument. It is easily implemented with a#:body argument:

(define/kw (mathop #:key [op +] #:body b)
(apply op b))

(mathop 1 2 3) ; ⇒ 6
(mathop #:op max 1 2 3) ; ⇒ 3

(Note that the first body value cannot itself be a keyword.)

A #:body declaration works as an arbitrarykw-formals , not just a single variable likeb in the above example. For
example, to make the abovemathop work only on three arguments that follow the keyword, use(x y z) instead
of b:

(define/kw (mathop #:key [op +] #:body (x y z))
(op x y z))

73

22.6. Mode Keywords 22.kw.ss : Keyword Arguments

In general,#:body handling is compiled to a sub procedure usinglambda/kw , so that a procedure can use more
then one level of keyword arguments. For example:

(define/kw (mathop #:key [op +]
#:body (x y z #:key [convert values]))

(op (convert x) (convert y) (convert z)))
(mathop #:op ∗ 2 4 6 #:convert exact->inexact) −−> 48.0

Obviously, nested keyword arguments works only when non-keyword arguments separate the sets.

Run-time errors during such calls report a mismatch for a procedure with a name that is based on the original name
plus a˜body suffix:

(mathop #:op ∗ 2 4)

⇒ procedure mathop body: expects at least 3 arguments, given 2: 2 4

22.6 Mode Keywords

Finally, the argument list of alambda/kw can contain keywords that serve as mode flags to control error reporting.

• #:allow-other-keys — the keyword–value sequence at the call sitecan include keywords that are not
listed in the keyword part of thelambda/kw form.

• #:forbid-other-keys — the keyword–value sequence at the call sitecannotinclude keywords that are
not listed in the keyword part of thelambda/kw form, otherwiseexn:fail:contract exception is raised.

• #:allow-duplicate-keys — the keyword–value list at the call sitecan include duplicate values associ-
ated with same keyword, the first one is used.

• #:forbid-duplicate-keys — the keyword–value list at the call sitecannotinclude duplicate values for
keywords, otherwiseexn:fail:contract exception is raised. This restriction applies only to keywords
that are listed in the keyword part of thelambda/kw form — if other keys are allowed, this restriction does
not apply to them.

• #:allow-body — body argumentscanbe specified at the call site after all keyword–value pairs.

• #:forbid-body — body argumentscannotbe specified at the call site after all keyword–value pairs.

• #:allow-anything — allows all of the above, and treat a single keyword at the end of an argument list as
a #:body , a situation that is usually an error. When this is used and no rest-like arguments are used except
#:rest , an extra loop is saved and calling the procedures is faster (around 20%).

• #:forbid-anything — forbids all of the above, ensuring that calls are as restricted as possible.

These mode markers are rarely needed, because the default modes are determined by the declared rest-like arguments:

• The default is to allow other keys if a#:rest , #:other-keys+body , #:all-keys , or #:other-keys
variable is declared (and an#:other-keys declaration requires allowing other keys).

• The default is to allow duplicate keys if a#:rest or #:all-keys variable is declared;

• The default is to allow body arguments if a#:rest , #:body , or#:other-keys+body variable is declared
(and a#:body argument requires allowing them).

74

22. kw.ss : Keyword Arguments 22.7. Property Lists

Here’s an alternate specification, which maps rest-like arguments to the behavior that they imply:

• #:rest : everything is allowed (a body, other keys, and duplicate keys);

• #:other-keys+body : other keys and body are allowed, but duplicates are not;

• #:all-keys : other keys and duplicate keys are allowed, but a body is not;

• #:other-keys : other keys must be allowed (on by default, cannot use with#:forbid-other-keys),
and duplicate keys and body are not allowed;

• #:body : body must be allowed (on by default, cannot use with#:forbid-body) and other keys and dupli-
cate keys and body are not allowed;

• Except for the previous two “must”s, defaults can be overridden by an explicit#:allow-... or a
#:forbid-... mode.

22.7 Property Lists

(keyword-get args keyword [not-found-thunk]) PROCEDURE

Searches a list of keyword arguments (a “property list” or “plist” in Lisp jargon) for the given keyword, and returns
the associated value. It is the facility that is used bylambda/kw to search for keyword values.

Theargs list is scanned from left to right, if the keyword is found, then the next value is returned. If thekeyword
was not found, then thenot-found-thunk value is used to produce a value by applying it. If thekeyword
was not found, andnot-found-thunk is not given,#f is returned. (No exception is raised if theargs list is
imbalanced, and the search stops at a non-keyword value.)

75

23. list.ss : List Utilities

To load:(require (lib "list.ss"))

The proceduressecond , third , fourth , fifth , sixth , seventh , andeighth access the corresponding
element from a list.

(assf f l) PROCEDURE

Applies f to thecar of each element ofl (from left to right) until f returns a true value, in which case that element
is returned. Iff does not return a true value for thecar of any element ofl , #f is returned.

(cons? v) PROCEDURE

Returns#t if v is a value created withcons , #f otherwise.

empty EMPTY LIST

The empty list.

(empty? v) PROCEDURE

Returns#t if v is the empty list,#f otherwise.

(filter f l) PROCEDURE

Applies f to each element inl (from left to right) and returns a new list that is the same asl , but omitting all the
elements for whichf returned#f .

(findf f l) PROCEDURE

Applies f to each element ofl (from left to right) until f returns a true value for some element, in which case that
element is returned. Iff does not return a true value for any element ofl , #f is returned.

(first l) PROCEDURE

Returns the first element of the listl . (Thefirst procedure is a synonym forcar .)

(foldl f init l · · ·1) PROCEDURE

Like map, foldl applies a proceduref to the elements of one or more lists. Whilemapcombines the return values
into a list, foldl combines the return values in an arbitrary way that is determined byf . Unlike foldr , foldl
processesl in constant space (plus the space for each call tof).

76

23. list.ss : List Utilities

If foldl is called withn lists, thef procedure takesn+1 arguments. The extra value is the combined return values
so far. Thef procedure is initially invoked with the first item of each list; the final argument isinit . In subsequent
invocations off , the last argument is the return value from the previous invocation off . The input lists are traversed
from left to right, and the result of the wholefoldl application is the result of the last application off . (If the lists
are empty, the result isinit .)

For example,reverse can be defined in terms offoldl :

(define reverse
(lambda (l)

(foldl cons ’() l)))

(foldr f init l · · ·1) PROCEDURE

Like foldl , but the lists are traversed from right to left. Unlikefoldl , foldr processesl in space proportional to
the length ofl (plus the space for each call tof).

For example, a restrictedmap (that works only on single-argument procedures) can be defined in terms offoldr :

(define simple-map
(lambda (f list)

(foldr (lambda (v l) (cons (f v) l)) ’() list)))

(last-pair list) PROCEDURE

Returns the last pair inlist , raising an error iflist is not a pair (butlist does not have to be a proper list).

(memf f l) PROCEDURE

Appliesf to each element ofl (from left to right) untilf returns a true value for some element, in which case the tail
of l starting with that element is returned. Iff does not return a true value for any element ofl , #f is returned.

(sort list less-than?) PROCEDURE

Sortslist using the comparison procedureless-than? . This implementation is stable (i.e., if two elements in the
input are “equal,” their relative positions in the output will be the same).

(sort! list less-than?) PROCEDURE

The destructive version ofsort . (Actually,sort is implemented by copying the list and usingsort! on the copy.)

(merge-sorted-lists! list1 list2 less-than?) PROCEDURE

Merges the two sorted input lists by modifying cdr fields, to create a single sorted output list. The merged result is
stable: equal items in both lists stay in the same order, and these inlist1 precedelist2 . This is used bysort! ,
but is also useful by itself.

(merge-sorted-lists list1 list2 less-than?) PROCEDURE

The non-destructive version ofmerge-sorted-lists! .

77

23. list.ss : List Utilities

(mergesort list less-than?) PROCEDURE

Deprecated: usesort instead.

This is a different name forsort , provided for backward compatibility.

(quicksort list less-than?) PROCEDURE

Deprecated: usesort instead.

Sortslist using the comparison procedureless-than? . This implementation is not stable (i.e., if two elements
in the input are “equal,” their relative positions in the output may be reversed). Kept for backward compatibility, it is
slower thansort above.

(remove item list [equal?]) PROCEDURE

Returnslist without the first instance ofitem , where an instance is found by comparingitem to the list items
usingequal? . The default value forequal? is equal? . Whenequal? is invoked,item is the first argument.

(remove* items list [equal?]) PROCEDURE

Like remove , except that the first argument is a list of items to remove instead of a single item, and all instances of
these items are removed rather than just the first.

(remq item list) PROCEDURE

Callsremove with eq? as the comparison procedure.

(remq* items list) PROCEDURE

Callsremove* with eq? as the comparison procedure.

(remv item list) PROCEDURE

Callsremove with eqv? as the comparison procedure.

(remv* items list) PROCEDURE

Callsremove* with eqv? as the comparison procedure.

(rest l) PROCEDURE

Returns a list that contains all but the first element of the non-empty listl . (The rest procedure is a synonym for
cdr .)

(set-first! l v) PROCEDURE

Destructively modifiesl so that its first element isv . (Theset-first! procedure is a synonym forset-car! .)

78

23. list.ss : List Utilities

(set-rest! l1 l2) PROCEDURE

Destructively modifiesl1 so that the rest of the list (after the first element) isl2 . (Theset-rest! procedure is a
synonym forset-cdr! .)

79

24. match.ss : Pattern Matching

To load:(require (lib "match.ss"))

This library provides functions for pattern-matching Scheme values. (This chapter adapted from Andrew K. Wright
and Bruce Duba’s original manual, entitledPattern Matching for Scheme. The PLT Scheme port was originally done
by Bruce Hauman and is maintained by Sam Tobin-Hochstadt.) The following forms are provided:

(match expr clause ...)
(match-lambda clause ...)
(match-lambda ∗ clause ...)
(match-let ((pat expr) ...) expr · · ·1)
(match-let ∗ ((pat expr) ...) expr · · ·1)
(match-letrec ((pat expr) ...) expr · · ·1)
(match-let var ((pat expr) ...) expr · · ·1)
(match-define pat expr)

clause is one of
(pat expr · · ·1)
(pat (=> identifier) expr · · ·1)

Figure24.1gives the full syntax forpat patterns. The next subsection describes the various patterns.

Thematch-lambda andmatch-lambda ∗ forms are convenient combinations ofmatch and lambda , and can
be explained as follows:

(match-lambda (pat expr · · ·1) ...) = (lambda (x) (match x (pat expr · · ·1) ...))
(match-lambda ∗ (pat expr · · ·1) ...) = (lambda x (match x (pat expr · · ·1) ...))

wherex is a unique variable. Thematch-lambda form is convenient when defining a single argument function that
immediately destructures its argument. Thematch-lambda ∗ form constructs a function that accepts any number of
arguments; the patterns ofmatch-lambda ∗ should be lists.

Thematch-let , match-let ∗, match-letrec , andmatch-define forms generalize Scheme’slet , let ∗,
letrec , anddefine expressions to allow patterns in the binding position rather than just variables. For example,
the following expression:

(match-let ([(x y z) (list 1 2 3)]) body)

bindsx to 1, y to 2, andz to 3 in the body. These forms are convenient for destructuring the result of a function
that returns multiple values. As usual forletrec anddefine , pattern variables bound bymatch-letrec and
match-define should not be used in computing the bound value.

Thematch , match-lambda , andmatch-lambda ∗ forms allow the optional syntax(=> identifier) be-
tween the pattern and the body of a clause. When the pattern match for such a clause succeeds, theidentifier is bound
to a failure procedureof zero arguments within the body. If this procedure is invoked, it jumps back to the pattern

80

24. match.ss : Pattern Matching

pat ::= identifier Match anything, bindidentifier as a variable
| Match anything
| literal Match literal
| ’datum Matchequal? datum
| ’symbol Matchequal? symbol (special case ofdatum)
| (lvp ...) Match sequence oflvp s
| (lvp pat) Match sequence oflvp s cons ed onto apat
| #(lvp ...) Match vector ofpat s
| #&pat Match boxedpat
| ($ struct-name pat ...) Matchstruct-name instance with matching fields
| (and pat ...) Match when allpat s match
| (or pat ...) Match when anypat match
| (not pat ...) Match when nopat match
| (= expr pat) Match when result of applyingexpr matchespat
| (? expr pat ...) Match if expr is true and allpat s match
| (set! identifier) Match anything, bindidentifier as a setter
| (get! identifier) Match anything, bindidentifier as a getter
| ‘ qp Match quasipat tern

literal ::= #t Match true
| #f Match false
| string Matchequal? string
| number Matchequal? number
| character Matchequal? character

lvp ::= pat ooo Greedily matchpat instances
| pat Matchpat

ooo ::= ... Zero or more (where... is a keyword)
| Zero or more
| .. k k or more, wherek is a non-negative integer
| k k or more, wherek is a non-negative integer

qp ::= literal Match literal
| identifier Matchequal? symbol
| (qp ...) Match sequences ofqps
| (qp qp) Match sequence ofqps cons ed onto aqp
| (qp ... qp ooo) Matchqps cons ed onto a repeatedqp
| #(qp ...) Match vector ofqps
| #&qp Match boxedqp
| ,pat Matchpat
| ,@pat Matchpat , spliced

Figure 24.1: Pattern Syntax

81

24.1. Patterns 24.match.ss : Pattern Matching

matching expression, and resumes the matching process as if the pattern had failed to match. The body must not
mutate the object being matched, otherwise unpredictable behavior may result.

24.1 Patterns

Figure24.1gives the full syntax for patterns. Explanations of these patterns follow.

• identifier (excluding the reserved names ?, =, $,, and , or , not , set! , get! , ... , and .. k for
non-negative integersk) — matches anything, and binds a variable of this name to the matching value in the
body.

• — matches anything, without binding any variables.

• #t , #f , string , number , character , ’ s-expression — constant patterns that match themselves (i.e.,
the corresponding value must beequal? to the pattern).

• (pat 1 · · · pat n) matches a proper list ofn elements that matchpat 1 throughpat n.

• (lvp 1 · · · lvp n) generalizes the preceding pattern, where eachlvp corresponds to a “spliced” list of greedy
matches.

For example,(pat 1 · · · pat n pat n+1 ...) matches a proper list ofn or more elements, where each
element past thenth matchespat n+1. Each pattern variable inpat n+1 is bound to a list of the matching values.
For example, the expression:

(match ’(let ([x 1][y 2]) z)
[(’let ((binding vals) ...) exp) expr · · ·1])

bindsbinding to the list ’(x y) , vals to the list ’(1 2) , andexp to ’z in the body of thematch -
expression. For the special case wherepat n+1 is a pattern variable, the list bound to that variable may share
with the matched value.

Instead of... or (which are equivalent),.. k or k can be used to match a sequence that is at leastk long.
The pattern keywords..0 , ... , and are equivalent.

• (pat 1 · · · pat n . pat n+1) — matches a (possibly improper) list of at leastn elements that ends in some-
thing matchingpat n+1.

• (lvp 1 · · · lvp n . pat n+1) — generalizes the preceding pattern with greedy-sequencelvp s.

• #(pat 1 · · · pat n) — matches a vector of lengthn, whose elements matchpat1 throughpatn. The general-
ization tolvp s matches consecutive elements of the vector greedily.

• #&pat — matches a box containing something matchingpat .

• ($ struct-name pat 1 · · · pat n) — matches an instance of a structure typestruct-name , where the
instance containsn fields.

Usually,struct-name is defined withdefine-struct . More generally,struct-name must be bound
to expansion-time information for a structure type (see§12.6.4 inPLT MzScheme: Language Manual), where
the information includes at least a predicate binding and some field accessor bindings (andpat 1 throughpat n

correspond to the provided accessors). In particular, a module import or aunit/sig import with a signature
containing astruct declaration (see§50.2) can provide the structure type information.

• (= field pat) — appliesfield to the object being matched and usespat to match the extracted object.
Thefield subexpression may be any expression, but is often useful as a struct selector.

• (and pat 1 · · · pat n) — matches if all of the subpatterns match. This pattern is often used as(and x
pat) to bindx to to the entire value that matchespat .

82

24. match.ss : Pattern Matching 24.2. Extending Match

• (or pat 1 · · · pat n) — matches if any of the subpatterns match. At least one subpattern must be present.
All subpatterns must bind the same set of pattern variables.

• (not pat 1 · · · pat n) — matches if none of the subpatterns match. The subpatterns may not bind any
pattern variables.

• (? predicate-expr pat 1 · · · pat n) — In this pattern,predicate-expr must be an expression
evaluating to a single argument function. This pattern matches ifpredicate-expr applied to the corre-
sponding value is true, and the subpatternspat 1 throughpat n all match. Thepredicate-expr should not
have side effects, as the code generated by the pattern matcher may invoke predicates repeatedly in any order.
Thepredicate-expr expression is bound in the same scope as the match expression, so free variables in
predicate-expr are not bound by pattern variables.

• (set! identifier) — matches anything, and bindsidentifier to a procedure of one argument that
mutates the corresponding field of the matching value. This pattern must be nested within a pair, vector, box, or
structure pattern. For example, the expression:

(define x (list 1 (list 2 3)))
(match x [(((set! setit))) (setit 4)])

mutates thecadadr of x to 4, so thatx is ’(1 (2 4)) .

• (get! identifier) — matches anything, and bindsidentifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement toset! . As withset! ,
this pattern must be nested within a pair, vector, box, or structure pattern.

• ‘ quasipattern — introduces a quasipattern, in which identifiers are considered to be symbolic constants.
Like Scheme’s quasiquote for data,unquote (,) and unquote-splicing (,@) escape back to normal
patterns.

If no clause matches the value, anexn:misc:match exception is raised.

24.2 Extending Match

There are two ways to extend or alter the behavior of match.

Thematch-equality-test parameter controls the behavior of non-linear patterns:

(match-equality-test [expr]) PROCEDURE

When a variable appears more than once in a pattern, the values matched by each instance are constrained to be the
same in the sense of the runtime value ofmatch-equality-test . The default value of this parameter isequal? .

Thedefine-match-expander form extends the syntax of match patterns:

(define-match-expander id proc-expr) SYNTAX

(define-match-expander id proc-expr proc-expr) SYNTAX

(define-match-expander id proc-expr proc-expr proc-expr) SYNTAX

This form binds an identifier to a pattern transformer.

83

24.3. Examples 24.match.ss : Pattern Matching

The firstproc-expr subexpression must evaluate to a transformer that produces a pattern in the syntax of Chapter31.
Wheneverid appears as the beginning of a pattern in a the context of the pattern matching forms defined in Chapter31,
this transformer is given, at expansion time, a syntax object corresponding to the entire pattern (includingid). The
pattern is the replaced with the result of the transformer.

If a secondproc-expr subexpression is provided, it must produce a similar transformer, but in the context of patterns
written in the syntax of the current chapter.

A transformer produced by a thirdproc-expr subexpression is used when theid keyword is used in a traditional
macro use context. In this way,id can be given meaning both inside and outside patterns.

24.3 Examples

This section illustrates the convenience of pattern matching with some examples. The following function recognizes
some s-expressions that represent the standard Y operator:

(define Y?
(match-lambda

[(’lambda (f1)
(’lambda (y1)

(((’lambda (x1) (f2 (’lambda (z1) ((x2 x3) z2))))
(’lambda (a1) (f3 (’lambda (b1) ((a2 a3) b2)))))

y2)))
(and (symbol? f1) (symbol? y1) (symbol? x1) (symbol? z1) (symbol? a1) (symbol? b1)

(eq? f1 f2) (eq? f1 f3) (eq? y1 y2)
(eq? x1 x2) (eq? x1 x3) (eq? z1 z2)
(eq? a1 a2) (eq? a1 a3) (eq? b1 b2))]

[#f]))

Writing an equivalent piece of code in raw Scheme is tedious.

The following code defines abstract syntax for a subset of Scheme, a parser into this abstract syntax, and an unparser.

(define-struct Lam (args body))
(define-struct Var (s))
(define-struct Const (n))
(define-struct App (fun args))

(define parse
(match-lambda

[(and s (? symbol?) (not ’lambda))
(make-Var s)]

[(? number? n)
(make-Const n)]

[(’lambda (and args ((? symbol?) ...) (not (? repeats?))) body)
(make-Lam args (parse body))]

[(f args ...)
(make-App

(parse f)
(map parse args))]

[x (error ’syntax "invalid expression")]))

(define repeats?
(lambda (l)

84

24. match.ss : Pattern Matching 24.3. Examples

(and (not (null? l))
(or (memq (car l) (cdr l)) (repeats? (cdr l))))))

(define unparse
(match-lambda

[($ Var s) s]
[($ Const n) n]
[($ Lam args body) ‘(lambda , args ,(unparse body))]
[($ App f args) ‘(,(unparse f) ,@(map unparse args))]))

With pattern matching, it is easy to ensure that the parser rejectsall incorrectly formed inputs with an error message.

With match-define , it is easy to define several procedures that share a hidden variable. The following code defines
three procedures,inc , value , andreset , that manipulate a hidden counter variable:

(match-define (inc value reset)
(let ([val 0])

(list
(lambda () (set! val (add1 val)))
(lambda () val)
(lambda () (set! val 0)))))

Although this example is not recursive, the bodies could recursively refer to each other. The following code illus-
trates the creation of a match-expander that works for both(lib "match.ss") and(lib "plt-match.ss")
syntax.

(require (prefix plt: (lib "plt-match.ss")))
(define-struct point (x y))
(define-match-expander Point

(lambda (stx)
(syntax-case stx ()

((Point a b) #’(struct point (a b)))))
(lambda (stx)

(syntax-case stx ()
((Point a b) #’($ point a b))))

(lambda (stx)
(syntax-case stx ()

((Point a b) #’(make-point a b)))))

(define p (Point 3 4))

(match p
((Point x y) (+ x y)))

;; => 7
(plt:match p

((Point x y) (∗ x y)))
;; => 12

85

25. math.ss : Math

To load:(require (lib "math.ss"))

(conjugate z) PROCEDURE

Returns the complex conjugate ofz .

(cosh z) PROCEDURE

Returns the hyperbolic cosine ofz .

e NUMBER

Approximation of Euler’s number, equivalent to(exp 1.0) .

pi NUMBER

Approximation ofπ, equivalent to(atan 0.0 −1.0) .

(sinh z) PROCEDURE

Returns the hyperbolic sine ofz .

(sgn n) PROCEDURE

Returns1 if n is positive,-1 if n is negative, and0 otherwise. Ifn is exact, the result is exact, otherwise the result is
inexact.

(sqr z) PROCEDURE

Returns(∗ z z)) .

86

26. md5.ss : MD5 Message Digest

To load:(require (lib "md5.ss"))

(md5 input-port) PROCEDURE

(md5 bytes) PROCEDURE

Produces a byte string containing 32 hexadecimal digits (lowercase) that is the MD5 hash of the given input-port or
byte string. For example,(md5 #"abc") produces#"900150983cd24fb0d6963f7d28e17f72" .

87

27. os.ss : System Utilities

To load:(require (lib "os.ss"))

(gethostname) PROCEDURE

Returns a string for the current machine’s hostname (including its domain).

(getpid) PROCEDURE

Returns an exact integer identifying the current process within the operating system.

(truncate-file path [size-k]) PROCEDURE

Truncates or extends the given file so that it issize-k bytes long, wheresize-k defaults to0. If the file does not
exist, or if the process does not have sufficient privilege to truncate the file, theexn:fail exception is raised.

WARNING: under Unix, the implementation assumes that the system’sftruncate function accepts along long
second argument.

88

28. package.ss : Local-Definition Scope Control

To load:(require (lib "package.ss"))

Thepackage form provides fine-grained control over binding visibility. A package is an expansion-time entity only;
it has no run-time identity.Thepackage andopen constructs correspond tomodule andimport in Chez Scheme.
Thepackage ∗ andopen ∗ constructs correspond to structures in Standard ML (without types).

(package name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package name all-defined body-expr-or-defn · · ·1) SYNTAX

Defines name (in any definition context) to a compile-time package description, much in the way that
(define-syntax a (syntax-rules ...)) bindsa to a syntax expander, or(define-struct a ())
bindsa to a compile-time structure type description.

Eachexport must be an identifier that is defined within the package body. Theall-defined variant is shorthand
for listing all identifiers that are defined in the package body.

Althoughpackage does not introduce a new binding scope, it hides all of the definitions in its body from definitions
and expressions that are outside the package. The exported definitions become visible only when the package is opened
with forms such asopen .

Each body-expr-or-defn can be a definition or expression. Each defined identifier is visible in the
entire package body, except definitions introduced bydefine ∗, define ∗-syntax , define ∗-values ,
define ∗-syntaxes , open ∗, package ∗, or define ∗-dot . The∗ forms expose identifiers to expressions and
definitions that appear later in the package body, only, much like the sequential binding oflet ∗. As with let ∗, an
identifier can be defined multiple times within the package using∗ forms; if such an identifier is exported, the export
corresponds to the last definition. For any other form of definition, the identifiers that it defines must be defined only
once within the package.

When used in an internal-definition context (see§2.8.5 inPLT MzScheme: Language Manual), name is immediately
available for use with other forms, such asopen , in the same internal-definition sequence.

For example, seeopen , below.

(package ∗ name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package ∗ name all-defined body-expr-or-defn · · ·1) SYNTAX

Like package , but within a package body, the package name is visible only to later definitions and expressions.

(open name · · ·1) SYNTAX

If a singlename is provided, it must be defined as a package, and the package’s exports are exposed in the definition

89

28. package.ss : Local-Definition Scope Control

context of theopen declaration.

Theopen form acts like a definition form, in that it introduces bindings in a definition context, and such bindings can
be exported from a package (even usingall-defined). More precisely, however,open exposes bindings hidden
by a package, rather than introducing identifiers. This exposure overrides any identifier that would shadow the binding
(were it not hidden by the package in the first place).

If multiple names are provided, the first name must correspond to a defined package, the second must correspond to a
package exported from the first, and so on. Only the package corresponding to the last name is opened into theopen ’s
definition context.

Examples:

(package p (f)
(define (f a) (+ a x))
(define x 1))

(f 0) ; ⇒ error: reference to undefined identifier f
(let ([p 5])

(open p) ...) ; ⇒ error: p is not a package name
(open p)
(f 0) ; ⇒ 1

(let ([f (lambda (x) x)])
(open p)
(f 0)) ; ⇒ 1

(let ([x 2])
(open p)
(f 0)) ; ⇒ 1

(package p (p2)
(package p2 (f)

(define (f a) (− a x)))
(define x 2))

(open p p2)
(f 3) ; ⇒ 1

(package p (p2)
(package p2 (f)

(define (f a) (− a x)))
(define x 2))

(open p p2)
(f 3) ; ⇒ 1

(package p1 (x f1 p2 p3)
(define x 1)
(define (f1) x)
(package p2 (x f2)

(define x 2)
(define (f2) x))

(package p3 (f3)
(open p2)
(define (f3) x)))

(open p1)
x ; ⇒ 1

90

28. package.ss : Local-Definition Scope Control

(f1) ; ⇒ 1
(open p2)
x ; ⇒ 2
(f2) ; ⇒ 2
(open p3)
(f3) ; ⇒ 2
(open p1)
x ; ⇒ 1

(define-syntax package2
(syntax-rules ()
[(name id def)

(package name (id foo)
def
(define foo 3))]))

(let ()
(package2 p foo (define foo 1))
(open p)
foo) ; ⇒ 1

(let ()
(package2 p bar (define bar 1))
(open p)
foo) ; ⇒ error: reference to undefined identifier foo

(define-syntax open2
(syntax-rules ()
[(name) (open name)]))

(let ()
(package p (x) (define x 1))
(open2 p)
x) ; ⇒ 1

(define-syntax package3
(syntax-rules ()
[(name id)

(package name (id foo)
(define (id) foo)
(define foo 3))]))

(let ([foo 17])
(package3 p f)
(open p)
(+ foo (f))) ; ⇒ 20

(open ∗ name · · ·1) SYNTAX

Like open , but within a package, the opened package’s exports are exposed only to later definitions and expressions.

(dot name · · ·1export) SYNTAX

Equivalent to(let () (open name · · ·1) export) whenexport is exported from the package selected by
name · · ·1.

Example:

91

28. package.ss : Local-Definition Scope Control

(package p (x)
(define x 1))

(+ 2 (dot p x)) ; ⇒ 3

(define-dot variable name · · ·1) SYNTAX

Definesvariable as an alias for the package export selected byname · · ·1. The export can correspond to a nested
package, in which case the alias is available for immediate use in forms likeopen or define-dot .

(define ∗-dot variable name · · ·1) SYNTAX

Like define-dot , but within a package, the alias applies only to later definitions and expressions.

(rename-potential-package old-name new-name) SYNTAX

Introducesold-name as an alias fornew-name .

Although make-rename-transformer (see§12.6 in PLT MzScheme: Language Manual) can be used to cre-
ate an alias for a package name, only an alias created byrename-potential-package , define-dot , or
define ∗-dot is available for immediate use by forms such asopen .

(define ∗ variable expr) SYNTAX

(define ∗ (header . formals) expr · · ·1) SYNTAX

(define ∗-syntax variable expr) SYNTAX

(define ∗-syntax (header . formals) expr · · ·1) SYNTAX

(define ∗-values (variable · · ·) expr) SYNTAX

(define ∗-syntaxes (variable · · ·) expr) SYNTAX

(rename ∗-potential-package old-name new-name) SYNTAX

Like define , etc., but when used in a package, they define identifiers that are visible only to later definitions and
expressions.

(package/derived expr name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package/derived expr name all-defined body-expr-or-defn · · ·1) SYNTAX

Like package , but syntax errors (such as duplicate definitions) are reported as originating fromexpr .

This form is useful for writing macros that expand topackage and rely on the syntax checks of thepackage
transformer, but where syntax errors should be reported in terms of the source expression or declaration.

(open/derived expr orig-name name · · ·1) SYNTAX

92

28. package.ss : Local-Definition Scope Control

(open ∗/derived expr orig-name name · · ·1) SYNTAX

Like open and open ∗, but syntax errors (such as duplicate definitions) are reported as originating fromexpr .
Furthermore, ifname is not a package name, the error message reports thatorig-name is not defined as a package.

93

29. pconvert.ss : Converted Printing

To load:(require (lib "pconvert.ss"))

This library defines routines for printing Scheme values aseval uable S-expressions rather thanread able S-
expressions. Theprint-convert procedure does not print values; rather, it converts a Scheme value into an-
other Scheme value such that the new value pretty-prints as a Scheme expression that evaluates to the original value.
For example,(pretty-print (print-convert ‘(9 ,(box 5) #(6 7))) prints the literal expression
(list 9 (box 5) (vector 6 7)) to the current output port.

To install print converting into theread -eval -print loop, require pconvert.ss and call the procedure
install-converting-printer .

In addition toprint-convert , this library providesprint-convert , build-share , get-shared , and
print-convert-expr . The last three are used to convert sub-expressions of a larger expression (potentially with
shared structure).

See alsoprop:print-convert-constructor-name in §30.

(abbreviate-cons-as-list [abbreviate?]) PROCEDURE

Parameter that controls how lists are represented with constructor-style conversion. If the parameter’s value is#t , lists
are represented usinglist . Otherwise, lists are represented usingcons . The initial value of the parameter is#t .

(booleans-as-true/false [use-name?]) PROCEDURE

Parameter that controls how#t and#f are represented. If the parameter’s value is#t , then#t is represented as
true and#f is represented asfalse . The initial value of the parameter is#t .

(use-named/undefined-handler [use-handler]) PROCEDURE

Parameter for a procedure that controls how values that have inferred names are represented. The procedure is passed
a value. If the parameter returns#t , the procedure associated withnamed/undefined-handler is invoked to
render that value. Only values that have inferred names but are not defined at the top-level are used with this handler.

The initial value of the parameter is(lambda (x) #f) .

(named/undefined-handler [use-handler]) PROCEDURE

Parameter for a procedure that controls how values that have inferred names are represented. The procedure is called
only if use-named/undefined-handler returns true for some value. In that case, the procedure is passed that
same value, and the result of the parameter is used as the representation for the value.

The initial value of the parameter is(lambda (x) #f) .

94

29. pconvert.ss : Converted Printing

(build-share v) PROCEDURE

Takes a value and computes sharing information used for representing the value as an expression. The return value is
an opaque structure that can be passed back intoget-shared or print-convert-expr .

(constructor-style-printing [use-constructors?]) PROCEDURE

Parameter that controls how values are represented after conversion. If this parameter is#t , then constructors are
used, e.g., pair containing 1 and 2 is represented as(cons 1 2) . Otherwise, quasiquote-style syntax is used, e.g.
the pair containing 1 and 2 is represented as‘(1 . 2) . The initial value of the parameter is#f .

See alsoquasi-read-style-printing , and seeprop:print-convert-constructor-name in §30.

(current-build-share-hook [hook]) PROCEDURE

Parameter that sets a procedure used byprint-convert andbuild-share to assemble sharing information. The
procedurehook takes three arguments: a valuev , a procedurebasic-share , and a proceduresub-share ; the
return value is ignored. Thebasic-share procedure takesv and performs the built-in sharing analysis, while the
sub-share procedure takes a component ofv ands analyzes it. These procedures return void; sharing information
is accumulated as values are passed tobasic-share andsub-share .

A current-build-share-hook procedure usually works together with acurrent-print-convert-hook
procedure.

(current-build-share-name-hook [hook]) PROCEDURE

Parameter that sets a procedure used byprint-convert andbuild-share to generate a new name for a shared
value. Thehook procedure takes a single value and returns a symbol for the value’s name. Ifhook returns#f , a
name is generated using the form “- n- ” (wheren is an integer).

(current-print-convert-hook [hook]) PROCEDURE

Parameter that sets a procedure used byprint-convert andprint-convert-expr to convert values. The pro-
cedurehook takes three arguments — a valuev , a procedurebasic-convert , and a proceduresub-convert
— and returns the converted representation ofv . Thebasic-convert procedure takesv and returns the default
conversion, while thesub-convert procedure takes a component ofv and returns its conversion.

A current-print-convert-hook procedure usually works together with acurrent-build-share-hook
procedure.

(current-read-eval-convert-print-prompt [str]) PROCEDURE

Parameter that sets the prompt used byinstall-converting-printer . The initial value is"|- " .

(get-shared share-info [cycles-only?]) PROCEDURE

Theshared-info value must be a result frombuild-share . The procedure returns a list matching variables to
shared values within the value passed tobuild-share . For example,

(get-shared (build-share (shared ([a (cons 1 b)][b (cons 2 a)]) a)))

might return the list

95

29. pconvert.ss : Converted Printing

((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

The default value forcycles-only? is #f ; if it is not #f , get-shared returns only information about cycles.

(install-converting-printer) PROCEDURE

Sets the current print handler to print values usingprint-convert . The current read handler is also set to use the
prompt returned bycurrent-read-eval-convert-print-prompt .

(print-convert v [cycles-only?]) PROCEDURE

Converts the valuev . If cycles-only? is not#f , then only circular objects are included in the output. The default
value ofcycles-only? is the value of(show-sharing) .

(print-convert-expr share-info v unroll-once?) PROCEDURE

Converts the valuev using sharing informationshare-info previously returned bybuild-share for a value
containingv . If the most recent call toget-shared with share-info requested information only for cycles, then
print-convert-expr will only display sharing among values for cycles, rather than showing all value sharing.

Theunroll-once? argument is used ifv is a shared value inshare-info . In this case, ifunroll-once? is
#f , then the return value will be a shared-value identifier; otherwise, the returned value shows the internal structure of
v (using shared value identifiers withinv ’s immediate structure as appropriate).

(quasi-read-style-printing [on?]) PROCEDURE

Parameter that controls how vectors and boxes are represented after conversion when the value of
constructor-style-printing is #f . If quasi-read-style-printing is set to#f , then boxes and
vectors are unquoted and represented using constructors. For example, the list of a box containing the number 1 and a
vector containing the number 1 is represented as‘(,(box 1) ,(vector 1)) . If the parameter is#t , then#&
and#() are used, e.g.,‘(#&1 #(1)) . The initial value of the parameter is#t .

(show-sharing [show?]) PROCEDURE

Parameter that determines whether sub-value sharing is conserved (and shown) in the converted output by default. The
initial value of the parameter is#t .

(whole/fractional-exact-numbers [whole-frac?]) PROCEDURE

Parameter that controls how exact, non-integer numbers are converted when the numerator is greater than the de-
nominator. If the parameter’s value is#t , the number is converted to the form(+ integer fraction) (i.e., a
list containing’+ , an exact integer, and an exact rational less than1 and greater than-1). The initial value of the
parameter is#f .

96

30. pconvert-prop.ss : Converted Printing Property

To load:(require (lib "pconvert-prop.ss"))

prop:print-convert-constructor-name PROPERTY

(print-convert-named-constructor? v) PROCEDURE

(print-convert-constructor-name v) PROCEDURE

Theprop:print-convert-constructor-name property can be given a symbol value for a structure type. In
that case, for constructor-style print conversion viaprint-convert (see§29), instances of the structure are shown
using the symbol as the constructor name. Otherwise, the constructor name is determined by prefixingmake- onto
the result ofobject-name .

The print-convert-named-constructor? predicate recognizes instances of structure types that have the
prop:print-convert-constructor-name property, andprint-convert-constructor-name ex-
tracts the property value.

97

31. plt-match.ss : Pattern Matching

To load:(require (lib "plt-match.ss"))

This library provide a pattern matcher just like Chapter24, but with an improved syntax for patterns. This pattern
syntax uses keywords for each of the different pattern matches, making the syntax both extensible and more clear. It
also provides extensions that are unavailable inmatch.ss .

The only difference betweenplt-match.ss andmatch.ss is the syntax of the patterns and the set of available patterns.
The forms where the patterns may appear are identical.

Figure31.1gives the full syntax for patterns.

98

31. plt-match.ss : Pattern Matching

pat ::= identifier [notooo] Match anything, bindidentifier as a variable
| Match anything
| literal Match literal
| ’datum Matchequal? datum
| ’symbol Matchequal? symbol (special case ofdatum)
| (list lvp ...) Match sequence oflvp s
| (list-rest lvp ... pat) Match sequence oflvp s cons ed onto apat
| (list-no-order pat ... lvp) Match arguments in a list in any order
| (vector lvp ... lvp) Match vector ofpat s
| (hash-table (pat pat) ...) Match hash table mappingpat s topat s
| (hash-table (pat pat) ... ooo) Match hash table mappingpat s topat s
| (box pat) Match boxedpat
| (struct struct-name (pat ...)) Matchstruct-name instance with matching fields
| (regexp rx-expr) Match string using (regexp-match rx-expr .. .)
| (regexp rx-expr pat) Match string torx-expr , pat matches regexp result
| (pregexp prx-expr) Match string using (pregexp-match prx-expr .. .)
| (pregexp prx-expr pat) Match string toprx-expr , pat matches pregexp result
| (and pat ...) Match when allpat s match
| (or pat ...) Match when anypat match
| (not pat ...) Match when nopat match
| (app expr pat) Match when result of applyingexpr matchespat
| (? expr pat ...) Match if expr is true and allpat s match
| (set! identifier) Match anything, bindidentifier as a setter
| (get! identifier) Match anything, bindidentifier as a getter
| ‘ qp Match a quasipat tern

literal ::= () Match the empty list
| #t Match true
| #f Match false
| string Matchequal? string
| number Matchequal? number
| character Matchequal? character

lvp ::= pat ooo Greedily matchpat instances
| pat Matchpat

ooo ::= ... Zero or more (where... is a keyword)
| Zero or more
| .. k k or more, wherek is a non-negative integer
| k k or more, wherek is a non-negative integer

qp ::= literal Match literal
| identifier Matchequal? symbol
| (qp ...) Match sequences ofqps
| (qp qp) Match sequence ofqps cons ed onto aqp
| (qp ... ooo) Matchqps cons ed onto a repeatedqp
| #(qp ...) Match vector ofqps
| #&qp Match boxedqp
| ,pat Matchpat
| ,@(list lvp ...) Match lvp sequence, spliced
| ,@(list-rest lvp ... pat) Match lvp sequence pluspat , spliced
| ,@’qp Match list-matchingqp , spliced

Figure 31.1: Pattern Syntax

99

32. port.ss : Port Utilities

To load:(require (lib "port.ss"))

(convert-stream from-encoding-string input-port from-encoding-string output-port)
PROCEDURE

Reads data frominput-port , converts it using(bytes-open-converter from-encoding-string
to-encoding-string) and writes the converted bytes tooutput-port . Theconvert-stream procedure
returns after reachingeof in input-port .

See§3.6 inPLT MzScheme: Language Manualfor more information onbytes-open-converter . If opening the
converter fails, theexn:fail exception is raised. Similarly, if a conversion error occurs at any point while reading
input-port , thenexn:fail exception is raised.

(copy-port input-port output-port · · ·1) PROCEDURE

Reads data frominput-port and writes it back out tooutput-port , returning wheninput-port pro-
duceseof . The copy is efficient, and it is without significant buffer delays (i.e., a byte that becomes available on
input-port is immediately transferred tooutput-port , even if future reads oninput-port must block). If
input-port produces a special non-byte value, it is transferred tooutput-port usingwrite-special .

This function is often called from a “background” thread to continuously pump data from one stream to another.

If multiple output-port s are provided, case data frominput-port is written to everyoutput-port . The
different output-port s block output to each other, because each quantum of data read frominput-port is
written completely to oneoutput-port before moving to the nextoutput-port . The output-port s are
written in the provided order, so non-blocking ports (e.g., to a file) should be placed first in the argument list.

(input-port-append close-at-eof? input-port · · ·) PROCEDURE

Takes any number of input ports and returns an input port. Reading from the input port draws bytes (and special
non-byte values) from the given input ports in order. Ifclose-at-eof? is true, then each port is closed when an
end-of-file is encountered from the port, or when the result input port is closed. Otherwise, data not read from the
returned input port remains available for reading in its original input port.

See alsomerge-input , which interleaves data from multiple input ports as it becomes available.

(make-input-port/read-to-peek name read-proc optional-fast-peek-proc close-proc)
PROCEDURE

Similar to make-input-port , but the givenread procedure must never block, and if it returns an event, the
event’s value must be0. The resulting port’s peek operation is implemented automatically (in terms ofread-proc)
in a way that can handle special non-byte values. The progress-event and commit operations are also implemented
automatically. The resulting port is thread-safe, but not kill-safe (i.e., if a thread is terminated or suspended while

100

32. port.ss : Port Utilities

using the port, the port may become damaged).

Theread-proc andclose-proc procedures are the same as formake-input-port . Theoptional-fast-peek-proc
argument can be either#f or a procedure of three arguments: a byte string to receive a peek, a skip count, and a pro-
cedure of two arguments. Theoptional-fast-peek-proc can either implement the requested peek, or it can
dispatch to its third argument to implement the peek. Theoptional-fast-peek-proc is not used when a peek
request has an associated progress event.

(make-limited-input-port input-port limit-k [close-orig?]) PROCEDURE

Returns a port whose content is drawn frominput-port , but where an end-of-file is reported afterlimit-k bytes
(and non-byte special values) are read. Ifclose-orig? is true, then the original port is closed if the returned port
is closed.

Bytes are consumed frominput-port only when they are consumed from the returned port. In particular, peeking
into the returned port peeks into the original port.

If input-port is used directly while the resulting port is also used, then thelimit-k bytes provided by the port
need not be contiguous parts of the original port’s stream.

(make-pipe-with-specials [limit-k in-name-v out-name-v]) PROCEDURE

Returns two ports: an input port and an output port. The pipes behave like those returned bymake-pipe , except that
the ports support non-byte values written with procedures such aswrite-special and read with procedures such
asget-byte-or-special .

The limit-k argument determines the maximum capacity of the pipe in bytes, but this limit is disabled if special
values are written to the pipe beforelimit-k is reached.

The optionalin-name-v andout-name-v arguments determine the names of the result ports, and both names
default to’pipe .

(merge-input a-input-port b-input-port [limit-k]) PROCEDURE

Accepts two input ports and returns a new input port. The new port merges the data from two original ports, so data
can be read from the new port whenever it is available from either original port. The data from the original ports are
interleaved. When EOF has been read from an original port, it no longer contributes characters to the new port. After
EOF has been read from both original ports, the new port returns EOF. Closing the merged port does not close the
original ports.

The optional limit-k argument limits the number of bytes to be buffered froma-input-port and
b-input-port , so that the merge process does not advance arbitrarily beyond the rate of consumption of the
merged data. A#f value disables the limit; the default is4096 . As for make-pipe-with-specials , limit-k
does not apply when a special value is produced by one of the input ports before the limit is reached.

See alsoinput-port-append , which concatenates input streams instead of interleaving them.

(open-output-nowhere [name special-ok?]) PROCEDURE

Creates and returns an output port that discards all output sent to it (without blocking). Thenameargument is used as
the port’s name, and it defaults to’nowhere . If the special-ok? argument is true (the default), then the resulting
port supportswrite-special , otherwise it does not.

101

32. port.ss : Port Utilities

(peeking-input-port input-port [name skip-k]) PROCEDURE

Returns an input port whose content is determined by peeking intoinput-port . In other words, the resulting port
contains an internal skip count, and each read of the port peeks intoinput-port with the internal skip count, and
then increments the skip count according to the amount of data successfully peeked.

The optionalname argument is the name of the resulting port, and it defaults to(object-name input-port) .
Theskip-k argument is the port initial skip count, and it defaults to0.

(eof-evt input-port) PROCEDURE

Returns a synchronizable event (see§7.7 inPLT MzScheme: Language Manual) is that is ready wheninput-port
produces aneof . If input-port produces a mid-streameof , theeof is consumed by the event only if the event
is chosen in a synchronization.

(read-bytes-evt k input-port) PROCEDURE

Returns a synchronizable event (see§7.7 in PLT MzScheme: Language Manual) is that is ready whenk bytes can
be read frominput-port , or when an end-of-file is encountered ininput-port . If k is 0, then the event is
ready immediately with"" . For non-zerok , if no bytes are available before an end-of-file, the event’s result iseof .
Otherwise the event’s result is a byte string of up tok bytes, which contains as many bytes as are available (up tok)
before an available end-of-file. (The result is a string on less thank bytes only when an end-of-file is encountered.)

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned bytes always
represent contiguous bytes in the port’s stream.

The event can be synchronized multiple times—event concurrently—and each synchronization corresponds to a dis-
tinct read request.

The input-port must support progress events, and it must not produce a special non-byte value during the read
attempt.

(read-bytes!-evt mutable-bytes input-port) PROCEDURE

Like read-bytes-evt , except that the read bytes are placed intomutable-bytes , and the number of bytes to
read corresponds to(bytes-length mutable-bytes) . The event’s result is eithereof or the number of read
bytes.

Themutable-bytes string may be mutated any time after the first synchronization attempt on the event. If the event
is not synchronized multiple times concurrently,mutable-bytes is never mutated by the event after it is chosen
in a synchronization (no matter how many synchronization attempts preceded the choice). Thus, the event may be
sensibly used multiple times until a successful choice, but should not be used in multiple concurrent synchronizations.

(read-bytes-avail!-evt mutable-bytes input-port) PROCEDURE

Like read-bytes!-evt , except that the event reads only as many bytes as are immediately available, after at least
one byte or oneeof becomes available.

(read-string-evt k input-port) PROCEDURE

Like read-bytes-evt , but for character strings instead of byte strings.

102

32. port.ss : Port Utilities

(read-string!-evt mutable-string input-port) PROCEDURE

Like read-bytes!-evt , but for a character string instead of a byte string.

(read-line-evt input-port [mode-symbol]) PROCEDURE

Returns a synchronizable event (see§7.7 in PLT MzScheme: Language Manual) that is ready when a line of charac-
ters or end-of-file can be read frominport . The meaning an interpretation ofmode-symbol is the same as for
read-line (see§11.2.1 inPLT MzScheme: Language Manual). The event result is the read line of characters (not
including the line separator).

A line is read from the port if and only if the event is chosen in a synchronization, and the returned line always
represents contiguous bytes in the port’s stream.

(read-bytes-line-evt input-port [mode-symbol]) PROCEDURE

Like read-line , but returns a byte string instead of a string.

(peek-bytes-evt k skip-k progress-evt input-port) PROCEDURE

(peek-bytes-bytes!-evt mutable-bytes skip-k progress-evt input-port) PROCEDURE

(peek-bytes-avail!-evt mutable-bytes skip-k progress-evt input-port) PROCEDURE

(peek-string-evt k input-port) PROCEDURE

(peek-string!-evt mutable-string input-port) PROCEDURE

Like the read-...-evt functions, but for peeking. Theskip-k argument indicates the number of bytes to skip,
andprogress-evt indicates an event that effectively cancels the peek (so that the event never becomes ready). The
progress-evt argument can be#f , in which case the event is never cancelled.

(reencode-input-port input-port encoding-str [error-bytes close? name-v]) PROCE-
DURE

Produces an input port that draws bytes frominput-port , but converts the byte stream using
(bytes-open-converter encoding-str "UTF-8") .

If error-bytes is provided and not#f , then the given byte sequence is used in place of bytes frominput-port
that trigger conversion errors. Otherwise, if a conversion is encountered, theexn:fail exception is raised.

If close? is true, then closing the result input port also closesinput-port .

If name-v is provided, it is used as the name of the result input port, otherwise the port is named by(object-name
input-port) .

In non-buffered mode, the resulting input port attempts to draw bytes frominput-port only as needed to satisfy
requests. Toward that end, the input port assumes that at leastn bytes must be read to satisfy a request forn bytes. (This
is true even if the port has already drawn some bytes, as long as those bytes form an incomplete encoding sequence.)

(reencode-output-port output-port encoding-str [error-bytes close? name-v buffer-sym])

103

32. port.ss : Port Utilities

PROCEDURE

Produces an output port that direct bytes tooutput-port , but converts its byte stream using(bytes-open-converter
encoding-str "UTF-8") .

If error-bytes is provided and not#f , then the given byte sequence is used in place of bytes send to the output
port that trigger conversion errors. Otherwise, if a conversion is encountered, theexn:fail exception is raised.

If close? is true, then closing the result output port also closesoutput-port .

If name-v is provided, it is used as the name of the result output port, otherwise the port is named by
(object-name output-port) .

The buffer-sym argument determines the buffer mode of the output port, and it must be’block , ’line , or
’none . If output-port is a file-stream port, the default is(file-stream-buffer-mode output-port) ,
otherwise the default is’block . In ’block mode, the port’s buffer is flushed only when it is full or a flush is
requested explicitly. In’line mode, the buffer is flushed whenever a newline or carriage-return byte is written to the
port. In ’none mode, the port’s buffer is flushed after every write. Implicit flushes for’line or ’none leave bytes
in the buffer when they are part of an incomplete encoding sequence.

The resulting output port does not support atomic writes. An explicit flush or special-write to the output port can hang
if the most recently written bytes form an incomplete encoding sequence.

(regexp-match-evt pattern input-port) PROCEDURE

Returns a synchronizable event (see§7.7 inPLT MzScheme: Language Manual) that is ready whenpattern matches
the stream of bytes/characters frominput-port (see also§10 in PLT MzScheme: Language Manual). The event’s
value is the result of the match, in the same form as the result ofregexp-match .

If pattern does not require a start-of-stream match, then bytes skipped to complete the match are read and discarded
when the event is chosen in a synchronization.

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned match always
represents contiguous bytes in the port’s stream. If not-yet-available bytes from the port might contribute to the match,
the event is not ready. Similarly, ifpattern begins with a start-of-string caret (“ˆ”) and thepattern does not
initially match, then the event cannot become ready until bytes have been read from the port.

The event can be synchronized multiple times—even concurrently—and each synchronization corresponds to a distinct
match request.

The input-port must support progress events. Ifinput-port returns a special non-byte value during the match
attempt, it is treated likeeof .

(relocate-input-port input-port line-k column-k position-k [close?]) PROCEDURE

Produces an input port that is equivalent toinput-port except in how it reports location information. The resulting
port’s content starts with the remaining content ofinput-port , and it starts at the given line, column, and position.
The line-k argument must be a positive exact integer or#f , column-k must be a non-negative exact integer or
#f , andposition-k must be a positive exact integer (#f is not allowed forposition-k). A #f for the line or
column means that the line and column will always be reported as#f .

The line-k and column-k values are used only if line counting is enabled forinput-port and for the re-
sulting port, typically throughport-count-lines! (see§11.2.1.1 inPLT MzScheme: Language Manual). The
column-k value determines the column for the first line (i.e., the one numberedline-k), and later lines start at
column0. The givenposition-k is used even if line counting is not enabled.

104

32. port.ss : Port Utilities

When line counting is on for the resulting port, reading frominput-port instead of the resulting port increments
location reports from the resulting port. Otherwise, the resulting port’s position does not increment when data is read
from input-port .

If close? is true (the default), then closing the resulting port also closesinput-port . If close? is #f , then
closing the resulting port does not closeinput-port .

(relocate-output-port output-port line-k column-k position-k [close?]) PROCEDURE

Like relocate-input-port , but for output ports.

(transplant-input-port input-port position-thunk position-k [close? count-lines!-proc])
PROCEDURE

Like relocate-input-port , except that arbitrary position information can be produced (when line counting
is enabled) viaposition-thunk . If position-thunk is #f , then the port counts lines in the usual way,
independent of locations reported byinput-port .

If count-lines!-proc is supplied, it is called when line counting is enabled for the resulting port. The default is
void .

(transplant-output-port input-port position-thunk position-k [close? count-lines!-proc])
PROCEDURE

Like transplant-input-port , but for output ports.

(strip-shell-command-start input-port) PROCEDURE

Reads and discards a leading#! in input-port (plus continuing lines if the line ends with a backslash) in the same
way as the default load handler.

105

33. pregexp.ss : Perl-Style Regular Expressions

To load:(require (lib "pregexp.ss"))

This library provides regular expressions modeled on Perl’s , and includes such powerful directives as numeric and
nongreedy quantifiers, capturing and non-capturing clustering, POSIX character classes, selective case- and space-
insensitivity, backreferences, alternation, backtrack pruning, positive and negative lookahead and lookbehind, in addi-
tion to the more basic directives familiar to all regexp users.

See also MzScheme’s built-inregexp functions (§10 in PLT MzScheme: Language Manual), which are less expres-
sive in some ways, but typically match more efficiently.

33.1 Introduction

A regexpis a string that describes a pattern. A regexp matcher tries tomatchthis pattern against (a portion of) another
string, which we will call thetext string. The text string is treated as raw text and not as a pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves in the text string. Thus, the
pattern"abc" matches a string that contains the charactersa, b, c in succession.

In the regexp pattern, some characters act asmetacharacters, and some character sequences act asmetasequences.
That is, they specify something other than their literal selves. For example, in the pattern"a.c" , the charactersa
andc do stand for themselves but themetacharacter‘ . ’ can matchanycharacter (other than newline). Therefore, the
pattern"a.c" matches ana, followed byanycharacter, followed by ac .

If we needed to match the character ‘. ’ itself, we escapeit, ie, precede it with a backslash (\). The character sequence
\. is thus ametasequence, since it doesn’t match itself but rather just ‘. ’. So, to matcha followed by a literal ‘. ’
followed byc , we use the regexp pattern"a\\.c" .1 Another example of a metasequence is\t , which is a readable
way to represent the tab character.

We will call the string representation of a regexp theU-regexp, whereU can be taken to meanUnix-styleor universal,
because this notation for regexps is universally familiar. Our implementation uses an intermediate tree-like represen-
tation called theS-regexp, whereScan stand forScheme, symbolic, or s-expression. S-regexps are more verbose and
less readable than U-regexps, but they are much easier for Scheme’s recursive procedures to navigate.

33.2 Regexp procedures

This library provides the procedurespregexp , pregexp-match-positions , pregexp-match , pregexp-split ,
pregexp-replace , pregexp-replace* , andpregexp-quote .

1The double backslash is an artifact of Scheme strings, not the regexp pattern itself. When we want a literal backslash inside a Scheme string,
we must escape it so that it shows up in the string at all. Scheme strings use backslash as the escape character, so we end up with two backslashes
— one Scheme-string backslash to escape the regexp backslash, which then escapes the dot. Another character that would need escaping inside a
Scheme string is ‘" ’.

106

33. pregexp.ss : Perl-Style Regular Expressions 33.2. Regexp procedures

33.2.1 pregexp

(pregexp U-regexp) PROCEDURE

Takes a U-regexp, which is a string, and returns an S-regexp, which is a tree.

(pregexp "c.r")
=> (:sub (:or (:seq #\c :any #\r)))

There is rarely any need to look at the S-regexps returned bypregexp .

33.2.2 pregexp-match-positions

(pregexp-match-positions regexp text-string [start end]) PROCEDURE

Takes a regexp pattern and a text string, and returns amatchif the regexpmatches(some part of) the text string.

The regexp may be either a U- or an S-regexp. (pregexp-match-positions will internally compile a U-regexp
to an S-regexp before proceeding with the matching. If you find yourself callingpregexp-match-positions re-
peatedly with the same U-regexp, it may be advisable to explicitly convert the latter into an S-regexp once beforehand,
usingpregexp , to save needless recompilation.)

pregexp-match-positions returns#f if the regexp did not match the string; and a list ofindex pairsif it did
match. Eg,

(pregexp-match-positions "brain" "bird")
=> #f

(pregexp-match-positions "needle" "hay needle stack")
=> ((4 . 10))

In the second example, the integers 4 and 10 identify the substring that was matched. 4 is the starting (inclusive) index
and 10 the ending (exclusive) index of the matching substring.

(substring "hay needle stack" 4 10)
=> "needle"

Here,pregexp-match-positions ’s return list contains only one index pair, and that pair represents the entire
substring matched by the regexp. When we discusssubpatternslater, we will see how a single match operation can
yield a list ofsubmatches.

pregexp-match-positions takes optional third and fourth arguments that specify the indices of the text string
within which the matching should take place.

(pregexp-match-positions "needle"
"his hay needle stack -- my hay needle stack -- her hay needle stack"
24 43)

=> ((31 . 37))

Note that the returned indices are still reckoned relative to the full text string.

107

33.2. Regexp procedures 33.pregexp.ss : Perl-Style Regular Expressions

33.2.3 pregexp-match

(pregexp-match regexp text-string [start end]) PROCEDURE

Called likepregexp-match-positions but instead of returning index pairs it returns the matching substrings:

(pregexp-match "brain" "bird")
=> #f

(pregexp-match "needle" "hay needle stack")
=> ("needle")

pregexp-match also takes optional third and fourth arguments, with the same meaning as does
pregexp-match-positions .

33.2.4 pregexp-split

(pregexp-split regexp text-string) PROCEDURE

Takes two arguments, a regexp pattern and a text string, and returns a list of substrings of the text string, where the
pattern identifies the delimiter separating the substrings.

(pregexp-split ":" "/bin:/usr/bin:/usr/bin/X11:/usr/local/bin")
=> ("/bin" "/usr/bin" "/usr/bin/X11" "/usr/local/bin")

(pregexp-split " " "pea soup")
=> ("pea" "soup")

If the first argument can match an empty string, then the list of all the single-character substrings is returned.

(pregexp-split "" "smithereens")
=> ("s" "m" "i" "t" "h" "e" "r" "e" "e" "n" "s")

To identify one-or-more spaces as the delimiter, take care to use the regexp" +" , not " *" .

(pregexp-split " +" "split pea soup")
=> ("split" "pea" "soup")

(pregexp-split " *" "split pea soup")
=> ("s" "p" "l" "i" "t" "p" "e" "a" "s" "o" "u" "p")

33.2.5 pregexp-replace

(pregexp-replace regexp text-string proc-or-insert-string) PROCEDURE

Replaces the matched portion of the text string by another string. The first argument is the pattern, the second the text
string, and the third is either theinsert string(string to be inserted) or a procedure to convert matches to the insert
string.

(pregexp-replace "te" "liberte" "ty")
=> "liberty"
(pregexp-replace "." "scheme" string-upcase)
=> "Scheme"

108

33. pregexp.ss : Perl-Style Regular Expressions 33.3. The regexp pattern language

If the pattern doesn’t occur in the text string, the returned string is identical (eq?) to the text string.

33.2.6 pregexp-replace*

(pregexp-replace* regexp text-string proc-or-insert-string) PROCEDURE

Replacesall matches in the text string by the insert string:

(pregexp-replace* "te" "liberte egalite fraternite" "ty")
=> "liberty egality fratyrnity"
(pregexp-replace* "[ds]" "drscheme" string-upcase)
=> "DrScheme"

As with pregexp-replace , if the pattern doesn’t occur in the text string, the returned string is identical (eq?) to
the text string.

33.2.7 pregexp-quote

(pregexp-quote string) PROCEDURE

Takes an arbitrary string and returns a U-regexp (string) that precisely represents it. In particular, characters in the
input string that could serve as regexp metacharacters are escaped with a backslash, so that they safely match only
themselves.

(pregexp-quote "cons")
=> "cons"

(pregexp-quote "list?")
=> "list\\?"

pregexp-quote is useful when building a composite regexp from a mix of regexp strings and verbatim strings.

33.3 The regexp pattern language

Here is a complete description of the regexp pattern language recognized by thepregexp procedures.

33.3.1 Basic assertions

The assertionŝ and $ identify the beginning and the end of the text string respectively. They ensure that their
adjoining regexps match at one or other end of the text string. Examples:

(pregexp-match-positions "ˆcontact" "first contact")
=> #f

The regexp fails to match becausecontact does not occur at the beginning of the text string.

(pregexp-match-positions "laugh$" "laugh laugh laugh laugh")
=> ((18 . 23))

The regexp matches thelast laugh .

The metasequence\b asserts that aword boundaryexists.

109

33.3. The regexp pattern language 33.pregexp.ss : Perl-Style Regular Expressions

(pregexp-match-positions "yack\\b" "yackety yack")
=> ((8 . 12))

Theyack in yackety doesn’t end at a word boundary so it isn’t matched. The secondyack does and is.

The metasequence\B has the opposite effect to\b . It asserts that a word boundary does not exist.

(pregexp-match-positions "an\\B" "an analysis")
=> ((3 . 5))

Thean that doesn’t end in a word boundary is matched.

33.3.2 Characters and character classes

Typically a character in the regexp matches the same character in the text string. Sometimes it is necessary or conve-
nient to use a regexp metasequence to refer to a single character. Thus, metasequences\n , \r , \t , and\. match the
newline, return, tab and period characters respectively.

Themetacharacterperiod (.) matchesanycharacter other than newline.

(pregexp-match "p.t" "pet")
=> ("pet")

It also matchespat , pit , pot , put , andp8t but notpeat or pfffft .

A character classmatches any one character from a set of characters. A typical format for this is thebracketed
character class[...] , which matches any one character from the non-empty sequence of characters enclosed within
the brackets.2 Thus"p[aeiou]t" matchespat , pet , pit , pot , put and nothing else.

Inside the brackets, a hyphen (-) between two characters specifies the ascii range between the characters. Eg,
"ta[b-dgn-p]" matchestab , tac , tad , andtag , andtan , tao , tap .

An initial caret (̂) after the left bracket inverts the set specified by the rest of the contents, ie, it specifies the set of
charactersother thanthose identified in the brackets. Eg,"do[ˆg]" matches all three-character sequences starting
with do exceptdog .

Note that the metacharacterˆ inside brackets means something quite different from what it means outside. Most other
metacharacters (. , * , +, ?, etc) cease to be metacharacters when inside brackets, although you may still escape them
for peace of mind.- is a metacharacter only when it’s inside brackets, and neither the first nor the last character.

Bracketed character classes cannot contain other bracketed character classes (although they contain certain other types
of character classes — see below). Thus a left bracket ([) inside a bracketed character class doesn’t have to be a
metacharacter; it can stand for itself. Eg,"[a[b]" matchesa, [, andb.

Furthermore, since empty bracketed character classes are disallowed, a right bracket (]) immediately occurring after
the opening left bracket also doesn’t need to be a metacharacter. Eg,"[]ab]" matches] , a, andb.

33.3.2.1 SOME FREQUENTLY USED CHARACTER CLASSES

Some standard character classes can be conveniently represented as metasequences instead of as explicit bracketed
expressions.\d matches a digit ([0-9]); \s matches a whitespace character; and\w matches a character that could

2Requiring a bracketed character class to be non-empty is not a limitation, since an empty character class can be more easily represented by an
empty string.

110

33. pregexp.ss : Perl-Style Regular Expressions 33.3. The regexp pattern language

be part of a “word”.3

The upper-case versions of these metasequences stand for the inversions of the corresponding character classes. Thus
\D matches a non-digit,\S a non-whitespace character, and\W a non-“word” character.

Remember to include a double backslash when putting these metasequences in a Scheme string:

(pregexp-match "\\d\\d"
"0 dear, 1 have 2 read catch 22 before 9")

=> ("22")

These character classes can be used inside a bracketed expression. Eg,"[a-z\\d]" matches a lower-case letter or
a digit.

33.3.2.2 POSIXCHARACTER CLASSES

A POSIX character classis a special metasequence of the form[: ...:] that can be used only inside a bracketed
expression. The POSIX classes supported are

[:alnum:] letters and digits
[:alpha:] letters
[:algor:] the lettersc , h, a andd
[:ascii:] 7-bit ascii characters
[:blank:] widthful whitespace, ie, space and tab
[:cntrl:] “control” characters, viz, those with code< 32
[:digit:] digits, same as\d
[:graph:] characters that use ink
[:lower:] lower-case letters
[:print:] ink-users plus widthful whitespace
[:space:] whitespace, same as\s
[:upper:] upper-case letters
[:word:] letters, digits, and underscore, same as\w
[:xdigit:] hex digits

For example, the regexp"[[:alpha:]_]" matches a letter or underscore.

(pregexp-match "[[:alpha:]_]" "--x--")
=> ("x")

(pregexp-match "[[:alpha:]_]" "--_--")
=> ("_")

(pregexp-match "[[:alpha:]_]" "--:--")
=> #f

The POSIX class notation is validonly inside a bracketed expression. For instance,[:alpha:] , when not inside
a bracketed expression, willnot be read as the letter class. Rather it is (from previous principles) the character class
containing the characters: , a, l , p, h.

(pregexp-match "[:alpha:]" "--a--")
=> ("a")

3Following regexp custom, we identify “word” characters as[A-Za-z0-9] , although these are too restrictive for what a Schemer might
consider a “word”.

111

33.3. The regexp pattern language 33.pregexp.ss : Perl-Style Regular Expressions

(pregexp-match "[:alpha:]" "--_--")
=> #f

By placing a caret (ˆ) immediately after[: , you get the inversion of that POSIX character class. Thus,[:ˆalpha]
is the class containing all characters except the letters.

33.3.3 Quantifiers

Thequantifiers* , +, and? match respectively: zero or more, one or more, and zero or one instances of the preceding
subpattern.

(pregexp-match-positions "c[ad]*r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]*r" "cr")
=> ((0 . 2))

(pregexp-match-positions "c[ad]+r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]+r" "cr")
=> #f

(pregexp-match-positions "c[ad]?r" "cadaddadddr")
=> #f
(pregexp-match-positions "c[ad]?r" "cr")
=> ((0 . 2))
(pregexp-match-positions "c[ad]?r" "car")
=> ((0 . 3))

33.3.3.1 NUMERIC QUANTIFIERS

You can use braces to specify much finer-tuned quantification than is possible with* , +, ?.

The quantifier{m} matchesexactlyminstances of the precedingsubpattern. mmust be a nonnegative integer.

The quantifier{m,n} matches at leastmand at mostn instances.mandn are nonnegative integers withm <= n.
You may omit either or both numbers, in which casemdefaults to 0 andn to infinity.

It is evident that+ and? are abbreviations for{1,} and{0,1} respectively.* abbreviates{,} , which is the same
as{0,} .

(pregexp-match "[aeiou]{3}" "vacuous")
=> ("uou")

(pregexp-match "[aeiou]{3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "zeugma")
=> ("eu")

112

33. pregexp.ss : Perl-Style Regular Expressions 33.3. The regexp pattern language

33.3.3.2 NON-GREEDY QUANTIFIERS

The quantifiers described above aregreedy, ie, they match the maximal number of instances that would still lead to an
overall match for the full pattern.

(pregexp-match "<.*>" "<tag1> <tag2> <tag3>")
=> ("<tag1> <tag2> <tag3>")

To make these quantifiersnon-greedy, append a? to them. Non-greedy quantifiers match the minimal number of
instances needed to ensure an overall match.

(pregexp-match "<.*?>" "<tag1> <tag2> <tag3>")
=> ("<tag1>")

The non-greedy quantifiers are respectively:*? , +?, ?? , {m}? , {m,n}? . Note the two uses of the metacharacter?.

33.3.4 Clusters

Clustering, ie, enclosure within parens(...) , identifies the enclosedsubpatternas a single entity. It causes the matcher
to capturethesubmatch, or the portion of the string matching the subpattern, in addition to the overall match.

(pregexp-match "([a-z]+) ([0-9]+), ([0-9]+)" "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1" "1970")

Clustering also causes a following quantifier to treat the entire enclosed subpattern as an entity.

(pregexp-match "(poo)*" "poo poo platter")
=> ("poo poo " "poo ")

The number of submatches returned is always equal to the number of subpatterns specified in the regexp, even if a
particular subpattern happens to match more than one substring or no substring at all.

(pregexp-match "([a-z]+;)*" "lather; rinse; repeat;")
=> ("lather; rinse; repeat;" " repeat;")

Here the* -quantified subpattern matches three times, but it is the last submatch that is returned.

It is also possible for a quantified subpattern to fail to match, even if the overall pattern matches. In such cases, the
failing submatch is represented by#f .

(define date-re
;match ‘month year’ or ‘month day, year’.
;subpattern matches day, if present
(pregexp "([a-z]+) +([0-9]+,)? *([0-9]+)"))

(pregexp-match date-re "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1," "1970")

(pregexp-match date-re "jan 1970")
=> ("jan 1970" "jan" #f "1970")

33.3.4.1 BACKREFERENCES

Submatches can be used in the insert string argument of the procedurespregexp-replace and
pregexp-replace* . The insert string can use\n as abackreferenceto refer back to thenth submatch, ie, the
substring that matched thenth subpattern.\0 refers to the entire match, and it can also be specified as\& .

113

33.3. The regexp pattern language 33.pregexp.ss : Perl-Style Regular Expressions

(pregexp-replace "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the _pinta_, and the _santa maria_"

(pregexp-replace* "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the *pinta*, and the *santa maria*"

;recall: \S stands for non-whitespace character

(pregexp-replace "(\\S+) (\\S+) (\\S+)"
"eat to live"
"\\3 \\2 \\1")

=> "live to eat"

Use \\ in the insert string to specify a literal backslash. Also,\$ stands for an empty string, and is useful for
separating a backreference\n from an immediately following number.

Backreferences can also be used within the regexp pattern to refer back to an already matched subpattern in the pattern.
\n stands for an exact repeat of thenth submatch.4

(pregexp-match "([a-z]+) and \\1"
"billions and billions")

=> ("billions and billions" "billions")

Note that the backreference is not simply a repeat of the previous subpattern. Rather it is a repeat ofthe particular
substring already matched by the subpattern.

In the above example, the backreference can only matchbillions . It will not matchmillions , even though the
subpattern it harks back to —([a-z]+) — would have had no problem doing so:

(pregexp-match "([a-z]+) and \\1"
"billions and millions")

=> #f

The following corrects doubled words:

(pregexp-replace* "(\\S+) \\1"
"now is the the time for all good men to to come to the aid of of the party"
"\\1")

=> "now is the time for all good men to come to the aid of the party"

The following marks all immediately repeating patterns in a number string:

(pregexp-replace* "(\\d+)\\1"
"123340983242432420980980234"
"{\\1,\\1}")

=> "12{3,3}40983{24,24}3242{098,098}0234"

4

0, which is useful in an insert string, makes no sense within the regexp pattern, because the entire regexp has not matched yet that you could refer
back to it.

114

33. pregexp.ss : Perl-Style Regular Expressions 33.3. The regexp pattern language

33.3.4.2 NON-CAPTURING CLUSTERS

It is often required to specify a cluster (typically for quantification) but without triggering the capture of submatch
information. Such clusters are callednon-capturing. In such cases, use(?: instead of(as the cluster opener. In the
following example, the non-capturing cluster eliminates the “directory” portion of a given pathname, and the capturing
cluster identifies the basename.

(pregexp-match "ˆ(?:[a-z]*/)*([a-z]+)$"
"/usr/local/bin/mzscheme")

=> ("/usr/local/bin/mzscheme" "mzscheme")

33.3.4.3 CLOISTERS

The location between the? and the: of a non-capturing cluster is called acloister.5 You can putmodifiersthere
that will cause the enclustered subpattern to be treated specially. The modifieri causes the subpattern to match
case-insensitively:

(pregexp-match "(?i:hearth)" "HeartH")
=> ("HeartH")

The modifierx causes the subpattern to matchspace-insensitively, ie, spaces and comments within the subpattern are
ignored. Comments are introduced as usual with a semicolon (;) and extend till the end of the line. If you need to
include a literal space or semicolon in a space-insensitized subpattern, escape it with a backslash.

(pregexp-match "(?x: a lot)" "alot")
=> ("alot")

(pregexp-match "(?x: a \\ lot)" "a lot")
=> ("a lot")

(pregexp-match "(?x:
a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"a man; a plan; a canal")
=> ("a man; a plan; a canal")

The global variable*pregexp-comment-char* contains the comment character (#\;). For Perl-like comments,

(set! *pregexp-comment-char* #\#)

You can put more than one modifier in the cloister.

(pregexp-match "(?ix:
a \\ man \\; \\ ; ignore
a \\ plan \\; \\ ; me
a \\ canal ; completely
)"

"A Man; a Plan; a Canal")
=> ("A Man; a Plan; a Canal")

A minus sign before a modifier inverts its meaning. Thus, you can use-i and -x in a subclusterto overturn the
insensitivities caused by an enclosing cluster.

5A useful, if terminally cute, coinage from the abbots of Perl .

115

33.3. The regexp pattern language 33.pregexp.ss : Perl-Style Regular Expressions

(pregexp-match "(?i:the (?-i:TeX)book)"
"The TeXbook")

=> ("The TeXbook")

This regexp will allow any casing forthe andbook but insists thatTeX not be differently cased.

33.3.5 Alternation

You can specify a list ofalternatesubpatterns by separating them by| . The | separates subpatterns in the nearest
enclosing cluster (or in the entire pattern string if there are no enclosing parens).

(pregexp-match "f(ee|i|o|um)" "a small, final fee")
=> ("fi" "i")

(pregexp-replace* "([yi])s(e[sdr]?|ing|ation)"
"it is energising to analyse an organisation
pulsing with noisy organisms"
"\\1z\\2")

=> "it is energizing to analyze an organization
pulsing with noisy organisms"

Note again that if you wish to use clustering merely to specify a list of alternate subpatterns but do not want the
submatch, use(?: instead of(.

(pregexp-match "f(?:ee|i|o|um)" "fun for all")
=> ("fo")

An important thing to note about alternation is that the leftmost matching alternate is picked regardless of its length.
Thus, if one of the alternates is a prefix of a later alternate, the latter may not have a chance to match.

(pregexp-match "call|call-with-current-continuation"
"call-with-current-continuation")

=> ("call")

To allow the longer alternate to have a shot at matching, place it before the shorter one:

(pregexp-match "call-with-current-continuation|call"
"call-with-current-continuation")

=> ("call-with-current-continuation")

In any case, an overall match for the entire regexp is always preferred to an overall nonmatch. In the following, the
longer alternate still wins, because its preferred shorter prefix fails to yield an overall match.

(pregexp-match "(?:call|call-with-current-continuation) constrained"
"call-with-current-continuation constrained")

=> ("call-with-current-continuation constrained")

33.3.6 Backtracking

We’ve already seen that greedy quantifiers match the maximal number of times, but the overriding priority is that the
overall match succeed. Consider

(pregexp-match "a*a" "aaaa")

116

33. pregexp.ss : Perl-Style Regular Expressions 33.3. The regexp pattern language

The regexp consists of two subregexps,a* followed bya. The subregexpa* cannot be allowed to match all foura’s
in the text string"aaaa" , even though* is a greedy quantifier. It may match only the first three, leaving the last one
for the second subregexp. This ensures that the full regexp matches successfully.

The regexp matcher accomplishes this via a process calledbacktracking. The matcher tentatively allows the greedy
quantifier to match all foura’s, but then when it becomes clear that the overall match is in jeopardy, itbacktracksto a
less greedy match ofthreea’s. If even this fails, as in the call

(pregexp-match "a*aa" "aaaa")

the matcher backtracks even further. Overall failure is conceded only when all possible backtracking has been tried
with no success.

Backtracking is not restricted to greedy quantifiers. Nongreedy quantifiers match as few instances as possible, and
progressively backtrack to more and more instances in order to attain an overall match. There is backtracking in
alternation too, as the more rightward alternates are tried when locally successful leftward ones fail to yield an overall
match.

33.3.6.1 DISABLING BACKTRACKING

Sometimes it is efficient to disable backtracking. For example, we may wish tocommitto a choice, or we know that
trying alternatives is fruitless. A nonbacktracking regexp is enclosed in(?> ...) .

(pregexp-match "(?>a+)." "aaaa")
=> #f

In this call, the subregexp?>a* greedily matches all foura’s, and is denied the opportunity to backpedal. So the
overall match is denied. The effect of the regexp is therefore to match one or morea’s followed by something that is
definitely non-a.

33.3.7 Looking ahead and behind

You can have assertions in your pattern that lookaheador behindto ensure that a subpattern does or does not occur.
These “look around” assertions are specified by putting the subpattern checked for in a cluster whose leading characters
are: ?= (for positive lookahead),?! (negative lookahead),?<= (positive lookbehind),?<! (negative lookbehind).
Note that the subpattern in the assertion does not generate a match in the final result. It merely allows or disallows the
rest of the match.

33.3.7.1 LOOKAHEAD

Positive lookahead (?=) peeks ahead to ensure that its subpatterncouldmatch.

(pregexp-match-positions "grey(?=hound)"
"i left my grey socks at the greyhound")

=> ((28 . 32))

The regexp"grey(?=hound)" matchesgrey , but only if it is followed by hound . Thus, the firstgrey in the
text string is not matched.

Negative lookahead (?!) peeks ahead to ensure that its subpattern could not possibly match.

(pregexp-match-positions "grey(?!hound)"
"the gray greyhound ate the grey socks")

=> ((27 . 31))

117

33.4. An extended example 33.pregexp.ss : Perl-Style Regular Expressions

The regexp"grey(?!hound)" matchesgrey , but only if it is not followed byhound . Thus thegrey just before
socks is matched.

33.3.7.2 LOOKBEHIND

Positive lookbehind (?<=) checks that its subpatterncouldmatch immediately to the left of the current position in the
text string.

(pregexp-match-positions "(?<=grey)hound"
"the hound in the picture is not a greyhound")

=> ((38 . 43))

The regexp(?<=grey)hound matcheshound , but only if it is preceded bygrey .

Negative lookbehind (?<!) checks that its subpattern could not possibly match immediately to the left.

(pregexp-match-positions "(?<!grey)hound"
"the greyhound in the picture is not a hound")

=> ((38 . 43))

The regexp(?<!grey)hound matcheshound , but only if it is notpreceded bygrey .

Lookaheads and lookbehinds can be convenient when they are not confusing.

33.4 An extended example

Here’s an extended example from Friedl’sMastering Regular Expressionsthat covers many of the features described
above. The problem is to fashion a regexp that will match any and only IP addresses ordotted quads, ie, four numbers
separated by three dots, with each number between 0 and 255. We will use the commenting mechanism to build the
final regexp with clarity. First, a subregexpn0-255 that matches 0 through 255.

(define n0-255
"(?x:
\\d ; 0 through 9

\\d\\d ; 00 through 99
[01]\\d\\d ;000 through 199
2[0-4]\\d ;200 through 249
25[0-5] ;250 through 255

)")

The first two alternates simply get all single- and double-digit numbers. Since 0-padding is allowed, we need to match
both 1 and 01. We need to be careful when getting 3-digit numbers, since numbers above 255 must be excluded. So
we fashion alternates to get 000 through 199, then 200 through 249, and finally 250 through 255.6

An IP-address is a string that consists of fourn0-255 s with three dots separating them.

(define ip-re1
(string-append

"ˆ" ;nothing before
n0-255 ;the first n0-255,
"(?x:" ;then the subpattern of

6Note thatn0-255 lists prefixes as preferred alternates, something we cautioned against in sec33.3.5. However, since we intend to anchor this
subregexp explicitly to force an overall match, the order of the alternates does not matter.

118

33. pregexp.ss : Perl-Style Regular Expressions 33.4. An extended example

"\\." ;a dot followed by
n0-255 ;an n0-255,
")" ;which is
"{3}" ;repeated exactly 3 times
"$" ;with nothing following
))

Let’s try it out.

(pregexp-match ip-re1
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re1
"55.155.255.265")

=> #f

which is fine, except that we also have

(pregexp-match ip-re1
"0.00.000.00")

=> ("0.00.000.00")

All-zero sequences are not valid IP addresses! Lookahead to the rescue. Before starting to matchip-re1 , we look
ahead to ensure we don’t have all zeros. We could use positive lookahead to ensure thereis a digit other than zero.

(define ip-re
(string-append

"(?=.*[1-9])" ;ensure there’s a non-0 digit
ip-re1))

Or we could use negative lookahead to ensure that what’s ahead isn’t composed ofonlyzeros and dots.

(define ip-re
(string-append

"(?![0.]*$)" ;not just zeros and dots
;(note: dot is not metachar inside [])

ip-re1))

The regexpip-re will match all and only valid IP addresses.

(pregexp-match ip-re
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re
"0.0.0.0")

=> #f

119

34. pretty.ss : Pretty Printing

To load:(require (lib "pretty.ss"))

(pretty-display v [port]) PROCEDURE

Same aspretty-print , butv is printed likedisplay instead of likewrite .

(pretty-print v [port]) PROCEDURE

Pretty-prints the valuev using the same printed form aswrite , but with newlines and whitespace inserted to avoid
lines longer than(pretty-print-columns) , as controlled by(pretty-print-current-style-table) .
The printed form ends in a newline unless thepretty-print-columns parameter is set to’infinity .

If port is provided,v is printed intoport ; otherwise,v is printed to the current output port.

In addition to the parameters defined by thepretty library, pretty-print conforms to theprint-graph ,
print-struct , andprint-vector-length parameters.

The pretty printer also detects structures that have theprop:custom-write property (see§11.2.10 inPLT
MzScheme: Language Manual) and it calls the corresponding custom-write procedure. The custom-write proce-
dure can check the parameterpretty-printing to cooperate with the pretty-printer. Recursive printing to the
port automatically uses pretty printing, but if the structure has multiple recursively printed sub-expressions, a custom-
write procedure may need to cooperate more to insert explicit newlines. Useport-next-location to determine
the current output column, usepretty-print-columns to determine the target printing width, and and use
pretty-print-newline to insert a newline (so that the function in thepretty-print-print-line pa-
rameter can be called appropriately). Usemake-tentative-pretty-print-output-port to obtain a port
for tentative recursive prints (e.g., to check the length of the output).

(pretty-print-current-style-table style-table [procedure])

Parameter that holds a table of style mappings. Seepretty-print-extend-style-table .

(pretty-print-columns [width]) PROCEDURE

Parameter that sets the default width for pretty printing towidth and returns void. If nowidth argument is provided,
the current value is returned instead.

If the display width is’infinity , then pretty-printed output is never broken into lines, and a newline is not added
to the end of the output.

(pretty-print-depth [depth]) PROCEDURE

Parameter that controls the default depth for recursive pretty printing. Printing todepth means that elements nested
more deeply thandepth are replaced with “...”; in particular, a depth of 0 indicates that only simple values are printed.

120

34. pretty.ss : Pretty Printing

A depth of#f (the default) allows printing to arbitrary depths.

(pretty-print-exact-as-decimal [as-decimal?]) PROCEDURE

Parameter that determines how exact non-integers are printed. If the parameter’s value is#t , then an exact non-integer
with a decimal representation is printed as a decimal number instead of a fraction. The initial value is#f .

(pretty-print-extend-style-table style-table symbol-list like-symbol-list) PRO-
CEDURE

Creates a new style table by extending an existingstyle-table , so that the style mapping for each symbol of
like-symbol-list in the original table is used for the corresponding symbol ofsymbol-list in the new table.
Thesymbol-list andlike-symbol-list lists must have the same length. Thestyle-table argument can
be#f , in which case with default mappings are used for the original table (see below).

The style mapping for a symbol controls the way that whitespace is inserted when printing a list that starts with the
symbol. In the absence of any mapping, when a list is broken across multiple lines, each element of the list is printed
on its own line, each with the same indentation.

The default style mapping includes mappings for the following symbols, so that the output follows popular code-
formatting rules:

lambda case-lambda
define define-macro define-syntax
let letrec let ∗
let-syntax letrec-syntax
let-values letrec-values let ∗-values
let-syntaxes letrec-syntaxes
begin begin0 do
if set! set!-values
unless when
cond case and or
module
syntax-rules syntax-case letrec-syntaxes +values
import export link
require require-for-syntax require-for-template provide
public private override rename inherit field init
shared send class instantiate make-object

(pretty-print-handler v) PROCEDURE

Pretty-printsv if v is not void or prints nothing otherwise. Pass this procedure tocurrent-print to install the
pretty printer into theread -eval -print loop.

(pretty-print-newline port width-k) PROCEDURE

Calls the procedure associated with thepretty-print-print-line parameter to print a newline toport ,
if port is the output port that is redirected to the original output port for printing, otherwise a plain new-
line is printed toport . The width-k argument should be the target column width, typically obtained from
pretty-print-columns .

121

34. pretty.ss : Pretty Printing

(pretty-print-print-hook [proc]) PROCEDURE

Parameter that sets the print hook for pretty-printing toproc . If proc is not provided, the current hook is returned.

The print hook is applied to a value for printing when the sizing hook (seepretty-print-size-hook) returns
an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second argument is a Boolean:
#t for printing likedisplay and#f for printing likewrite . The third argument is the destination port; this port is
generally not the port supplied topretty-print or pretty-display (or the current output port), but output to
this port is ultimately redirected to the port supplied topretty-print or pretty-display .

(pretty-print-print-line [proc]) PROCEDURE

Parameter that sets a procedure for printing the newline separator between lines of a pretty-printed value. Theproc
procedure is called with four arguments: a new line number, an output port, the old line’s length, and the number of
destination columns. The return value fromproc is the number of extra characters it printed at the beginning of the
new line.

Theproc procedure is called before any characters are printed with0 as the line number and0 as the old line length;
proc is called after the last character for a value is printed with#f as the line number and with the length of the last
line. Whenever the pretty-printer starts a new line,proc is called with the new line’s number (where the first new
line is numbered1) and the just-finished line’s length. The destination columns argument toproc is always the total
width of the destination printing area, or’infinity if pretty-printed values are not broken into lines.

The defaultproc procedure prints a newline whenever the line number is not0 and the column count is not
’infinity , always returning0. A customproc procedure can be used to print extra text before each line of
pretty-printed output; the number of characters printed before each line should be returned byproc so that the next
line break can be chosen correctly.

The destination port supplied toproc is generally not the port supplied topretty-print or pretty-display
(or the current output port), but output to this port is ultimately redirected to the port supplied topretty-print or
pretty-display .

(pretty-print-show-inexactness [explicit?]) PROCEDURE

Parameter that determines how inexact numbers are printed. If the parameter’s value is#t , then inexact numbers are
always printed with a leading#i . The initial value is#f .

(pretty-print-style-table? v) PROCEDURE

Returns#t if v is a style table,#f otherwise.

(pretty-print-post-print-hook [proc]) PROCEDURE

Parameter that sets a hook procedure to be called just after an object is printed. The hook receives two arguments: the
object and the output port. The port is the one supplied topretty-print or pretty-display (or the current
output port).

(pretty-print-pre-print-hook [proc]) PROCEDURE

Parameter that sets a hook procedure to be called just before an object is printed. The hook receives two arguments:
the object and the output port. The port is the one supplied topretty-print or pretty-display (or the current

122

34. pretty.ss : Pretty Printing

output port).

(pretty-print-size-hook [hook]) PROCEDURE

Parameter that sets the sizing hook for pretty-printing tohook . If hook is not provided, the current hook is returned.

The sizing hook is applied to each value to be printed. If the hook returns#f , then printing is handled internally by
the pretty-printer. Otherwise, the value should be an integer specifying the length of the printed value in characters;
the print hook will be called to actually print the value (seepretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The second argument is a Boolean:
#t for printing like display and#f for printing like write . The third argument is the destination port; the port
is the one supplied topretty-print or pretty-display (or the current output port). The sizing hook may be
applied to a single value multiple times during pretty-printing.

(pretty-print-.-symbol-without-bars [bool]) PROCEDURE

Parameter that controls the printing of the symbol whose print name is just a period. If set to a true value, it is printed
as only the period. If set to a false value, it is printed as a period with vertical bars surrounding it.

(pretty-printing [on?]) PROCEDURE

Parameter that is set to#t when the pretty printer calls a custom-write procedure (see§11.2.10 inPLT MzScheme:
Language Manual) for output.

When pretty printer calls a custom-write procedure merely to detect cycles, it sets this parameter to#f .

(make-tentative-pretty-print-output-port output-port width-k overflow-thunk) PRO-
CEDURE

Produces an output port that is suitable for recursive pretty printing without actually producing output. Use such a port
to tentatively print when proper output depends on the size of recursive prints. Determine the size of the tentative print
usingport-count-lines .

Theoutput-port argument should be a pretty-printing port, such as the one supplied to a custom-write procedure
whenpretty-printing is set to true, or another tentative output port. Thewidth-k argument should be a target
column width, usually obtained frompretty-print-column-count , possibly decremented to leave room for
a terminator. Theoverflow-thunk procedure is called if more thanwidth-k items are printed to the port; it
can escape from the recursive print through a continuation as a short cut, butoverflow-thunk can also return, in
which case it is called every time afterward that additional output is written to the port.

After tentative printing, either accept the result withtentative-pretty-print-port-transfer or reject it
with tentative-pretty-print-port-cancel . Failure to accept or cancel properly interferes with graph-
structure printing, calls to hook procedures, etc. Explicitly cancel the tentative print even whenoverflow-thunk
escapes from a recursive print.

(tentative-pretty-print-port-transfer tentative-output-port output-port) PROCE-
DURE

Causes the data written totentative-output-port to be transferred as if written tooutput-port . The
tentative-output-port argument should be a port produced bymake-tentative-pretty-print-output-port ,
andoutput-port should be either a pretty-printing port (provided to a custom-write procedure) or another tentative
output port.

123

34. pretty.ss : Pretty Printing

(tentative-pretty-print-port-cancel tentative-output-port) PROCEDURE

Cancels the content oftentative-output-port , which was produced bymake-tentative-pretty-print-output-port .
The main effect of canceling is that graph-reference definitions are undone, so that a future print of a graph-referenced
object includes the defining#n=.

124

35. process.ss : Process and Shell-Command Execution

To load:(require (lib "process.ss"))

This library builds on MzScheme’ssubprocess procedure; see also§15.2 inPLT MzScheme: Language Manual.

(system command-string) executes a Unix, Mac OS X, or Windows shell command synchronously (i.e., the
call to system does not return until the subprocess has ended). Thecommand-string argument is a string
containing no null characters. If the command succeeds, the return value is#t , #f otherwise.

(system* command-string arg-string · · ·) is like system , except thatcommand-string is a file-
name that is executed directly (instead of through a shell command), and thearg-string s are the arguments. The
executed file is passed the specified string arguments (which must contain no null characters). Under Windows, the
first arg-string can be’exact where the secondarg-string is a complete command line; see§15.2 inPLT
MzScheme: Language Manualfor details.

(system/exit-code command-string) is like system , except that it returns the exit-code returned by the
subprocess instead of a boolean (a result of 0 indicates success).

(system*/exit-code command-string) is like system* , except that it returns the exit-code like
system/exit-code does.

(process command-string) executes a shell command asynchronously. If the subprocess is launched success-
fully, the result is a list of five values:

• an input port piped from the subprocess’s standard output,
• an output port piped to the subprocess standard input,
• the system process id of the subprocess,
• an input port piped from the subprocess’s standard error,1 and
• a procedure of one argument, either’status , ’wait , ’interrupt , or ’kill :

– ’status returns the status of the subprocess as one of’running , ’done-ok , or ’done-error .
– ’exit-code returns the integer exit code of the subprocess or#f if it is still running.
– ’wait blocks execution in the current thread until the subprocess has completed.
– ’interrupt sends the subprocess an interrupt signal under Unix and Mac OS X, and takes no action

under Windows. The result is void.
– ’kill terminates the subprocess and returns void.

Important: All three ports returned fromprocess must be explicitly closed withclose-input-port and
close-output-port .

(process* command-string arg-string · · ·) is like process , except thatcommand-string is a
filename that is executed directly, and thearg-string s are the arguments. Under Windows, as forsystem* , the
first arg-string can be’exact .

1 The standard error port is placed after the process id for compatibility with other Scheme implementations. For the same reason,process
returns a list instead of multiple values.

125

35. process.ss : Process and Shell-Command Execution

(process/ports output-port input-port error-output-port command-string) is likeprocess ,
except thatoutput-port is used for the process’s standard output,input-port is used for the process’s standard
input, anderror-output-port is used for the process’s standard error. The provided ports need not be file-stream
ports. Any of the ports can be#f , in which case a system pipe is created and returned, as inprocess . For each port
that is provided, no pipe is created and the corresponding returned value is#f .

(process*/ports output-port input-port error-output-port command-string arg-string ··
·) is like process* , but with the port handling ofprocess/ports .

126

36. restart.ss : Simulating Stand-alone MzScheme

To load:(require (lib "restart.ss"))

(restart-mzscheme init-argv adjust-flag-table argv init-namespace) PROCEDURE

Simulates starting the stand-alone version of MzScheme with the vector of command-line stringsargv . The
init-argv , adjust-flag-table , andinit-namespace arguments are used to modify the default settings
for command-line flags, adjust the parsing of command-line flags, and customize the initial namespace, respectively.

The vector of stringsinit-argv is read first with the standard MzScheme command-line parsing. Flags that load
files or evaluate expressions (e.g.,-f and -e) are ignored, but flags that set MzScheme’s modes (e.g.,-g or -m)
effectively set the default mode beforeargv is parsed.

Beforeargv is parsed, the procedureadjust-flag-table is called with a command-line flag table as accepted
by parse-command-line (see§8). The return value must also be a table of command-line flags, and this table is
used to parseargv . The intent is to allowadjust-flag-table to add or remove flags from the standard set.

After argv is parsed, a new thread and a namespace are created for the “restarted” MzScheme. (The new namespace
is installed as the current namespace in the new thread.) In the new thread, restarting performs the following actions:

• The init-namespace procedure is called with no arguments. The return value is ignored.

• Expressions and files specified byargv are evaluated and loaded. If an error occurs, the remaining expressions
and files are ignored, and the return value forrestart-mzscheme is set to#f .

• Theread-eval-print-loop procedure is called, unless a flag ininit-argv or argv disables it. When
read-eval-print-loop returns, the return value forrestart-mzscheme is set to#t .

Before evaluating command-line arguments, an exit handler is installed that immediately returns from
restart-mzscheme with the value supplied to the handler. This exit handler remains in effect when
read-eval-print-loop is called (unless a command-line argument changes it). Ifrestart-mzscheme re-
turns normally, the return value is determined as described above. (Note that an error in a command-line expression
followed by read-eval-print-loop produces a#t result. This is consistent with MzScheme’s stand-alone
behavior.)

127

37. sendevent.ss : AppleEvents

To load:(require (lib "sendevent.ss"))

37.1 AppleEvents

(send-event receiver-byte-string event-class-byte-string event-id-byte-string [direct-argument-v
argument-list]) PROCEDURE

Sends an AppleEvent or raisesexn:fail:unsupported . Currently AppleEvents are supported only within MrEd
under Mac OS X.

The receiver-byte-string , event-class-byte-string , andevent-id-byte-string arguments
specify the signature of the receiving application, the class of the AppleEvent, and the ID of the AppleEvent. Each of
these must be a four-character byte string, otherwise theexn:fail:contract exception is raised.

The direct-argument-v value is converted (see below) and passed as the main argument of the event; if
direct-argument-v is void, no main argument is sent in the event. Theargument-list argument is a
list of two-element lists containing a typestring and value; each typestring is used ad the keyword name of an Ap-
pleEvent argument for the associated converted value. Each typestring must be a four-character string, otherwise the
exn:fail:contract exception is raised. The default values fordirect-argument andarguments are void
andnull , respectively.

The following types of MzScheme values can be converted to AppleEvent values passed to the receiver:

#t or #f ⇒ Boolean
small integer⇒ Long Integer

inexact real number⇒ Double
string⇒ Characters

list of convertible values⇒ List of converted values
#(file pathname) ⇒ Alias (file exists) or FSSpec (does not exist)

#(record (typestring v) · · ·) ⇒ Record of keyword-tagged values

If other types of values are passed tosend-event for conversion, theexn:fail:unsupported exception is
raised.

Thesend-event procedure does not return until the receiver of the AppleEvent replies. The result ofsend-event
is the reverse-converted reply value (see below), or theexn:fail exception is raised if there is an error. If there is
no error or return value,send-event returns void.

The following types of AppleEvent values can be reverse-converted into a MzScheme value returned by
send-event :

128

37. sendevent.ss : AppleEvents 37.1. AppleEvents

Boolean⇒ #t or #f
Signed Integer⇒ integer

Float, Double, or Extended⇒ inexact real number
Characters⇒ string

list of reverse-convertible values⇒ List of reverse-converted values
Alias or FSSpec⇒ #(file pathname)

Record of keyword-tagged values⇒ #(record (typestring v) · · ·)

If the AppleEvent reply contains a value that cannot be reverse-converted, theexn:fail exception is raised.

129

38. serialize.ss : Serializing Data

To load:(require (lib "serialize.ss"))

(define-serializable-struct id (field-id · · ·) [inspector-expr]) SYNTAX

(define-serializable-struct (id super-id) (field-id · · ·) [inspector-expr]) SYN-
TAX

Like define-struct , but instances of the structure type are serializable withserialize . This form is allowed
only at the top level or in a module’s top level (so that deserialization information can be found later).

In addition to the bindings generated bydefine-struct , define-serializable-struct binds
deserialize-info: id -v0 to deserialization information. Furthermore, in a module context, it automatically
provide s this binding.

Naturally, define-serializable-struct enables the construction of structure instances from places where
make- id is not accessible, since deserialization must construct instances. Furthermore,define-serializable-struct
provides limited access to field mutation, but only for instances generated through the deserialization information
bound todeserialize-info: id -v0 . Seemake-deserialize-info for more information.

The-v0 suffix on the deserialization enables future versioning on the structure type throughdefine-serializable-struct/version .

Whensuper-id is supplied, compile-time information bound tosuper-id must include all of the supertype’s
field accessors. If any field mutator is missing, the structure type will be treated as immutable for the purposes of
marshaling (so cycles involving only instances of the structure type cannot be handled by the deserializer).

Example:

(define-serializable-struct point (x y))
(deserialize (serialize (make-point 1 2))) ; ⇒ (make-point 1 2)

(define-serializable-struct/version id vers-num (field-id · · ·) ((other-vers-num
make-proc-expr cycle-make-proc-expr)) [inspector-expr]) SYN-
TAX (define-serializable-struct/version (id super-id) vers-num (field-id · · ·)

((other-vers-num make-proc-expr cycle-make-proc-expr)) [inspector-expr]) SYNTAX

Like define-serializable-struct , but the generated deserializer binding isdeserialize-info: id - vers-num .
In addition,deserialize-info: id - other-vers-num is bound for eachother-vers-num .

Eachmake-proc-expr should produce a procedure, and the procedure should accept as many argument as fields in
the corresponding version of the structure type, and it produce an instance ofid . Eachgraph-make-proc-expr
should produce a procedure of no arguments; this procedure should return two values: an instancex of id (typically
with #f for all fields) and a procedure that accepts another instance ofid and copies its field values intox .

130

38. serialize.ss : Serializing Data

Example:

(define-serializable-struct point (x y))
(define ps (serialize (make-point 1 2)))
(deserialize ps) ; ⇒ (make-point 1 2)

(define x (make-point 1 10))
(set-point-x! x x)
(define xs (serialize x))
(deserialize xs) ; ⇒ x0 , where x0 is (make-point x0 10)

(define-serializable-struct/versions point 1 (x y z)
([0

;; Constructor for simple v0 instances:
(lambda (x y) (make-point x y 0))
;; Constructor for v0 instance in a cycle:
(lambda ()

(let ([p0 (make-point #f #f 0)])
(values

p0
(lambda (p)

(set-point-x! p0 (point-x p))
(set-point-y! p0 (point-y p))))))]))

(deserialize (serialize (make-point 4 5 6))) ; ⇒ (make-point 4 5 6)
(deserialize ps) ; ⇒ (make-point 1 2 0)
(deserialize xs) ; ⇒ x1 , where x1 is (make-point x1 10 0)

(serialize v) PROCEDURE

Returns a value that encapsulates the valuev . This value includes only readable values, so it can be written to a
stream withwrite , later read from a stream usingread , and then converted to a value like the original using
deserialize . Serialization followed by deserialization produces a value with the same graph structure and muta-
bility as the original value, but the serialized value is a plain tree (i.e., no sharing).

The following kinds of values are serializable:

• structures created throughdefine-serializable-struct ordefine-serializable-struct/version ,
or more generally structures with theprop:serializable property (seeprop:serializable for more
information);

• instances of classes defined withdefine-serializable-class or define-serializable-class
(see§4.7);

• booleans, numbers, characters, symbols, strings, byte strings, paths, void, and the empty list;

• pairs, vectors, boxes, and hash tables; and

• date andarity-at-least structures.

Of course, serialization succeeds for a compound value, such as a pair, only if all content of the value is serializable.
If a value given toserialize is not completely serializable, theexn:fail:contract exception is raised.

Seedeserialize for information on the format of serialized data.

131

38. serialize.ss : Serializing Data

(deserialize v) PROCEDURE

Given a valuev that was produced byserialize , produces a value like the one given toserialize , including
the same graph structure and mutability.

A serialized representationv is a list of six elements:

• A non-negative exact integers-count that represents the number of distinct structure types represented in the
serialized data.

• A list s-types of lengths-count , where each element represents a structure types. Each structure type is
encoded as a pair. Thecar of the pair is#f for a structure whose deserialization information is defined at the
top level, otherwise it is a quoted module path or a byte string (to be converted into a platform-specific path using
bytes->path) for a module that exports the structure’s deserialization information. Thecdr of the pair is
the name of a binding (at the top level or exported from a module) for deserialization information. These two
are used with eithernamespace-variable-binding or dynamic-require to obtain deserialization
information. Seemake-deserialization-info for more information on the binding’s value.

• A non-negative exact integer,g-count that represents the number of graph points contained in the following
list.

• A list graph of lengthg-count , where each element represents a serialized value to be referenced during the
construction of other serialized values. Each list element is either a box or not:

– A box represents a value that is part of a cycle, and for deserialization, it must be allocated with#f for
each of its fields. The content of the box indicates the shape of the value:
∗ a non-negative exact integeri for an instance of a structure type that is represented by thei th element

of thes-types list;
∗ ’c for a pair;
∗ ’b for a box;
∗ a pair whosecar is ’v and whosecdr is a non-negative exact integers for a vector of lengths ; or
∗ a list whose first element is’h and whose remaining elements are flags formake-hash-table for

a hash table.
∗ ’date for adate structure;
∗ ’arity-at-least for anarity-at-least structure;

The#f -filled value will be updated with content specified by the fifth element of the serialization listv .
– A non-box represents aserial value to be constructed immediately, and it is one of the following:

∗ a boolean, number, character, symbol, or empty list, representing itself.
∗ a string, representing an immutable string.
∗ a byte string, representing an immutable byte string.
∗ a pair whosecar is ’? and whosecdr is a non-negative exact integeri ; it represents the value

constructed for thei th element ofgraph , wherei is less than the position of this element within
graph .

∗ a pair whosecar is a numberi ; it represents an instance of a structure type that is described by the
i th element of thes-types list. Thecdr of the pair is a list of serials representing arguments to be
provided to the structure type’s deserializer.

∗ a pair whosecar is ’void , representing void.
∗ a pair whosecar is ’u and whosecdr is either a byte string or character string; it represents a

mutable byte or character string.
∗ a pair whosecar is ’c and whosecdr is a pair of serials; it represents an immutable pair.
∗ a pair whosecar is ’c! and whosecdr is a pair of serials; it represents a mutable pair.
∗ a pair whosecar is ’v and whosecdr is a list of serials; it represents an immutable vector.
∗ a pair whosecar is ’v! and whosecdr is a list of serials; it represents a mutable vector.
∗ a pair whosecar is ’b and whosecdr is a serial; it represents an immutable box.
∗ a pair whosecar is ’b! and whosecdr is a serial; it represents a mutable box.

132

38. serialize.ss : Serializing Data

∗ a pair whosecar is ’h , whosecadr is either’! or ’- (mutable or immutable, respectively), whose
caddr is a list of symbols to be used as flags formake-hash-table , and whosecdddr is a list
of pairs, where thecar of each pair is a serial for a hash-table key and thecdr is a serial for the
corresponding value.

∗ a pair whosecar is ’date and whosecdr is a list of serials; it represents adate structure.
∗ a pair whosecar is ’arity-at-least and whosecdr is a serial; it represents an

arity-at-least structure.

• A list of pairs, where thecar of each pair is a non-negative exact integeri and thecdr is a serial (as defined
in the previous bullet). Each element represents an update to ani th element ofgraphs that was specified as
a box, and the serial describes how to construct a new value with the same shape as specified by the box. The
content of this new value must be transferred into the value created for the box ingraph .

• A final serial (as defined in the two bullets back) representing the result ofdeserialize .

The result ofdeserialize shares no mutable values with the argument todeserialize .

If a value provided toserialize is a simple tree (i.e., no sharing), then the fourth and fifth elements in the serialized
representation will be empty.

(make-deserialize-info make-proc cycle-make-proc) PROCEDURE

Produces a deserialization information record to be used bydeserialize . This information is normally tied to
a particular structure because the structure has aprop:serializable property value that points to a top-level
variable or module-exported variable that is bound to deserialization information.

Themake-proc procedure should accept as many argument as the structure’s serializer put into a vector; normally,
this is the number of fields in the structure. It should return an instance of the structure.

Thecycle-make-proc procedure should accept no arguments, and it should return two values: a structure instance
x (with dummy field values) and an update procedure. The update procedure takes another structure instance generated
by themake-proc , and it transfers the field values of this instance intox .

prop:serializeable PROPERTY

This property identifies structures and structure types that are serializable. The property value should be constructed
with make-serialize-info .

(make-serialize-info to-vector-proc deserialize-id can-cycle? dir-path) PROCE-
DURE

Produces a value to be associated with a structure type through theprop:serializable property. This value is
used byserialize .

Theto-vector-proc procedure should accept a structure instance and produce a vector for the instance’s content.

Thedeserialize-id value indicates a binding for deserialize information, to either a module export or a top-level
definition. Thedeserialize-id value can be an identifier syntax object, a symbol, or a pair:

• If deserialize-id is an identifier, and if(identifier-binding deserialize-id) produces a
list, then the third element is used for the exporting module, otherwise the top-level is assumed. In either case,
syntax-e is used to obtain the name of an exported identifier or top-level definition.

• If deserialize-id is a symbol, it indicates a top-level variable that is named by the symbol.

133

38. serialize.ss : Serializing Data

• If deserialize-id is a pair, thecar must be a symbol to name an exported identifier, and thecdr must
be either a symbol or a module path index to specify the exporting module.

Seemake-deserialize-info anddeserialize for more information.

Thecan-cycle? argument should be false if instances should not be serialized in such a way that deserialization
requires creating a structure instance with dummy field values and then updating the instance later.

The dir-path argument should be a directory path that is used to resolve a module reference for the bind-
ing of deserialize-id . This directory path is used as a last resort whendeserialize-id indicates
a module that was loaded through a relative path with respect to the top level. Usually, it should be(or
(current-load-relative-directory) (current-directory)) .

(serializable? v) PROCEDURE

Returns#t if v appears to be serializable, without checking the content of compound values, and#f otherwise. See
serialize for an enumeration of serializable values.

134

39. shared.ss : Graph Constructor Syntax

To load:(require (lib "shared.ss"))

(shared (shared-binding · · ·) body-expr · · ·1) SYNTAX

Binds variables with shared structure according toshared-bindings and then evaluates thebody-expr s, re-
turning the result of the last expression.

Theshared form is similar toletrec . Eachshared-binding has the form:

(variable value-expr)

Thevariable s are bound to the result ofvalue-expr s in the same way as for aletrec expression, except for
value-expr s with the following special forms (after partial expansion):

• (cons car-expr cdr-expr)
• (list element-expr · · ·)
• (box box-expr)
• (vector element-expr · · ·)
• (prefix: make- name element-expr · · ·) whereprefix:name is the name of a structure type (or,

more generally, is bound to expansion-time information about a structure type)

Thecons above means an identifier that ismodule-identifier=? either to thecons export frommzscheme or
to the top-levelcons . The same is true oflist , box , andvector . In the\var{prefix:}make-\var{name}
case, the expansion-time information associated withprefix:name must provide a constructor binding and a com-
plete set of field mutator bindings.

For each of the special forms, the cons cell, list, box, vector, or structure is allocated with undefined content. The
content expressions are not evaluated until all of the bindings have values; then the content expressions are evaluated
and the values are inserted into the appropriate locations. In this way, values with shared structure (even cycles) can
be constructed.

Examples:

(shared ([a (cons 1 a)]) a) ; => infinite list of 1s
(shared ([a (cons 1 b)]

[b (cons 2 a)])
a) ; => (1 2 1 2 1 2 · · ·)

(shared ([a (vector b b b)]
[b (box 1)])

(set-box! (vector-ref a 0) 2)
a) ; => #(#&2 #&2 #&2)

135

40. string.ss : String Utilities

To load:(require (lib "string.ss"))

(eval-string str [err-display err-result]) PROCEDURE

Reads and evaluates S-expressions from the stringstr , returning a result for each expression. Note that ifstr
contains only whitespace and comments, zero values are returned, while ifstr contains two expressions, two values
are returned.

If err-display is not #f (the default), then errors are caught anderr-display is used as the error display
handler. Iferr-result is specified, it must be a thunk that returns a value to be returned when an error is caught;
otherwise,#f is returned when an error is caught.

(expr->string expr) PROCEDURE

Printsexpr into a string and returns the string.

(read-from-string str [err-display err-result]) PROCEDURE

Reads the first S-expression from the stringstr and returns it. Theerr-display anderr-result are as in
eval-str .

(read-from-string-all str [err-display err-result]) PROCEDURE

Reads all S-expressions from the stringstr and returns them in a list. Theerr-display anderr-result are
as ineval-str .

(regexp-match* pattern string-or-input-port [start-k end-k]) PROCEDURE

Like regexp-match (see§10 in PLT MzScheme: Language Manual), but the result is a list of strings correspond-
ing to a sequence of matches ofpattern in string-or-input-port . (Unlike regexp-match , results for
parenthesized sub-patterns inpattern are not returned.) Ifpattern matches a zero-length string along the way,
theexn:fail exception is raised.

If string-or-input-port contains no matches (in the rangestart-k to end-k), null is returned. Other-
wise, each string in the resulting list is a distinct substring instring-or-input-port that matchespattern .
Theend-k argument can be#f to match to the end ofstring-or-input-port .

(regexp-match/fail-without-reading pattern input-port [start-k end-k output-port])
PROCEDURE

Like regexp-match on input ports (see§10 in PLT MzScheme: Language Manual), except that if the match fails,
no characters are read and discarded frominput-port .

136

40. string.ss : String Utilities

This procedure is especially useful with apattern that begins with a start-of-string caret (“ˆ”) or with a non-#f
end-k , since each limits the amount of peeking into the port.

(regexp-match-exact? pattern string-or-input-port) PROCEDURE

This procedure is like MzScheme’s built-inregexp-match (see§10 in PLT MzScheme: Language Manual), but
the result is always#t or #f ; #t is only returned when the entire content ofstring-or-input-port matches
pattern .

(regexp-match-peek-positions* pattern input-port [start-k end-k]) PROCEDURE

Like regexp-match-positions* , but it works only on input ports, and the port is peeked instead of read for
matches.

(regexp-match-positions* pattern string-or-input-port [start-k end-k]) PROCEDURE

Like regexp-match-positions (see §10 in PLT MzScheme: Language Manual), but the result is a list
of integer pairs corresponding to a sequence of matches ofpattern in string-or-input-port . (Unlike
regexp-match-positions , results for parenthesized sub-patterns inpattern are not returned.) Ifpattern
matches a zero-length string along the way, theexn:fail exception is raised.

If string-or-input-port contains no matches (in the rangestart-k to end-k), null is returned. Other-
wise, each position pair in the resulting list corresponds to a distinct substring instring-or-input-port that
matchespattern . Theend-k argument can be#f to match to the end ofstring-or-input-port .

(regexp-quote str [case-sensitive?]) PROCEDURE

Produces a string suitable for use withregexp (see§10 in PLT MzScheme: Language Manual) to match the literal
sequence of characters instr . If case-sensitive? is true, the resulting regexp matches letters instr case-
insensitively, otherwise (and by default) it matches case-sensitively.

(regexp-replace-quote str) PROCEDURE

Produces a string suitable for use as the third argument toregexp-replace (see§10 in PLT MzScheme: Lan-
guage Manual) to insert the literal sequence of characters instr as a replacement. Concretely, every backslash and
ampersand instr is protected by a quoting backslash.

(glob->regexp str [hide-dots? case-sensitive?]) PROCEDURE

Produces a regexp for a an input “glob pattern” instr . A glob pattern is one that matches “* ” with any string, and
“?” with a single character, and character ranges are the same as in regexps. In addition, the resulting regexp does not
match strings that begin with a period, unless explicitly part of the glob string. The resulting regexp can be used with
string file names to check the glob pattern.

If hide-dots? is true (the default), the resulting regexp will not match names that begin with a dot.

If case-sensitive? is given, it determines whether the resulting regexp is case-sensitive; otherwise the default
case sensitivity depends on the system-type.

137

40. string.ss : String Utilities

(regexp-split pattern string-or-input-port [start-k end-k]) PROCEDURE

The complement ofregexp-match* (see above): the result is a list of sub-strings instring-or-input-port
that are separated by matches topattern ; adjacent matches are separated with"" . If pattern matches a zero-
length string along the way, theexn:fail exception is raised.

If string-or-input-port contains no matches (in the rangestart-k to end-k), the result will be a
list containingstring-or-input-port (from start-k to end-k). If a match occurs at the beginning of
string-or-input-port (at start-k), the resulting list will start with an empty string, and if a match occurs
at the end (atend-k), the list will end with an empty string. Theend-k argument can be#f , in which case splitting
goes to the end ofstring-or-input-port .

(string-lowercase!! str) PROCEDURE

Destructively changesstr to contain only lowercase characters.

(string-uppercase!! str) PROCEDURE

Destructively changesstr to contain only uppercase characters.

138

41. struct.ss : Structure Utilities

To load:(require (lib "struct.ss"))

(copy-struct struct-id struct-expr (accessor-id field-expr) · · ·) SYNTAX

This form provides “functional update” for structure instances. The result of evaluatingstruct-expr must be an
instance of the structure type named bystruct-id . The result of thecopy-struct expression is a fresh instance
of struct-id with the same field values as the result ofstruct-expr , except that the value for the field accessed
by eachaccessor-id is replaced by the result offield-expr .

The result ofstruct-expr might be an instance of a sub-type ofstruct-id , but the result of thecopy-struct
expression is an immediate instance ofstruct-id . If struct-expr does not produce an instance of
struct-id , theexn:fail:contract exception is raised.

If any accessor-id is not bound to an accessor ofstruct-id (according to the expansion-time information
associated withstruct-id), or if the sameaccessor-id is used twice, then a syntax error is raised.

(define-struct/properties id (field-id ···) ((prop-expr val-expr) ···) [inspector-expr])
SYNTAX

Like define-struct , but properties (see§4.3 inPLT MzScheme: Language Manual) can be attached to the struc-
ture type. Eachprop-expr should produce a structure-type property value, and eachval-expr produces the
corresponding value for the property.

Example:

(define-struct/properties point (x y)
([prop:custom-write (lambda (p port write?)

(fprintf port "(˜a, ˜a)"
(point-x p)
(point-y p)))]))

(display (make-point 1 2)) ; prints (1, 2)

(make-- >vector struct-id) SYNTAX

This form builds a function that accepts a struct instance (matchingstruct-id) and provides a vector of the fields
of the struct.

139

42. stxparam.ss : Syntax Parameters

To load:(require (lib "stxparam.ss"))

(define-syntax-parameter identifier expr) SYNTAX

Bindsidentifier as syntax to asyntax parameter. Theexpr is an expression in the transformer environment that
serves as the default value for the syntax parameter.

The identifier can be used withsyntax-parameterize or syntax-parameter-value (in a trans-
former). If expr produces a procedure of one argument or amake-set!-transformer result, then
identifier can be used as a macro. Ifexpr produces arename-transformer result, thenidentifier
can be used as a macro that expands to a use of the target identifier, butsyntax-local-value of identifier
does not produce the target’s value.

(syntax-parameterize ((identifier expr) · · ·) body-expr · · ·1) SYNTAX

Eachidentifier must be bound to a syntax parameter usingdefine-syntax-parameter . Eachexpr is
an expression in the transformer environment. During the expansion of thebody-expr s, the value of eachexpr is
bound to the correspondingidentifier .

If an expr produces a procedure of one argument or amake-set!-transformer result, then itsidentifier
can be used as a macro during the expansion of thebody-expr s. If expr produces arename-transformer
result, then identifier can be used as a macro that expands to a use of the target identifier, but
syntax-local-value of identifier does not produce the target’s value.

(syntax-parameter-value id-stx) PROCEDURE

This procedure is intended for use in a transformer environment, whereid-stx is an identifier bound in the nor-
mal environment to a syntax parameter. The result is the current value of the syntax parameter, as adjusted by
syntax-parameterize form.

(make-parameter-rename-transformer id-stx) PROCEDURE

This procedure is intended for use in a transformer environment, whereid-stx is an identifier bound in the normal
environment to a syntax parameter. The result is transformer that behaves asid-stx , but that cannot be used with
syntax-parameterize or syntax-parameter-value .

Using make-parameter-rename-transformer is analogous to defining a procedure that calls a parameter.
Such a procedure can be exported to others to allow access to the parameter value, but not to change the parameter
value. Similarly,make-parameter-rename-transformer allows a syntax parameter to used as a macro, but
not changed.

The result ofmake-parameter-rename-transformer is not treated specially bysyntax-local-value ,
unlike the result of MzScheme’smake-rename-transformer .

140

43. surrogate.ss : Proxy-like Design Pattern

To load:(require (lib "surrogate.ss"))

This library provides an abstraction for building an instance of the proxy design pattern. The pattern consists of two
objects, ahostand asurrogateobject. The host object delegates method calls to its surrogate object. Each host has a
dynamically assigned surrogate, so an object can completely change its behavior merely by changing the surrogate.

The library provides a form,surrogate :

(surrogate method-spec ...) SYNTAX

where

method-spec :: == (method-name arg-spec ...)
| (override method-name arg-spec ...)
| (override-final method-name (lambda () default-expr) arg-spec ...)

arg-spec :: ==
| (id ...)
| id

If neitheroverride nor override-final is specified for amethod-name , thenoverride is assumed. Use
override

The surrogate form produces four values: a host mixin (a procedure that accepts and returns a class), a host interface,
a surrogate class, and a surrogate interface, in that order.

The host mixin adds one additional field,surrogate , to its argument and a getter method,get-surrogate , and
a setter method,set-surrogate , for changing the field. Theset-surrogate form accepts instances the class
returned by the form or#f , and updates the field with its argument. Then, it calls theon-disable-surrogate on
the previous value of the field andon-enable-surrogate for the new value of the field. Theget-surrogate
method returns the current value of the field.

The host mixin has a single overriding method for eachmethod-name in the surrogate form. Each of these
methods is defined with a case-lambda with one arm for eacharg-spec . Each arm has the variables as arguments
in thearg-spec . The body of each method tests thesurrogate field. If it is #f , the method just returns the result
of invoking the super or inner method. If thesurrogate field is not#f , the corresponding method of the object
in the field is invoked. This method receives the same arguments as the original method, plus two extras. The extra
arguments come at the beginning of the argument list. The first is the original object. The second is a procedure that
calls the super or inner method (i.e., the method of the class that is passed to the mixin or an extension, or the method
in an overriding class), with the arguments that the procedure receives.

The host interface has the namesset-surrogate , get-surrogate , and each of themethod-name s in the
original form.

The surrogate class has a single public method for eachmethod-name in thesurrogate form. These methods are
invoked by classes constructed by the mixin. Each has a corresponding method signature, as described in the above

141

43. surrogate.ss : Proxy-like Design Pattern

paragraph. Each method just passes its argument along to the super procedure it receives.

Note: if you derive a class from the surrogate class, do not both call thesuper argument and the super method of the
surrogate class itself. Only call one or the other, since the default methods call thesuper argument.

Finally, the interface contains all of the names specified in surrogate’s argument, pluson-enable-surrogate and
on-disable-surrogate . The class returned bysurrogate implements this interface.

142

44. tar.ss : Creating tar Files

To load:(require (lib "tar.ss"))

This library provides a facility for creatingtar files. It creates tar files in USTAR format that are identical to files that
the Unix utility pax generates. Note that the USTAR format imposes limits on path lengths. The resulting archives
contain only directories and files (symbolic links are followed), and owner information is not preserved; the owner
that is stored in the archive is always ‘root’.

(tar tar-file path · · ·) PROCEDURE

Createstar-file , which holds the complete content of allpath s. The givenpath s are all expected to be rel-
ative path names of existing directories and files (i.e., relative to the current directory). If a nested path is pro-
vided as apath , its ancestor directories are also added to the resulting tar file, up to the current directory (using
pathlist-closure ; see§11.3.3 inPLT MzScheme: Language Manual).

(tar->output paths [output-port]) PROCEDURE

Packages each of the givenpaths in a tar format archive that is written directly to theoutput-port or to the
current output port ifoutput-port is not given. Also, the specifiedpaths are included as-is; if a directory is
specified, its content is not automatically added, and nested directories are added without parent directories.

(See also§51.)

143

45. thread.ss : Thread Utilities

To load:(require (lib "thread.ss"))

(coroutine proc) PROCEDURE

Returns a coroutine object to encapsulate a thread that runs only when allowed. Theproc procedure should accept
one argument, andproc is run in the coroutine thread whencoroutine-run is called. If coroutine-run
returns due to a timeout, then the coroutine thread is suspended until a future call tocoroutine-run . Thus,proc
only executes during the dynamic extent of acoroutine-run call.

The argument toproc is a procedure that takes a boolean, and it can be used to disable suspends (in caseproc has
critical regions where it should not be suspended). A true value passed to the procedure enables suspends, and#f
disables suspends. Initially, suspends are allowed.

(coroutine? v) PROCEDURE

Returns#t if v is a coroutine produced bycoroutine , #f otherwise.

(coroutine-run timeout-secs coroutine) PROCEDURE

Allows the thread associated withcoroutine to execute for up totimeout-secs . If coroutine ’s procedure
disables suspends, then the coroutine can run arbitrarily long until it re-enables suspends.

The coroutine-run procedure returns#t if coroutine ’s procedure completes (or if it completed earlier),
and the result is available viacoroutine-result . The coroutine-run procedure returns returns#f if
coroutine ’s procedure does not complete before it is suspended aftertimeout-secs . If coroutine ’s pro-
cedure raises an exception, then it is re-raised bycoroutine-run .

(coroutine-result coroutine) PROCEDURE

Returns the result forcoroutine if it has completed with a value (as opposed to an exception),#f otherwise.

(coroutine-kill coroutine) PROCEDURE

Forcibly terminates the thread associated withcoroutine if it is still running, leaving the coroutine result un-
changed.

(consumer-thread f [init]) PROCEDURE

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity asf .1 When the returned
procedure is applied, its arguments are queued to be passed on tof , and void is immediately returned. The thread

1The returned procedure actually accepts any number of arguments, but immediately raisesexn:fail:contract:arity if f cannot accept
the provided number of arguments.

144

45. thread.ss : Thread Utilities

created byconsumer-thread dequeues arguments and appliesf to them, removing a new set of arguments from
the queue only when the previous application off has completed; iff escapes from a normal return (via an exception
or a continuation), thef -applying thread terminates.

The init argument is a procedure of no arguments; if it is provided,init is called in the new thread immediately
after the thread is created.

(run-server port-k conn-proc conn-timeout [handler-proc listen-proc close-proc accept-proc
accept/break-proc]) PROCEDURE

Executes a TCP server on the port indicated byport-k . When a connection is made by a client,conn-proc is
called with two values: an input port to receive from the client, and an output port to send to the client.

Each client connection is managed by a new custodian, and each call toconn-proc occurs in a new thread (managed
by the connection’s custodian). If the thread executingconn-proc terminates for any reason (e.g.,conn-proc
returns), the connection’s custodian is shut down. Consequently,conn-proc need not close the ports provided to it.
Breaks are enabled in the connection thread if breaks are enabled whenrun-server is called.

To facilitate capturing a continuation in one connection thread and invoking it in another, the parameterization of the
run-server call is used for every call tohandler-proc . In this parameterization and for the connection’s thread,
thecurrent-custodian parameter is assigned to the connection’s custodian.

If conn-timeout is not#f , then it must be a non-negative number specifying the time in seconds that a connection
thread is allowed to run before it is sent a break signal. Then, if the thread runs longer than(∗ conn-timeout
2) seconds, then the connection’s custodian is shut down. Ifconn-timeout is #f , a connection thread can run
indefinitely.

If handler-proc is provided, it is passed exceptions related to connections (i.e., exceptions not caught by
conn-proc , or exceptions that occur when trying to accept a connection). The default handler ignores the exception
and returns void.

The listen-proc , close-proc , accept-proc and accept/break-proc arguments default to the
tcp-listen , tcp-close , tcp-accept , andtcp-accept/enable-break procedures, respectively. The
run-server function calls these procedures without optional arguments. Provide alternate procedures to use an
alternate communication protocol (such as SSL) or to supply optional arguments in the use oftcp-listen .

The run-server procedure loops to serve client connections, so it never returns. If a break occurs, the loop will
cleanly shut down the server, but it will not terminate active connections.

145

46. trace.ss : Tracing Top-level Procedure Calls

To load:(require (lib "trace.ss"))

This library mimics the tracing facility available in Chez SchemeTM.

(trace variable · · ·) SYNTAX

Eachvariable must be bound to a procedure in the environment of thetrace expression. Eachvariable is
set! ed to a new procedure that traces procedure calls and returns by printing the arguments and results of the call. If
multiple values are returned, each value is displayed starting on a separate line.

When traced procedures invoke each other, nested invocations are shown by printing a nesting prefix. If the nesting
depth grows to ten and beyond, a number is printed to show the actual nesting depth.

The trace form can be used on a variable that is already traced. In this case, assuming that the variable’s value has
not been changed,trace has no effect. If the variable has been changed to a different procedure, then a new trace is
installed.

Tracing respects tail calls to preserve loops, but its effect may be visible through continuation marks. When a call to a
traced procedure occurs in tail position with respect to a previous traced call, then the tailness of the call is preserved
(and the result of the call is not printed for the tail call, because the same result will be printed for an enclosing
call). Otherwise, however, the body of a traced procedure is not evaluated in tail position with respect to a call to the
procedure.

The value of atrace expression is the list of names (as symbols) specified for tracing.

(untrace variable · · ·) SYNTAX

Undoes the effects of thetrace form for eachvariable , set! ing eachvariable back to the untraced proce-
dure, but only if the current value ofvariable is a traced procedure. If the current value of avariable is not a
procedure installed bytrace , then the variable is not changed.

The value of anuntrace expression is the list of names (as symbols) restored to their untraced definitions.

146

47. traceld.ss : Tracing File Loads

To load:(require (lib "traceld.ss"))

This library does not define any procedures or syntax. Instead,traceld.ss is imported at the top-level for its side-
effects. The trace library installs a new load handler and load extension handler to print information about the files
that are loaded. These handlers chain to the current handlers to perform the actual loads. Trace output is printed to the
port that is the current error port when the library is loaded.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested loads is printed with
indentation. After the file is loaded, the file name is printed with the “time” that the load completed.

If a loader extension is loaded (see§14.1 inPLT MzScheme: Language Manual), the tracer wraps the returned loader
procedure to print information about libraries requested from the loader. When a library is found in the loader, the
thunk procedure that extracts the library is wrapped to print the start and end times of the extraction.

147

48. transcr.ss : Transcripts

To load:(require (lib "transcr.ss"))

MzScheme’s built-intranscript-on and transcript-off always raiseexn:fail:unsupported . The
transcr.ss library provides working versions oftranscript-on andtranscript-off .

148

49. unit.ss : Core Units

To load:(require (lib "unit.ss"))

MzScheme’sunits are used to organize a program into separately compilable and reusable components. A unit resem-
bles a procedure in that both are first-class values that are used for abstraction. While procedures abstract over values
in expressions, units abstract over names in collections of definitions. Just as a procedure is invoked to evaluate its
expressions given actual arguments for its formal parameters, a unit is invoked to evaluate its definitions given actual
references for its imported variables. Unlike a procedure, however, a unit’s imported variables can be partially linked
with the exported variables of another unitprior to invocation. Linking merges multiple units together into a single
compound unit. The compound unit itself imports variables that will be propagated to unresolved imported variables
in the linked units, and re-exports some variables from the linked units for further linking.

In some ways, a unit resembles a module (see Chapter 5 inPLT MzScheme: Language Manual), but units and modules
serve different purposes overall. A unit encapsulates a pluggable component—code that relies, for example, on “some
functionf from a source to be determined later.” In contrast, if a module imports a function, the import is “thefunction
f provided by the specific modulem.” Moreover, a unit is a first-class value that can be multiply instantiated, each
time with different imports, whereas a module’s context is fixed. Finally, because a unit’s interface is separate from its
implementation, units naturally support mutually recursive references across unit boundaries, while module imports
must be acyclic.

MzScheme supports two layers of units. Thecore unit system comprises theunit , compound-unit , and
invoke-unit syntactic forms. These forms implement the basic mechanics of units for separate compilation
and linking. While the semantics of units is most easily understood via the core forms, they are too verbose for
specifying the interconnections between units in a large program. Therefore, a system ofunits with signatures is pro-
vided on top of the core forms, comprising thedefine-signature , unit/sig , compound-unit/sig , and
invoke-unit/sig syntactic forms.

The core system is described in this chapter, and defined by theunit.ss library. The signature system is described in
§50, and defined byunitsig.ss . Details about mixing core and signed units are presented in§50.9(using procedures
from unitsig.ss).

49.1 Creating Units

Theunit form creates a unit:

(unit
(import variable · · ·)
(export exportage · · ·)
unit-body-expr
· · ·)

exportage is one of
variable
(internal-variable external-variable)

149

49.1. Creating Units 49.unit.ss : Core Units

The variable s in theimport clause are bound within theunit-body-expr expressions. The variables for
exportage s in theexport clause must be defined in theunit-body-expr s as described below; additional
private variables can be defined as well. The imported and exported variables cannot occur on the left-hand side of an
assignment (i.e., aset! expression).

The first exportage form exports the binding defined asvariable in the unit body using the external name
variable . The second form exports the binding defined asinternal-variable using the external name
external-variable . The external variables from anexport clause must be distinct.

Each exportedvariable or internal-variable must be defined in adefine-values expression as a
unit-body-expr .1 All identifiers defined by theunit-body-expr s together with thevariable s from the
import clause must be distinct.

Examples

The unit defined below imports and exports no variables. Each time it is invoked, it prints and returns the current time
in seconds:2

(define f1@
(unit (import) (export)
(define x (current-seconds))
(display x)
(newline)
x))

The unit defined below is similar, except that it exports the variablex instead of returning the value:

(define f2@
(unit (import) (export x)
(define x (current-seconds))
(display x)
(newline)))

The following units define two parts of an interactive phone book:

(define database@
(unit

(import show-message)
(export insert lookup)

(define table (list))
(define insert

(lambda (name info)
(set! table (cons (cons name info) table))))

(define lookup
(lambda (name)

(let ([data (assoc name table)])
(if data

(cdr data)
(show-message "info not found")))))

insert))

1The detection of unit definitions is the same as for internal definitions (see§2.8.5 inPLT MzScheme: Language Manual). Thus, thedefine
anddefine-struct forms can be used for definitions.

2The “@” in the variable name “f1@” indicates (by convention) that its value is a unit.

150

49. unit.ss : Core Units 49.2. Invoking Units

(define interface@
(unit

(import insert lookup make-window make-button)
(export show-message)
(define show-message

(lambda (msg) ...))
(define main-window

...)))

In this example, thedatabase@ unit implements the database-searching part of the program, and theinterface@
unit implements the graphical user interface. Thedatabase@ unit exportsinsert andlookup procedures to be
used by the graphical interface, while theinterface@ unit exports ashow-message procedure to be used by the
database (to handle errors). Theinterface@ unit also imports variables that will be supplied by a platform-specific
graphics toolbox.

49.2 Invoking Units

A unit is invoked using theinvoke-unit form:

(invoke-unit unit-expr import-expr · · ·)

The value ofunit-expr must be a unit. For each of the unit’s imported variables, theinvoke-unit expres-
sion must contain animport-expr . The value of eachimport-expr is imported into the unit. More detailed
information about linking is provided in the following section on compound units.

Invocation proceeds in two stages. First, invocation creates bindings for the unit’s private, imported, and exported
variables. All bindings are initialized to the undefined value. Second, invocation evaluates the unit’s private definitions
and expressions. The result of the last expression in the unit is the result of theinvoke-unit expression. The unit’s
exported variable bindings arenotaccessible after the invocation.

Examples

These examples use the definitions from the earlier unit examples in§49.1.

Thef1@ unit is invoked with no imports:

(invoke-unit f1@) ; ⇒ displays and returns the current time

Here is one way to invoke thedatabase@ unit:

(invoke-unit database@ display)

This invocation links the imported variableshow-message in database@ to the standard Schemedisplay
procedure, sets up an empty database, and creates the proceduresinsert andlookup tied to this particular database.
Since the last expression in thedatabase@ unit is insert , the invoke-unit expression returns theinsert
procedure (without binding any top-level variables). The fact thatinsert andlookup are exported is irrelevant to
the invocation; exports are only used for linking.

Invoking thedatabase@ unit directly in the above manner is actually useless. Although a program can insert
information into the database, it cannot extract information since thelookup procedure is not accessible. The
database@ unit becomes useful when it is linked with another unit in acompound-unit expression.

151

49.3. Linking Units and Creating Compound Units 49.unit.ss : Core Units

(define-values/invoke-unit (export-id · · ·) unit-expr [prefix import-id · · ·]) SYN-
TAX

This form is similar toinvoke-unit . However, instead of returning the value of the unit’s initialization ex-
pression,define-values/invoke-unit expands to adefine-values expression that binds each identifier
export-id to the value of the corresponding variable exported by the unit. At run time, if the unit does not export
all of theexport-id s, theexn:fail:unit exception is raised.

If prefix is specified, it must be either#f or an identifier. If it is an identifier, the names defined by the expansion
of define-values/invoke-unit are prefixed withprefix : .

Example:

(define x 3)
(define y 2)
(define-values/invoke-unit (c)

(unit (import a b) (export c)
(define c (− a b)))

ex
x y)

ex:c ; ⇒ 1

(namespace-variable-bind/invoke-unit (export-id · · ·) unit-expr [prefix import-id
· · ·]) SYNTAX

This form is like define-values/invoke-unit , but the expansion is a sequence of calls to
namespace-set-variable-value! instead of adefine-values expression. Thus, when it is evaluated,
anamespace-variable-bind/invoke-unit expression binds top-level variables in the current namespace.

49.3 Linking Units and Creating Compound Units

The compound-unit form links several units into one new compound unit. In the process, it matches imported
variables in each sub-unit either with exported variables of other sub-units or with its own imported variables:

(compound-unit
(import variable · · ·)
(link (tag (sub-unit-expr linkage · · ·)) · · ·)
(export (tag exportage · · ·) · · ·))

linkage is one of
variable
(tag variable)
(tag variable · · ·)

exportage is one of
variable
(internal-variable external-variable)

tag is
identifier

The three parts of acompound-unit expression have the following roles:

152

49. unit.ss : Core Units 49.3. Linking Units and Creating Compound Units

• The import clause imports variables into the compound unit. These imported variables are used as imports to
the compound unit’s sub-units.

• The link clause specifies how the compound unit is created from sub-units. A uniquetag is associated
with each sub-unit, which is specified using an arbitrary expression. Following the unit expression, each
linkage specifies a variable using thevariable form or the(tag variable) form. In the former
case, thevariable must occur in theimport clause of thecompound-unit expression; in the latter case,
the tag must be defined in the samecompound-unit expression. The(tag variable · · ·) form is a
shorthand for multiple adjacent clauses of the second form with the sametag .

• Theexport clause re-exports variables from the compound unit that were originally exported from the sub-
units. Thetag part of eachexport sub-clause specifies the sub-unit from which the re-exported variable is
drawn. Theexportage s specify the names of variables exported by the sub-unit to be re-exported.

As in theexport clause of theunit form, a re-exported variable can be renamed for external references using
the (internal-variable external-variable) form. Theinternal-variable is used as the
name exported by the sub-unit, andexternal-variable is the name visible outside the compound unit.

The evaluation of acompound-unit expression starts with the evaluation of thelink clause’s unit expressions (in
sequence). For each sub-unit, the number of variables it imports must match the number oflinkage specifications
that are provided, and eachlinkage specification is matched to an imported variable by position. Each sub-unit must
also export those variables that are specified by thelink andexport clauses. If, for any sub-unit, the number of
imported variables does not agree with the number of linkages provided, theexn:fail:unit exception is raised.
If an expected exported variable is missing from a sub-unit for linking to another sub-unit, theexn:fail:unit
exception is raised. If an expected export variable is missing for re-export, theexn:fail:unit exception is raised.

The invocation of a compound unit proceeds in two phases to invoke the sub-units. In the first phase, the compound
unit resolves the imported variables of sub-units with the bindings provided for the compound unit’s imports and new
bindings created for sub-unit exports. In the second phase, the internal definitions and expressions of the sub-units are
evaluated sequentially according to the order of the sub-units in thelink clause. The result of invoking a compound
unit is the result from the invocation of the last sub-unit.

Examples

These examples use the definitions from the earlier unit examples in§49.1.

The followingcompound-unit expression creates a (probably useless) renaming wrapping around the unit bound
to f2@:

(define f3@
(compound-unit

(import)
(link [A (f2@)])
(export (A (x A:x)))))

The only difference betweenf2@ and f3@ is that f2@ exports a variable namedx , while f3@ exports a variable
namedA:x .

The following example shows how thedatabase@ and interface@ units are linked together with a graphical
toolbox unitGraphics to produce a single, fully-linked compound unit for the interactive phone book program.

(define program@
(compound-unit

(import)
(link (GRAPHICS (graphics@))

153

49.4. Unit Utilities 49.unit.ss : Core Units

(DATABASE (database@ (INTERFACE show-message)))
(INTERFACE (interface@ (DATABASE insert lookup)

(GRAPHICS make-window make-button))))
(export)))

This phone book program is executed with(invoke-unit program@) . If (invoke-unit program@) is
evaluated a second time, then a new, independent database and window are created.

49.4 Unit Utilities

(unit? v) returns#t if v is a unit or#f otherwise.

154

50. unitsig.ss : Units with Signatures

To load:(require (lib "unitsig.ss"))

The unit syntax presented in§49 poses a serious notational problem: each variable that is imported or exported
must be separately enumerated in manyimport , export , and link clauses. Consider the phone book program
example from§49.3: a realisticgraphics@ unit would contain many more procedures thanmake-window and
make-button , and it would be unreasonable to enumerate the entire graphics toolbox in every client module. Future
extensions to the graphics library are likely, and while the program must certainly be re-compiled to take advantage of
the changes, the programmer should not be required to change the program text in every place that the graphics library
is used.

This problem is solved by separating the specification of a unit’ssignature (or “interface”) from its implementation. A
unit signature is essentially a list of variable names. A signature can be used in an import clause, an export clause, a
link clause, or an invocation expression to import or link a set of variables at once. Signatures clarify the connections
between units, prevent mis-orderings in the specification of imported variables, and provide better error messages
when an illegal linkage is specified.

Signatures are used to createunits with signatures, a.k.a.signed units. Signatures and signed units are used together
to createsigned compound units. As in the core system, a signed compound unit is itself a signed unit.

Signed units are first-class values, just like their counterparts in the core system. A signature is not a value. However,
signature information is bundled into each signed unit value so that signature-based checks can be performed at run
time (when signed units are linked and invoked).

Along with its signature information, a signed unit includes a primitive unit from the core system that implements the
signed unit. This underlying unit can be extracted for mixed-mode programs using both signed and unsigned units.
More importantly, the semantics of signed units is the same as the semantics for regular units; the additional syntax
only serves to specify signatures and to check signatures for linking.

50.1 Importing and Exporting with Signatures

Theunit/sig form creates a signed unit in the same way that theunit form creates a unit in the core system. The
only difference between these forms is that signatures are used to specify the imports and exports of a signed unit.

In the primitiveunit form, theimport clause only determines the number of variables that will be imported when
the unit is linked; there are no explicitly declared connections between the import variables. In contrast, aunit/sig
form’s import clause does not specify individual variables; instead, it specifies the signatures of units that will
provide its imported variables, and all of the variables in each signature are imported. The ordered collection of
signatures used for importing in a signed unit is the signed unit’simport signature.

Although the collection of variables to be exported from aunit/sig expression is specified by a signature rather
than an immediate sequence of variables,1 variables are exported in aunit/sig form in the same way as in the
unit form. Theexport signature of a signed unit is the collection of names exported by the unit.

1Of course, a signaturecanbe specified as an immediate signature.

155

50.2. Signatures 50.unitsig.ss : Units with Signatures

Example:

(define-signature arithmeticˆ (add subtract multiply divide power))
(define-signature calculusˆ (integrate))
(define-signature graphicsˆ (add-pixel remove-pixel))
(define-signature gravityˆ (go))
(define gravity@

(unit/sig gravityˆ (import arithmeticˆ calculusˆ graphicsˆ)
(define go (lambda (start-pos) ... subtract ... add-pixel ...))))

In this program fragment, the signed unitgravity@ imports a collection of arithmetic procedures, a collection of
calculus procedures, and a collection of graphics procedures. The arithmetic collection will be provided through
a signed unit that matches thearithmeticˆ (export) signature, while the graphics collection will be provided
through a signed unit that matches thegraphicsˆ (export) signature. Thegravity@ signed unit itself has the
export signaturegravityˆ .

Suppose that the procedures ingraphicsˆ were namedadd and remove rather thanadd-pixel and
remove-pixel . In this case, thegravity@ unit cannot import both thearithmeticˆ andgraphicsˆ sig-
natures as above, because the nameadd would be ambiguous in the unit body. To solve this naming problem, the
imports of a signed unit can be distinguished by providing prefix tags:

(define-signature graphicsˆ (add remove))
(define gravity@

(unit/sig gravityˆ (import (a : arithmeticˆ) (c : calculusˆ) (g : graphicsˆ))
(define go (lambda (start-pos) ... a:subtract ... g:add ...))))

Details for the syntax of signatures are in§50.2. The full unit/sig syntax is described in§50.3.

50.2 Signatures

A signature is either a signature description or a bound signature identifier:

(sig-element · · ·)
signature-identifier

sig-element is one of
variable
(struct base-identifier (field-identifier · · ·) omission · · ·)
(open signature)
(unit identifier : signature)

omission is one of
-selectors
-setters
(- variable)

Together, the element descriptions determine the set of elements that compose the signature:

• The simplevariable form adds a variable name to the new signature.

• Thestruct form expands into the list of variable names generated by adefine-struct expression with
the givenbase-identifier andfield-identifier s.

The actual structure type can contain additional fields; if a field identifier is omitted, the corresponding selector
and setter names are not added to the signature. Optionalomission specifications can omit other kinds of

156

50. unitsig.ss : Units with Signatures 50.3. Signed Units

names:-selectors omits all field selector variables.-setters omits all field setter variables, and(-
variable) omits a specific generatedvariable .

In a unit importing the signature, thebase-identifier is also bound to expansion-time information about
the structure type (see§12.6.4 inPLT MzScheme: Language Manual). The expansion-time information records
the descriptor, constructor, predicate, field accessor, and field mutator bindings from the signature. It also
indicates that the accessor and mutator sets are potentially incomplete (somatch works with the structure type,
butshared does not), either because the signature omits fields, or because the structure type is derived from a
base type (which cannot be declared in a signature, currently).

• Theopen form copies all of the elements of another signature into the new signature description.

• The unit form creates a sub-signature within the new signature. A signature that includes aunit clause
corresponds to a signed compound unit that exports an embedded unit. (Embedded units are described in§50.6
and§50.7.)

The names of all elements in a signature must be distinct.2 Two signaturesmatch when they contain the same element
names, and when a name in both signatures is either a variable name in both signatures or a sub-signature name in both
signatures such that the sub-signatures match. The order of elements within a signature is not important. A source
signaturesatisfies a destination signature when the source signature has all of the elements of the destination signature,
but the source signature may have additional elements.

Thedefine-signature form binds a signature to an identifier:

(define-signature signature-identifier signature)

The let-signature form binds a signature to an identifier within a body of expressions:

(let-signature identifier signature body-expr · · ·1)

For various purposes, signatures must be flattened into a linear sequence of variables. The flattening operation is
defined as follows:

• All variable name elements of the signature are included in the flattened signature.

• For each sub-signature element nameds , the sub-signature is flattened, and then each variable name in the
flattened sub-signature is prefixed withs : and included in the flattened signature.

50.3 Signed Units

Theunit/sig form creates a signed unit:

(unit/sig signature
(import import-element · · ·)
renames
unit-body-expr
· · ·)

import-element is one of
signature
(identifier : signature)

2Element names are compared using the printed form of the name. This is different from any other syntactic form, where variable names are
compared as symbols. This distinction is relevant only when source code is generated within Scheme rather than read from a text source.

157

50.4. Linking with Signatures 50.unitsig.ss : Units with Signatures

renames is either empty or
(rename (internal-variable signature-variable) · · ·)

The signature immediately followingunit/sig specifies the export signature of the signed unit. This sig-
nature cannot contain sub-signatures. Each element of the signature must have a corresponding variable definition
in one of theunit-body-expr s, modulo the optionalrename clause. If therename clause is present, it maps
internal-variable s defined in theunit-body-expr s tosignature-variable s in the export signature.

Theimport-element s specify imports for the signed unit. The names bound within thesigned-unit-body-expr s
to imported bindings are constructed by flattening the signatures according to the algorithm in§50.2:

• For eachimport-element using thesignature form, the variables in the flattened signature are bound in
thesigned-unit-body-expr s.

• For each import-element using the (identifier : signature) form, the variables in the
flattened signature are prefixed withidentifier : and the prefixed variables are bound in the
signed-unit-body-expr s.

50.4 Linking with Signatures

The compound-unit/sig form links signed units into a signed compound unit in the same way that the
compound-unit form links primitive units. In thecompound-unit/sig form, signatures are used for im-
porting just as inunit/sig (except that all import signatures must have a tag), but the use of signatures for linking
and exporting is more complex.

Within a compound-unit/sig expression, each unit to be linked is represented by a tag. Each tag is followed
by a signature and an expression. A tag’s expression evaluates (at link-time) to a signed unit for linking. The export
signature of this unit mustsatisfy the tag’s signature. “Satisfy”does notmean “match exactly”; satisfaction requires
that the unit exports at least the variables specified in the tag’s signature, but the unit may actually export additional
variables. Those additional variables are ignored for linking and are effectively hidden by the compound unit.

To specify the compound unit’s linkage, an entire unit is provided (via its tag) for each import of each linked unit. The
number of units provided by a linkage must match the number of signatures imported by the linked unit, and the tag
signature for each provided unit must match (exactly) the corresponding imported signature.

The following example shows the linking of an arithmetic unit, a calculus unit, a graphics unit, and a gravity modeling
unit:

(define-signature arithmeticˆ (add subtract multiply divide power))
(define-signature calculusˆ (integrate))
(define-signature graphicsˆ (add-pixel remove-pixel))
(define-signature gravityˆ (go))
(define arithmetic@ (unit/sig arithmeticˆ (import) ...))
(define calculus@ (unit/sig calculusˆ (import arithmeticˆ) ...))
(define graphics@ (unit/sig graphicsˆ (import) ...))
(define gravity@ (unit/sig gravityˆ (import arithmeticˆ calculusˆ graphicsˆ) ...))
(define model@

(compound-unit/sig
(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ ARITHMETIC))
(GRAPHICS : graphicsˆ (graphics@))
(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (var (GRAVITY go)))))

158

50. unitsig.ss : Units with Signatures 50.5. Restricting Signatures

In the compound-unit/sig expression formodel@, all link-time signature checks succeed since, for exam-
ple, arithmetic@ does indeed implementarithmeticˆ and gravity@ does indeed import units with the
arithmeticˆ , calculusˆ , andgraphicsˆ signatures.

The export signature of a signed compound unit is implicitly specified by theexport clause. In the above example,
themodel@compound unit exports ago variable, so its export signature is the same asgravityˆ . More forms for
exporting are described in§50.6.

50.5 Restricting Signatures

As explained in§50.4, the signature checking for a linkage requires that a provided signatureexactlymatches the
corresponding import signature. At first glance, this requirement appears to be overly strict; it might seem that the
provided signature need onlysatisfythe imported signature. The reason for requiring an exact match at linkages is that
acompound-unit/sig expression is expanded into acompound-unit expression. Thus, the number and order
of the variables used for linking must be fully known at compile time.

The exact-match requirement does not pose any obstacle as long as a unit is linked into only one other unit. In this
case, the signature specified with the unit’s tag can be contrived to match the importing signature. However, a single
unit may need to be linked into different units, each of which may use different importing signatures. In this case, the
tag’s signature must be “bigger” than both of the uses, and arestricting signature is explicitly provided at each linkage.
The tag must satisfy every restricting signature (this is a syntactic check), and each restricting signature must exactly
match the importing signature (this is a run-time check).

In the example from§50.4, both calculus@ and gravity@ import numerical procedures, so both import the
arithmeticˆ signature. However,calculus@ does not actually need thepower procedure to implement
integrate ; therefore,calculus@ could be as effectively implemented in the following way:

(define-signature simple-arithmeticˆ (add subtract multiply divide))
(define calculus@ (unit/sig calculusˆ (import simple-arithmeticˆ) ...))

Now, the oldcompound-unit/sig expression formodel@no longer works. Although the old expression is still
syntactically correct, link-time signature checking will discover thatcalculus@ expects an import matching the
signaturesimple-arithmeticˆ but it was provided a linkage with the signaturearithmeticˆ . On the other
hand, changing the signature associated withARITHMETIC to simple-arithmeticˆ would cause a link-time
error for the linkage togravity@ , since it imports thearithmeticˆ signature.

The solution is to restrict the signature ofARITHMETIC in the linkage forCALCULUS:

(define model@
(compound-unit/sig

(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ (ARITHMETIC : simple-arithmeticˆ)))
(GRAPHICS : graphicsˆ (graphics@))
(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (var (GRAVITY go)))))

A syntactic check will ensure thatarithmeticˆ satisfiessimple-arithmeticˆ (i.e.,arithmeticˆ contains
at least the variables ofsimple-arithmeticˆ). Now, all link-time signature checks will succeed, as well.

159

50.6. Embedded Units 50.unitsig.ss : Units with Signatures

50.6 Embedded Units

Signed compound units can re-export variables from linked units in the same way that core compound units can re-
export variables. The difference in this case is that the collection of variables that are re-exported determines an export
signature for the compound unit. Using certain export forms, such as theopen form instead of thevar form (see
§50.7), makes it easier to export a number of variables at once, but these are simply shorthand notations.

Signed compound units can also export entire units as well as variables. Such an exported unit is anembedded unit
of the compound unit. Extending the example from§50.5, the entiregravity@ unit can be exported frommodel@
using theunit export form:

(define model@
(compound-unit/sig

(import)
(link (ARITHMETIC : arithmeticˆ (arithmetic@))

(CALCULUS : calculusˆ (calculus@ (ARITHMETIC : simple-arithmeticˆ)))
(GRAPHICS : graphicsˆ (graphics@))
(GRAVITY : gravityˆ (gravity@ ARITHMETIC CALCULUS GRAPHICS)))

(export (unit GRAVITY))))

The export signature ofmodel@no longer matchesgravityˆ . When a compound unit exports an embedded unit,
the export signature of the compound unit has a sub-signature that corresponds to the full export signature of the
embedded unit. The following signature,modelˆ , is the export signature for the revisedmodel@:

(define-signature modelˆ ((unit GRAVITY : gravityˆ)))

The signaturemodelˆ matches the (implicit) export signature ofmodel@ since it contains a sub-signature named
GRAVITY—matching the tag used to export thegravity@ unit—that matches the export signature ofgravity@ .

The export form(unit GRAVITY) does not export any variable other thangravity@ ’s go , but the “unitness”
of gravity@ is intact. The embeddedGRAVITY unit is now available for linking whenmodel@ is linked to other
units.

Example:

(define tester@ (unit/sig () (import gravityˆ) (go 0)))
(define test-program@

(compound-unit/sig
(import)
(link (MODEL: modelˆ (model@))

(TESTER : () (tester@ (MODEL GRAVITY))))
(export)))

The embeddedGRAVITYunit is linked as an import into thetester@ unit by using the path(MODEL GRAVITY) .

50.7 Signed Compound Units

Thecompound-unit/sig form links multiple signed units into a new signed compound unit:

(compound-unit/sig
(import (tag : signature) · · ·)
(link (tag : signature (expr linkage · · ·)) · · ·)
(export export-element · · ·))

160

50. unitsig.ss : Units with Signatures 50.7. Signed Compound Units

linkage is
unit-path

unit-path is one of
simple-unit-path
(simple-unit-path : signature)

simple-unit-path is one of
tag
(tag identifier · · ·)

export-element is one of
(var (simple-unit-path variable))
(var (simple-unit-path variable) external-variable)
(open unit-path)
(unit unit-path)
(unit unit-path variable)

tag is
identifier

The import clause is similar to theimport clause of aunit/sig expression, except that all imported signatures
must be given atag identifier.

The link clause of acompound-unit/sig expression is different from thelink clause of acompound-unit
expression in two important aspects:

• Each sub-unit tag is followed by asignature . This signature corresponds to the export signature of the
signed unit that will be associated with the tag.

• The linkage specification consists of references to entire signed units rather than to individual variables that are
exported by units. A referencingunit-path has one of four forms:

– Thetag form references an imported unit or another sub-unit.
– The(tag : signature) form references an imported unit or another sub-unit, and then restricts the

effective signature of the referenced unit tosignature .
– The (tag identifier · · ·) references an embedded unit within a signed compound unit. The sig-

nature for thetag unit must contain a sub-signature that corresponds to the embedded unit, where the
sub-signature’s name is the initialidentifier . Additional identifier s trace a path into nested
sub-signatures to a final embedded unit. The degenerate(tag) form is equivalent totag .

– The ((tag identifier · · ·) : signature) form is like the(tag identifier · · ·) form
except the effective signature of the referenced unit is restricted tosignature .

Theexport clause determines which variables in the sub-units are re-exported and implicitly determines the export
signature of the new compound unit. A signed compound unit can export both individual variables and entire signed
units. When an entire signed unit is exported, it becomes an embedded unit of the resulting compound unit.

There are five different forms for specifying exports:

• The(var (unit-path variable)) form exportsvariable from the unit referenced byunit-path .
The export signature for the signed compound unit includes avariable element.

• The (var (unit-path variable) external-variable) form exports variable from the
unit referenced byunit-path . The export signature for the signed compound unit includes an
external-variable element.

161

50.8. Invoking Signed Units 50.unitsig.ss : Units with Signatures

• The(open unit-path) form exports variables and embedded units from the referenced unit. The collection
of variables that are actually exported depends on theeffective signature of the referenced unit:

– If unit-path includes a signature restriction, then only elements from the restricting signature are ex-
ported.

– Otherwise, if the referenced unit is an embedded unit, then only the elements from the associated sub-
signature are exported.

– Otherwise,unit-path is just tag ; in this case, only elements from the signature associated with the
tag are exported.

In all cases, the export signature for the signed compound unit includes a copy of each element from the effective
signature.

• The(unit unit-path) form exports the referenced unit as an embedded unit. The export signature for the
signed compound unit includes a sub-signature corresponding to the effective signature fromunit-path . The
name of the sub-signature in the compound unit’s export signature depends onunit-path :

– If unit-path refers to a tagged import or a sub-unit, then the tag is used for the sub-signature name.
– Otherwise, the referenced sub-unit was an embedded unit, and the original name for the associated sub-

signature is re-used for the export signature’s sub-signature.

• The(unit unit-path identifier) form exports an embedded unit like(unit unit-path) form,
but identifier is used for the name of the sub-signature in the compound unit’s export signature.

The collection of names exported by a compound unit must form a legal signature. This means that all exported names
must be distinct.

Run-time checks insure that alllink clauseexpr s evaluate to a signed unit, and that all linkages match according to
the specified signatures:

• If an expr evaluates to anything other than a signed unit, theexn:fail:unit exception is raised.

• If the export signature for a signed unit does not satisfy the signature specified with its tag, the
exn:fail:unit exception is raised.

• If the number of units specified in a linkage does not match the number imported by a linking unit, the
exn:fail:unit exception is raised.

• If the (effective) signature of a provided unit does not match the corresponding import signature, then the
exn:fail:unit exception is raised.

50.8 Invoking Signed Units

Signed units are invoked using theinvoke-unit/sig form:

(invoke-unit/sig expr invoke-linkage · · ·)

invoke-linkage is one of
signature
(identifier : signature)

If the invoked unit requires no imports, theinvoke-unit/sig form is used in the same way asinvoke-unit .
Otherwise, theinvoke-linkage signatures must match the import signatures of the signed unit to be invoked. If
the signatures match, then variables in the environment of theinvoke-unit/sig expression are used for immediate
linking; the variables used for linking are the ones with names corresponding to the flattened signatures. The signature

162

50. unitsig.ss : Units with Signatures 50.9. Extracting a Primitive Unit from a Signed Unit

flattening algorithm is specified in§50.2; when the(identifier : signature) form is used,identifier :
is prefixed onto each variable name in the flattened signature and the prefixed name is used.

(define-values/invoke-unit/sig signature unit/sig-expr [prefix invoke-linkage ··
·]) SYNTAX

This form is the signed-unit version ofdefine-values/invoke-unit . The names defined by the expan-
sion of define-values/invoke-unit/sig are determined by flattening thesignature specified before
unit-expr , then adding theprefix (if any). See§50.2for more information about signature flattening.

Eachinvoke-linkage is eithersignature or (identifier : signature) , as ininvoke-unit/sig .

(namespace-variable-bind/invoke-unit/sig signature unit/sig-expr [prefix invoke-linkage
· · ·]) SYNTAX

This form is the signed-unit version ofnamespace-variable-bind/invoke-unit . See also
define-values/invoke-unit/sig .

(provide-signature-elements signature) SYNTAX

Exports from a module every name in the flattened form ofsignature .

50.9 Extracting a Primitive Unit from a Signed Unit

The procedureunit/sig- >unit extracts and returns the primitive unit from a signed unit.

The names exported by the primitive unit correspond to the flattened export signature of the signed unit; see§50.2for
the flattening algorithm.

The number of import variables for the primitive unit matches the total number of variables in the flattened forms of
the signed unit’s import signatures. The order of import variables is as follows:

• All of the variables for a single import signature are grouped together, and the relative order of these groups
follows the order of the import signatures.

• Within an import signature:

– variable names are ordered according tostring<? ;
– all names from sub-signatures follow the variable names;
– names from a single sub-signature are grouped together and ordered within the sub-signature group fol-

lowing this algorithm recursively; and
– the sub-signatures are ordered among themselves usingstring<? on the sub-signature names.

50.10 Adding a Signature to Primitive Units

Theunit- >unit/sig syntactic form wraps a primitive unit with import and export signatures:

(unit- >unit/sig expr (signature · · ·) signature)

The lastsignature is used for the export signature and the othersignature s specify the import signatures. If
expr does not evaluate to a unit or the unit does not match the signature, no error is reported until the primitive linker
discovers the problem.

163

50.11. Expanding Signed Unit Expressions 50.unitsig.ss : Units with Signatures

50.11 Expanding Signed Unit Expressions

The unit/sig , compound-unit/sig , and invoke-unit/sig forms expand into expressions using the
unit , compound-unit , andinvoke-unit forms, respectively.

A signed unit value is represented by asigned-unit structure with the following fields:

• unit — the primitive unit implementing the signed unit’s content

• imports — the import signatures, represented as a list of pairs, where each pair consists of

– a tag symbol, used for error reporting; and
– an “exploded signature”; an exploded signature is a vector of signature elements, where each element is

either
∗ a symbol, representing a variable in the signature; or
∗ a pair consisting of a symbol and an exploded signature, representing a name sub-signature.

• exports — the export signature, represented as an exploded signature

To perform the signature checking needed bycompound-unit/sig , MzScheme provides two procedures:

• (verify-signature-match where exact? dest-context dest-sig src-context src-sig)
raises an exception unless the exploded signaturesdest-sig andsrc-sig match. Ifexact? is #f , then
src-sig need only satisfydest-sig , otherwise the signatures must match exactly. Thewhere symbol and
dest-context andsrc-context strings are used for generating an error message string:where is used
as the name of the signaling procedure anddest-context andsrc-context are used as the respective
signature names.

If the match succeeds, void is returned. If the match fails, theexn:fail:unit exception is raised for one of
the following reasons:

– The signatures fail to match becausesrc-sig is missing an element.
– The signatures fail to match becausesrc-sig contains an extra element.
– The signatures fail to match becausesrc-dest andsrc-sig contain the same element name but for

different element types.

• (verify-linkage-signature-match where tags units export-sigs linking-sigs) per-
forms all of the run-time signature checking required by acompound-unit/sig or invoke-unit/sig
expression. Thewhere symbol is used for error reporting. Thetags argument is a list of tag symbols, and the
units argument is the corresponding list of candidate signed unit values. (The procedure will check whether
these values are actually signed unit values.)

The export-sigs list contains one exploded signature for each tag; these correspond to the tag signatures
provided in the originalcompound-unit/sig expression. Thelinking-sigs list contains a list of named
exploded signatures for each tag (where a “named signature” is a pair consisting of a name symbol and an
exploded signature); every tag’s list corresponds to the signatures that were specified or inferred for the tag’s
linkage specification in the originalcompound-unit/sig expression. The names on the linking signatures
are used for error messages.

If all linking checks succeed, void is returned. If any check fails, theexn:fail:unit exception is raised for
one of the following reasons:

– A value in theunits list is not a signed unit.
– The number of import signatures associated with a unit does not agree with the number of linking signa-

tures specified by the corresponding list inlinking-sigs .
– A linking signature does not exactly match the signature expected by an importing unit.

164

50. unitsig.ss : Units with Signatures 50.11. Expanding Signed Unit Expressions

(signature- >symbols name) SYNTAX

Expands to the “exploded” version (see§50.11) of the signature bound toname (wherename is an unevaluated
identifier).

165

51. zip.ss : Creating zip Files

To load:(require (lib "zip.ss"))

This library provides a facility for creating zip files, which are compatible with both Windows and Unix and Mac OS
X. The actual compression is implemented bydeflate (see Chapter14). The most useful entry point for this library
is zip .

(zip zip-file path · · ·) PROCEDURE

Createszip-file , which holds the complete content of allpath s. The givenpath s are all expected to be rel-
ative path names of existing directories and files (i.e., relative to the current directory). If a nested path is pro-
vided as apath , its ancestor directories are also added to the resulting zip file, up to the current directory (using
pathlist-closure ; see§11.3.3 inPLT MzScheme: Language Manual). Files are packaged as usual for zip
files, including permission bits for both Windows and Unix and Mac OS X. The permission bits are determined by
file-or-directory-permissions (§11.3.3 inPLT MzScheme: Language Manual), so it does not preserve
the distinction between owner/group/other permissions; also, symbolic links are always followed.

(zip->output paths [output-port]) PROCEDURE

Zips each of the givenpaths , and packages it as a zip “file” that is written directly to theoutput-port or to the
current output port ifoutput-port is not given. Also, the specifiedpaths are included as-is; if a directory is
specified, its content is not automatically added, and nested directories are added without parent directories.

(zip-verbose [on?]) PROCEDURE

A parameter that controls output during a zip operation. Setting this parameter to a true value will causezip to display
(on the current error port) the filename that is currently being compressed.

(See also§44.)

166

License

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

167

51. zip.ss : Creatingzip Files

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,

other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

168

51. zip.ss : Creatingzip Files

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

169

51. zip.ss : Creatingzip Files

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

170

Index

- >, 42
- >∗, 43
- >d, 43
- >d∗, 43
- >pp , 44
- >pp-rest , 44, 45
- >r , 44
</c , 38
¡=/c, 38
<=/c , 38
=/c , 38
>/c , 38
>=/c , 38
#:all-keys , 72
#:allow-anything , 74
#:allow-body , 74
#:allow-duplicate-keys , 74
#:allow-other-keys , 74
#:body , 72
#:forbid-anything , 74
#:forbid-body , 74
#:forbid-duplicate-keys , 74
#:forbid-other-keys , 74
#:key , 71
#:optional , 71
#:rest , 72

abbreviate-cons-as-list , 94
’american , 51
and/c , 38
any/c , 37
assf , 76
async-channel-get , 3
async-channel-put , 3
async-channel-put-evt , 3
async-channel-try-get , 3
async-channel.ss , 3
atom? , 34
augment , 13
augment ∗, 11
augment-final , 13
augment-final ∗, 11
augride , 13
augride ∗, 11
awk, 4
awk.ss , 4

begin-lifted , 54
begin-with-definitions , 54

between/c,38
between/c , 38
boolean=? , 54
booleans-as-true/false , 94
box-immutable/c , 40
box/c , 40
build-absolute-path , 59
build-list , 54
build-path , 59
build-relative-path , 59
build-share , 95
build-string , 54
build-vector , 54

call-with-input-file* , 59
call-with-output-file* , 59
card , 68
case- >, 45
channel , 33
channel-recv-evt , 33
channel-send-evt , 33
’chinese , 51
class , 11
class ∗, 9
class->interface , 21
class-field-accessor , 19
class-field-mutator , 19
class-info , 22
class.ss , 5
class/derived , 22
class100 , 25
class100 ∗, 24
class100 ∗-asi , 25
class100-asi , 25
class100.ss , 24
class? , 21
classes,5

creating,9
cm-accomplice.ss , 28
cm.ss , 26
cmdline.ss , 29
cml.ss , 33
command-line , 29
compat.ss , 34
compile-file , 36
compile.ss , 36
complement , 68
compose , 55
compound-unit , 152

171

INDEX

compound-unit/sig , 158, 160
conjugate , 86
cons-immutable/c , 41
cons/c , 40
cons? , 76
constructor-style-printing , 95
consumer-thread , 144
contract , 48, 49
contract-violation->string , 49
contract.ss , 37
contract? , 49
Contracts on Values,48
convert-stream , 100
copy-directory/files , 59
copy-port , 100
copy-struct , 139
coroutine , 144
coroutine-kill , 144
coroutine-result , 144
coroutine-run , 144
coroutine? , 144
cosh , 86
current-build-share-hook , 95
current-build-share-name-hook , 95
current-print-convert-hook , 95
current-read-eval-convert-print-prompt ,

95
current-time , 33

data structure contracts,45
date,51
date->julian/scalinger , 51
date->string , 51
date-display-format , 51
date.ss , 51
define ∗, 92
define ∗-dot , 92
define ∗-syntax , 92
define ∗-syntaxes , 92
define ∗-values , 92
define-dot , 92
define-local-member-name , 15
define-local-name , 15
define-macro , 53
define-match-expander , 83
define-serializable-class , 20
define-serializable-class ∗, 20
define-serializable-struct , 130
define-serializable-struct/version , 130
define-signature , 157
define-struct/properties , 139
define-structure , 34
define-syntax-parameter , 140
define-syntax-set , 55

define-values/invoke-unit , 151
define-values/invoke-unit/sig , 163
define/augment , 11
define/augment-final , 11
define/augride , 11
define/contract , 48
define/kw , 70
define/overment , 11
define/override , 11
define/override-final , 11
define/private , 11
define/public , 11
define/public-final , 11
define/pubment , 11
deflate , 52
deflate.ss , 52
defmacro , 53
defmacro.ss , 53
delete-directory/files , 59
derived class,5
deserialize , 132
difference , 68
’dir , 61
’done-error , 125
’done-ok , 125
dot , 91

e, 86
effective signature,162
eighth , 76
empty , 76
empty? , 76
eof-evt , 102
etc.ss , 54
eval-string , 136
evcase , 55
exn:fail , 30, 31, 66, 88, 100, 103, 104, 128, 129,

136–138
exn:fail:contract , 16, 18, 26, 54, 57, 74, 128,

131, 139
exn:fail:filesystem , 59
exn:fail:object , 8–10, 12–14, 16–19
exn:fail:unit , 152, 153, 162, 164
exn:fail:unsupported , 128, 148
exn:misc:match , 83
explode-path , 59
export , 150, 153
export signature,155
expr->string , 136
externalizable% , 20
externalize , 20

false , 55
false/c , 39

172

INDEX

field , 12
field-bound? , 19
field-names , 22
fields

accessing,17
fifth , 76
’file , 61
file-name-from-path , 59
file.ss , 59
filename-extension , 60
filter , 76
’final , 31
final , 30
find-files , 60
find-library , 60
find-relative-path , 60
find-seconds , 51
findf , 76
first , 76
Flat Contracts,37
flat-contract , 37
flat-contract-predicate , 49
flat-contract? , 49
flat-murec-contract , 41
flat-named-contract , 37
flat-rec-contract , 41
fold-files , 60
foldl , 76
foldr , 68, 77
foreign.ss , 63
fourth , 76
Function Contracts,42

generate-member-key , 15
generic , 19
’german , 51
get-field , 19
get-integer , 68
get-preference , 61
get-shared , 95
gethostname , 88
getpid , 88
getprop , 35
glob->regexp , 137
gunzip , 66
gunzip-through-ports , 66
gzip , 52
gzip-through-ports , 52

hash-table , 58
’help-labels , 31

identity , 55
implementation? , 21

implementation?/c , 39
import , 150, 153
import signature,155
include , 64
include-at/relative-to , 64
include-at/relative-to/reader , 64
include.ss , 64
include/reader , 64
’indian , 51
’infinity , 120
inflate , 66
inflate.ss , 66
inherit , 14
inherit-field , 13
inheritance,5
init , 11
init-field , 11
init-rest , 11
inner , 14
input-port-append , 100
inspect , 10
install-converting-printer , 96
instantiate , 16
integer-in , 38
integer-set-contents , 67
integer-set.ss , 67
integer-set? , 67
interface , 8
interface->method-names , 22
interface-extension? , 21
interface? , 21
interfaces

creating,8
internalize , 21
’interrupt , 125
intersect , 68
invoke-unit , 151
invoke-unit/sig , 162
’irish , 51
is-a? , 21
is-a?/c , 39
’iso-8601 , 51

’julian , 51
julian/scalinger->string , 51

keyword-get , 75
’kill , 125
kw.ss , 70

lambda/kw , 70
last-pair , 77
lazy contracts,45
let+ , 55

173

INDEX

’link , 61
link , 153
list-immutable/c , 41
list-immutableof , 39
list.ss , 76
list/c , 41
listof , 39
local , 56
loop-until , 56

make-- >vector , 139
make-async-channel , 3
make-caching-managed-compile-zo , 27
make-compilation-manager-load/use-compiled-handler ,

26
make-deserialize-info , 133
make-directory* , 61
make-generic , 19
make-input-port/read-to-peek , 100
make-integer-set , 67
make-limited-input-port , 101
make-mixin-contract , 48
make-object , 12, 16
make-parameter-rename-transformer , 140
make-pipe-with-specials , 101
make-range , 67
make-serialize-info , 133
make-temporary-file , 61
make-tentative-pretty-print-output-port ,

123
managed-compile-zo , 26
manager-compile-notify-handler , 27
manager-trace-handler , 27
match , 80
match-define , 80
match-equality-test , 83
match-lambda , 80
match-lambda ∗, 80
match-let , 80
match-let ∗, 80
match-letrec , 80
match.ss , 80
match:end , 4
match:start , 4
match:substring , 4
math.ss , 86
md5, 87
md5.ss , 87
member-name-key , 15
member?, 68
memf, 77
merge-input , 101
merge-sorted-lists , 77
mergesort , 78

method-in-interface? , 21
methods

accessing,17
applying,17

(mixin (dom¡%¿ ...) (rng¡%¿ ...) class-clause ...),20
mixin-contract , 47
’multi , 31
multi , 29

named/undefined-handler , 94
namespace-defined? , 56
namespace-variable-bind/invoke-unit , 152
namespace-variable-bind/invoke-unit/sig ,

163
nand , 56
natural-number/c , 39
new, 16
new-cafe , 35
nor , 56
normalize-path , 62
not/c , 38

Object Contracts,47
object->vector , 21
object-contract,47
object-info , 22
object-interface , 21
object-method-arity-includes? , 22
object=? , 21
object? , 21
object% , 9
objects,5

creating,16
’once-any , 31
once-any , 30
’once-each , 31
once-each , 30
one-of/c , 39
open , 89
open ∗, 91
open ∗/derived , 92
open-output-nowhere , 101
open/derived , 92
opt- >, 45
opt- >∗, 45
opt-lambda , 57
or/c , 37
os.ss , 88
overment , 13
overment ∗, 11
override , 13
override ∗, 11
override-final , 13
override-final ∗, 11

174

INDEX

overriding,5

package , 89
package ∗, 89
package.ss , 89
package/derived , 92
parse-command-line , 31
partition , 68
path-only , 62
pathlist-closure , 60
pattern matching,80
pconvert-prop.ss , 97
pconvert.ss , 94
peek-bytes-avail!-evt , 103
peek-bytes-bytes!-evt , 103
peek-bytes-evt , 103
peek-string!-evt , 103
peek-string-evt , 103
peeking-input-port , 102
Perl,106
pi , 86
plt-match.ss , 98
port.ss , 100
pregexp , 107
pregexp-match , 108
pregexp-match-positions , 107
pregexp-quote , 109
pregexp-replace , 108
pregexp-replace* , 109
pregexp-split , 108
pregexp.ss , 106
pretty-display , 120
pretty-print , 120
pretty-print-.-symbol-without-bars , 123
pretty-print-columns , 120
pretty-print-current-style-table , 120
pretty-print-depth , 120
pretty-print-exact-as-decimal , 121
pretty-print-extend-style-table , 121
pretty-print-handler , 121
pretty-print-newline , 121
pretty-print-post-print-hook , 122
pretty-print-pre-print-hook , 122
pretty-print-print-hook , 122
pretty-print-print-line , 122
pretty-print-show-inexactness , 122
pretty-print-size-hook , 123
pretty-print-style-table? , 122
pretty-printing , 123
pretty.ss , 120
print-convert , 96
print-convert-constructor-name , 97
print-convert-expr , 96
print-convert-named-constructor? , 97

printable/c , 39
private , 13
private ∗, 11
process , 125
process* , 125
process*/ports , 126
process.ss , 125
process/ports , 125
processes,125
prop:print-convert-constructor-name , 97
prop:serializeable , 133
provide-signature-elements , 163
provide/contract , 48
public , 13
public ∗, 11
public-final , 13
public-final ∗, 11
pubment , 13
pubment ∗, 11
put-preferences , 62
putprop , 35

quasi-read-style-printing , 96
quicksort , 78

read-bytes!-evt , 102
read-bytes-avail!-evt , 102
read-bytes-evt , 102
read-bytes-line-evt , 103
read-from-string , 136
read-from-string-all , 136
read-line-evt , 103
read-string!-evt , 103
read-string-evt , 102
real-in , 38
rec , 57
recur , 57
recursive-contract , 49
reencode-input-port , 103
reencode-output-port , 103
regexp-exec , 4
regexp-match* , 136
regexp-match-evt , 104
regexp-match-exact? , 137
regexp-match-peek-positions* , 137
regexp-match-positions* , 137
regexp-match/fail-without-reading , 136
regexp-quote , 137
regexp-replace-quote , 137
regexp-split , 138
register-external-file , 28
relocate-input-port , 104
relocate-output-port , 105
remove , 78

175

INDEX

remove* , 78
remq , 78
remq* , 78
remv , 78
remv* , 78
rename , 158
rename ∗-potential-package , 92
rename-inner , 14
rename-potential-package , 92
rename-super , 14
rest , 78
restart-mzscheme , 127
restart.ss , 127
’rfc2822 , 51
run-server , 145
’running , 125

second , 76
seconds->date , 51
self (for objects),see this
send , 18
send ∗, 18
send-event , 128
send-generic , 19
send/apply , 18
sendevent.ss , 128
serializable? , 134
serialization,131
serialize , 131
serialize.ss , 130
set! , 17
set-first! , 78
set-integer-set-contents! , 67
set-rest! , 79
seventh , 76
sgn , 86
shared , 135
shared.ss , 135
show-sharing , 96
signature,155
signature- >symbols , 165
signatures,155, 156
signed compound units,155
signed units,155
signed-unit-exports , 164
signed-unit-imports , 164
signed-unit-unit , 164
signed-unit? , 164
sinh , 86
sixth , 76
sort , 77
spawn , 33
split , 68
sqr , 86

’status , 125
string-lowercase

string-lowercase
! , 138

string-uppercase
string-uppercase

! , 138
string.ss , 136
string/len , 39
strip-shell-command-start , 105
struct.ss , 139
struct/c , 41
stxparam.ss , 140
subclass? , 21
subclass?/c , 39
subprocesses,125
subset? , 69
super , 14
super-init , 25
super-instantiate , 17
super-make-object , 17
super-new , 17
superclass,5
superclass initialization,see super-init
surrogate , 141
surrogate.ss , 141
symbol=? , 57
symbols , 39
syntax-parameter-value , 140
syntax-parameterize , 140
syntax/c , 41
system , 125
system* , 125
system*/exit-code , 125
system/exit-code , 125

tar , 143
tar->output , 143
tar.ss , 143
tentative-pretty-print-port-cancel , 124
tentative-pretty-print-port-transfer ,

123
third , 76
this-expression-file-name , 57
this-expression-source-directory , 57
thread-done-evt , 33
thread.ss , 144
time-evt , 33
trace , 146
trace.ss , 146
traceld.ss , 147
transcr.ss , 148
transcript-off , 148
transcript-on , 148

176

INDEX

transplant-input-port , 105
transplant-output-port , 105
true , 58
’truncate , 62
truncate-file , 88
trust-existing-zos , 27

union , 68
unit , 149
unit- >unit/sig , 163
unit.ss , 149
unit/sig , 155, 157
unit/sig- >unit , 163
unit? , 154
units,149

compound,152
creating,149
invoking,151
signatures,155

units with signatures,155
unitsig.ss , 155
untrace , 146
use-named/undefined-handler , 94

vector-immutable/c , 40
vector-immutableof , 40
vector/c , 40
vectorof , 40
verify-linkage-signature-match , 164
verify-signature-match , 164

’wait , 125
whole/fractional-exact-numbers , 96
with-method , 18

xor , 68

zip , 166
zip->output , 166
zip-verbose , 166
zip.ss , 166

177

	1 MzLib
	2 async-channel.ss: Buffered Asynchronous Channels
	3 awk.ss: Awk-like Syntax
	4 class.ss: Classes and Objects
	4.1 Object Example
	4.2 Creating Interfaces
	4.3 Creating Classes
	4.3.1 Initialization Variables
	4.3.2 Fields
	4.3.3 Methods

	4.4 Creating Objects
	4.5 Field and Method Access
	4.5.1 Methods
	4.5.2 Fields
	4.5.3 Generics

	4.6 Mixins
	4.7 Object Serialization
	4.8 Object, Class, and Interface Utilities
	4.9 Expanding to a Class Declaration

	5 class100.ss: Version-100-Style Classes
	6 cm.ss: Compilation Manager
	7 cm-accomplice.ss: Compilation Manager Hook for Syntax Transformers
	8 cmdline.ss: Command-line Parsing
	9 cml.ss: Concurrent ML Compatibility
	10 compat.ss: Compatibility
	11 compile.ss: Compiling Files
	12 contract.ss: Contracts
	12.1 Flat Contracts
	12.2 Function Contracts
	12.3 Lazy Data-structure Contracts
	12.4 Object and Class Contracts
	12.5 Attaching Contracts to Values
	12.6 Contract Utility

	13 date.ss: Dates
	14 deflate.ss: Deflating (Compressing) Data
	15 defmacro.ss: Non-Hygienic Macros
	16 etc.ss: Useful Procedures and Syntax
	17 file.ss: Filesystem Utilities
	18 foreign.ss: Foreign Interface
	19 include.ss: Textually Including Source
	20 inflate.ss: Inflating Compressed Data
	21 integer-set.ss: Integer Sets
	22 kw.ss: Keyword Arguments
	22.1 Required Arguments
	22.2 Optional Arguments
	22.3 Keyword Arguments
	22.4 Rest and Rest-like Arguments
	22.5 Body Argument
	22.6 Mode Keywords
	22.7 Property Lists

	23 list.ss: List Utilities
	24 match.ss: Pattern Matching
	24.1 Patterns
	24.2 Extending Match
	24.3 Examples

	25 math.ss: Math
	26 md5.ss: MD5 Message Digest
	27 os.ss: System Utilities
	28 package.ss: Local-Definition Scope Control
	29 pconvert.ss: Converted Printing
	30 pconvert-prop.ss: Converted Printing Property
	31 plt-match.ss: Pattern Matching
	32 port.ss: Port Utilities
	33 pregexp.ss: Perl-Style Regular Expressions
	33.1 Introduction
	33.2 Regexp procedures
	33.2.1 pregexp
	33.2.2 pregexp-match-positions
	33.2.3 pregexp-match
	33.2.4 pregexp-split
	33.2.5 pregexp-replace
	33.2.6 pregexp-replace*
	33.2.7 pregexp-quote

	33.3 The regexp pattern language
	33.3.1 Basic assertions
	33.3.2 Characters and character classes
	33.3.3 Quantifiers
	33.3.4 Clusters
	33.3.5 Alternation
	33.3.6 Backtracking
	33.3.7 Looking ahead and behind

	33.4 An extended example

	34 pretty.ss: Pretty Printing
	35 process.ss: Process and Shell-Command Execution
	36 restart.ss: Simulating Stand-alone MzScheme
	37 sendevent.ss: AppleEvents
	37.1 AppleEvents

	38 serialize.ss: Serializing Data
	39 shared.ss: Graph Constructor Syntax
	40 string.ss: String Utilities
	41 struct.ss: Structure Utilities
	42 stxparam.ss: Syntax Parameters
	43 surrogate.ss: Proxy-like Design Pattern
	44 tar.ss: Creating tar Files
	45 thread.ss: Thread Utilities
	46 trace.ss: Tracing Top-level Procedure Calls
	47 traceld.ss: Tracing File Loads
	48 transcr.ss: Transcripts
	49 unit.ss: Core Units
	49.1 Creating Units
	49.2 Invoking Units
	49.3 Linking Units and Creating Compound Units
	49.4 Unit Utilities

	50 unitsig.ss: Units with Signatures
	50.1 Importing and Exporting with Signatures
	50.2 Signatures
	50.3 Signed Units
	50.4 Linking with Signatures
	50.5 Restricting Signatures
	50.6 Embedded Units
	50.7 Signed Compound Units
	50.8 Invoking Signed Units
	50.9 Extracting a Primitive Unit from a Signed Unit
	50.10 Adding a Signature to Primitive Units
	50.11 Expanding Signed Unit Expressions

	51 zip.ss: Creating zip Files
	License
	Index

