
Inside PLT MzScheme

Matthew Flatt (mflatt@plt-scheme.org)

351
Released July 2006

Copyright notice

Copyright c©1995-2006 Matthew Flatt

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

libscheme: Copyrightc©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyrightc©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyrightc©1991-1996
by Xerox Corporation. Copyrightc©1996-1999 by Silicon Graphics. Copyrightc©1999-2001 by Hewlett Packard
Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyrightc©1994 by Xerox Corporation. All rights reserved.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line atscheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Some typesetting macros were originally taken from Julian Smart’sReference Manual for wxWindows 1.60: a portable
C++ GUI toolkit.

Contents

1 Overview 1

1.1 Writing MzScheme Extensions. 1

1.2 Embedding MzScheme into a Program. 3

1.3 MzScheme and Threads. 5

1.4 MzScheme, Unicode, Characters, and Strings. 5

1.5 Integers . 5

2 Values and Types 6

2.1 Standard Types. 6

2.2 Global Constants. 9

2.3 Strings. 9

2.4 Library Functions. 9

3 Memory Allocation 15

3.1 Cooperating with 3m. .16

3.1.1 Tagged Objects. .16

3.1.2 Local Pointers .17

3.1.3 Local Pointers andmzc . 20

3.2 Library Functions. .21

4 Namespaces and Modules 25

4.1 Library Functions. .25

5 Procedures 27

5.1 Library Functions. .27

6 Evaluation 29

i

CONTENTS CONTENTS

6.1 Top-level Evaluation Functions. 29

6.2 Tail Evaluation .29

6.3 Multiple Values .30

6.4 Library Functions. .30

7 Exceptions and Escape Continuations 33

7.1 Temporarily Catching Error Escapes. 33

7.2 Enabling and Disabling Breaks. 36

7.3 Library Functions. .36

8 Threads 39

8.1 Integration with Threads. .39

8.2 Allowing Thread Switches. .39

8.3 Blocking the Current Thread. 40

8.4 Threads in Embedded MzScheme with Event Loops. 40

8.4.1 Callbacks for Blocked Threads. 41

8.5 Sleeping by Embedded MzScheme. 43

8.6 Library Functions. .44

9 Parameterizations 49

9.1 Library Functions. .50

10 Continuation Marks 52

10.1 Library Functions. .52

11 String Encodings 53

11.1 Library Functions. .53

12 Bignums, Rationals, and Complex Numbers 56

12.1 Library Functions. .56

13 Ports and the Filesystem 59

13.1 Library Functions. .59

ii

CONTENTS CONTENTS

14 Structures 70

14.1 Library Functions. .70

15 Security Guards 72

15.1 Library Functions. .72

16 Custodians 73

16.1 Library Functions. .73

17 Miscellaneous Utilities 75

17.1 Library Functions. .75

18 Flags and Hooks 79

License 80

Index 84

iii

CONTENTS CONTENTS

iv

1. Overview

This manual describes MzScheme’s C interface, which allows the interpreter to be extended by a dynamically-loaded
library, or embedded within an arbitrary C/C++ program. The manual assumes familiarity with MzScheme, as de-
scribed inPLT MzScheme: Language Manual.

For an alternative way of dealing with foreign code, seePLT Foreign Interface Manual; it describes the(lib ”for-
eign.ss”) module for manipulating low-level libraries and structures through Scheme code instead of C code.

1.1 Writing MzScheme Extensions

To write a C/C++-based extension for MzScheme, follow these steps:

• For each C/C++ file that uses MzScheme library functions,#include the fileescheme.h .

This file is distributed with the PLT software in aninclude directory, but ifmzc is used to compile, this path is
found automatically.

• Define the C functionscheme initialize , which takes aScheme Env * namespace (see§4) and returns
aScheme Object * Scheme value.

This initialization function can install new global primitive procedures or other values into the namespace, or
it can simply return a Scheme value. The initialization function is called when the extension is loaded with
load-extension (the first time); the return value fromscheme initialize is used as the return value
for load-extension . The namespace provided toscheme initialize is the current namespace when
load-extension is called.

• Define the C function scheme reload , which has the same arguments and return type as
scheme initialize .

This function is called ifload-extension is called a second time (or more times) for an extension. Like
scheme initialize , the return value from this function is the return value forload-extension .

• Define the C functionscheme module name, which takes no arguments and returns aScheme Object *
value, either a symbol orscheme false .

The function should return a symbol when the effect of callingscheme initialize andscheme reload
is only to declare a module with the returned name. This function is called when the extension is loaded to
satisfy arequire declaration.

Thescheme module name function may be called beforescheme initialize andscheme reload ,
after those functions, or both before and after, depending on how the extension is loaded and re-loaded.

• Compile the extension C/C++ files to create platform-specific object files.

Themzc compiler, distributed with MzScheme, compiles plain C files when the--cc flag is specified. More
precisely,mzc does not compile the files itself, but it locates a C compiler on the system and launches it with
the appropriate compilation flags. If the platform is a relatively standard Unix system, a Windows system with
either Microsoft’s C compiler orgcc in the path, or a Mac OS X system with Apple’s developer tools installed,
then usingmzc is typically easier than working with the C compiler directly.

1

1.1. Writing MzScheme Extensions 1. Overview

• Link the extension C/C++ files withmzdyn.o (Unix, Mac OS X) ormzdyn.obj (Windows) to create a shared
object. The resulting shared object should use the extension.so (Unix), .dll (Windows), or.dylib (Mac OS X).

The mzdyn object file is distributed in the installation’slib directory. For Windows, the object file is in a
compiler-specific sub-directory ofplt\lib .

Themzc compiler links object files into an extension when the--ld flag is specified, automatically locating
mzdyn .

• Load the shared object within Scheme using(load-extension path) , wherepath is the name of the ex-
tension file generated in the previous step.

IMPORTANT: Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme
objects can be kept in registers, stack variables, or structures allocated withscheme malloc . However, static vari-
ables that contain pointers to collectable memory must be registered usingscheme register extension global
(see§3).

As an example, the following C code defines an extension that returns"hello world" when it is loaded:

#include "escheme.h"
Scheme_Object *scheme_initialize(Scheme_Env *env) {

return scheme_make_string("hello world");
}
Scheme_Object *scheme_reload(Scheme_Env *env) {

return scheme_initialize(env); /* Nothing special for reload */
}
Scheme_Object *scheme_module_name() {

return scheme_false;
}

Assuming that this code is in the filehw.c , the extension is compiled under Unix with the following two commands:

mzc --cc hw.c
mzc --ld hw.so hw.o

(Note that the--cc and--ld flags are each prefixed by two dashes, not one.)

Thecollects/mzscheme/examples directory in the PLT distribution contains additional examples.

MzScheme3m is a variant of MzScheme that uses precise garbage collection instead of conservative garbage collec-
tion, and it may move objects in memory during a collection. To build an extension to work with MzScheme3m, the
above instructions must be extended as follows:

• Adjust code to cooperate with the garbage collector as described in§3.1. Usingmzc with the--xform might
convert your code to implement part of the conversion, as described in§3.1.3.

• In either your soure in the in compiler command line,#define MZ PRECISE GCbefore includinges-
cheme.h . When usingmzc with the--cc and--3m flags,MZPRECISE GCis automatically defined.

• Link with mzdyn3m.o (Unix, Mac OS X) ormzdyn3m.obj (Windows) to create a shared object. The resulting
extension will work with MzScheme3m and MrEd3m, only. When usingmzc with the --ld and--3m flags
links to these libraries.

For a relatively simple extensionhw.c , the extension is compiled under Unix for 3m with the following three com-
mands:

2

1. Overview 1.2. Embedding MzScheme into a Program

mzc --xform hw.c
mzc --3m --cc hw.3m.c
mzc --3m --ld hw.so hw.o

Some examples incollects/mzscheme/examples work with MzScheme3m in this way. A few examples are manually
instrumented, in which case the--xform step should be skipped.

1.2 Embedding MzScheme into a Program

To embed MzScheme in a program, follow these steps:

• Locate or build the MzScheme libraries. For some Unix platforms, you must first download the MzScheme
source code and compile the libraries, because they are not included with a binary distribution. Under Windows
and Mac OS X, the standard binary distribution includes the libraries.

Under Unix, the libraries arelibmzscheme.a and libgc.a (or libmzscheme.so and libgc.so for a dynamic-
library build, with libmzscheme.la and libgc.la files for use withlibtool). Building from source and in-
stalling places the libraries into the installation’slib directory.

Under Windows, stub libraries for use with Microsoft tools arelibmzsch x.lib andlibmzgc x.lib (wherex repre-
sents the version number) are in a compiler-specific directory inplt\lib . These libraries identify the bindings that
are provided bylibmzsch x.dll andlibmzgc x.dll — which are typically installed inplt\lib . When linking with
Cygwin, link to libmzsch x.dll and libmzgc x.dll directly. At run time, eitherlibmzsch x.dll and libmzgc x.dll
must be moved to a location in the standard DLL search path, or your embedding application must “delayload”
link the DLLs and explicitly load them before use. (MzScheme.exe andMrEd.exe use the latter strategy.)

Under Mac OS X, dynamic libraries are provided by thePLT MzScheme framework, which is typically installed
in lib sub-directory of the installation. Supply-framework PLT MzScheme to gcc when linking, along with-F
and a path to thelib directory. At run time, eitherPLT MzScheme.framework must be moved to a location in the
standard framework search path, or your embedding executable must provide a specific path to the framework
(possibly an executable-relative path using the Mach-O@executable path prefix).

• For each C/C++ file that uses MzScheme library functions,#include the filescheme.h .1

This file is distributed with the PLT software in the installation’sinclude directory.

• In your main program, obtain a global MzScheme environmentScheme Env * by callingscheme basic env .
This function must be called before any other function in the MzScheme library (exceptscheme make param).

• Access MzScheme throughscheme load , scheme eval , and/or other top-level MzScheme functions de-
scribed in this manual.

• Compile the program and link it with the MzScheme libraries.

Scheme values are garbage collected using a conservative garbage collector, so pointers to MzScheme objects can
be kept in registers, stack variables, or structures allocated withscheme malloc . In an embedding application on
some platforms, static variables are also automatically registered as roots for garbage collection (but see notes below
specific to Mac OS X and Windows).

For example, the following is a simple embedding program which evaluates all expressions provided on the command
line and displays the results, then runs aread -eval -print loop:

#include "scheme.h"

1The C preprocessor symbolSCHEMEDIRECT EMBEDDEDis defined as1 when scheme.h is #include d, or as0 when escheme.h is
#include d.

3

1.2. Embedding MzScheme into a Program 1. Overview

int main(int argc, char *argv[])
{

Scheme_Env *e;
Scheme_Object *curout;
int i;
mz_jmp_buf * volatile save, fresh;

scheme_set_stack_base(NULL, 1); /* required for OS X, only */

e = scheme_basic_env();

curout = scheme_get_param(scheme_current_config(), MZCONFIG_OUTPUT_PORT);

for (i = 1; i < argc; i++) {
save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {

scheme_current_thread->error_buf = save;
return -1; /* There was an error */

} else {
Scheme_Object *v = scheme_eval_string(argv[i], e);
scheme_display(v, curout);
scheme_display(scheme_make_character(’\n’), curout);
/* read-eval-print loop, implicitly uses the initial Scheme_Env: */
scheme_apply(scheme_builtin_value("read-eval-print-loop"), 0, NULL);
scheme_current_thread->error_buf = save;

}
}
return 0;

}

Under Mac OS X, or under Windows when MzScheme is compiled to a DLL using Cygwin, the garbage collector
cannot find static variables automatically. In that case,scheme set stack base must be called with a non-zero
second argument before calling anyscheme function.

Under Windows (for any other build mode), the garbage collector finds static variables in an embedding program by
examining all memory pages. This strategy fails if a program contains multiple Windows threads; a page may get
unmapped by a thread while the collector is examining the page, causing the collector to crash. To avoid this problem,
call scheme set stack base with a non-zero second argument before calling anyscheme function.

When an embedding application callsscheme set stack base with a non-zero second argument, it must reg-
ister each of its static variables withMZREGISTERSTATIC if the variable can contain a GCable pointer. For
example, ife above is madestatic , then MZREGISTERSTATIC(e) should be inserted before the call to
scheme basic env .

When building an embedded MzScheme to use SenoraGC (SGC) instead of the default collector,scheme set stack base
must be called both with a non-zero second argument and with a stack-base pointer in the first argument. See§3 for
more information.

MzScheme3m can be embedded the same as MzScheme, as long as the embedding program cooperates with the
precise garbage collector as described in§3.1.

4

1. Overview 1.3. MzScheme and Threads

1.3 MzScheme and Threads

MzScheme implements threads for Scheme programs without aid from the operating system, so that MzScheme
threads are cooperative from the perspective of C code. Under Unix, stand-alone MzScheme uses a single OS-
implemented thread. Under Windows and Mac OS X, stand-alone MzScheme uses a few private OS-implemented
threads for background tasks, but these OS-implemented threads are never exposed by the MzScheme API.

In an embedding application, MzScheme can co-exist with additional OS-implemented threads, but the additional OS
threads must not call anyscheme function. Only the OS thread that originally callsscheme basic env can call
scheme functions.2 Whenscheme basic env is called a second time to reset the interpreter, it can be called
in an OS thread that is different from the original call toscheme basic env . Thereafter, all calls toscheme
functions must originate from the new thread.

See§8 for more information about threads, including the possible effects of MzScheme’s thread implementation on
extension and embedding C code.

1.4 MzScheme, Unicode, Characters, and Strings

A character in MzScheme is a Unicode code point. In C, a character value has typemzchar , which is an alias for
unsigned — which is, in turn, 4 bytes for a properly compiled MzScheme. Thus, amzchar* string is effectively
a UCS-4 string.

Only a few MzScheme functions usemzchar* . Instead, most functions acceptchar* strings. When such byte
strings are to be used as a character strings, they are interpreted as UTF-8 encodings. A plain ASCII string is always
acceptable in such cases, since the UTF-8 encoding of an ASCII string is itself.

See also§2.3and§11.

1.5 Integers

MzScheme expects to be compiled in a mode whereshort is a 16-bit integer,int is a 32-bit integer, andlong has
the same number of bits asvoid* . Themzlonglong type has 64 bits for compilers that support a 64-bit integer
type, otherwise it is the same aslong ; thus,mzlonglong tends to matchlong long . Theumzlonglong type
is the unsigned version ofmzlonglong .

2This restriction is stronger than saying all calls must be serialized across threads. MzScheme relies on properties of specific threads to avoid
stack overflow and garbage collection.

5

2. Values and Types

A Scheme value is represented by a pointer-sized value. The low bit is a mark bit: a 1 in the low bit indicates an
immediate integer, a 0 indicates a (word-aligned) pointer.

A pointer Scheme value references a structure that begins with aScheme Object sub-structure, which in turn starts
with a tag that has the C typeScheme Type . The rest of the structure, following theScheme Object header, is
type-dependent. MzScheme’s C interface gives Scheme values the typeScheme Object * . (The “object” here
does not refer to objects in the sense of MzLib’s class library.)

Examples ofScheme Type values includescheme pair type andscheme symbol type . Some of these are
implemented as instances ofScheme Simple Object , which is defined inscheme.h , but extension or embedding
code should never access this structure directly. Instead, the code should use macros, such asSCHEMECAR, that
provide access to the data of common Scheme types.

For most Scheme types, a constructor is provided for creating values of the type. For example,scheme make pair
takes twoScheme Object * values and returns thecons of the values.

The macroSCHEMETYPE takes aScheme Object * and returns the type of the object. This macro per-
forms the tag-bit check, and returnsscheme integer type when the value is an immediate integer; otherwise,
SCHEMETYPE follows the pointer to get the type tag. Macros are provided to test for common Scheme types; for
example,SCHEMEPAIRP returns1 if the value is a cons cell,0 otherwise.

In addition to providing constructors, MzScheme defines six global constant Scheme values:scheme true ,
scheme false , scheme null , scheme eof , scheme void , andscheme undefined . Each of these has
a type tag, but each is normally recognized via its constant address.

An extension or embedding application can create new a primitive data type by callingscheme make type , which
returns a freshScheme Type value. To create a collectable instance of this type, allocate memory for the instance
with scheme malloc . From MzScheme’s perspective, the main constraint on the data format of such an instance
is that the firstsizeof(Scheme Object) bytes must correspond to aScheme Object record; furthermore, the
first sizeof(Scheme Type) bytes must contain the value returned byscheme make type . Extensions with
modest needs can usescheme make cptr , instead of creating an entirely new type.

Scheme values should never be allocated on the stack, and they should never contain pointers to values on the stack.
Besides the problem of restricting the value’s lifetime to that of the stack frame, allocating values on the stack creates
problems for continuations and threads, both of which copy into and out of the stack.

2.1 Standard Types

The following are theScheme Type values for the standard types:

• scheme bool type — the constantsscheme true andscheme false are the only values of this type;
useSCHEMEFALSEPto recognizescheme false and useSCHEMETRUEPto recognize anything except
scheme false ; test for this type withSCHEMEBOOLP

6

2. Values and Types 2.1. Standard Types

• scheme char type — SCHEMECHARVAL extracts the character (of typemzchar); test for this type with
SCHEMECHARP

• scheme integer type — fixnum integers, which are identified via the tag bit rather than following a pointer
to thisScheme Type value;SCHEMEINT VAL extracts the integer; test for this type withSCHEMEINTP

• scheme double type — flonum inexact numbers;SCHEMEFLOATVAL or SCHEMEDBL VAL extracts
the floating-point value; test for this type withSCHEMEDBLP

• scheme float type — single-precision flonum inexact numbers, when specifically enabled when compiling
MzScheme;SCHEMEFLOATVAL or SCHEMEFLT VAL extracts the floating-point value; test for this type
with SCHEMEFLTP

• scheme bignum type — test for this type withSCHEMEBIGNUMP

• scheme rational type — test for this type withSCHEMERATIONALP

• scheme complex type — test for this type orscheme complex izi type with SCHEMECOMPLEXP

• scheme complex izi type — complex number with an inexact zero imaginary part (so it counts as a real
number); test for this type specifically withSCHEMECOMPLEXIZIP

• scheme char string type — SCHEMECHARSTR VAL extracts the string as amzchar* ; the string is
always nul-terminated, but may also contain embedded nul characters, and the Scheme string is modified if this
string is modified;SCHEMECHARSTRLENVAL extracts the string length (in characters, not counting the nul
terminator); test for this type withSCHEMECHARSTRINGP

• scheme byte string type — SCHEMEBYTE STR VAL extracts the string as achar* ; the string is
always nul-terminated, but may also contain embedded nul characters, and the Scheme string is modified if
this string is modified;SCHEMEBYTE STRLENVAL extracts the string length (in bytes, not counting the nul
terminator); test for this type withSCHEMEBYTE STRINGP

• scheme path type — SCHEMEPATHVAL extracts the path as achar* ; the string is always nul-
terminated;SCHEMEPATHLEN extracts the path length (in bytes, not counting the nul terminator); test for
this type withSCHEMEPATHP

• scheme symbol type — SCHEMESYMVAL extracts the symbol’s string as achar* UTF-8 encoding (do
not modify this string);SCHEMESYMLENextracts the number of bytes in the symbol name (not counting the
nul terminator); test for this type withSCHEMESYMBOLP; 3m: see§3.1for a caution aboutSCHEMESYMVAL

• scheme keyword type — SCHEMEKEYWORDVALextracts the keywors’s string (without the leading hash
colon) as achar* UTF-8 encoding (do not modify this string);SCHEMEKEYWORDLENextracts the number
of bytes in the keyword name (not counting the nul terminator); test for this type withSCHEMEKEYWORDP;
3m: see§3.1for a caution aboutSCHEMEKEYWORDVAL

• scheme box type — SCHEMEBOXVAL extracts/sets the boxed value; test for this type with
SCHEMEBOXP

• scheme pair type — SCHEMECARextracts/sets thecar andSCHEMECDRextracts/sets thecdr ; test for
this type withSCHEMEPAIRP

• scheme vector type — SCHEMEVECSIZE extracts the length andSCHEMEVECELS extracts the ar-
ray of Scheme values (the Scheme vector is modified when this array is modified); test for this type with
SCHEMEVECTORP; 3m: see§3.1for a caution aboutSCHEMEVECELS

• scheme structure type — structure instances; test for this type withSCHEMESTRUCTP

• scheme struct type type — structure types; test for this type withSCHEMESTRUCTTYPEP

• scheme struct property type — structure type properties

7

2.1. Standard Types 2. Values and Types

• scheme input port type — SCHEMEINPORT VAL extracts/sets the user data pointer; test for this type
with SCHEMEINPORTP

• scheme output port type — SCHEMEOUTPORTVAL extracts/sets the user data pointer; test for this
type withSCHEMEOUTPORTP

• scheme thread type — thread descriptors; test for this type withSCHEMETHREADP

• scheme sema type — semaphores; test for this type withSCHEMESEMAP

• scheme hash table type — test for this type withSCHEMEHASHTP

• scheme bucket table type — test for this type withSCHEMEBUCKTP

• scheme weak box type — test for this type withSCHEMEWEAKP; SCHEMEWEAKPTRextracts the con-
tained object, orNULLafter the content is collected; do not set the content of a weak box

• scheme namespace type — namespaces; test for this type withSCHEMENAMESPACEP

• scheme cpointer type — void pointer with a type-describingScheme Object ; SCHEMECPTRVAL
extracts the pointer andSCHEMECPTRTYPE extracts the type tag object; test for this type with
SCHEMECPTRP. The tag is used when printing such objects when it’s a symbol, a byte string, a string, or
a pair holding one of these in its car.

The following are the procedure types:

• scheme prim type — a primitive procedure, possibly with data elements

• scheme closed prim type — an old-style primitive procedure with a data pointer

• scheme compiled closure type — a Scheme procedure

• scheme cont type — a continuation

• scheme escaping cont type — an escape continuation

• scheme case closure type — acase-lambda procedure

• scheme native closure type — a procedure with native code generated by the just-in-time compiler

The predicateSCHEMEPROCPreturns 1 for all procedure types and 0 for anything else.

The following are additional number predicates:

• SCHEMENUMBERP— all numerical types

• SCHEMEREALP— all non-complex numerical types, plusscheme complex izi type

• SCHEMEEXACTINTEGERP— fixnums and bignums

• SCHEMEEXACTREALP— fixnums, bignums, and rationals

• SCHEMEFLOATP— both single-precision (when enabled) and double-precision flonums

8

2. Values and Types 2.2. Global Constants

2.2 Global Constants

There are six global constants:

• scheme null — test for this value withSCHEMENULLP

• scheme eof — test for this value withSCHEMEEOFP

• scheme true

• scheme false — test for this value withSCHEMEFALSEP; testagainstit with SCHEMETRUEP

• scheme void — test for this value withSCHEMEVOIDP

• scheme undefined

2.3 Strings

As noted in§1.4, a MzScheme character is a Unicode code point represented by amzchar value, and character strings
aremzchar arrays. MzScheme also supplies byte strings, which arechar arrays.

For a character strings, SCHEMECHARSTR VAL(s) produces a pointer tomzchar s, not char s. Con-
vert a character string to its UTF-8 encoding as byte string withscheme char string to byte string .
For a byte string bs, SCHEMEBYTE STR VAL(bs) produces a pointer tochar s. The function
scheme byte string to char string decodes a byte string as UTF-8 and produces a character string. The
functionsscheme char string to byte string locale andscheme byte string to char string locale
are similar, but they use the current locale’s encoding instead of UTF-8.

For more fine-grained control over UTF-8 encoding, use thescheme utf8 decode andscheme utf8 encode
functions, which are described in§11.

2.4 Library Functions

• Scheme Object *scheme make char(mzchar ch)

Returns the character value. Thech value must be a legal Unicode code point (and not a surrogate, for example). The
first 256 characters are represented by constant Scheme values, and others are allocated.

• Scheme Object *scheme make char or null(mzchar ch)

Like scheme make char , but the result isNULL if ch is not a legal Unicode code point.

• Scheme Object *scheme make character(mzchar ch)

Returns the character value. This is a macro that directly accesses the array of constant characters whench is less than
256.

• Scheme Object *scheme make ascii character(mzchar ch)

Returns the character value, assuming thatch is less than 256. (This is a macro.)

• Scheme Object *scheme make integer(long i)

9

2.4. Library Functions 2. Values and Types

Returns the integer value;i must fit in a fixnum. (This is a macro.)

• Scheme Object *scheme make integer value(long i)

Returns the integer value. Ifi does not fit in a fixnum, a bignum is returned.

• Scheme Object *scheme make integer value from unsigned(unsigned long i)

Like scheme make integer value , but for unsigned integers.

• Scheme Object *scheme make integer value from long long(mzlonglong i)

Like scheme make integer value , but formzlonglong values (see§1.5).

• Scheme Object *scheme make integer value from unsigned long long(umzlonglong i)

Like scheme make integer value from long long , but for unsigned integers.

• Scheme Object *scheme make integer value from long halves(unsigned long hi,
unsigned long lo)

Creates an integer given the high and lowlong s of a signed integer. Note that on 64-bit platforms wherelong
long is the same aslong , the resulting integer has 128 bits. (See also§1.5.)

• Scheme Object *scheme make integer value from unsigned long halves(unsigned long hi,
unsigned long lo)

Creates an integer given the high and lowlong s of an unsigned integer. Note that on 64-bit platforms wherelong
long is the same aslong , the resulting integer has 128 bits.

• int scheme get int val(Scheme Object * o, long * i)

Extracts the integer value. Unlike theSCHEMEINT VAL macro, this procedure will extract an integer that fits in a
long from a Scheme bignum. Ifo fits in a long , the extracted integer is placed in*i and 1 is returned; otherwise, 0
is returned and*i is unmodified.

• int scheme get unsigned int val(Scheme Object * o, unsigned long * i)

Like scheme get int val , but for unsigned integers.

• int scheme get long long val(Scheme Object * o, mzlonglong * i)

Like scheme get int val , but formzlonglong values (see§1.5).

• int scheme get unsigned long long val(Scheme Object * o, umzlonglong * i)

Like scheme get int val , but for unsignedmzlonglong values (see§1.5).

• Scheme Object *scheme make double(double d)

Creates a new floating-point value.

• Scheme Object *scheme make float(float d)

10

2. Values and Types 2.4. Library Functions

Creates a new single-precision floating-point value. The procedure is available only when MzScheme is compiled with
single-precision numbers enabled.

• double scheme real to double(Scheme Object * o)

Converts a Scheme real number to a double-precision floating-point value.

• Scheme Object *scheme make pair(Scheme Object * carv, Scheme Object * cdrv)

Makes acons pair.

• Scheme Object *scheme make byte string(char * bytes)

Makes a Scheme byte string from a nul-terminated C string. Thebytesstring is copied.

• Scheme Object *scheme make byte string without copying(char * bytes)

Like scheme make byte string , but the string is not copied.

• Scheme Object *scheme make sized byte string(char * bytes, long len, int copy)

Makes a byte string value with sizelen. A copy ofbytesis made ifcopyis not 0. The stringbytesshould containlen
bytes;bytescan contain the nul byte at any position, and need not be nul-terminated ifcopyis non-zero. However, if
len is negative, then the nul-terminated length ofbytesis used for the length, and ifcopyis zero, thenbytesmust be
nul-terminated.

• Scheme Object *scheme make sized offset byte string(char * bytes, long d, long len, int copy)

Like scheme make sized byte string , except thelencharacters start from positiond in bytes. If d is non-zero,
thencopymust be non-zero.

• Scheme Object *scheme alloc byte string(int size, char fill)

Allocates a new Scheme byte string.

• Scheme Object *scheme append byte string(Scheme Object * a, Scheme Object * b)

Creates a new byte string by appending the two given byte strings.

• Scheme Object *scheme make locale string(char * bytes)

Makes a Scheme string from a nul-terminated byte string that is a locale-specific encoding of a character string; a new
string is allocated during decoding. The “locale in the name of this function thus refers tobytes, and not the resulting
string (which is internally stored as UCS-4).

• Scheme Object *scheme make utf8 string(char * bytes)

Makes a Scheme string from a nul-terminated byte string that is a UTF-8 encoding. A new string is allocated during
decoding. The “utf8” in the name of this function thus refers tobytes, and not the resulting string (which is internally
stored as UCS-4).

• Scheme Object *scheme make sized utf8 string(char * bytes, long len)

11

2.4. Library Functions 2. Values and Types

Makes a string value, based onlen UTF-8-encoding bytes (so the resulting string islen characters or less). The string
bytesshould contain at leastlenbytes;bytescan contain the nul byte at any position, and need not be null-terminated.
However, iflen is negative, then the nul-terminated length ofbytesis used for the length.

• Scheme Object *scheme make sized offset utf8 string(char * bytes, long d, long len)

Like scheme make sized char string , except thelencharacters start from positiond in bytes.

• Scheme Object *scheme make char string(mzchar * chars)

Makes a Scheme string from a nul-terminated UCS-4 string. Thecharsstring is copied.

• Scheme Object *scheme make char string without copying(mzchar * chars)

Like scheme make char string , but the string is not copied.

• Scheme Object *scheme make sized char string(mzchar * chars, long len, int copy)

Makes a string value with sizelen. A copy of chars is made ifcopy is not 0. The stringcharsshould containlen
characters;charscan contain the nul character at any position, and need not be nul-terminated ifcopy is non-zero.
However, iflen is negative, then the nul-terminated length ofcharsis used for the length, and ifcopyis zero, then the
charsmust be nul-terminated.

• Scheme Object *scheme make sized offset char string(mzchar * chars, long d, long len, int copy)

Like scheme make sized char string , except thelencharacters start from positiond in chars. If d is non-zero,
thencopymust be non-zero.

• Scheme Object *scheme alloc char string(int size, mzchar fill)

Allocates a new Scheme string.

• Scheme Object *scheme append char string(Scheme Object * a, Scheme Object * b)

Creates a new string by appending the two given strings.

• Scheme Object *scheme char string to byte string(Scheme Object * s)

Converts a Scheme character string into a Scheme byte string via UTF-8.

• Scheme Object *scheme byte string to char string(Scheme Object * s)

Converts a Scheme byte string into a Scheme character string via UTF-8.

• Scheme Object *scheme char string to byte string locale(Scheme Object * s)

Converts a Scheme character string into a Scheme byte string via the locale’s encoding.

• Scheme Object *scheme byte string to char string locale(Scheme Object * s)

Converts a Scheme byte string into a Scheme character string via the locale’s encoding.

• Scheme Object *scheme intern symbol(char * name)

12

2. Values and Types 2.4. Library Functions

Finds (or creates) the symbol matching the given nul-terminated, ASCII string (not UTF-8). The case ofnameis
(non-destructively) normalized before interning ifscheme case sensitive is 0.

• Scheme Object *scheme intern exact symbol(char * name, int len)

Creates or finds a symbol given the symbol’s length in UTF-8-encoding bytes. The the case ofnameis not normalized.

• Scheme Object *scheme intern exact char symbol(mzchar * name, int len)

Like scheme intern exact symbol , but given a character array instead of a UTF-8-encoding byte array.

• Scheme Object *scheme make symbol(char * name)

Creates an uninterned symbol from a nul-terminated, UTF-8-encoding string. The case is not normalized.

• Scheme Object *scheme make exact symbol(char * name, int len)

Creates an uninterned symbol given the symbol’s length in UTF-8-encoded bytes.

• Scheme Object *scheme intern exact keyword(char * name, int len)

Creates or finds a keyword given the keywords length in UTF-8-encoding bytes. The the case ofnameis not normal-
ized, and it should not include the leading hash and colon of the keyword’s printed form.

• Scheme Object *scheme intern exact char keyword(mzchar * name, int len)

Like scheme intern exact keyword , but given a character array instead of a UTF-8-encoding byte array.

• Scheme Object *scheme make vector(int size, Scheme Object * fill)

Allocates a new vector.

• Scheme Object *scheme box(Scheme Object * v)

Creates a new box containing the valuev.

• Scheme Object *scheme make weak box(Scheme Object * v)

Creates a new weak box containing the valuev.

• Scheme Type scheme make type(char * name)

Creates a new type (not a Scheme value).

• Scheme Object *scheme make cptr(void * ptr, const Scheme Object * typetag)

Creates a C-pointer object that encapsulatesptr and usestypetag to identify the type of the pointer. The
SCHEMECPTRPmacro recognizes objects created byscheme make cptr . TheSCHEMECPTRVAL macro ex-
tracts the originalptr from the Scheme object, andSCHEMECPTRTYPEextracts the type tag.

• void scheme set type printer(Scheme Type type, Scheme Type Printer printer)

Installs a printer to be used for printing (or writing or displaying) values that have the type tagtype.

13

2.4. Library Functions 2. Values and Types

The type ofprinter is defined as follows:
typedef void (*Scheme_Type_Printer)(Scheme_Object *v, int dis,

Scheme_Print_Params *pp);

Such a printer must print a representation of the value usingscheme print bytes andscheme print string .
The first argument to the printer,v, is the value to be printed. The second argument indicates whetherv is printed via
write or display . The last argument is to be passed on toscheme print bytes or scheme print string
to identify the printing context.

• void scheme print bytes(Scheme Print Params * pp, const char * str, int offset, int len)

Writes the content ofstr — starting fromoffsetand runninglen bytes — into a printing context determined bypp.
This function is for use by a printer that is installed withscheme set type printer .

• void scheme print string(Scheme Print Params * pp, const mzchar * str, int offset, int len)

Writes the content ofstr — starting fromoffsetand runninglen characters — into a printing context determined by
pp. This function is for use by a printer that is installed withscheme set type printer .

14

3. Memory Allocation

MzScheme uses bothmalloc and allocation functions provided by a garbage collector. Embedding/extension C/C++
code may use either allocation method, keeping in mind that pointers to garbage-collectable blocks inmalloc ed
memory are invisible (i.e., such pointers will not prevent the block from being garbage-collected).

By default MzScheme uses a conservative garbage collector. This garbage collector normally only recognizes pointers
to the beginning of allocated objects. Thus, a pointer into the middle of a GC-allocated string will normally not keep
the string from being collected. The exception to this rule is that pointers saved on the stack or in registers may point
to the middle of a collectable object. Thus, it is safe to loop over an array by incrementing a local pointer variable.

MzScheme3m uses a precise garbage collector that moves objects during collection, in which case the C code must be
instrumented to expose local pointer bindings to the collector, and to provide tracing procedures for (tagged) records
containing pointers. This instrumentation is described further in§3.1.

The basic collector allocation functions are:

• scheme malloc — Allocates collectable memory that may contain pointers to collectable objects; for 3m,
the memory must be an array of pointers (though not necessarily to collectable objects). The newly allocated
memory is initially zeroed.

• scheme malloc atomic — Allocates collectable memory that does not contain pointers to collectable ob-
jects. If the memory does contain pointers, they are invisible to the collector and will not prevent an object from
being collected. Newly allocated atomic memory is not necessary zeroed.

Atomic memory is used for strings or other blocks of memory which do not contain pointers. Atomic memory
can also be used to store intentionally-hidden pointers.

• scheme malloc tagged — Allocates collectable memory that contains a mixture of pointers and atomic
data. With the conservative collector, this function is the same asscheme malloc , but under 3m, the type tag
stored at the start of the block is used to determine the size and shape of the object for future garbage collection
(as described in§3.1).

• scheme malloc allow interior — Allocates a large array of pointers such that references are allowed
into the middle of the block under 3m, and such pointers prevent the block from being collected. This procedure
is the same asscheme malloc with the conservative collector, but in the that case, havingonlya pointer into
the interior will not prevent the array from being collected.

• scheme malloc uncollectable — Allocates uncollectable memory that may contain pointers to col-
lectable objects. There is no way to free the memory. The newly allocated memory is initially zeroed. This
function is not available in 3m.

If a MzScheme extension stores Scheme pointers in a global or static variable, then that variable must be registered
with scheme register extension global ; this makes the pointer visible to the garbage collector. Registered
variables need not contain a collectable pointer at all times (even with 3m, but the variable must contain some pointer,
possibly uncollectable, at all times).

15

3.1. Cooperating with 3m 3. Memory Allocation

With conservative collection, no registration is needed for the global or static variables of an embedding pro-
gram, unless it callsscheme set stack base with a non-zero second argument.1 In that case, global
and static variables containing collectable pointers must be registered withscheme register static . The
MZREGISTERSTATIC macro takes any variable name and registers it withscheme register static . The
scheme register static function can be safely called even when it’s not needed, but it must not be called
multiple times for a single memory address.

Collectable memory can be temporarily locked from collection by using the reference-counting function
scheme dont gc ptr . Under 3m, such locking does not prevent the object from being moved.

Garbage collection can occur during any call into MzScheme or its allocator, on anytime that MzScheme has control,
except during functions that are documented otherwise. The predicate and accessor macros listed in§2.1never trigger
a collection.

3.1 Cooperating with 3m

To allow 3m’s precise collector to detect and update pointers during garbage collection, all pointer values must be
registered with the collector, at least during the times that a collection may occur. The content of a word registered
as a pointer must contain eitherNULL, a pointer to the start of a collectable object, a pointer into an object allocated
by scheme malloc allow interior , a pointer to an object currently allocated by another memory mamanger
(and therefore not into a block that is currently managed by the collector), or a pointer to an odd-numbered address
(e.g., a MzScheme fixnum).

Pointers are registered in three different ways:

• Pointers in static variables should be registered withscheme register static orMZREGISTERSTATIC.

• Pointers in allocated memory are registered automatically when they are in an array allocated with
scheme malloc , etc. When a pointer resides in an object allocated withscheme malloc tagged , etc. the
tag at the start of the object identifiers the object’s size and shape. Handling of tags is described in§3.1.1.

• Local pointers (i.e., pointers on the stack or in registers) must be registered through theMZGCDECLREG,
etc. macros that are described in§3.1.2.

A pointer must never refer to the interior of an allocated object (when a garbage collection is possible), unless the
object was allocated withscheme malloc allow interior . For this reason, pointer arithmetic must usually be
avoided, unless the variable holding the generated pointer isNULLed before a collection.

IMPORTANT: TheSCHEMESYMVAL, SCHEMEKEYWORDVAL, SCHEMEVECELS, andSCHEMEPRIM CLOSUREELS
macros produce pointers into the middle of their respective objects, so the results of these macros must not be held
during the time that a collection can occur. Incorrectly retaining such a pointer can lead to a crash.

3.1.1 Tagged Objects

As explained in§2, thescheme make type function can be used to obtain a new tag for a new type of object. These
new types are in relatively short supply for 3m; the maximum tag is 255, and MzScheme itself uses nearly 200.

After allocating a new tag in 3m (and before creating instances of the tag), asize procedure, amark procedure, and a
fixup procedure must be installed for the tag usingGCregister traversers .

A size procedure simply takes a pointer to an object with the tag and returns its size in words (not bytes). The
gcBYTES TO WORDSmacro converts a byte count to a word count.

1Under Mac OS X,scheme set stack base must be called always.

16

3. Memory Allocation 3.1. Cooperating with 3m

A mark procedure is used to trace references among objects without moving any objects. The procedure takes a pointer
to an object, and it should apply thegcMARKmacro to every pointer within the object. The mark procedure should
return the same result as the size procedure.

A fixup procedure is used to update references to objects after or while they are moved. The procedure takes a pointer
to an object, and it should apply thegcFIXUP macro to every pointer within the object; the expansion of this macro
takes the address of its argument. The fixup procedure should return the same result as the size procedure.

Depending on the collector’s implementation, the mark or fixup procedure might not be used. For example, the
collector may only use the mark procedure and not actually move the object. Or it may use the fixup procedure to mark
and move objects at the same time. To dereference an object pointer during a fixup procedure, useGCfixup self to
convert the address passed to the procedure to refer to the potentially moved object, and useGCresolve to convert
an address that is not yet fixed up to determine the object’s current location.

When allocating a tagged object in 3m, the tag must be installed immediately after the object is allocated — or, at
least, before the next possible collection.

3.1.2 Local Pointers

The 3m collector needs to know the address of every local or temporary pointer within a function call at any point
when a collection can be triggered. Beware that nested function calls can hide temporary pointers; for example, in

scheme_make_pair(scheme_make_pair(scheme_true, scheme_false),
scheme_make_pair(scheme_false, scheme_true))

the result from onescheme make pair call is on the stack or in a register during the other call to
scheme make pair ; this pointer must be exposed to the garbage collection and made subject to update. Simply
changing the code to

tmp = scheme_make_pair(scheme_true, scheme_false);
scheme_make_pair(tmp,

scheme_make_pair(scheme_false, scheme_true))

does not expose all pointers, sincetmp must be evaluated before the second call toscheme make pair . In general,
the above code must be converted to the form

tmp1 = scheme_make_pair(scheme_true, scheme_false);
tmp2 = scheme_make_pair(scheme_true, scheme_false);
scheme_make_pair(tmp1, tmp2);

and this is converted form must be instrumented to registertmp1 andtmp2 . The final result might be
{

Scheme_Object *tmp1 = NULL, *tmp2 = NULL, *result;
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmp1);
MZ_GC_VAR_IN_REG(1, tmp2);
MZ_GC_REG();

tmp1 = scheme_make_pair(scheme_true, scheme_false);
tmp2 = scheme_make_pair(scheme_true, scheme_false);
result = scheme_make_pair(tmp1, tmp2);

MZ_GC_UNREG();

return result;

17

3.1. Cooperating with 3m 3. Memory Allocation

}

Notice thatresult is not registered above. TheMZGCUNREGmacro cannot trigger a garbage collection, so the
result variable is never live during a potential collection. Note also thattmp1 andtmp2 are initialized withNULL,
so that they always contain a pointer whenever a collection is possible.

The MZGCDECLREGmacro expands to a local-variable declaration to hold information for the garbage collector.
The argument is the number of slots to provide for registration. Registering a simple pointer requires a single slot,
whereas registering an array of pointers requires three slots. For example, to register a pointertmp and an array of 10
char * s:

{
Scheme_Object *tmp1 = NULL;
char *a[10];
int i;
MZ_GC_DECL_REG(4);

MZ_GC_ARRAY_VAR_IN_REG(0, a, 10);
MZ_GC_VAR_IN_REG(3, tmp1);
/* Clear a before a potential GC: */
for (i = 0; i < 10; i++) a[i] = NULL;
...
f(a);
...

}

TheMZGCARRAYVARIN REGmacro registers a local array given a starting slot, the array variable, and an array
size. TheMZGCVARIN REGtakes a slot and simple pointer variable. A local variable or array must not be registered
multiple times.

In the above example, the first argument toMZGCVARIN REGis 3 because the information fora uses the first three
slots. Even ifa is not used after the call tof , a must be registered with the collector during the entire call tof , because
f presumably usesa until it returns.

The name used for a variable need not be immediate. Structure members can be supplied as well:
{

struct { void *s; int v; void *t; } x = {NULL, 0, NULL};
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, x.s);
MZ_GC_VAR_IN_REG(0, x.t);
...

}

In general, the only constraint on the second argument toMZGCVARIN REGor MZGCARRAYVARIN REGis
that& must produce the relevant address.

Pointer information is not actually registered with the collector until theMZGCREG macro is used. The
MZGCUNREGmacro de-registers the information. Each call toMZGCREGmust be balanced by one call to
MZGCUNREG.

Pointer information need not be initialized withMZGCVARIN REGandMZGCARRAYVARIN REGbefore calling
MZGCREG, and the set of registered pointers can change at any time — as long as all relevent pointers are registered
when a collection might occur. The following example recycles slots and completely de-registers information when
no pointers are relevant. The example also illustrates howMZGCUNREGis not needed when control escapes from

18

3. Memory Allocation 3.1. Cooperating with 3m

the function, such as whenscheme signal error escapes.
{

Scheme_Object *tmp1 = NULL, *tmp2 = NULL;
mzchar *a, *b;
MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmp1);
MZ_GC_VAR_IN_REG(1, tmp2);

tmp1 = scheme_make_utf8_string("foo");
MZ_GC_REG();
tmp2 = scheme_make_utf8_string("bar");
tmp1 = scheme_append_char_string(tmp1, tmp2);

if (SCHEME_FALSEP(tmp1))
scheme_signal_error("shouldn’t happen!");

a = SCHEME_CHAR_VAL(tmp1);

MZ_GC_VAR_IN_REG(0, a);

tmp2 = scheme_make_pair(scheme_read_bignum(a, 0, 10), tmp2);

MZ_GC_UNREG();

if (SCHEME_INTP(tmp2)) {
return 0;

}

MZ_GC_REG();
tmp1 = scheme_make_pair(scheme_read_bignum(a, 0, 8), tmp2);
MZ_GC_UNREG();

return tmp1;
}

A MZGCDECLREGcan be used in a nested block to hold declarations for the block’s variables. In that case, the
nestedMZGCDECLREGmust have its ownMZGCREGandMZGCUNREGcalls.

{
Scheme_Object *accum = NULL;
MZ_GC_DECL_REG(1);
MZ_GC_VAR_IN_REG(0, accum);
MZ_GC_REG();

accum = scheme_make_pair(scheme_true, scheme_null);
{

Scheme_Object *tmp = NULL;
MZ_GC_DECL_REG(1);
MZ_GC_VAR_IN_REG(0, tmp);
MZ_GC_REG();

tmp = scheme_make_pair(scheme_true, scheme_false);
accum = scheme_make_pair(tmp, accum);

19

3.1. Cooperating with 3m 3. Memory Allocation

MZ_GC_UNREG();
}
accum = scheme_make_pair(scheme_true, accum);

MZ_GC_UNREG();
return accum;

}

Variables declared in a local block can also be registered together with variables from an enclosing block, but the
local-block variable must be unregistered before it goes out of scope. TheMZGCNOVARIN REGmacro can be
used to unregister a variable or to initialize a slot as having no variable.

{
Scheme_Object *accum = NULL;
MZ_GC_DECL_REG(2);
MZ_GC_VAR_IN_REG(0, accum);
MZ_GC_NO_VAR_IN_REG(1);
MZ_GC_REG();

accum = scheme_make_pair(scheme_true, scheme_null);
{

Scheme_Object *tmp = NULL;
MZ_GC_VAR_IN_REG(1, tmp);

tmp = scheme_make_pair(scheme_true, scheme_false);
accum = scheme_make_pair(tmp, accum);

MZ_GC_NO_VAR_IN_REG(1);
}
accum = scheme_make_pair(scheme_true, accum);

MZ_GC_UNREG();
return accum;

}

The MZGC macros all expand to nothing whenMZPRECISE GCis not defined, so the macros can be placed into
code to be compiled for both conservative and precise collection.

TheMZGCREGandMZGCUNREGmacros must never be used in an OS thread other than MzScheme’s thread.

3.1.3 Local Pointers andmzc

Whenmzc is run with the--xform flag and a source C program, it produces a C program that is instrumented in
the way described in the previous section (but with a slightly different set of macros). For each input filename .c, the
transformed output isname .3m.c .

The--xform mode formzc does not change allocation calls, nor does it generate size, mark, or fixup predocures. It
merely converts the code to register local pointers.

Furthermore, the--xform mode formzc does not handle all of C. It’s ability to rearrange compound expressions
is particularly limited, because--xform merely converts expression text heuristically instead of parsing C. A future
version of the tool will correct such problems. For now,mzc in --xform mode attempts to provide reasonable
error messages when it is unable to convert a program, but beware that it can miss cases. To an even more limited

20

3. Memory Allocation 3.2. Library Functions

degree,--xform can work on C++ code. Inspect the output of--xform mode to ensure that your code is correctly
instrumented.

Some specific limitations:

• The body of afor , while , or do loop must be surrounded with curly braces. (A conversion error is normally
reported, otherwise.)

• Function calls may not appear on the right-hand side of an assignment within a declaration block. (A conversion
error is normally reported if such an assignment is discovered.)

• Multiple function calls in... ? ... : ... cannot be lifted. (A conversion error is normally re-
ported, otherwise.)

• In an assignment, the left-hand side must be a local or static variable, not a field selection, pointer dereference,
etc. (A conversion error is normally reported, otherwise.)

• The conversion assumes that all function calls use an immediate name for a function, as opposed to a compound
expression as ins->f() . The function name need not be a top-level function name, but it must be bound either
as an argument or local variable with the formtype id; the syntaxret type (* id)(...) is not recgoinzed,
so bind the function type to a simple name withtypedef , first: typedef ret type (* type)(...);
type id.

• Arrays and structs must be passed by address, only.

• GC-triggering code must not appear in system headers.

• Pointer-comparison expressions are not handled correctly when either of the compared expressions includes a
function call. For example,a() == b() is not converted correctly whena andb produce pointer values.

• Passing the address of a local pointer to a function works only when the pointer variable remains live after the
function call.

• A return; form can get converted to{ stmt; return; }; , which can break anif (...) return;
else ... pattern.

• Local instances of union types are generally not supported.

• Pointer arithmetic cannot be converted away, and is instead reported as an error.

3.2 Library Functions

• void *scheme malloc(size t n)

Allocatesn bytes of collectable memory, initially filled with zeros. In 3m, the allocated object is treated as an array of
pointers.

• void *scheme malloc atomic(size t n)

Allocatesn bytes of collectable memory containing no pointers visible to the garbage collector. The object isnot
initialized to zeros.

• void *scheme malloc uncollectable(size t n)

Non-3m, only. Allocatesn bytes of uncollectable memory.

21

3.2. Library Functions 3. Memory Allocation

• void *scheme malloc eternal(size t n)

Allocates uncollectable atomic memory. This function is equivalent tomalloc , except that the memory cannot be
freed.

• void *scheme calloc(size t num, size t size)

Allocatesnum* sizebytes of memory usingscheme malloc .

• void *scheme malloc tagged(size t n)

Like scheme malloc , but in 3m, the type tag determines how the garbage collector traverses the object; see§3.

• void *scheme malloc allow interior(size t n)

Like scheme malloc , but in 3m, pointers are allowed to reference the middle of the object; see§3.

• char *scheme strdup(char * str)

Copies the null-terminated stringstr; the copy is collectable.

• char *scheme strdup eternal(char * str)

Copies the null-terminated stringstr; the copy will never be freed.

• void *scheme malloc fail ok(void *(* mallocf)(size t size) , size t size)

Attempts to allocatesizebytes usingmallocf. If the allocation fails, theexn:misc:out-of-memory exception is
raised.

• void scheme register extension global(void * ptr, long size)

Registers an extension’s global variable that can contain Scheme pointers. The address of the global is given inptr,
and its size in bytes insize.In addition to global variables, this function can be used to register any permanent memory
that the collector would otherwise treat as atomic. A garbage collection can occur during the registration.

• void scheme set stack base(void * stackaddr, int no auto statics)

Overrides the GC’s auto-determined stack base, and/or disables the GC’s automatic traversal of global and static
variables. Ifstackaddr is NULL, the stack base determined by the GC is used. Otherwise, it should be the “deepest”
memory address on the stack where a collectable pointer might be stored. This function should be called only once,
and before any otherscheme function is called. It never triggers a garbage collection.

The following example shows a typical use for setting the stack base:
int main(int argc, char **argv) {

int dummy;
scheme_set_stack_base(&dummy, 0);
real_main(argc, argv); /* calls scheme_basic_env(), etc. */

}

• void scheme register static(void * ptr, long size)

Like scheme register extension global , for use in embedding applications in situations where the col-
lector does not automatically find static variables (i.e., whenscheme set stack base has been called with a

22

3. Memory Allocation 3.2. Library Functions

non-zero second argument).

The macroMZREGISTERSTATIC can be used directly on a static variable. It expands to a comment if statics need
not be registered, and a call toscheme register static (with the address of the static variable) otherwise.

• void scheme weak reference(void ** p)

Registers the pointer*p as a weak pointer; when no other (non-weak) pointers reference the same memory as*p
references, then*p will be set toNULLby the garbage collector. The value in*p may change, but the pointer remains
weak with respect to the value of*p at the timep was registered.

• void scheme weak reference indirect(void ** p, void * v)

Like scheme weak reference , but*p is cleared (regardless of its value) when there are no references tov.

• void scheme register finalizer(void * p, void (*f)(void *p, void *data), void * data,
void (**oldf)(void *p, void *data), void ** olddata)

Registers a callback function to be invoked when the memoryp would otherwise be garbage-collected, and when no
“will”-like finalizers are registered forp.

The f argument is the callback function; when it is called, it will be passed the valuep and the data pointerdata; data
can be anything — it is only passed on to the callback function. Ifoldf andolddataare notNULL, then*oldf and
*olddataare filled with the old callback information (f anddatawill override this old callback).

To remove a registered finalizer, passNULL for f anddata.

Note: registering a callback not only keepsp from collection until the callback is invoked, but it also keepsdata
reachable until the callback is invoked.

• void scheme add finalizer(void * p, void (*f)(void *p, void *data), void * data)

Adds a finalizer to a chain of primitive finalizers. This chain is separate from the single finalizer installed with
scheme register finalizer ; all finalizers in the chain are called immediately after a finalizer that is installed
with scheme register finalizer .

Seescheme register finalizer , above, for information about the arguments.

To remove an added finalizer, usescheme subtract finalizer .

• void scheme add scheme finalizer(void * p, void (*f)(void *p, void *data), void * data)

Installs a “will”-like finalizer, similar towill-register . Scheme finalizers are called one at a time, requiring
the collector to prove that a value has become inaccessible again before calling the next Scheme finalizer. Finalizers
registered withscheme register finalizer or scheme add finalizer are not called until all Scheme
finalizers have been exhausted.

Seescheme register finalizer , above, for information about the arguments.

There is currently no facility to remove a “will”-like finalizer.

• void scheme add finalizer once(void * p, void (*f)(void *p, void *data), void * data)

Like scheme add finalizer , but if the combinationf anddata is already registered as a (non-“will”-like) final-
izer forp, it is not added a second time.

23

3.2. Library Functions 3. Memory Allocation

• void scheme add scheme finalizer once(void * p, void (*f)(void *p, void *data), void * data)

Like scheme add scheme finalizer , but if the combination off anddata is already registered as a “will”-like
finalizer forp, it is not added a second time.

• void scheme subtract finalizer(void * p, void (*f)(void *p, void *data), void * data)

Removes a finalizer that was installed withscheme add finalizer .

• void scheme remove all finalization(void * p)

Removes all finalization (“will”-like or not) forp, including wills added in Scheme withwill-register and
finalizers used by custodians.

• void scheme dont gc ptr(void * p)

Keeps the collectable blockp from garbage collection. Use this procedure when a reference top is be stored somewhere
inaccessible to the collector. Once the reference is no longer used from the inaccessible region, de-register the lock
with scheme gc ptr ok . A garbage collection can occur during the registration.

This function keeps a reference count on the pointers it registers, so two calls toscheme dont gc ptr for the same
p should be balanced with two calls toscheme gc ptr ok .

• void scheme gc ptr ok(void * p)

Seescheme dont gc ptr .

• void scheme collect garbage()

Forces an immediate garbage-collection.

• void GC register traversers(short tag,
Size Proc s, Mark Proc m, Fixup Proc f ,
int is constsize, int is atomic)

3m only. Registers a size, mark, and fixup procedure for a given type tag; see§3.1.1for more information.

Each of the three procedures takes a pointer and returns an integer:
typedef int (*Size_Proc)(void *obj);
typedef int (*Mark_Proc)(void *obj);
typedef int (*Fixup_Proc)(void *obj);

If the result of the size procedure is a constant, then pass a non-zero value foris constsize. If the mark and fixup
procedures are no-ops, then pass a non-zero value foris atomic.

24

4. Namespaces and Modules

A Scheme namespace (a top-level environment) is represented by a value of typeScheme Env * — which is also a
Scheme value, castable toScheme Object * . Callingscheme basic env returns a namespace that includes all
of MzScheme’s standard global procedures and syntax.

The scheme basic env function must be called once by an embedding program, before any other MzScheme
function is called (exceptscheme make param). The returned namespace is the initial current namespace for the
main MzScheme thread. MzScheme extensions cannot callscheme basic env .

The current thread’s current namespace is available fromscheme get env , given the current parameterization (see
§9): scheme get env(scheme config) .

New values can be added as globals in a namespace usingscheme add global . Thescheme lookup global
function takes a Scheme symbol and returns the global value for that name, orNULL if the symbol is undefined.

A module’s set of top-level bindings is implemented using the same machinery as a namespace. Use
scheme primitive module to create a newScheme Env * that represents a primitive module. The name pro-
vided toscheme primitive module is subject to prefixing through thecurrent-module-name-prefix
parameter (which is normally set by the module name resolver when auto-loading module files). After installing
variables into the module withscheme add global , etc., callscheme finish primitive module on the
Scheme Env * value to make the module declaration available. All defined variables are exported from the primitive
module.

The Scheme#%variable-reference form produces a value that is opaque to Scheme code. Use
SCHEMEPTR VAL on the result of#%variable-reference to obtain the same kind of value as returned by
scheme global bucket (i.e., a bucket containing the variable’s value, orNULL if the variable is not yet defined).

4.1 Library Functions

• void scheme add global(char * name, Scheme Object * val, Scheme Env * env)

Adds a value to the table of globals for the namespaceenv, wherenameis a null-terminated string. (The string’s case
will be normalized in the same way as for interning a symbol.)

• void scheme add global symbol(Scheme Object * name, Scheme Object * val, Scheme Env * env)

Adds a value to the table of globals by symbol name instead of string name.

• Scheme Object *scheme lookup global(Scheme Object * symbol, Scheme Env * env)

Given a global variable name (as a symbol) insym, returns the current value.

• Scheme Bucket *scheme global bucket(Scheme Object * symbol, Scheme Env * env)

25

4.1. Library Functions 4. Namespaces and Modules

Given a global variable name (as a symbol) insym, returns the bucket where the value is stored. When the value in
this bucket isNULL, then the global variable is undefined.

TheScheme Bucket structure is defined as:
typedef struct Scheme_Bucket {

Scheme_Object so; /* so.type = scheme_variable_type */
void *key;
void *val;

} Scheme_Bucket;

• Scheme Bucket *scheme module bucket(Scheme Object * mod, Scheme Object * symbol,
int pos, Scheme Env * env)

Like scheme global bucket , but finds a variable in a module. Themod and symbolarguments are as for
dynamic-require in Scheme. Theposargument should be-1 always. Theenvargument represents the name-
space in which the module is declared.

• void scheme set global bucket(char * procname, Scheme Bucket * var, Scheme Object * val,
int setundef)

Changes the value of a global variable. Theprocnameargument is used to report errors (in case the global variable
is constant, not yet bound, or bound as syntax). Ifsetundef is not 1, then the global variable must already have a
binding. (For example,set! cannot set unbound variables, whiledefine can.)

• Scheme Object *scheme builtin value(const char * name)

Gets the binding of a name as it would be defined in the initial namespace.

• Scheme Env *scheme get env(Scheme Config * config)

Returns the current namespace for the given parameterization. See§9 for more information. The current thread’s
current parameterization is available asscheme config .

• Scheme Env *scheme primitive module(Scheme Object * name, Scheme Env * for env)

Prepares a new primitive module whose name is the symbolname (plus any prefix that is active via
current-module-name-prefix). The module will be declared within the namespacefor env. The result is
a Scheme Env * value that can be used withscheme add global , etc., but it represents a module instead of a
namespace. The module is not fully declared untilscheme finish primitive module is called, at which point
all variables defined in the module become exported.

• void scheme finish primitive module(Scheme Env * env)

Finalizes a primitive module and makes it available for use within the module’s namespace.

26

5. Procedures

A primitive procedure is a Scheme-callable procedure that is implemented in C. Primitive procedures are created in
MzScheme with the functionscheme make prim w arity , which takes a C function pointer, the name of the
primitive, and information about the number of Scheme arguments that it takes; it returns a Scheme procedure value.

The C function implementing the procedure must take two arguments: an integer that specifies the number of
arguments passed to the procedure, and an array ofScheme Object * arguments. The number of argu-
ments passed to the function will be checked using the arity information. (The arity information provided to
scheme make prim w arity is also used for the Schemearity procedure.) The procedure implementation
is not allowed to mutate the input array of arguments, although it may mutate the arguments themselves when appro-
priate (e.g., a fill in a vector argument).

The functionscheme make prim closure w arity is similar toscheme make prim w arity , but it takes
an additional count andScheme Object array that is copied into the created procedure; the procedure is passed
back to the C function when the closure is invoked. In this way, closure-like data from the C world can be associated
with the primitive procedure.

The functionscheme make closed prim w arity is similar to scheme make prim closure w arity ,
but it uses an older calling convention for passing closure data.

To work well with MzScheme threads, a C function that performs substantial or unbounded work should occasionally
call SCHEMEUSEFUEL; see§8.2for details.

5.1 Library Functions

• Scheme Object *scheme make prim w arity(Scheme Prim * prim, char * name,
int mina, int maxa)

Creates a primitive procedure value, given the C function pointerprim. The form ofprim is defined by:
typedef Scheme_Object *(Scheme_Prim)(int argc, Scheme_Object **argv);

The valueminashould be the minimum number of arguments that must be supplied to the procedure. The valuemaxa
should be the maximum number of arguments that can be supplied to the procedure, or -1 if the procedure can take
arbitrarily many arguments. Theminaandmaxavalues are used for automatically checking the argument count before
the primitive is invoked, and also for the Schemearity procedure. Thenameargument is used to report application
arity errors at run-time.

• Scheme Object *scheme make folding prim(Scheme Prim * prim, char * name,
int mina, int maxa, short folding)

Like scheme make prim w arity , but if folding is non-zero, the compiler assumes that an application of the
procedure to constant values can be folded to a constant. For example,+, zero? , andstring-length are folding
primitives, butdisplay andcons are not.

27

5.1. Library Functions 5. Procedures

• Scheme Object *scheme make prim(Scheme Prim * prim)

Same asscheme make prim w arity , but the arity (0, -1) and the name “UNKNOWN” is assumed. This function
is provided for backward compatibility only.

• Scheme Object *scheme make prim closure w arity(Scheme Prim Closure Proc * prim,
int c, Scheme Object * vals,
char * name, int mina, int maxa)

Creates a primitive procedure value that includes thec values invals; when the C functionprim is invoked, the
generated primitive is passed as the last parameter. The form ofprim is defined by:

typedef Scheme_Object *(Scheme_Prim_Closure_Proc)(int argc,
Scheme_Object **argv,
Scheme_Object *prim);

The macroSCHEMEPRIM CLOSUREELS takes a primitive-closure object and returns an array with the same length
and content asvals. (3m: see§3.1for a caution aboutSCHEMEPRIM CLOSUREELS.)

• Scheme Object *scheme make closed prim w arity(Scheme Closed Prim * prim, void * data,
char * name, int mina, int maxa)

Creates an old-style primitive procedure value; when the C functionprim is invoked,data is passed as the first param-
eter. The form ofprim is defined by:

typedef Scheme_Object *(Scheme_Closed_Prim)(void *data, int argc,
Scheme_Object **argv);

• Scheme Object *scheme make closed prim(Scheme Closed Prim * prim, void * data)

Creates a closed primitive procedure value without arity information. This function is provided for backward compat-
ibility only.

28

6. Evaluation

A Scheme S-expression is evaluated by callingscheme eval . This function takes an S-expression (as a
Scheme Object *) and a namespace and returns the value of the expression in that namespace.

The functionscheme apply takes aScheme Object * that is a procedure, the number of arguments to pass
to the procedure, and an array ofScheme Object * arguments. The return value is the result of the applica-
tion. There is also a functionscheme apply to list , which takes a procedure and a list (constructed with
scheme make pair) and performs the Schemeapply operation.

Thescheme eval function actually callsscheme compile followed byscheme eval compiled .

6.1 Top-level Evaluation Functions

The functionsscheme eval , scheme apply , etc., aretop-level evaluation functions. Continuation invocations
are confined to jumps within a top-level evaluation.

The functions scheme eval compiled , scheme apply , etc. (with a leading underscore) provide the same
functionality without starting a new top-level evaluation; these functions should only be used within new primitive
procedures. Since these functions allow full continuation hops, calls to non-top-level evaluation functions can return
zero or multiple times.

Currently, escape continuations and primitive error escapes can jump out of all evaluation and application functions.
For more information, see§7.

6.2 Tail Evaluation

All of MzScheme’s built-in functions and syntax support proper tail-recursion. When a new primitive procedure or
syntax is added to MzScheme, special care must be taken to ensure that tail recursion is handled properly. Specifically,
when the final return value of a function is the result of an application, thenscheme tail apply should be used
instead ofscheme apply . Whenscheme tail apply is called, it postpones the procedure application until
control returns to the Scheme evaluation loop.

For example, consider the following implementation of athunk-or primitive, which takes any number of thunks
and performsor on the results of the thunks, evaluating only as many thunks as necessary.
static Scheme_Object *
thunk_or (int argc, Scheme_Object **argv)
{

int i;
Scheme_Object *v;

if (!argc)
return scheme_false;

29

6.3. Multiple Values 6. Evaluation

for (i = 0; i < argc - 1; i++)
if (SCHEME_FALSEP((v = _scheme_apply(argv[i], 0, NULL))))

return v;

return scheme_tail_apply(argv[argc - 1], 0, NULL);
}

This thunk-or properly implements tail-recursion: if the final thunk is applied, then the result ofthunk-or is the
result of that application, soscheme tail apply is used for the final application.

6.3 Multiple Values

A primitive procedure can return multiple values by returning the result of callingscheme values . The func-
tions scheme eval compiled multi , scheme apply multi , scheme eval compiled multi , and
scheme apply multi potentially return multiple values; all other evaluation and applications procedures return a

single value or raise an exception.

Multiple return values are represented by thescheme multiple values “value”. This quasi-value has the
type Scheme Object * , but it is not a pointer or a fixnum. When the result of an evaluation or application is
scheme multiple values , the number of actual values can be obtained asscheme multiple count and
the array ofScheme Object * values asscheme multiple array . If any application or evaluation proce-
dure is called, thescheme multiple count andscheme multiple array variables may be modified, but
the array previously referenced byscheme multiple array is never re-used and should never be modified.

Thescheme multiple count andscheme multiple array variables only contain meaningful values when
scheme multiple values is returned.

6.4 Library Functions

• Scheme Object *scheme eval(Scheme Object * expr, Scheme Env * env)

Evaluates the (uncompiled) S-expressionexpr in the namespaceenv.

• Scheme Object *scheme eval compiled(Scheme Object * obj)

Evaluates the compiled expressionobj, which was previously returned fromscheme compile .

• Scheme Object *scheme eval compiled multi(Scheme Object * obj)

Evaluates the compiled expressionobj, possibly returning multiple values (see§6.3).

• Scheme Object * scheme eval compiled(Scheme Object * obj)

Non-top-level version ofscheme eval compiled . (See§6.1.)

• Scheme Object * scheme eval compiled multi(Scheme Object * obj)

Non-top-level version ofscheme eval compiled multi . (See§6.1.)

• Scheme Env *scheme basic env()

30

6. Evaluation 6.4. Library Functions

Creates the main namespace for an embedded MzScheme. This procedure must be called before other MzScheme
library function (exceptscheme make param). Extensions to MzScheme cannot call this function.

If it is called more than once, this function resets all threads (replacing the main thread), parameters, ports, namespaces,
and finalizations.

• Scheme Object *scheme make namespace(int argc, Scheme Object ** argv)

Creates and returns a new namespace. This values can be cast toScheme Env * . It can also be installed in a
parameterization usingscheme set param with MZCONFIGENV.

When MzScheme is embedded in an application, create the initial namespace withscheme basic env before
calling this procedure to create new namespaces.

• Scheme Object *scheme apply(Scheme Object * f , int c, Scheme Object ** args)

Applies the proceduref to the given arguments.

• Scheme Object *scheme apply multi(Scheme Object * f , int c, Scheme Object ** args)

Applies the proceduref to the given arguments, possibly returning multiple values (see§6.3).

• Scheme Object * scheme apply(Scheme Object * f , int c, Scheme Object ** args)

Non-top-level version ofscheme apply . (See§6.1.)

• Scheme Object * scheme apply multi(Scheme Object * f , int c, Scheme Object ** args)

Non-top-level version ofscheme apply multi . (See§6.1.)

• Scheme Object *scheme apply to list(Scheme Object * f , Scheme Object * args)

Applies the proceduref to the list of arguments inargs.

• Scheme Object *scheme eval string(char * str, Scheme Env * env)

Reads a single S-expression fromstr and evaluates it in the given namespace; the expression must return a single
value, otherwise an exception is raised. Thestr argument is parsed as a UTF-8-encoded string of Unicode characters
(so plain ASCII is fine).

• Scheme Object *scheme eval string multi(char * str, Scheme Env * env)

Like scheme eval string , but returnsscheme multiple values when the expression returns multiple val-
ues.

• Scheme Object *scheme eval string all(char * str, Scheme Env * env, int all)

Like scheme eval string , but if all is not0, then expressions are read and evaluated fromstr until the end of the
string is reached.

• Scheme Object *scheme tail apply(Scheme Object * f , int n, Scheme Object ** args)

Applies the procedure as a tail-call. Actually, this function just registers the given application to be invoked when
control returns to the evaluation loop. (Hence, this function is only useful within a primitive procedure that is returning

31

6.4. Library Functions 6. Evaluation

to its caller.)

• Scheme Object *scheme tail apply no copy(Scheme Object * f , int n, Scheme Object ** args)

Like scheme tail apply , but the arrayargsis not copied. Use this only whenargshas infinite extent and will not
be used again, or whenargswill certainly not be used again until the called procedure has returned.

• Scheme Object *scheme tail apply to list(Scheme Object * f , Scheme Object * l)

Applies the procedure as a tail-call.

• Scheme Object *scheme compile(Scheme Object * form, Scheme Env * env)

Compiles the S-expressionform in the given namespace. The returned value can be used with
scheme eval compiled et al.

• Scheme Object *scheme expand(Scheme Object * form, Scheme Env * env)

Expands all macros in the S-expressionformusing the given namespace.

• Scheme Object *scheme values(int n, Scheme Object ** args)

Returns the given values together as multiple return values. Unlessn is 1, the result will always be
scheme multiple values .

32

7. Exceptions and Escape Continuations

When MzScheme encounters an error, it raises an exception. The default exception handler invokes the error display
handler and then the error escape handler. The default error escape handler escapes via aprimitive error escape, which
is implemented by callingscheme longjmp(*scheme current thread->error buf) .

An embedding program should install a fresh buffer intoscheme current thread->error buf and call
scheme setjmp(*scheme current thread->error buf) before any top-level entry into MzScheme
evaluation to catch primitive error escapes. When the new buffer goes out of scope, restore the orig-
inal in scheme current thread->error buf . The macro scheme error buf is a shorthand for
*scheme current thread->error buf .

mz_jmp_buf * volatile save, fresh;
...
save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {

/* There was an error */
...

} else {
v = scheme_eval_string(s, env);

}
scheme_current_thread->error_buf = save;
...

New primitive procedures can raise a generic exception by callingscheme signal error . The arguments for
scheme signal error are roughly the same as for the standard C functionprintf . A specific primitive excep-
tion can be raised by callingscheme raise exn .

Full continuations are implemented in MzScheme by copying the C stack and usingscheme setjmp and
scheme longjmp . As long a C/C++ application invokes MzScheme evaluation through the top-level evaluation
functions (scheme eval , scheme eval , etc., as opposed toscheme eval , scheme apply , etc.), the code
is protected against any unusual behavior from Scheme evaluations (such as returning twice from a function) because
continuation invocations are confined to jumps within a single top-level evaluation. However, escape continuation
jumps are still allowed; as explained in the following sub-section, special care must be taken in extension that is
sensitive to escapes.

7.1 Temporarily Catching Error Escapes

When implementing new primitive procedure, it is sometimes useful to catch and handle errors that occur in eval-
uating subexpressions. One way to do this is the following: savescheme current thread->error buf
to a temporary variable, setscheme current thread->error buf to the address of a stack-allocated
mz jmp buf , invoke scheme setjmp(scheme error buf) , perform the function’s work, and then restore
scheme current thread->error buf before returning a value.

However, beware that the invocation of an escaping continuation looks like a primitive error escape, but the special

33

7.1. Temporarily Catching Error Escapes 7. Exceptions and Escape Continuations

indicator flagscheme jumping to continuation is non-zero (instead of its normal zero value); this situation
is only visible when implementing a new primitive procedure. Honor the escape request by chaining to the previously
saved error buffer; otherwise, callscheme clear escape .

mz_jmp_buf * volatile save, fresh;
save = scheme_current_thread->error_buf;
scheme_current_thread->error_buf = &fresh;
if (scheme_setjmp(scheme_error_buf)) {

/* There was an error or continuation invocation */
if (scheme_jumping_to_continuation) {

/* It was a continuation jump */
scheme_longjmp(*save, 1);
/* To block the jump, instead: scheme_clear_escape(); */

} else {
/* It was a primitive error escape */

}
} else {

scheme_eval_string("x", scheme_env);
}
scheme_current_thread->error_buf = save;

This solution works fine as long as the procedure implementation only calls top-level evaluation functions
(scheme eval , scheme eval , etc., as opposed toscheme eval , scheme apply , etc.). Otherwise, use
scheme dynamic wind to protect your code against full continuation jumps in the same way thatdynamic-wind
is used in Scheme.

The above solution simply traps the escape; it doesn’t report the reason that the escape occurred. To catch excep-
tions and obtain information about the exception, the simplest route is to mix Scheme code with C-implemented
thunks. The code below can be used to catch exceptions in a variety of situations. It implements the function
apply catch exceptions , which catches exceptions during the application of a thunk. (This code is incol-

lects/mzscheme/examples/catch.c in the distribution.)

static Scheme_Object *exn_catching_apply, *exn_p, *exn_message;

static void init_exn_catching_apply()
{

if (!exn_catching_apply) {
char *e =

"(lambda (thunk) "
"(with-handlers ([void (lambda (exn) (cons #f exn))]) "

"(cons #t (thunk))))";
/* make sure we have a namespace with the standard bindings: */
Scheme_Env *env = (Scheme_Env *)scheme_make_namespace(0, NULL);

scheme_register_extension_global(&exn_catching_apply, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_p, sizeof(Scheme_Object *));
scheme_register_extension_global(&exn_message, sizeof(Scheme_Object *));

exn_catching_apply = scheme_eval_string(e, env);
exn_p = scheme_lookup_global(scheme_intern_symbol("exn?"), env);
exn_message = scheme_lookup_global(scheme_intern_symbol("exn-message"), env);

}

34

7. Exceptions and Escape Continuations 7.1. Temporarily Catching Error Escapes

}

/* This function applies a thunk, returning the Scheme value if there’s no exception,
otherwise returning NULL and setting *exn to the raised value (usually an exn
structure). */

Scheme_Object *_apply_thunk_catch_exceptions(Scheme_Object *f, Scheme_Object **exn)
{

Scheme_Object *v;

init_exn_catching_apply();

v = _scheme_apply(exn_catching_apply, 1, &f);
/* v is a pair: (cons #t value) or (cons #f exn) */

if (SCHEME_TRUEP(SCHEME_CAR(v)))
return SCHEME_CDR(v);

else {
*exn = SCHEME_CDR(v);
return NULL;

}
}

Scheme_Object *extract_exn_message(Scheme_Object *v)
{

init_exn_catching_apply();

if (SCHEME_TRUEP(_scheme_apply(exn_p, 1, &v)))
return _scheme_apply(exn_message, 1, &v);

else
return NULL; /* Not an exn structure */

}

In the following example, the above code is used to catch exceptions that occur during while evaluating source code
from a string.

static Scheme_Object *do_eval(void *s, int noargc, Scheme_Object **noargv)
{

return scheme_eval_string((char *)s, scheme_get_env(scheme_config));
}

static Scheme_Object *eval_string_or_get_exn_message(char *s)
{

Scheme_Object *v, *exn;

v = _apply_thunk_catch_exceptions(scheme_make_closed_prim(do_eval, s), &exn);
/* Got a value? */
if (v)

return v;

v = extract_exn_message(exn);
/* Got an exn? */
if (v)

return v;

35

7.2. Enabling and Disabling Breaks 7. Exceptions and Escape Continuations

/* ‘raise’ was called on some arbitrary value */
return exn;

}

7.2 Enabling and Disabling Breaks

When embedding MzScheme, asynchronous break exceptions are disabled by default. Callscheme set can break
(which is the same as calling the Scheme funcitonbreak-enabled) to enable or disable breaks. To enable or disable
breaks during the dynamic extent of another evaluation (where you would usewith-break-parameterization
in Scheme), usescheme push break enable before andscheme pop break enable after, instead.

7.3 Library Functions

• void scheme signal error(char * msg, ...)

Raises a generic primitive exception. The parameters are roughly as forprintf , but restricted to the following format
directives:

• %c— a Unicode character (of typemzchar)

• %d— an integer

• %ld — a long integer

• %f — a floating-pointdouble

• %s— a nul-terminatedchar string

• %5— a nul-terminatedmzchar string

• %S— a MzScheme symbol (aScheme Object*)

• %t — a char string with along size (two arguments), possibly containing a non-terminating nul byte, and
possibly without a nul-terminator

• %u— amzchar string with along size (two arguments), possibly containing a non-terminating nul character,
and possibly without a nul-terminator

• %T— a MzScheme string (aScheme Object*)

• %q— a string, truncated to 253 characters, with ellipses printed if the string is truncated

• %Q— a MzScheme string (aScheme Object*), truncated to 253 characters, with ellipses printed if the
string is truncated

• %V— a MzScheme value (aScheme Object*), truncated according to the current error print width.

• %e— anerrno value, to be printed as a text message.

• %E— a platform-specific error value, to be printed as a text message.

• %Z— a potential platform-specific error value and achar string; if the string is non-NULL, then the error
value is ignored, otherwise the error value is used as for%E.

• %%— a percent sign

36

7. Exceptions and Escape Continuations 7.3. Library Functions

The arguments following the format string must include no more than 25 strings and MzScheme values, 25 integers,
and 25 floating-point numbers. (This restriction simplifies the implementation with precise garbage collection.)

• void scheme raise exn(int exnid, ...)

Raises a specific primitive exception. Theexnid argument specifies the exception to be raised. If an instance of
that exception hasn fields, then the nextn− 2 arguments are values for those fields (skipping themessage and
debug-info fields). The remaining arguments start with an error string and proceed roughly as forprintf ; see
scheme signal error above for more details.

Exception ids are#define d using the same names as in Scheme, but prefixed with “MZ”, all letters are capitalized,
and all “:’s’, “-”s, and “/”s are replaced with underscores. For example,MZEXNFAIL FILESYSTEMis the exception
id for a filesystem exception.

• void scheme warning(char * msg, ...)

Signals a warning. The parameters are roughly as forprintf ; seescheme signal error above for more details.

• void scheme wrong count(char * name, int minc, int maxc, int argc, Scheme Object ** argv)

This function is automatically invoked when the wrong number of arguments are given to a primitive procedure. It
signals that the wrong number of parameters was received and escapes (likescheme signal error). Thename
argument is the name of the procedure that was given the wrong number of arguments;minc is the minimum number
of expected arguments;maxcis the maximum number of expected arguments, or -1 if there is no maximum;argc and
argvcontain all of the received arguments.

• void scheme wrong type(char * name, char * expected, int which,
int argc, Scheme Object ** argv)

Signals that an argument of the wrong type was received, and escapes (likescheme signal error). Thename
argument is the name of the procedure that was given the wrong type of argument;expectedis the name of the expected
type; which is the offending argument in theargv array;argc andargv contain all of the received arguments. If the
originalargcandargvare not available, provide -1 forwhichand a pointer to the bad value inargv; argc is ignored in
this case.

• void scheme wrong return arity(char * name, int expected, int got, Scheme Object ** argv,
const char * detail, . . .)

Signals that the wrong number of values were returned to a multiple-values context. Theexpectedargument indicates
how many values were expected,got indicates the number received, andargvare the received values. Thedetailstring
can beNULLor it can contain aprintf -style string (with additional arguments) to describe the context of the error;
seescheme signal error above for more details about theprintf -style string.

• void scheme unbound global(char * name)

Signals an unbound-variable error, wherenameis the name of the variable.

• char *scheme make provided string(Scheme Object * o, int count, int * len)

Converts a Scheme value into a string for the purposes of reporting an error message. Thecountargument specifies
how many Scheme values total will appear in the error message (so the string for this value can be scaled appropriately).
If len is notNULL, it is filled with the length of the returned string.

• char *scheme make args string(char * s, int which, int argc, Scheme Object ** argv,

37

7.3. Library Functions 7. Exceptions and Escape Continuations

long * len)

Converts an array of Scheme values into a byte string, skipping the array element indicated bywhich. This function is
used to specify the “other” arguments to a function when one argument is bad (thus giving the user more information
about the state of the program when the error occurred). Iflen is notNULL, it is filled with the length of the returned
string.

• void scheme check proc arity(char * where, int a, int which,
int argc, Scheme Object ** argv)

Checks thewhichth argument inargv to make sure it is a procedure that can takea arguments. If there is an error,
thewhere, which, argc, andargvarguments are passed on toscheme wrong type . As in scheme wrong type ,
whichcan be -1, in which case* argv is checked.

• Scheme Object *scheme dynamic wind(void (* pre)(void *data) ,
Scheme Object *(* action)(void *data) ,
void (* post)(void *data) ,
Scheme Object *(* jmp handler)(void *data) ,
void * data)

Evaluates calls the functionaction to get a value for thescheme dynamic wind call. The functionspre andpost
are invoked when jumping into and out ofaction, respectively.

The functionjmp handler is called when an error is signaled (or an escaping continuation is invoked) during the call
to action; if jmp handlerreturnsNULL, then the error is passed on to the next error handler, otherwise the return value
is used as the return value for thescheme dynamic wind call.

The pointerdatacan be anything; it is passed along in calls toaction, pre, post, andjmp handler.

• void scheme clear escape()

Clears the “jumping to escape continuation” flag associated with a thread. Call this function when blocking escape
continuation hops (see the first example in§7.1).

• void scheme set can break(int on)

Enables or disables breaks in the same way as callingbreak-enabled .

• void scheme push break enable(Scheme Cont Frame Data * cframe, int on, int pre check)

Use this function with scheme pop break enable to enable or disable breaks in the same way as
with-break-parameterization ; this function writes tocframeto initialize it, andscheme pop break enable
reads fromcframe. If pre checkis non-zero and breaks are currently enabled, any pending break exception is raised.

• void scheme pop break enable(Scheme Cont Frame Data * cframe, int post check)

Use this function withscheme push break enable . If post check is non-zero and breaks are enabled after
restoring the previous state, then any pending break exception is raised.

38

8. Threads

The initializer functionscheme basic env creates the main Scheme thread; all other threads are created through
calls toscheme thread .

Information about each internal MzScheme thread is kept in aScheme Thread structure. A pointer to the current
thread’s structure is available asscheme current thread . A Scheme Thread structure includes the following
fields:

• error buf — This is themz jmp buf value used to escape from errors. Theerror buf value of the
current thread is available asscheme error buf .

• cjs.jumping to continuation — This flag distinguishes escaping-continuation invocations from
error escapes. Thecjs.jumping to continuation value of the current thread is available as
scheme jumping to continuation .

• init config — The thread’s initial parameterization. See also§9.

• cell values — The thread’s values for thread cells (see also§9).

• next — The next thread in the linked list of threads; this isNULL for the main thread.

The list of all threads is kept in a linked list;scheme first thread points to the first thread in the list. The last
thread in the list is always the main thread.

8.1 Integration with Threads

MzScheme’s threads can break external C code under two circumstances:

• Pointers to stack-based values can be communicated between threads.For example, if thread A stores a pointer
to a stack-based variable in a global variable, if thread B uses the pointer in the global variable, it may point to
data that is not currently on the stack.

• C functions that can invoke MzScheme (and also be invoked by MzScheme) depend on strict function-call nesting.
For example, suppose a function F uses an internal stack, pushing items on to the stack on entry and popping
the same items on exit. Suppose also that F invokes MzScheme to evaluate an expression. If the evaluation of
this expression invokes F again in a new thread, but then returns to the first thread before completing the second
F, then F’s internal stack will be corrupted.

If either of these circumstances occurs, MzScheme will probably crash.

8.2 Allowing Thread Switches

C code that performs substantial or unbounded work should occasionally callSCHEMEUSEFUEL—actually a
macro—which allows MzScheme to swap in another Scheme thread to run, and to check for breaks on the current

39

8.3. Blocking the Current Thread 8. Threads

thread. In particular, if breaks are enabled, thenSCHEMEUSEFUELmay trigger an exception.

The macro consumes an integer argument. On most platforms, where thread scheduling is based on timer interrupts, the
argument is ignored. On some platforms, however, the integer represents the amount of “fuel” that has been consumed
since the last call toSCHEMEUSEFUEL. For example, the implementation ofvector->list consumes a unit of
fuel for each created cons cell:
Scheme_Object *scheme_vector_to_list(Scheme_Object *vec)
{

int i;
Scheme_Object *pair = scheme_null;

i = SCHEME_VEC_SIZE(vec);

for (; i--;) {
SCHEME_USE_FUEL(1);
pair = scheme_make_pair(SCHEME_VEC_ELS(vec)[i], pair);

}

return pair;
}

TheSCHEMEUSEFUELmacro expands to a C block, not an expression.

8.3 Blocking the Current Thread

Embedding or extension code sometimes needs to block, but blocking should allow other MzScheme threads to ex-
ecute. To allow other threads to run, block usingscheme block until . This procedure takes two functions: a
polling function that tests whether the blocking operation can be completed, and a prepare-to-sleep function that sets
bits in fd set s when MzScheme decides to sleep (because all MzScheme threads are blocked). Under Windows, an
“ fd set ” can also accommodate OS-level semaphores or other handles viascheme add fd handle .

Since the functions passed toscheme block until are called by the Scheme thread scheduler, they must
never raise exceptions, callscheme apply , or trigger the evaluation of Scheme code in any way. The
scheme block until function itself may call the current exception handler, however, in reaction to a break (if
breaks are enabled).

When a blocking operation is associated with an object, then the object might make sense as an argument
to object-wait-multiple . To extend the set of objects accepted byobject-wait-multiple , ei-
ther register polling and sleeping functions withscheme add evt , or register a semaphore accessor with
scheme add evt through sema.

8.4 Threads in Embedded MzScheme with Event Loops

When MzScheme is embedded in an application with an event-based model (i.e., the execution of Scheme code in the
main thread is repeatedly triggered by external events until the application exits) special hooks must be set to ensure
that non-main threads execute correctly. For example, during the execution in the main thread, a new thread may be
created; the new thread may still be running when the main thread returns to the event loop, and it may be arbitrarily
long before the main thread continues from the event loop. Under such circumstances, the embedding program must
explicitly allow MzScheme to execute the non-main threads; this can be done by periodically calling the function
scheme check threads .

Thread-checking only needs to be performed when non-main threads exist (or when there are active callback triggers).

40

8. Threads 8.4. Threads in Embedded MzScheme with Event Loops

The embedding application can set the global function pointerscheme notify multithread to a function that
takes an integer parameter and returnsvoid . This function is be called with 1 when thread-checking becomes neces-
sary, and then with 0 when thread checking is no longer necessary. An embedding program can use this information
to prevent unnecessaryscheme check threads polling.

The below code illustrates how MrEd formerly set upscheme check threads polling using the wxWindows
wxTimer class. (Any regular event-loop-based callback is appropriate.) Thescheme notify multithread
pointer is set toMrEdInstallThreadTimer . (MrEd no longer work this way, however.)

class MrEdThreadTimer : public wxTimer
{

public:
void Notify(void); /* callback when timer expires */

};

static int threads_go;
static MrEdThreadTimer *theThreadTimer;
#define THREAD_WAIT_TIME 40

void MrEdThreadTimer::Notify()
{

if (threads_go)
Start(THREAD_WAIT_TIME, TRUE);

scheme_check_threads();
}

static void MrEdInstallThreadTimer(int on)
{

if (!theThreadTimer)
theThreadTimer = new MrEdThreadTimer;

if (on)
theThreadTimer->Start(THREAD_WAIT_TIME, TRUE);

else
theThreadTimer->Stop();

threads_go = on;
if (on)

do_this_time = 1;
}

An alternate architecture, which MrEd now uses, is to send the main thread into a loop, which blocks until an event
is ready to handle. MzScheme automatically takes care of running all threads, and it does so efficiently because the
main thread blocks on a file descriptor, as explained in§8.3.

8.4.1 Callbacks for Blocked Threads

Scheme threads are sometimes blocked on file descriptors, such as an input file or the X event socket.
Blocked non-main threads do not block the main thread, and therefore do not affect the event loop, so
scheme check threads is sufficient to implement this case correctly. However, it is wasteful to poll these de-
scriptors withscheme check threads when nothing else is happening in the application and when a lower-level
poll on the file descriptors can be installed. If the global function pointerscheme wakeup on input is set, then

41

8.4. Threads in Embedded MzScheme with Event Loops 8. Threads

this case is handled more efficiently by turning off thread checking and issuing a “wakeup” request on the blocking
file descriptors throughscheme wakeup on input .

A scheme wakeup on input procedure takes a pointer to an array of threefd set s (sortof1) and returnsvoid .
The scheme wakeup on input does not sleep; it just sets up callbacks on the specified file descriptors. When
input is ready on any of those file descriptors, the callbacks are removed andscheme wake up is called.

For example, the X Windows version of MrEd formerly setscheme wakeup on input to thisMrEdNeedWakeup:

static XtInputId *scheme_cb_ids = NULL;
static int num_cbs;

static void MrEdNeedWakeup(void *fds)
{

int limit, count, i, p;
fd_set *rd, *wr, *ex;

rd = (fd_set *)fds;
wr = ((fd_set *)fds) + 1;
ex = ((fd_set *)fds) + 2;

limit = getdtablesize();

/* See if we need to do any work, really: */
count = 0;
for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))
count++;

if (MZ_FD_ISSET(i, wr))
count++;

if (MZ_FD_ISSET(i, ex))
count++;

}

if (!count)
return;

/* Remove old callbacks: */
if (scheme_cb_ids)

for (i = 0; i < num_cbs; i++)
notify_set_input_func((Notify_client)NULL, (Notify_func)NULL,

scheme_cb_ids[i]);

num_cbs = count;
scheme_cb_ids = new int[num_cbs];

/* Install callbacks */
p = 0;
for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputReadMask,

1To ensure maximum portability, useMZFD XXXinstead ofFD XXX.

42

8. Threads 8.5. Sleeping by Embedded MzScheme

(XtInputCallbackProc)MrEdWakeUp, NULL);
if (MZ_FD_ISSET(i, wr))

scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,
(XtPointer *)XtInputWriteMask,
(XtInputCallbackProc)MrEdWakeUp, NULL);

if (MZ_FD_ISSET(i, ex))
scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputExceptMask,
(XtInputCallbackProc)MrEdWakeUp,
NULL);

}
}

/* callback function when input/exception is detected: */
Bool MrEdWakeUp(XtPointer, int *, XtInputId *)
{

int i;

if (scheme_cb_ids) {
/* Remove all callbacks: */
for (i = 0; i < num_cbs; i++)

XtRemoveInput(scheme_cb_ids[i]);

scheme_cb_ids = NULL;

/* ‘‘wake up’’ */
scheme_wake_up();

}

return FALSE;
}

8.5 Sleeping by Embedded MzScheme

When all MzScheme threads are blocked, MzScheme must “sleep” for a certain number of seconds or until external
input appears on some file descriptor. Generally, sleeping should block the main event loop of the entire application.
However, the way in which sleeping is performed may depend on the embedding application. The global function
pointerscheme sleep can be set by an embedding application to implement a blocking sleep, although MzScheme
implements this function for you.

A scheme sleep function takes two arguments: afloat and avoid * . The latter is really points to an array
of three “fd set ” records (one for read, one for write, and one for exceptions); these records are described further
below. If thefloat argument is non-zero, then thescheme sleep function blocks for the specified number of
seconds, at most. Thescheme sleep function should block until there is input one of the file descriptors specified
in the “fd set ,” indefinitely if the float argument is zero.

The second argument toscheme sleep is conceptually an array of threefd set records, but always use
scheme get fdset to get anything other than the zeroth element of this array, and manipulate each “fd set ”
with MZFD XXXinstead ofFD XXX.

The following functionmzsleep is an appropriatescheme sleep function for most any Unix or Windows appli-
cation. (This is approximately the built-in sleep used by MzScheme.)
void mzsleep(float v, void *fds)

43

8.6. Library Functions 8. Threads

{
if (v) {

sleep(v);
} else {

int limit;
fd_set *rd, *wr, *ex;

ifdef WIN32
limit = 0;

else
limit = getdtablesize();

endif

rd = (fd_set *)fds;
wr = (fd_set *)scheme_get_fdset(fds, 1);
ex = (fd_set *)scheme_get_fdset(fds, 2);

select(limit, rd, wr, ex, NULL);
}

}

8.6 Library Functions

• Scheme Object *scheme thread(Scheme Object * thunk)

Creates a new thread, just likethread .

• Scheme Object *scheme thread w details(Scheme Object * thunk, Scheme Config * config,
Scheme Thread Cell Table * cells,
Scheme Custodian * cust
int suspendto kill)

Like scheme thread , except that the created thread belongs tocust instead of the current custodian, it uses
the givenconfig for its initial configuration, it usescells for its thread-cell table, and ifsuspendto kill is non-
zero, then the thread is merely suspended when it would otherwise be killed (through eitherkill-thread or
custodian-shutdown-all).

Theconfigargument is typically obtained throughscheme current config or scheme extend config . A
configis immutable, so different threads can safely use the same value. Thecellsargument should be obtained from
scheme inherit cells ; it is mutable, and a particular cell table should be used by only one thread.

• Scheme Object *scheme make sema(long v)

Creates a new semaphore.

• void scheme post sema(Scheme Object * sema)

Posts tosema.

• int scheme wait sema(Scheme Object * sema, int try)

Waits onsema. If try is not 0, the wait can fail and 0 is returned for failure, otherwise 1 is returned.

44

8. Threads 8.6. Library Functions

• void scheme thread block(float sleeptime)

Allows the current thread to be swapped out in favor of other threads. Ifsleeptimepositive, then the current thread
will sleep for at leastsleeptimeseconds.

After calling this function, a program should almost always callscheme making progress next. The exception
is whenscheme thread block is called in a polling loop that performs no work that affects the progress of other
threads. In that case,scheme making progress should be called immediately after exiting the loop.

See alsoscheme block until , and see also theSCHEMEUSEFUELmacro in§8.2.

• void scheme thread block enable break(float sleeptime, int breakon)

Like scheme thread block , but breaks are enabled while blocking ifbreakon is true.

• void scheme swap thread(Scheme Thread * thread)

Swaps out the current thread in favor ofthread.

• void scheme break thread(Scheme Thread * thread)

Sends a break signal to the given thread.

• int scheme break waiting(Scheme Thread * thread)

Returns1 if a break frombreak-thread or scheme break thread has occurred in the specified thread but has
not yet been handled.

• int scheme block until(Scheme Ready Fun f , Scheme Needs Wakeup Fun fdf ,
Scheme Object * data, float sleep)

TheScheme Ready Fun andScheme Needs Wakeup Fun types are defined as follows:
typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data, void *fds);

Blocks the current thread untilf with data returns a true value. Thef function is called periodically—at least once
per potential swap-in of the blocked thread—and it may be called multiple times even after it returns a true value. If
f with data ever returns a true value, it must continue to return a true value untilscheme block until returns.
The argument tof is the samedataas provided toscheme block until , anddatais ignored otherwise. (Thedata
argument is not actually required to be aScheme Object* value, because it is only used byf andfdf .)

If MzScheme decides to sleep, then thefdf function is called to sets bits infds, conceptually an array of threefd set s:
one or reading, one for writing, and one for exceptions. Usescheme get fdset to get elements of this array, and
manipulate an “fd set ” with MZFD XXXinstead ofFD XXX. Under Windows, an “fd set ” can also accommodate
OS-level semaphores or other handles viascheme add fd handle .

Thefdf argument can beNULL, which implies that the thread becomes unblocked (i.e.,readychanges its result to true)
only through Scheme actions, and never through external processes (e.g., through a socket or OS-level semaphore).

If sleep is a positive number, thenscheme block until polls f at least everysleep seconds, but
scheme block until does not return untilf returns a true value. The call toscheme block until can re-
turn beforesleepseconds iff returns a true value.

45

8.6. Library Functions 8. Threads

The return value fromscheme block until is the return value of its most recent call tof , which enablesf to
return some information to thescheme block until caller.

See§8.3for information about restrictions on thef andfdf functions.

• int scheme block until enable break(Scheme Ready Fun f , Scheme Needs Wakeup Fun fdf ,
Scheme Object * data, float sleep,
int breakon)

Like scheme block until , but breaks are enabled while blocking ifbreakon is true.

• int scheme block until unless(Scheme Ready Fun f , Scheme Needs Wakeup Fun fdf ,
Scheme Object * data, float sleep,
Scheme Object * unlessevt, int breakon)

Like scheme block until enable break , but the function returns ifunlessevt becomes ready, whereun-
lessevtis a port progress event implemented byscheme progress evt via get . Seescheme make input port
for more information.

• void scheme check threads()

This function is periodically called by the embedding program to give background processes time to execute. See§8.4
for more information.

• void scheme wake up()

This function is called by the embedding program when there is input on an external file descriptor. See§8.5for more
information.

• void *scheme get fdset(void * fds, int pos)

Extracts an “fd set ” from an array passed toscheme sleep , a callback forscheme block until , or an input
port callback forscheme make input port .

• void scheme add fd handle(void * h, void * fds, int repost)

Adds an OS-level semaphore (Windows) or other waitable handle (Windows) to the “fd set ” fds. When MzScheme
performs a “select ” to sleep onfds, it also waits on the given semaphore or handle. This feature makes it possible
for MzScheme to sleep until it is awakened by an external process.

MzScheme does not attempt to deallocate the given semaphore or handle, and the “select ” call using fds may
be unblocked due to some other file descriptor or handle infds. If repostis a true value, thenh must be an OS-level
semaphore, and if the “select ” unblocks due to a post onh, thenh is reposted; this allows clients to treatfds-installed
semaphores uniformly, whether or not a post on the semaphore was consumed by “select ”.

The scheme add fd handle function is useful for implementing the second procedure passed to
scheme wait until , or for implementing a custom input port.

Under Unix and Mac OS X, this function has no effect.

• void scheme add fd eventmask(void * fds, int mask)

Adds an OS-level event type (Windows) to the set of types in the “fd set ” fds. When MzScheme performs a
“select ” to sleep onfds, it also waits on events of them specified type. This feature makes it possible for MzScheme

46

8. Threads 8.6. Library Functions

to sleep until it is awakened by an external process.

The event mask is only used when some handle is installed withscheme add fd handle . This awkward restriction
may force you to create a dummy semaphore that is never posted.

Under Unix, and Mac OS X, this function has no effect.

• void scheme add evt(Scheme Type type, Scheme Ready Fun ready,
Scheme Needs Wakeup Fun wakeup, Scheme Wait Filter Fun filter
int can redirect)

The argument types are defined as follows:
typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);
typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data, void *fds);
typedef int (*Scheme_Wait_Filter_Fun)(Scheme_Object *data);

Extends the set of waitable objects forobject-wait-multiple to those with the type tagtype. If filter is non-
NULL, it constrains the new waitable set to those objects for whichfilter returns a non-zero value.

Thereadyandwakeupfunctions are used in the same way was the arguments toscheme block until .

Thecan redirectargument should be0.

• void scheme add evt through sema(Scheme Type type, Scheme Wait Sema Fun getsema,
Scheme Wait Filter Fun filter)

Like scheme add evt , but for objects where waiting is based on a semaphore. Instead ofreadyandwakeupfunc-
tions, thegetsemafunction extracts a semaphore for a given object:

typedef Scheme_Object *(*Scheme_Wait_Sema_Fun)(Scheme_Object *data, int *repost);

If a successful wait should leave the semaphore waited, thengetsemashould set*repost to 0. Otherwise, the given
semaphore will be re-posted after a successful wait. Agetsemafunction should almost always set*repost to 1.

• void scheme making progress()

Notifies the scheduler that the current thread is not simply callingscheme thread block in a loop, but that it is
actually making progress.

• int scheme tls allocate()

Allocates a thread local storage index to be used withscheme tls set andscheme tls get .

• void scheme tls set(int index, void * v)

Stores a thread-specific value using an index allocated withscheme tls allocate .

• void *scheme tls get(int index)

Retrieves a thread-specific value installed withscheme tls set . If no thread-specific value is available for the
given index,NULL is returned.

• Scheme Object *scheme call enable break(Scheme Prim * prim, int argc, Scheme Object ** argv)

47

8.6. Library Functions 8. Threads

Calls prim with the givenargc andargv with breaks enabled. Theprim function can block, in which case it might
be interrupted by a break. Theprim function should not block, yield, or check for breaks after it succeeds, where
“succeeds” depends on the operation. For example,tcp-accept/enable-break is implemented by wrapping
this function around the implementation oftcp-accept ; thetcp-accept implementation does not block or yield
after it accepts a connection.

• Scheme Object *scheme make thread cell(Scheme Object * def val, int preserved)

Creates a thread cell, likemake-thread-cell .

• Scheme Object *scheme thread cell get(Scheme Object * cell,
Scheme Thread Cell Table * cells)

Accesses a thread-specific value from a thread cell, likethread-cell-ref . The second argument is typically
scheme current thread->cell values to get a value for the current thread.

• void scheme thread cell set(Scheme Object * cell,
Scheme Thread Cell Table * cells, Scheme Object * v)

Sets a thread-specific value for a thread cell, likethread-cell-set! . The second argument is typically
scheme current thread->cell values to set a value for the current thread.

• void scheme start atomic()

Prevents MzScheme thread swaps untilscheme end atomic or scheme end atomic no swap is called. Start-
atomic and end-atomic pairs can be nested.

• void scheme end atomic()

Ends an atomic region with respect to MzScheme threads. The current thread may be swapped out immediately (i.e.,
the call toscheme end atomic is assumed to be a safe point for thread swaps).

• void scheme end atomic no swap()

Ends an atomic region with respect to MzScheme threads, and also prevents an immediate thread swap. (In other
words, no MzScheme thread swaps will occur until a future safe point.)

48

9. Parameterizations

A parameterization is a set of parameter values. Each thread has its own initial parameterization, which is extended
functionally and superseded by parameterizations that are attached to a particular continuation mark.

Parameterization information is stored in aScheme Config record. For the currently executing thread,
scheme current config returns the current parameterization.

To obtain parameter values, aScheme Config is combined with the current threadsScheme Thread Cell Table ,
as stored in the thread record’scell values field.

Parameter values for built-in parameters are obtained and modified (for the current thread) usingscheme get param
andscheme set param . Each parameter is stored as aScheme Object * value, and the built-in parameters are
accessed through the following indices:

• MZCONFIGENV— current-namespace (usescheme get env)
• MZCONFIGINPUT PORT— current-input-port
• MZCONFIGOUTPUTPORT— current-output-port
• MZCONFIGERRORPORT— current-error-port
• MZCONFIGERRORDISPLAY HANDLER— error-display-handler
• MZCONFIGERRORPRINT VALUEHANDLER— error-value->string-handler
• MZCONFIGEXIT HANDLER— exit-handler
• MZCONFIGEXNHANDLER— current-exception-handler
• MZCONFIGDEBUGINFO HANDLER— debug-info-handler
• MZCONFIGEVAL HANDLER— current-eval
• MZCONFIGLOADHANDLER— current-load
• MZCONFIGPRINT HANDLER— current-print
• MZCONFIGPROMPTREADHANDLER— current-prompt-read
• MZCONFIGCANREADGRAPH— read-accept-graph
• MZCONFIGCANREADCOMPILED— read-accept-compiled
• MZCONFIGCANREADBOX— read-accept-box
• MZCONFIGCANREADTYPE SYMBOL— read-accept-type-symbol
• MZCONFIGCANREADPIPE QUOTE— read-accept-bar-quote
• MZCONFIGPRINT GRAPH— print-graph
• MZCONFIGPRINT STRUCT— print-struct
• MZCONFIGPRINT BOX— print-box
• MZCONFIGCASESENS— read-case-sensitive
• MZCONFIGSQUAREBRACKETSAREPARENS— read-square-brackets-as-parens
• MZCONFIGCURLYBRACESAREPARENS— read-curly-braces-as-parens
• MZCONFIGERRORPRINT WIDTH— error-print-width
• MZCONFIGCONFIGBRANCHHANDLER— parameterization-branch-handler
• MZCONFIGALLOWSET UNDEFINED— allow-compile-set!-undefined
• MZCONFIGCUSTODIAN— current-custodian
• MZCONFIGUSECOMPILEDKIND — use-compiled-file-kinds
• MZCONFIGLOADDIRECTORY— current-load-relative-directory
• MZCONFIGCOLLECTIONPATHS— current-library-collection-paths

49

9.1. Library Functions 9. Parameterizations

• MZCONFIGPORTPRINT HANDLER— global-port-print-handler

• MZCONFIGLOADEXTENSIONHANDLER— current-load-extension

To get or set a parameter value for a thread other than the current one, usescheme get thread param and
scheme set thread param , each of which takes aScheme Thread Cell Table to use in resolving or set-
ting a parameter value.

When installing a new parameter withscheme set param , no check is performed on the supplied value to ensure
that it is a legal value for the parameter; this is the responsibility of the caller ofscheme set param . Note that
Boolean parameters should only be set to the values#t and#f .

New primitive parameter indices are created withscheme new param and implemented withscheme make parameter
andscheme param config .

9.1 Library Functions

• Scheme Object *scheme get param(Scheme Config * config, int param id)

Gets the current value (for the current thread) of the parameter specified byparam id.

• Scheme Object *scheme set param(Scheme Config * config, int param id, Scheme Object * v)

Sets the current value (for the current thread) of the parameter specified byparam id.

• Scheme Object *scheme get thread param(Scheme Config * config,
Scheme Thread Cell Table * cells,
int param id)

Like scheme get param , but using an arbitrary thread’s cell-value table.

• Scheme Object *scheme set thread param(Scheme Config * config,
Scheme Thread Cell Table * cells,
int param id, Scheme Object * v)

Like scheme set param , but using an arbitrary thread’s cell-value table.

• Scheme Object *scheme extend config(Scheme Config * base, int param id, Scheme Object * v)

Creates and returns a parameterization that extendsbasewith a new valuev (in all threads) for the parameterparam id.
Usescheme install config to make this configuration active in the current thread.

• void scheme install config(Scheme Config * config)

Adjusts the current thread’s continuation marks to makeconfig the current parameterization. Typically, this func-
tion is called afterscheme push continuation frame to establish a new continuation frame, and then
scheme pop continuation frame is called later to remove the frame (and thus the parameterization).

• Scheme Thread Cell Table *scheme inherit cells(Scheme Thread Cell Table * cells)

Creates a new thread-cell-value table, copying values for preserved thread cells fromcells.

• int scheme new param()

50

9. Parameterizations 9.1. Library Functions

Allocates a new primitive parameter index. This function must be calledbeforescheme basic env , so it is only
available to embedding applications (i.e., not extensions).

• Scheme Object *scheme register parameter(Scheme Prim * function, char * name, int exnid)

Use this function instead of the other primitive-constructing functions, likescheme make prim , to create a primitive
parameter procedure. See alsoscheme param config , below. This function is only available to embedding
applications (i.e., not extensions).

• Scheme Object *scheme param config(char * name, Scheme Object * param,
int argc, Scheme Object ** argv,
int arity, Scheme Prim * check, char * expected,
int isbool)

Call this procedure in a primitive parameter procedure to implement the work of getting or setting the parameter. The
nameargument should be the parameter procedure name; it is used to report errors. Theparamargument is a fixnum
corresponding to the primitive parameter index returned byscheme new param . The argc andargv arguments
should be the un-touched and un-tested arguments that were passed to the primitive parameter. Argument-checking is
performed withinscheme param config usingarity, check, expected, andisbool:

• If arity is non-negative, potential parameter values must be able to accept the specified number of arguments.
Thecheckandexpectedarguments should beNULL.

• If checkis notNULL, it is called to check a potential parameter value. The arguments passed tocheckare always
1 and an array that contains the potential parameter value. Ifisbool is 0 andcheckreturnsscheme false ,
then a type error is reported usingnameandexpected. If isbool is 1, then a type error is reported only when
checkreturnsNULLand any non-NULLreturn value is used as the actual value to be stored for the parameter.

• Otherwise,isboolshould be 1. A potential procedure argument is then treated as a Boolean value.

This function is only available to embedding applications (i.e., not extensions).

51

10. Continuation Marks

A mark can be attached to the current continuation frame usingscheme set cont mark . To force the creation of
a new frame (e.g., during a nested function call within your function), usescheme push continuation frame ,
and then remove the frame withscheme pop continuation frame .

10.1 Library Functions

• void scheme set cont mark(Scheme Object * key, Scheme Object * val)

Add/sets a continuation mark in the current continuation.

• void scheme push continuation frame(Scheme Cont Frame Data * data)

Creates a new continuation frame. Thedata record need not be initialized, and it can be allocated on the C stack.
Supplydatato scheme pop continuation frame to remove the continuation frame.

• void scheme pop continuation frame(Scheme Cont Frame Data * data)

Removes a continuation frame created byscheme pop continuation frame .

52

11. String Encodings

Thescheme utf8 decode function decodes achar array as UTF-8 into either a UCS-4mzchar array or a UTF-
16short array. Thescheme utf8 encode function encodes either a UCS-4mzchar array or a UTF-16short
array into a UTF-8char array.

These functions can be used to check or measure an encoding or decoding without actually producing the result
decoding or encoding, and variations of the function provide control over the handling of decoding errors.

11.1 Library Functions

• int scheme utf8 decode(const unsigned char * s, int start, int end,
mzchar * us, int dstart, int dend,
long * ipos, char utf16, int permissive)

Decodes a byte array as UTF-8 to produce either Unicode code points intous (whenutf16 is zero) or UTF-16 code
units intouscast toshort* (whenutf16 is non-zero). No nul terminator is added tous.

The result is non-negative when all of the given bytes are decoded, and the result is the length of the decoding (in
mzchar s orshort s). A -2 result indicates an invalid encoding sequence in the given bytes (possibly because the
range to decode ended mid-encoding), and a-3 result indicates that decoding stopped because not enough room was
available in the result string.

Thestart andendarguments specify a range ofs to be decoded. Ifendis negative,strlen(s) is used as the end.

If us is NULL, then decoded bytes are not produced, but the result is valid as if decoded bytes were written. Thedstart
anddendarguments specify a target range inus (in mzchar or short units) for the decoding; a negative value for
dendindicates that any number of bytes can be written tous, which is normally sensible only whenus is NULL for
measuring the length of the decoding.

If ipos is non-NULL, it is filled with the first undecoded index withins. If the function result is non-negative, then
* ipos is set to the ending index (with isend if non-negative,strlen(s) otherwise). If the result is-1 or -2 , then
* iposeffectively indicates how many bytes were decoded before decoding stopped.

If permissiveis non-zero, it is used as the decoding of bytes that are not part of a valid UTF-8 encoding. Thus, the
function result can be-2 only if permissiveis 0.

This function does not allocate or trigger garbage collection.

• int scheme utf8 decode as prefix(const unsigned char * s, int start, int end,
mzchar * us, int dstart, int dend,
long * ipos, char utf16, int permissive)

Like scheme utf8 decode , but the result is always the number of the decodedmzchar s orshort s. If a decoding
error is encountered, the result is still the size of the decoding up until the error.

53

11.1. Library Functions 11. String Encodings

• int scheme utf8 decode all(const unsigned char * s, int len,
mzchar * us, int permissive)

Like scheme utf8 decode , but with fewer arguments. The decoding produces UCS-4mzchar s. If the bufferus
is non-NULL, it is assumed to be long enough to hold the decoding (which cannot be longer than the length of the
input, though it may be shorter). Iflen is negative,strlen(s) is used as the input length.

• int scheme utf8 decode prefix(const unsigned char * s, int len,
mzchar * us, int permissive)

Like scheme utf8 decode , but with fewer arguments. The decoding produces UCS-4mzchar s. If the bufferus
must be non-NULL, and it is assumed to be long enough to hold the decoding (which cannot be longer than the length
of the input, though it may be shorter). Iflen is negative,strlen(s) is used as the input length.

In addition to the result ofscheme utf8 decode , the result can be-1 to indicate that the input ended with a partial
(valid) encoding. A-1 result is possible even whenpermissiveis non-zero.

• mzchar *scheme utf8 decode to buffer(const unsigned char * s, int len,
mzchar * buf, int blen)

Like scheme utf8 decode all with permissiveas0, but if buf is not large enough (as indicated byblen) to hold
the result, a new buffer is allocated. Unlike other functions, this one adds a nul terminator to the decoding result. The
function result is eitherbuf (if it was big enough) or a buffer allocated withscheme malloc atomic .

• mzchar *scheme utf8 decode to buffer len(const unsigned char * s, int len,
mzchar * buf, int blen, long * ulen)

Like scheme utf8 decode to buffer , but the length of the result (not including the terminator) is placed into
ulen if ulen is non-NULL.

• int scheme utf8 decode count(const unsigned char * s, int start, int end,
int * state, int might continue, int permissive)

Like scheme utf8 decode , but without producing the decodedmzchar s, and always returning the number of
decodedmzchar s up until a decoding error (if any). Ifmight continueis non-zero, the a partial valid encoding at the
end of the input is not decoded whenpermissiveis also non-zero.

If stateis non-NULL, it holds information about partial encodings; it should be set to zero for an initial call, and then
passed back toscheme utf8 decode along with bytes that extend the given input (i.e., without any unused partial
encodings). Typically, this mode makes sense only whenmight continueandpermissiveare non-zero.

• int scheme utf8 encode(const mzchar * us, int start, int end,
unsigned char * s, int dstart, char utf16)

Encodes the given UCS-4 array ofmzchar s (if utf16 is zero) or UTF-16 array ofshort s (if utf16 is non-zero) into
s. Theendargument must be no less thanstart.

The arrays is assumed to be long enough to contain the encoding, but no encoding is written ifs is NULL. Thedstart
argument indicates a starting place ins to hold the encoding. No nul terminator is added tos.

The result is the number of bytes produced for the encoding (or that would be produced ifswas non-NULL). Encoding
never fails.

This function does not allocate or trigger garbage collection.

54

11. String Encodings 11.1. Library Functions

• int scheme utf8 encode all(const mzchar * us, int len,
unsigned char * s)

Like scheme utf8 encode with 0 for start, len for end, 0 for dstartand0 for utf16.

• char *scheme utf8 encode to buffer(const mzchar * s, int len,
char * buf, int blen)

Like scheme utf8 encode all , but the length ofbuf is given, and if it is not long enough to hold the encoding,
a buffer is allocated. A nul terminator is added to the encoded array. The result is eitherbuf or an array allocated with
scheme malloc atomic .

• char *scheme utf8 encode to buffer len(const mzchar * s, int len,
char * buf, int blen, long * rlen)

Like scheme utf8 encode to buffer , but the length of the resulting encoding (not including a nul terminator)
is reported inrlen if it is non-NULL.

• unsigned short *scheme ucs4 to utf16(const mzchar * text, int start, int end,
unsigned short * buf, int bufsize,
long * ulen, int term size)

Converts a UCS-4 encoding (the indicated range oftext) to a UTF-16 encoding. Theendargument must be no less
thanstart.

A result buffer is allocated ifbuf is not long enough (as indicated bybufsize). If ulen is non-NULL, it is filled with the
length of the UTF-16 encoding. Theterm sizeargument indicates a number ofshort s to reserve at the end of the
result buffer for a terminator (but no terminator is actually written).

• mzchar *scheme utf16 to ucs4(const unsigned short * text, int start, int end,
mzchar * buf, int bufsize,
long * ulen, int term size)

Converts a UTF-16 encoding (the indicated range oftext) to a UCS-4 encoding. Theendargument must be no less
thanstart.

A result buffer is allocated ifbuf is not long enough (as indicated bybufsize). If ulen is non-NULL, it is filled with the
length of the UCS-4 encoding. Theterm sizeargument indicates a number ofmzchar s to reserve at the end of the
result buffer for a terminator (but no terminator is actually written).

55

12. Bignums, Rationals, and Complex Numbers

MzScheme supports integers of an arbitrary magnitude; when an integer cannot be represented as a fixnum (i.e., 30 or
62 bits plus a sign bit), then it is represented by the MzScheme typescheme bignum type . There is no overlap in
integer values represented by fixnums and bignums.

Rationals are implemented by the typescheme rational type , composed of a numerator and a denominator.
The numerator and denominator fixnums or bignums (possibly mixed).

Complex numbers are implemented by the typesscheme complex type and scheme complex izi type ,
composed of a real and imaginary part. The real and imaginary parts will either be both flonums, both exact num-
bers (fixnums, bignums, and rationals can be mixed in any way), or one part will be exact 0 and the other part
will be a flonum. If the inexact part is inexact 0, the type isscheme complex izi type , otherwise the type is
scheme complex type ; this distinction make it easy to test whether a complex number should be treated as a real
number.

12.1 Library Functions

• int scheme is exact(Scheme Object * n)

Returns1 if n is an exact number,0 otherwise (n need not be a number).

• int scheme is inexact(Scheme Object * n)

Returns1 if n is an inexact number,0 otherwise (n need not be a number).

• Scheme Object *scheme make bignum(long v)

Creates a bignum representing the integerv. This can create a bignum that otherwise fits into a fixnum. This must
only be used to create temporary values for use with thebignum functions. Final results can be normalized with
scheme bignum normalize . Only normalized numbers can be used with procedures that are not specific to
bignums.

• Scheme Object *scheme make bignum from unsigned(unsigned long v)

Like scheme make bignum , but works on unsigned integers.

• double scheme bignum to double(Scheme Object * n)

Converts a bignum to a floating-point number, with reasonable but unspecified accuracy.

• float scheme bignum to float(Scheme Object * n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum to double .

56

12. Bignums, Rationals, and Complex Numbers 12.1. Library Functions

• Scheme Object *scheme bignum from double(double d)

Creates a bignum that is close in magnitude to the floating-point numberd. The conversion accuracy is reasonable but
unspecified.

• Scheme Object *scheme bignum from float(float f)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme bignum from double .

• char *scheme bignum to string(Scheme Object * n, int radix)

Writes a bignum into a newly allocated byte string.

• Scheme Object *scheme read bignum(mzchar * str, int offset, int radix)

Reads a bignum from amzchar string, starting from positionoffsetin str. If the string does not represent an integer,
thenNULL will be returned. If the string represents a number that fits in 31 bits, then ascheme integer type
object will be returned.

• Scheme Object *scheme read bignum bytes(char * str, int offset, int radix)

Like scheme read bignum , but from a UTF-8-encoding byte string.

• Scheme Object *scheme bignum normalize(Scheme Object * n)

If n fits in 31 bits, then ascheme integer type object will be returned. Otherwise,n is returned.

• Scheme Object *scheme make rational(Scheme Object * n, Scheme Object * d)

Creates a rational from a numerator and denominator. Then andd parameters must be fixnums or bignums (possibly
mixed). The resulting will be normalized (thus, a bignum or fixnum might be returned).

• double scheme rational to double(Scheme Object * n)

Converts the rationaln to adouble .

• float scheme rational to float(Scheme Object * n)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational to double .

• Scheme Object *scheme rational numerator(Scheme Object * n)

Returns the numerator of the rationaln.

• Scheme Object *scheme rational denominator(Scheme Object * n)

Returns the denominator of the rationaln.

• Scheme Object *scheme rational from double(double d)

Converts the givendouble into a maximally-precise rational.

57

12.1. Library Functions 12. Bignums, Rationals, and Complex Numbers

• Scheme Object *scheme rational from float(float d)

If MzScheme is not compiled with single-precision floats, this procedure is actually a macro alias for
scheme rational from double .

• Scheme Object *scheme make complex(Scheme Object * r, Scheme Object * i)

Creates a complex number from real and imaginary parts. Ther andi arguments must be fixnums, bignums, flonums,
or rationals (possibly mixed). The resulting number will be normalized (thus, a real number might be returned).

• Scheme Object *scheme complex real part(Scheme Object * n)

Returns the real part of the complex numbern.

• Scheme Object *scheme complex imaginary part(Scheme Object * n)

Returns the imaginary part of the complex numbern.

58

13. Ports and the Filesystem

Ports are represented as Scheme values with the typesscheme input port type andscheme output port type .
The functionscheme read takes an input port value and returns the next S-expression from the port. The function
scheme write takes an output port and a value and writes the value to the port. Other standard low-level port
functions are also provided, such asscheme getc .

File ports are created withscheme make file input port and scheme make file output port ;
these functions take aFILE * file pointer and return a Scheme port. Strings are read or writ-
ten with scheme make byte string input port , which takes a nul-terminated byte string, and
scheme make byte string output port , which takes no arguments. The contents of a string output port
are obtained withscheme get byte string output .

Custom ports, with arbitrary read/write handlers, are created withscheme make input port and
scheme make output port .

When opening a file for any reason using a name provided from Scheme, usescheme expand filename to
normalize the filename and resolve relative paths.

13.1 Library Functions

• Scheme Object *scheme read(Scheme Object * port)

Reads the next S-expression from the given input port.

• void scheme write(Scheme Object * obj, Scheme Object * port)

write s the Scheme valueobj to the given output port.

• void scheme write w max(Scheme Object * obj, Scheme Object * port, int n)

Like scheme write , but the printing is truncated ton bytes. (If printing is truncated, the last bytes are printed as
“.”.)

• void scheme display(Scheme Object * obj, Scheme Object * port)

display s the Scheme valueobj to the given output port.

• void scheme display w max(Scheme Object * obj, Scheme Object * port, int n)

Like scheme display , but the printing is truncated ton bytes. (If printing is truncated, the last three bytes are
printed as “.”.)

• void scheme write byte string(char * str, long len, Scheme Object * port)

59

13.1. Library Functions 13. Ports and the Filesystem

Writes lenbytes ofstr to the given output port.

• void scheme write char string(mzchar * str, long len, Scheme Object * port)

Writes lencharacters ofstr to the given output port.

• long scheme put byte string(const char * who, Scheme Object * port,
char * str, long d, long len,
int rarely block)

Writeslenbytes ofstr, starting with thedth character. Bytes are written to the given output port, and errors are reported
as fromwho.

If rarely block is 0, the write blocks until alllen bytes are written, possibly to an internal buffer. Ifrarely block is 2,
the write never blocks, and written bytes are not buffered. Ifrarely block is 1, the write blocks only until at least one
byte is written (without buffering) or until part of an internal buffer is flushed.

Supplying0 for lencorresponds to a buffer-flush request. Ifrarely block is 2, the flush request is non-blocking, and if
rarely block is 0, it is blocking. (Ararely blockof 1 is the same as0 in this case.)

The result is-1 if no bytes are written fromstr and unflushed bytes remain in the internal buffer. Otherwise, the return
value is the number of written characters.

• long scheme put char string(const char * who, Scheme Object * port,
char * str, long d, long len)

Like scheme put byte string , but for amzchar string, and without the non-blocking option.

• char *scheme write to string(Scheme Object * obj, long * len)

Prints the Scheme valueobj usingwrite to a newly allocated string. Iflen is notNULL, * len is set to the length of
the bytes string.

• void scheme write to string w max(Scheme Object * obj, long * len, int n)

Like scheme write to string , but the string is truncated ton bytes. (If the string is truncated, the last three
bytes are “.”.)

• char *scheme display to string(Scheme Object * obj, long * len)

Prints the Scheme valueobj usingdisplay to a newly allocated string. Iflen is notNULL, * len is set to the length
of the string.

• void scheme display to string w max(Scheme Object * obj, long * len, int n)

Like scheme display to string , but the string is truncated ton bytes. (If the string is truncated, the last three
bytes are “.”.)

• void scheme debug print(Scheme Object * obj)

Prints the Scheme valueobj usingwrite to the main thread’s output port.

• void scheme flush output(Scheme Object * port)

60

13. Ports and the Filesystem 13.1. Library Functions

If port is a file port, a buffered data is written to the file. Otherwise, there is no effect.port must be an output port.

• int scheme get byte(Scheme Object * port)

Get the next byte from the given input port. The result can beEOF.

• int scheme getc(Scheme Object * port)

Get the next character from the given input port (by decoding bytes as UTF-8). The result can beEOF.

• int scheme peek byte(Scheme Object * port)

Peeks the next byte from the given input port. The result can beEOF.

• int scheme peekc(Scheme Object * port)

Peeks the next character from the given input port (by decoding bytes as UTF-8). The result can beEOF.

• int scheme peek byte skip(Scheme Object * port, Scheme Object * skip)

Like scheme peek byte , but with a skip count. The result can beEOF.

• int scheme peekc skip(Scheme Object * port, Scheme Object * skip)

Like scheme peekc , but with a skip count. The result can beEOF.

• long scheme get byte string(const char * who, Scheme Object * port,
char * buffer, int offset, long size,
int only avail, int peek, Scheme Object * peekskip)

Gets multiple bytes at once from a port, reporting errors with the namewho. Thesizeargument indicates the number
of requested bytes, to be put into thebuffer array starting atoffset. The return value is the number of bytes actually
read, orEOFif an end-of-file is encountered without reading any bytes.

If only avail is 0, then the function blocks untilsizebytes are read or an end-of-file is reached. Ifonly avail is 1, the
function blocks only until at least one byte is read. Ifonly avail is 2, the function never blocks. Ifonly avail is -1 ,
the function blocks only until at least one byte is read but also allows breaks (with the guarantee that bytes are read or
a break is raised, but not both).

If peekis non-zero, then the port is peeked instead of read. Thepeekskipargument indicates a portion of the input
stream to skip as a non-negative, exact integer (fixnum or bignum). In this case, anonly avail value of1 means to
continue the skip until at least one byte can be returned, even if it means multiple blocking reads to skip bytes.

If peekis zero, thenpeekskipshould be eitherNULL(which means zero) or the fixnum zero.

• long scheme get char string(const char * who, Scheme Object * port,
char * buffer, int offset, long size,
int peek, Scheme Object * peekskip)

Like scheme get byte string , but for characters (by decoding bytes as UTF-8), and without the non-blocking
option.

• long scheme get bytes(Scheme Object * port, long size, char * buffer, int offset)

61

13.1. Library Functions 13. Ports and the Filesystem

For backward compatibility: callsscheme get byte string in essentially the obvious way withonly avail as0;
if sizeis negative, then it reads-sizebytes withonly avail as1.

• void scheme ungetc(int ch, Scheme Object * port)

Puts the bytechback as the next character to be read from the given input port. The character need not have been read
from port, andscheme ungetc can be called to insert up to five characters at the start ofport.

Use scheme get byte followed by scheme ungetc only when your program will certainly call
scheme get byte again to consume the byte. Otherwise, usescheme peek byte , because some a port may
implement peeking and getting differently.

• int scheme byte ready(Scheme Object * port)

Returns 1 if a call toscheme get byte is guaranteed not to block for the given input port.

• int scheme char ready(Scheme Object * port)

Returns 1 if a call toscheme getc is guaranteed not to block for the given input port.

• void scheme need wakeup(Scheme Object * port, void * fds)

Requests that appropriate bits are set infds to specify which file descriptors(s) the given input port reads from. (fds is
sortof a pointer to anfd set struct; see§8.4.1.)

• long scheme tell(Scheme Object * port)

Returns the current read position of the given input port, or the current file position of the given output port.

• long scheme tell line(Scheme Object * port)

Returns the current read line of the given input port. If lines are not counted, -1 is returned.

• void scheme count lines(Scheme Object * port)

Turns on line-counting for the given input port. To get accurate line counts, call this function immediately after creating
a port.

• long scheme set file position(Scheme Object * port, long pos)

Sets the file position of the given input or output port (from the start of the file). If the port does not support position
setting, an exception is raised.

• void scheme close input port(Scheme Object * port)

Closes the given input port.

• void scheme close output port(Scheme Object * port)

Closes the given output port.

• int scheme get port file descriptor(Scheme Object * port, long * fd)

62

13. Ports and the Filesystem 13.1. Library Functions

Fills * fd with a file-descriptor value forport if one is available (i.e., the port is a file-stream port and it is not closed).
The result is non-zero if the file-descriptor value is available, zero otherwise. Under Windows, a “file dscriptor” is a
file HANDLE.

• int scheme get port socket(Scheme Object * port, long * s)

Fills * s with a socket value forport if one is available (i.e., the port is a TCP port and it is not closed). The result is
non-zero if the socket value is available, zero otherwise. Under Windows, a socket value has typeSOCKET.

• Scheme Object *scheme make port type(char * name)

Creates a new port subtype.

• Scheme Input Port *scheme make input port(Scheme Object * subtype,
void * data,
Scheme Object * name,
Scheme Get String Fun get bytesfun,
Scheme Peek String Fun peekbytesfun,
Scheme Progress Evt Fun progressevt fun,
Scheme Peeked Read Fun peekedread fun,
Scheme In Ready Fun char ready fun,
Scheme Close Input Fun closefun,
Scheme Need Wakeup Input Fun needwakeupfun,
int mustclose)

Creates a new input port with arbitrary control functions. Thesubtypeis an arbitrary value to distinguish the
port’s class. The pointerdata will be installed as the port’s user data, which can be extracted/set with the
SCHEMEINPORT VAL macro. Thenameobject is used as the port’s name (forobject-name and as the default
source name forread-syntax).

The functions are as follows:

• long (* get bytesfun)(Scheme Input Port * port, char * buffer, long offset, long size, int
nonblock, Scheme Object * unless) — Reads bytes intobuffer, starting fromoffset, up tosizebytes (i.e.,
buffer is at leastoffset+sizelong). If nonblockis 0, then the function can block indefinitely, but it should return
when at least one byte of data is available. Ifnonblockis 1, the function should never block. Ifnonblockis 2,
a port in unbuffered mode should return only bytes previously forced to be buffered; other ports should treat a
nonblockof 2 like 1. If nonblockis -1 , the function can block, but should enable breaks while blocking. The
function should return0 if no bytes are ready in non-blocking mode. It should returnEOFif an end-of-file is
reached (and no bytes were read intobuffer). Otherwise, the function should return the number of read bytes.
The function can raise an exception to report an error.

Theunlessargument will be non-NULLonly whennonblockingis non-zero (except as noted below), and only
if the port supports progress events. Ifunlessis non-NULL, it will be a progress event specific to the port.
Theget bytesfun function should returnSCHEMEUNLESSREADYinstead of reading bytes ifunlessbecomes
ready before bytes can be read. In particular,get bytesfun should checkunlessbefore taking any action, and
it should checkunlessafter any operation that may allow Scheme thread swaps. If the read must block, then it
should unblock ifunlessbecomes ready.

If scheme progress evt via get is used for progressevt fun, then unless can be non-NULL
even when nonblocking is 0. In all modes, get bytesfun must call scheme unless ready to
check unlessevt. Furthermore, after any potentially thread-swapping operation,get bytesfun must
call scheme wait input allowed , because another thread may be attempting to commit, andun-
lessevt must be checked afterscheme wait input allowed returns. To block, the port should
use scheme block until unless instead ofscheme block until . Finally, in blocking mode,

63

13.1. Library Functions 13. Ports and the Filesystem

get bytesfunmust return after immediately reading data, without allowing a Scheme thread swap.

• long (* peekbytesfun)(Scheme Input Port * port, char * buffer, long offset, long size,
Scheme Object * skip, int nonblock, Scheme Object * unlessevt) — Can beNULL to use a de-
fault implementation of peeking that usesget bytesfun. Otherwise, the protocol is the same as forget bytesfun,
except that an extraskip argument indicates the number of input elements to skip (butskip does not apply to
buffer). Theskipvalue will be a non-negative exact integer, either a fixnum or a bignum.

• Scheme Object *(* progressevt fun)(Scheme Input Port * port) — Called to obtain a progress
event for the port, such as forport-progress-evt . This function can beNULL if the port does not
support progress events. Useprogress evt via get to obtain a default implementation, in which case
peekedread fun should bepeeked read via get , andget bytesfun andpeekbytesfun should handleun-
lessas described above.

• int (* peekedread fun)(Scheme Input Port * port, long amount, Scheme Object * unlessevt,
Scheme Object * target ch) — Called to commit previously peeked bytes, just like the sixth argument
to make-input-port . Use peeked read via get for the default implementation of commits when
progressevt fun is progress evt via get .

• int (* char ready fun)(Scheme Input Port * port) — Returns1 when a non-blockingget bytesfun
will return bytes or anEOF.

• void (* closefun)(Scheme Input Port * port) — Called to close the port. The port is not considered
closed until the function returns.

• void (* needwakeupfun)(Scheme Input Port * port, void * fds) — Called when the port is
blocked on a read;needwakeupfun should set appropriate bits infds to specify which file descriptor(s) it
is blocked on. Thefdsargument is conceptually an array of threefd set structs (one for read, one for write,
one for exceptions), but manipulate this array usingscheme get fdset to get a particular element of the
array, and useMZFD XXX instead ofFD XXX to manipulate a single “fd set ”. Under Windows, the first
“ fd set ” can also contain OS-level semaphores or other handles viascheme add fd handle .

If mustcloseis non-zero, the new port will be registered with the current custodian, andclosefun is guaranteed to be
called before the port is garbage-collected.

Although the return type ofscheme make input port is Scheme Input Port * , it can be cast into a
Scheme Object * .

• Scheme Output Port *scheme make output port(Scheme Object * subtype,
void * data,
Scheme Object * name,
Scheme Write String Evt Fun write bytesevt fun,
Scheme Write String Fun write bytesfun,
Scheme Out Ready Fun char ready fun,
Scheme Close Output Fun closefun,
Scheme Need Wakeup Output Fun needwakeupfun,
Scheme Write Special Fun write specialfun,
Scheme Write Special Evt Fun write specialevt fun,
Scheme Write Special Fun write specialfun,
int mustclose)

Creates a new output port with arbitrary control functions. Thesubtypeis an arbitrary value to distinguish the
port’s class. The pointerdata will be installed as the port’s user data, which can be extracted/set with the
SCHEMEOUTPORTVAL macro. Thenameobject is used as the port’s name.

The functions are as follows:

64

13. Ports and the Filesystem 13.1. Library Functions

• long (* write bytesevt fun)(Scheme Output Port * port, const char * buffer, long offset, long
size) — Returns an event that writes up tosizebytes atomically when event is chosen in a synchronization. Sup-
ply NULLif bytes cannot be written atomically, or supplyscheme write evt via write to use the default
implementation in terms ofwrite bytes fun (with rarely blockas2).

• long (* write bytesfun)(Scheme Output Port * port, const char * buffer, long offset, long
size, int rarely block, int enablebreak) — Write bytes frombuffer, starting fromoffset, up to size
bytes (i.e.,buffer is at leastoffset+sizelong). If rarely block is 0, then the function can block indefinitely, and
it can buffer output. Ifrarely block is 2, the function should never block, and it should not buffer output. If
rarely block is 1, the function should not buffer data, and it should block only until writing at least one byte,
either frombuffer or an internal buffer. The function should return the number of bytes frombuffer that were
written; whenrarely block is non-zero and bytes remain in an internal buffer, it should return-1 . Thesizeargu-
ment can be0 whenrarely block is 0 for a blocking flush, and it can be0 if rarely block is 2 for a non-blocking
flush. If enablebreakis true, then it should enable breaks while blocking. The function can raise an exception
to report an error.

• int (* char ready fun)(Scheme Output Port * port) — Returns1 when a non-blockingwrite bytesfun
will write at least one byte or flush at least one byte from the port’s internal buffer.

• void (* closefun)(Scheme Output Port * port) — Called to close the port. The port is not consid-
ered closed until the function returns. This function is allowed to block (usually to flush a buffer) unless
scheme close should force port closed returns a non-zero result, in which case the function must
return without blocking.

• void (* needwakeupfun)(Scheme Output Port * port, void * fds) — Called when the port is
blocked on a write;needwakeupfun should set appropriate bits infds to specify which file descriptor(s) it
is blocked on. Thefdsargument is conceptually an array of threefd set structs (one for read, one for write,
one for exceptions), but manipulate this array usingscheme get fdset to get a particular element of the
array, and useMZFD XXX instead ofFD XXX to manipulate a single “fd set ”. Under Windows, the first
“ fd set ” can also contain OS-level semaphores or other handles viascheme add fd handle .

• int (* write specialevt fun)(Scheme Output Port * port, Scheme Object * v) — Returns an
event that writesv atomically when event is chosen in a synchronization. SupplyNULL if specials cannot
be written atomically (or at all), or supplyscheme write special evt via write special to use
the default implementation in terms ofwrite special fun (with non blockas1).

• int (* write specialfun)(Scheme Output Port * port, Scheme Object * v, int non block) —
Called to write the special valuev for write-special (whennon blockis0) orwrite-special-avail*
(when non block is 1). If NULL is supplied instead of a function pointer, thenwrite-special and
write-special-avail* produce an error for this port.

If mustcloseis non-zero, the new port will be registered with the current custodian, andclosefun is guaranteed to be
called before the port is garbage-collected.

Although the return type ofscheme make output port is Scheme Output Port * , it can be cast into a
Scheme Object * .

• Scheme Object *scheme make file input port(FILE * fp)

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on reads.

• Scheme Object *scheme open input file(const char * filename, const char * who)

Opensfilenamefor reading. In an exception is raised, the exception message useswhoas the name of procedure that
raised the exception.

65

13.1. Library Functions 13. Ports and the Filesystem

• Scheme Object *scheme make named file input port(FILE * fp, Scheme Object * name)

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on reads. Thenameargument
is used as the port’s name.

• Scheme Object *scheme open output file(const char * filename, const char * who)

Opensfilenamefor writing in ’truncate/replace mode. If an exception is raised, the exception message useswhoas the
name of procedure that raised the exception.

• Scheme Object *scheme make file output port(FILE * fp)

Creates a Scheme output file port from an ANSI C file pointer. The file must never block on writes.

• Scheme Object *scheme make fd input port(int fd, Scheme Object * name,
int regfile, int win textmode)

Creates a Scheme input port for a file descriptorfd. Under Windows,fd can be aHANDLEfor a stream, and it should
never be a file descriptor from the C library or a WinSock socket.

Thenameobject is used for the port’s name. Specify a non-zero value forregfileonly if the file descriptor corresponds
to a regular file (which implies that reading never blocks, for example).

Under Windows,win textmodecan be non-zero to make trigger auto-conversion (at the byte level) of CRLF combina-
tions to LF.

Closing the resulting port closes the file descriptor.

Instead of calling bothscheme make fd input port andscheme make fd output port on the same file
descriptor, callscheme make fd output port with a non-zero last argument. Otherwise, closing one of the ports
causes the other to be closed as well.

• Scheme Object *scheme make fd output port(int fd, Scheme Object * name,
int regfile, int win textmode, int read too)

Creates a Scheme output port for a file descriptorfd. Under Windows,fd can be aHANDLEfor a stream, and it should
never be a file descriptor from the C library or a WinSock socket.

Thenameobject is used for the port’s name. Specify a non-zero value forregfileonly if the file descriptor corresponds
to a regular file (which implies that reading never blocks, for example).

Under Windows,win textmodecan be non-zero to make trigger auto-conversion (at the byte level) of CRLF combina-
tions to LF.

Closing the resulting port closes the file descriptor.

If read too is non-zero, the function produces multiple values (see§6.3) instead of a single port. The first result is an
input port forfd, and the second is an output port forfd. These ports are connected in that the file descriptor is closed
only when both of the ports are closed.

• Scheme Object *scheme make byte string input port(char * str)

Creates a Scheme input port from a byte string; successiveread-char s on the port return successive bytes in the
string.

66

13. Ports and the Filesystem 13.1. Library Functions

• Scheme Object *scheme make byte string output port()

Creates a Scheme output port; all writes to the port are kept in a byte string, which can be obtained with
scheme get byte string output .

• char *scheme get byte string output(Scheme Object * port)

Returns (in a newly allocated byte string) all data that has been written to the given string output port so far. (The
returned string is nul-terminated.)

• char *scheme get sized byte string output(Scheme Object * port, long * len)

Returns (in a newly allocated byte string) all data that has been written to the given string output port so far and fills
in *len with the length of the string in bytes (not including the nul terminator).

• void scheme pipe(Scheme Object ** read, Scheme Object ** write)

Creates a pair of ports, setting* readand* write; data written to* write can be read back out of* read. The pipe can
store arbitrarily many unread characters,

• void scheme pipe with limit(Scheme Object ** read, Scheme Object ** write, int limit)

Like scheme pipe is limit is 0. If limit is positive, creates a pipe that stores at mostlimit unread characters, blocking
writes when the pipe is full.

• int scheme file exists(char * name)

Returns 1 if a file by the given name exists, 0 otherwise. Ifnamespecifies a directory, FALSE is returned. Thename
should be already expanded.

• int scheme directory exists(char * name)

Returns 1 if a directory by the given name exists, 0 otherwise. Thenameshould be already expanded.

• char *scheme expand filename(const char * name, int len, const char * where, int * expanded,
int checks)

Expands the pathnamename, resolving relative paths with respect to the current directory parameter. Under Unix, this
expands “∼” into a user’s home directory. Thelen argument is the length of the input string; if it is -1, the string is
assumed to be null-terminated. Thewhereargument is used to raise an exception if there is an error in the filename; if
this isNULL, an error is not reported andNULL is returned instead. Ifexpandedis notNULL, *expandedis set to 1 if
some expansion takes place, or 0 if the input name is simply returned.

If guards is not 0, then scheme security check file (see §15) is called with name, where, and
checks(which implies thatwhere should never beNULL unlessguards is 0). Normally, guards should be
SCHEMEGUARDFILE EXISTS at a minimum. Note that a failed access check will result in an exception.

• char *scheme expand string filename(Scheme Object * name, const char * where, int * expanded,
int checks)

Like scheme expand string , but given anamethat can be a character string or a path value.

• Scheme Object *scheme char string to path(Scheme Object * s)

67

13.1. Library Functions 13. Ports and the Filesystem

Converts a Scheme character string into a Scheme path value.

• Scheme Object *scheme path to char string(Scheme Object * s)

Converts a Scheme path value into a Scheme character string.

• Scheme Object *scheme make path(char * bytes)

Makes a path value given a byte string. Thebytesstring is copied.

• Scheme Object *scheme make path without copying(char * bytes)

Like scheme make path , but the string is not copied.

• Scheme Object *scheme make sized path(char * bytes, long len, int copy)

Makes a path whose byte form has sizelen. A copy ofbytesis made ifcopyis not 0. The stringbytesshould contain
len bytes, and ifcopyis zero,bytesmust have a nul terminator in addition. Iflen is negative, then the nul-terminated
length ofbytesis used for the length.

• Scheme Object *scheme make sized path(char * bytes, long d, long len, int copy)

Like scheme make sized path , except thelen bytes start from positiond in bytes. If d is non-zero, thencopy
must be non-zero.

• char *scheme build mac filename(FSSpec * spec, int isdir)

Mac OS X only: Converts anFSSpec record (defined by Mac OS X) into a pathname string. Ifspeccontains only
directory information (via thevRefNum andparID fields),isdir should be1, otherwise it should be0.

• int scheme mac path to spec(const char * filename, FSSpec * spec, long * type)

Mac OS X only: Converts a pathname into anFSSpec record (defined by Mac OS X), returning1 if successful and
0 otherwise. Iftypeis notNULLandfilenameis a file that exists,typeis filled with the file’s four-character Mac OS X
type. If typeis notNULLandfilenameis not a file that exists,typeis filled with 0.

• char *scheme os getcwd(char * buf, int buflen, int * actlen, int noexn)

Gets the current working directory according to the operating system. This is separate from MzScheme’s current
directory parameter.

The directory path is written intobuf, of lengthbuflen, if it fits. Otherwise, a new (collectable) string is allocated for
the directory path. Ifactlen is notNULL, *actlen is set to the length of the current directory path. Ifnoexnis no 0,
then an exception is raised if the operation fails.

• int scheme os setcwd(char * buf, int noexn)

Sets the current working directory according to the operating system. This is separate from MzScheme’s current
directory parameter.

If noexnis not 0, then an exception is raised if the operation fails.

• char *scheme format(mzchar * format, int flen, int argc, Scheme Object ** argv, long * rlen)

68

13. Ports and the Filesystem 13.1. Library Functions

Creates a string like MzScheme’sformat procedure, using the format stringformat (of lengthflen) and the extra
arguments specified inargcandargv. If rlen is notNULL, * rlen is filled with the length of the resulting string.

• void scheme printf(char * format, int flen, int argc, Scheme Object ** argv)

Writes to the current output port like MzScheme’sprintf procedure, using the format stringformat (of lengthflen)
and the extra arguments specified inargcandargv.

• char *scheme format utf8(char * format, int flen, int argc, Scheme Object ** argv, long * rlen)

Like scheme format , but takes a UTF-8-encoding byte string.

• void scheme printf utf8(char * format, int flen, int argc, Scheme Object ** argv)

Like scheme printf , but takes a UTF-8-encoding byte string.

• int scheme close should force port closed()

This function must be called by the close function for a port created withscheme make output port .

69

14. Structures

A new Scheme structure type is created withscheme make struct type . This creates the structure type,
but does not generate the constructor, etc. procedures. Thescheme make struct values function takes a
structure type and creates these procedures. Thescheme make struct names function generates the stan-
dard structure procedures names given the structure type’s name. Instances of a structure type are created with
scheme make struct instance and the functionscheme is struct instance tests a structure’s type.
Thescheme struct ref andscheme struct set functions access or modify a field of a structure.

The the structure procedure values and names generated byscheme make struct values andscheme make struct names
can be restricted by passing any combination of these flags:

• SCHEMESTRUCTNOTYPE— the structure type value/name is not returned.
• SCHEMESTRUCTNOCONSTR— the constructor procedure value/name is not returned.
• SCHEMESTRUCTNOPRED— the predicate procedure value/name is not returned.
• SCHEMESTRUCTNOGET— the selector procedure values/names are not returned.
• SCHEMESTRUCTNOSET— the mutator procedure values/names are not returned.
• SCHEMESTRUCTGENGET— the field-independent selector procedure value/name is returned.
• SCHEMESTRUCTGENSET— the field-independent mutator procedure value/name is returned.

When all values or names are returned, they are returned as an array with the following order: structure type, construc-
tor, predicate, first selector, first mutator, second selector, etc., field-independent select, field-independent mutator.
When particular values/names are omitted, the array is compressed accordingly.

14.1 Library Functions

• Scheme Object *scheme make struct type(Scheme Object * basename, Scheme Object * supertype,
Scheme Object * inspector, int numinit fields,
int numauto fields, Scheme Object * auto val,
Scheme Object * properties, Scheme Object * guard)

Creates and returns a new structure type. Thebasenameargument is used as the name of the new structure type; it
must be a symbol. Thesupertypeargument should beNULLor an existing structure type to use as the super-type. The
inspectorargument should beNULL or an inspector to manage the type. Thenuminit fieldsargument specifies the
number of fields for instances of this structure type that have corresponding constructor arguments. (If a super-type
is used, this is the number of additional fields, rather than the total number.) Thenumauto fieldsargument specifies
the number of additional fields that have no corresponding constructor arguments, and they are initialized toauto val.
Thepropertiesargument is a list of property-value pairs. Theguardargument is either NULL or a procedure to use as
a constructor guard.

• Scheme Object **scheme make struct names(Scheme Object * basename, Scheme Object * field names,
int flags, int * countout)

Creates and returns an array of standard structure value name symbols. Thebasenameargument is used as the name
of the structure type; it should be the same symbol passed to the associated call toscheme make struct type .

70

14. Structures 14.1. Library Functions

Thefield namesargument is a (Scheme) list of field name symbols. Theflagsargument specifies which names should
be generated, and ifcountout is notNULL, countout is filled with the number of names returned in the array.

• Scheme Object **scheme make struct values(Scheme Object * struct type,
Scheme Object ** names,
int count, int flags)

Creates and returns an array of the standard structure value and procedure values forstruct type. The struct type
argument must be a structure type value created byscheme make struct type . Thenamesprocedure must be
an array of name symbols, generally the array returned byscheme make struct names. Thecountargument
specifies the length of thenamesarray (and therefore the number of expected return values) and theflagsargument
specifies which values should be generated.

• Scheme Object *scheme make struct instance(Scheme Object * struct type, int argc,
Scheme Object ** argv)

Creates an instance of the structure typestruct type. Theargcandargvarguments provide the field values for the new
instance.

• int scheme is struct instance(Scheme Object * struct type, Scheme Object * v)

Returns 1 ifv is an instance ofstruct typeor 0 otherwise.

• Scheme Object *scheme struct ref(Scheme Object * s, int n)

Returns thenth field (counting from 0) in the structures.

• void scheme struct set(Scheme Object * s, int n, Scheme Object * v)

Sets thenth field (counting from 0) in the structures to v.

71

15. Security Guards

Before a primitive procedure accesses the filesystem or creates a network connection, it should first consult the current
security guard to determine whether such access is allowed for the current thread.

File access is normally preceded by a call toscheme expand filename , which accepts flags to indicate the kind
of filesystem access needed, so that the security guard is consulted automatically.

An explicit filesystem-access check can be made by callingscheme security check file . Similarly, an ex-
plicit network-access check is performed by callingscheme security check network .

15.1 Library Functions

• void scheme security check file(const char * who, char * filename, int guards)

Consults the current security manager to determine whether access is allowed tofilename. Theguardsargument should
be a bitwise combination of the following:

• SCHEMEGUARDFILE READ

• SCHEMEGUARDFILE WRITE

• SCHEMEGUARDFILE EXECUTE

• SCHEMEGUARDFILE DELETE

• SCHEMEGUARDFILE EXISTS (do not combine with other values)

Thefilenameargument can beNULL(in which case#f is sent to the security manager’s procedure), andguardsshould
beSCHEMEGUARDFILE EXISTS in that case.

If access is denied, an exception is raised.

• void scheme security check network(const char * who, char * host, int portno)

Consults the current security manager to determine whether access is allowed for creating a client connection tohost
on port numberportno. If hostis NULL, the security manager is consulted for creating a server at port numberportno.

If access is denied, an exception is raised.

72

16. Custodians

When an extension allocates resources that must be explicitly freed (in the same way that a port must be explicitly
closed), a Scheme object associated with the resource should be placed into the management of the current custodian
with scheme add managed.

Before allocating the resource, callscheme custodian check available to ensure that the relevant custodian
is not already shut down. If it is,scheme custodian check available will raise an exception. If the custodian
is shut down whenscheme add managed is called, the close function provided toscheme add managed will
be called immediately, and no exception will be reported.

16.1 Library Functions

• Scheme Custodian *scheme make custodian(Scheme Custodian * m)

Creates a new custodian as a subordinate ofm. If m is NULL, then the main custodian is used as the new custodian’s
supervisor. Do not useNULL for munless you intend to create an especially privileged custodian.

• Scheme Custodian Reference *scheme add managed(Scheme Custodian * m, Scheme Object * o,
Scheme Close Custodian Client * f , void * data,
int strong)

Places the valueo into the management of the custodianm. If m is NULL, the current custodian is used.

The f function is called by the custodian if it is ever asked to “shutdown” its values;o anddata are passed on tof ,
which has the type
typedef void (*Scheme_Close_Custodian_Client)(Scheme_Object *o, void *data);

If strong is non-zero, then the newly managed value will be remembered until either the custodian shuts it down or
scheme remove managed is called. Ifstrongis zero, the value is allowed to be garbaged collected (and automati-
cally removed from the custodian).

The return value fromscheme add managed can be used to refer to the value’s custodian later in a call to
scheme remove managed. A value can be registered with at most one custodian.

If m (or the current custodian ifm is NULL)is shut down, thenf is called immediately, and the result isNULL.

• void scheme custodian check available(Scheme Custodian * m, const char * name,
const char * resname)

Checks whetherm is already shut down, and raises an error if so. Ifm is NULL, the current custodian is used. The
nameargument is used for error reporting. Theresnameargument will likely be used for checking pre-set limits in the
future; pre-set limits will have symbolic names, and theresnamestring will be compared to the symbols.

• void scheme remove managed(Scheme Custodian Reference * mref, Scheme Object * o)

73

16.1. Library Functions 16. Custodians

Removes o from the management of its custodian. Themref argument must be a value returned by
scheme add managed or NULL.

• void scheme close managed(Scheme Custodian * m)

Instructs the custodianm to shutdown all of its managed values.

• void scheme add atexit closer(Scheme Exit Closer Func f)

Installs a function to be called on each custodian-registered item and its closer when MzScheme is about to exit. The
registered function has the type

typedef void (*Scheme_Exit_Closer_Func)(Scheme_Object *o,
Scheme_Close_Custodian_Client *f,
void *d);

whered is the second argument forf .

74

17. Miscellaneous Utilities

The MZSCHEMEVERSIONpreprocessor macro is defined as a string describing the version of MzScheme. The
MZSCHEMEVERSIONMAJORandMZSCHEMEVERSIONMINORmacros are defined as the major and minor ver-
sion numbers, respectively.

17.1 Library Functions

• int scheme eq(Scheme Object * obj1, Scheme Object * obj2)

Returns 1 if the Scheme values areeq? .

• int scheme eqv(Scheme Object * obj1, Scheme Object * obj2)

Returns 1 if the Scheme values areeqv? .

• int scheme equal(Scheme Object * obj1, Scheme Object * obj2)

Returns 1 if the Scheme values areequal? .

• Scheme Object *scheme build list(int c, Scheme Object ** elems)

Creates and returns a list of lengthc with the elementselems.

• int scheme list length(Scheme Object * list)

Returns the length of the list. Iflist is not a proper list, then the lastcdr counts as an item. If there is a cycle inlist
(involving onlycdr s), this procedure will not terminate.

• int scheme proper list length(Scheme Object * list)

Returns the length of the list, or -1 if it is not a proper list. If there is a cycle inlist (involving only cdr s), this
procedure returns -1.

• Scheme Object *scheme car(Scheme Object * pair)

Returns thecar of the pair.

• Scheme Object *scheme cdr(Scheme Object * pair)

Returns thecdr of the pair.

• Scheme Object *scheme cadr(Scheme Object * pair)

Returns thecadr of the pair.

75

17.1. Library Functions 17. Miscellaneous Utilities

• Scheme Object *scheme caddr(Scheme Object * pair)

Returns thecaddr of the pair.

• Scheme Object *scheme vector to list(Scheme Object * vec)

Creates a list with the same elements as the given vector.

• Scheme Object *scheme list to vector(Scheme Object * list)

Creates a vector with the same elements as the given list.

• Scheme Object *scheme append(Scheme Object * lstx, Scheme Object * lsty)

Non-destructively appends the given lists.

• Scheme Object *scheme unbox(Scheme Object * obj)

Returns the contents of the given box.

• void scheme set box(Scheme Object * b, Scheme Object * v)

Sets the contents of the given box.

• Scheme Object *scheme load(char * file)

Loads the specified Scheme file, returning the value of the last expression loaded, orNULL if the load fails.

• Scheme Object *scheme load extension(char * filename)

Loads the specified Scheme extension file, returning the value provided by the extension’s initialization function.

• Scheme Hash Table *scheme make hash table(int type)

Creates a hash table. Thetypeargument must be eitherSCHEMEhash ptr or SCHEMEhash string , which
determines how keys are compared (unless the hash and compare functions are modified in the hash table record; see
below). ASCHEMEhash ptr table hashes on a key’s pointer address, whileSCHEMEhash string uses a key as
achar * and hashes on the null-terminated string content. Since a hash table created withSCHEMEhash string
(instead ofSCHEMEhash ptr) does not use a key as a Scheme value, it cannot be used from Scheme code.

Although the hash table interface uses the typeScheme Object * for both keys and values, the table functions
never inspect values, and they inspect keys only forSCHEMEhash string hashing. Thus, the actual types of the
values (and keys, forSCHEMEhash ptr tables) can be anything.

The public portion of theScheme Hash Table type is defined roughly as follows:
typedef struct Scheme_Hash_Table {

Scheme_Type type; /* = scheme_variable_type */
/* ... */
int size; /* size of keys and vals arrays */
int count; /* number of mapped keys */
Scheme_Object **keys;
Scheme_Object **vals;
void (*make_hash_indices)(void *v, long *h1, long *h2);
int (*compare)(void *v1, void *v2);

76

17. Miscellaneous Utilities 17.1. Library Functions

/* ... */
} Scheme_Hash_Table;

Themake hash indices andcompare function pointers can be set to arbitrary hashing and comparison functions
(before any mapping is installed into the table). A hash function should fillh1 with a primary hash value andh2 with
a secondary hash value; the values are for double-hashing, where the caller takes appropriate modulos.

To traverse the hash table content, iterate overkeysandvals in parallel from0 to size-1 , and ignorekeyswhere the
correspondingvalsentry isNULL.

• Scheme Hash Table *scheme make hash table equal()

Like scheme make hash table , except that keys are treated as Scheme values and hashed based onequal?
instead ofeq? .

• void scheme hash set(Scheme Hash Table * table, Scheme Object * key, Scheme Object * val)

Sets the current value forkeyin tableto val. If val is NULL, thekeyis unmapped intable.

• Scheme Object *scheme hash get(Scheme Hash Table * table, Scheme Object * key)

Returns the current value forkeyin table, or NULL if keyhas no value.

• Scheme Bucket Table *scheme make bucket table(int sizehint, int type)

Like make hash table , but bucket tables are somewhat more flexible, in that hash buckets are accessible and weak
keys are supported. (They also consume more space than hash tables.)

The typeargument must be eitherSCHEMEhash ptr , SCHEMEhash string , or SCHEMEhash weak ptr .
The first two are the same as for hash tables. The last is likeSCHEMEhash ptr , but the keys are weakly held.

The public portion of theScheme Bucket Table type is defined roughly as follows:
typedef struct Scheme_Bucket_Table {

Scheme_Type type; /* = scheme_variable_type */
/* ... */
int size; /* size of buckets array */
int count; /* number of buckets, >= number of mapped keys */
Scheme_Bucket **buckets;
void (*make_hash_indices)(void *v, long *h1, long *h2);
int (*compare)(void *v1, void *v2);
/* ... */

} Scheme_Bucket_Table;

Themake hash indices andcompare functions are used as for hash tables. Note thatSCHEMEhash weak ptr
supplied as the initial type makes keys weak even if the hash and comparison functions are changed.

Seescheme bucket from table for information on buckets.

• void scheme add to table(Scheme Bucket Table * table, const char * key, void * val, int const)

Sets the current value forkeyin tableto val. If constis non-zero, the value forkeymust never be changed.

• void scheme change in table(Scheme Bucket Table * table, const char * key, void * val)

77

17.1. Library Functions 17. Miscellaneous Utilities

Sets the current value forkeyin tableto val, but only if keyis already mapped in the table.

• void *scheme lookup in table(Scheme Bucket Table * table, const char * key)

Returns the current value forkeyin table, or NULL if keyhas no value.

• Scheme Bucket *scheme bucket from table(Scheme Bucket Table * table, const char * key)

Returns the bucket forkeyin table. TheScheme Bucket structure is defined as:
typedef struct Scheme_Bucket {

Scheme_Type type; /* = scheme_bucket_type */
/* ... */
void *key;
void *val;

} Scheme_Bucket;

Settingval to NULLunmaps the bucket’s key, andkeycan beNULL in that case as well. If the table holds keys weakly,
thenkeypoints to a (weak) pointer to the actual key, and the weak pointer’s value can beNULL.

• long scheme double to int(char * where, double d)

Returns a fixnum value for the given floating-point numberd. If d is not an integer or if it is too large, then an error
message is reported;nameis used for error-reporting.

• long scheme get milliseconds()

Returns the current “time” in milliseconds, just likecurrent-milliseconds .

• long scheme get process milliseconds()

Returns the current process “time” in milliseconds, just likecurrent-process-milliseconds .

• char *scheme banner()

Returns the string that is used as the MzScheme startup banner.

• char *scheme version()

Returns a string for the executing version of MzScheme.

78

18. Flags and Hooks

These flags and hooks are available when MzScheme is embedded:

• scheme exit — This pointer can be set to a function that takes an integer argument and returnsvoid ; the
function will be used as the default exit handler. The default isNULL.

• scheme make stdin , scheme make stdout , scheme make stderr , — These pointers can be set to
a function that takes no arguments and returns a Scheme portScheme Object * to be used as the starting
standard input, output, and/or error port. The defaults areNULL. Setting the initial error port is particularly
important for seeing unexpected error messages ifstderr output goes nowhere.

• scheme console output — This pointer can be set to a function that takes a string and along string
length; the function will be called to display internal MzScheme warnings and messages that possibly contain
non-terminating nuls. The default isNULL.

• scheme check for break — This points to a function of no arguments that returns an integer. It is used as
the default user-break polling procedure in the main thread. A non-zero return value indicates a user break, and
each time the function returns a non-zero value, it counts as a new break signal (though the break signal may be
ignored if a previous signal is still pending). The default isNULL.

• scheme case sensitive — If this flag is set to a non-zero value beforescheme basic env is called,
then MzScheme will not ignore capitalization for symbols and global variable names. The value of this flag
should not change once it is set. The default is zero.

• scheme allow set undefined — This flag determines the initial value ofcompile-allow-set!-undefined .
The default is zero.

• scheme console printf — This function pointer was left for backward compatibility. The default builds
a string and callsscheme console output .

79

License

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

80

18. Flags and Hooks

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries
themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,

other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

81

18. Flags and Hooks

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

82

18. Flags and Hooks

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

83

Index

--3m , 2
--cc , 1
--ld , 2
--xform , 2
#%variable-reference , 25
scheme apply , 29, 31
scheme apply multi , 30, 31
scheme eval compiled , 29, 30
scheme eval compiled multi , 30

allocation,2, 3, 15
allow-compile-set

allow-compile-set
-undefined , 49

apply , 29
arity , 27

bignums,56

caddr , 76
cadr , 75
car , 7, 75
case-lambda , 8
cdr , 7, 75
cell values , 39
cjs.jumping to continuation , 39
compile-allow-set

compile-allow-set
-undefined , 79

cons , 6, 11
constants,6, 9
continuations,29, 33, 39
current directory,68
current-custodian , 49
current-error-port , 49
current-eval , 49
current-exception-handler , 49
current-input-port , 49
current-library-collection-paths , 49
current-load , 49
current-load-extension , 50
current-load-relative-directory , 49
current-namespace , 49
current-output-port , 49
current-print , 49
current-prompt-read , 49
custodians,73

debug-info-handler , 49

display , 59

embedding MzScheme,3
environments,25
eq? , 75
equal? , 75
eqv? , 75
error-display-handler , 49
error-print-width , 49
error-value->string-handler , 49
error buf , 39
escheme.h , 1
evaluation,29

top-level functions,29
event loops,40
exceptions,33, 39

catching temporarily,33
exit-handler , 49
extending MzScheme,1

fd set , 62, 64, 65
files,59
FSSpec, 68

garbage collection,seeallocation
GCfixup self , 17
GCregister traversers , 16, 24
GCresolve , 17
gcBYTES TO WORDS, 16
gcFIXUP , 17
gcMARK, 17
global-port-print-handler , 50
globals,25

in extension code,15

header files,1, 3

init config , 39
initialization,25
int , 5

libgc.a , 3
libgc.la , 3
libgc.so , 3
libmzscheme.a , 3
libmzscheme.la , 3
libmzscheme.so , 3
long , 5

malloc , 15

84

INDEX

memory,seeallocation
modules,25
multiple values,30, 32
MZFD XXX, 64, 65
MZGCARRAYVARIN REG, 18
MZGCDECLREG, 18
MZGCNOVARIN REG, 20
MZGCREG, 18
MZGCUNREG, 18
MZGCVARIN REG, 18
mz jmp buf , 39
MZREGISTERSTATIC, 4, 16, 23
mzc , 1
mzchar , 5, 7
MZCONFIGALLOWSET UNDEFINED, 49
MZCONFIGCANREADBOX, 49
MZCONFIGCANREADCOMPILED, 49
MZCONFIGCANREADGRAPH, 49
MZCONFIGCANREADPIPE QUOTE, 49
MZCONFIGCANREADTYPE SYMBOL, 49
MZCONFIGCASESENS, 49
MZCONFIGCOLLECTIONPATHS, 49
MZCONFIGCONFIGBRANCHHANDLER, 49
MZCONFIGCURLYBRACESAREPARENS, 49
MZCONFIGCUSTODIAN, 49
MZCONFIGDEBUGINFO HANDLER, 49
MZCONFIGENV, 31, 49
MZCONFIGERRORDISPLAY HANDLER, 49
MZCONFIGERRORPORT, 49
MZCONFIGERRORPRINT VALUEHANDLER, 49
MZCONFIGERRORPRINT WIDTH, 49
MZCONFIGEVAL HANDLER, 49
MZCONFIGEXIT HANDLER, 49
MZCONFIGEXNHANDLER, 49
MZCONFIGINPUT PORT, 49
MZCONFIGLOADDIRECTORY, 49
MZCONFIGLOADEXTENSIONHANDLER, 50
MZCONFIGLOADHANDLER, 49
MZCONFIGOUTPUTPORT, 49
MZCONFIGPORTPRINT HANDLER, 50
MZCONFIGPRINT BOX, 49
MZCONFIGPRINT GRAPH, 49
MZCONFIGPRINT HANDLER, 49
MZCONFIGPRINT STRUCT, 49
MZCONFIGPROMPTREADHANDLER, 49
MZCONFIGSQUAREBRACKETSAREPARENS, 49
MZCONFIGUSECOMPILEDKIND, 49
mzdyn.o , 2
mzdyn.obj , 2
mzdyn3m.o , 2
mzdyn3m.obj , 2
mzlonglong , 5
MzScheme3m,2

MZSCHEMEVERSION, 75
MZSCHEMEVERSIONMAJOR, 75
MZSCHEMEVERSIONMINOR, 75

next , 39
numbers,56

object-wait-multiple , 40

parameterization-branch-handler , 49
parameterizations,39, 49
ports,59

custom,59
print-box , 49
print-graph , 49
print-struct , 49
procedures,8, 27

primitive, 27

read-accept-bar-quote , 49
read-accept-box , 49
read-accept-compiled , 49
read-accept-graph , 49
read-accept-type-symbol , 49
read-case-sensitive , 49
read-curly-braces-as-parens , 49
read-square-brackets-as-parens , 49
representation,6

scheme.h , 3
scheme add atexit closer , 74
scheme add evt , 40, 47
scheme add evt through sema, 40, 47
scheme add fd eventmask , 46
scheme add fd handle , 46
scheme add finalizer , 23
scheme add finalizer once , 23
scheme add global , 25
scheme add global symbol , 25
scheme add managed, 73
scheme add scheme finalizer , 23
scheme add scheme finalizer once , 24
scheme add to table , 77
scheme alloc byte string , 11
scheme alloc char string , 12
scheme allow set undefined , 79
scheme append , 76
scheme append byte string , 11
scheme append char string , 12
scheme apply , 29, 31
scheme apply multi , 30, 31
scheme apply to list , 29, 31
scheme banner , 78
scheme basic env , 3, 25, 30, 31, 39, 51, 79

85

INDEX

scheme bignum from double , 57
scheme bignum from float , 57
scheme bignum normalize , 57
scheme bignum to double , 56
scheme bignum to float , 56
scheme bignum to string , 57
scheme bignum type , 56
SCHEMEBIGNUMP, 7
scheme block until , 40, 45
scheme block until enable break , 46
scheme block until unless , 46
SCHEMEBOOLP, 6
scheme box , 13
SCHEMEBOXVAL, 7
SCHEMEBOXP, 7
scheme break thread , 45
scheme break waiting , 45
Scheme Bucket , 26, 78
scheme bucket from table , 78
Scheme Bucket Table , 77
SCHEMEBUCKTP, 8
scheme build list , 75
scheme build mac filename , 68
scheme builtin value , 26
scheme byte ready , 62
SCHEMEBYTE STR VAL, 7
scheme byte string to char string , 12
scheme byte string to char string locale ,

12
SCHEMEBYTE STRINGP, 7
SCHEMEBYTE STRLENVAL, 7
scheme caddr , 76
scheme cadr , 75
scheme call enable break , 47
scheme calloc , 22
SCHEMECAR, 7
scheme car , 75
scheme case sensitive , 13, 79
SCHEMECDR, 7
scheme cdr , 75
scheme change in table , 77
scheme char ready , 62
SCHEMECHARSTR VAL, 7
scheme char string to byte string , 12
scheme char string to byte string locale ,

12
scheme char string to path , 67
SCHEMECHARSTRINGP, 7
SCHEMECHARSTRLENVAL, 7
SCHEMECHARVAL, 7
SCHEMECHARP, 7
scheme check for break , 79
scheme check proc arity , 38

scheme check threads , 40, 41, 46
scheme clear escape , 34, 38
scheme close input port , 62
scheme close managed, 74
scheme close output port , 62
scheme close should force port closed , 69
Scheme Closed Prim , 28
scheme collect garbage , 24
scheme compile , 29, 32
scheme complex imaginary part , 58
scheme complex izi type , 56
SCHEMECOMPLEXIZIP , 7
scheme complex real part , 58
scheme complex type , 56
SCHEMECOMPLEXP, 7
Scheme Config , 49
scheme config , 26
scheme console output , 79
scheme console printf , 79
scheme count lines , 62
SCHEMECPTRTYPE, 8, 13
SCHEMECPTRVAL, 8, 13
SCHEMECPTRP, 8, 13
scheme current config , 49
scheme current thread , 39
scheme current thread->error buf , 33
scheme custodian check available , 73
SCHEMEDBL VAL, 7
SCHEMEDBLP, 7
scheme debug print , 60
SCHEMEDIRECT EMBEDDED, 3
scheme directory exists , 67
scheme display , 59
scheme display to string , 60
scheme display to string w max, 60
scheme display w max, 59
scheme dont gc ptr , 16, 24
scheme double to int , 78
scheme dynamic wind , 34, 38
scheme end atomic , 48
scheme end atomic no swap, 48
Scheme Env * , 25
scheme eof , 6
SCHEMEEOFP, 9
scheme eq , 75
scheme equal , 75
scheme eqv , 75
scheme error buf , 33, 39
scheme eval , 3, 29, 30
scheme eval compiled , 29, 30
scheme eval compiled multi , 30
scheme eval string , 31
scheme eval string all , 31

86

INDEX

scheme eval string multi , 31
SCHEMEEXACTINTEGERP, 8
SCHEMEEXACTREALP, 8
scheme exit , 79
scheme expand , 32
scheme expand filename , 59, 67, 72
scheme expand string filename , 67
scheme extend config , 50
scheme false , 6
SCHEMEFALSEP, 9
scheme file exists , 67
scheme finish primitive module , 25, 26
scheme first thread , 39
SCHEMEFLOATVAL, 7
SCHEMEFLOATP, 8
SCHEMEFLT VAL, 7
SCHEMEFLTP, 7
scheme flush output , 60
scheme format , 68
scheme format utf8 , 69
scheme gc ptr ok , 24
scheme get byte , 61
scheme get byte string , 61
scheme get byte string output , 59, 67
scheme get bytes , 61
scheme get char string , 61
scheme get env , 25, 26, 49
scheme get fdset , 46, 64, 65
scheme get int val , 10
scheme get long long val , 10
scheme get milliseconds , 78
scheme get param , 49, 50
scheme get port file descriptor , 62
scheme get port socket , 63
scheme get process milliseconds , 78
scheme get sized byte string output , 67
scheme get thread param , 50
scheme get unsigned int val , 10
scheme get unsigned long long val , 10
scheme getc , 59, 61
scheme global bucket , 25
SCHEMEGUARDFILE DELETE, 72
SCHEMEGUARDFILE EXECUTE, 72
SCHEMEGUARDFILE EXISTS, 72
SCHEMEGUARDFILE READ, 72
SCHEMEGUARDFILE WRITE, 72
scheme hash get , 77
SCHEMEhash ptr , 76, 77
scheme hash set , 77
SCHEMEhash string , 76, 77
Scheme Hash Table , 76
SCHEMEhash weak ptr , 77
SCHEMEHASHTP, 8

scheme inherit cells , 50
scheme initialize , 1
SCHEMEINPORT VAL, 8, 63
SCHEMEINPORTP, 8
Scheme Input Port * , 64
scheme input port type , 59
scheme install config , 50
SCHEMEINT VAL, 7, 10
scheme integer type , 6
scheme intern exact char keyword , 13
scheme intern exact char symbol , 13
scheme intern exact keyword , 13
scheme intern exact symbol , 13
scheme intern symbol , 12
SCHEMEINTP , 7
scheme is exact , 56
scheme is inexact , 56
scheme is struct instance , 70, 71
scheme jumping to continuation , 34, 39
SCHEMEKEYWORDLEN, 7
SCHEMEKEYWORDVAL, 7, 16
SCHEMEKEYWORDP, 7
scheme list length , 75
scheme list to vector , 76
scheme load , 3, 76
scheme load extension , 76
scheme longjmp , 33
scheme lookup global , 25
scheme lookup in table , 78
scheme mac path to spec , 68
scheme make args string , 37
scheme make ascii character , 9
scheme make bignum , 56
scheme make bignum from unsigned , 56
scheme make bucket table , 77
scheme make byte string , 11
scheme make byte string input port , 59, 66
scheme make byte string output port , 59,

67
scheme make byte string without copying ,

11
scheme make char , 9
scheme make char or null , 9
scheme make char string , 12
scheme make char string without copying ,

12
scheme make character , 9
scheme make closed prim , 28
scheme make closed prim w arity , 27, 28
scheme make complex , 58
scheme make cptr , 6, 13
scheme make custodian , 73
scheme make double , 10

87

INDEX

scheme make exact symbol , 13
scheme make fd input port , 66
scheme make fd output port , 66
scheme make file input port , 59, 65
scheme make file output port , 59, 66
scheme make float , 10
scheme make folding prim , 27
scheme make hash table , 76
scheme make hash table equal , 77
scheme make input port , 59, 63
scheme make integer , 9
scheme make integer value , 10
scheme make integer value from long halves ,

10
scheme make integer value from long long ,

10
scheme make integer value from unsigned ,

10
scheme make integer value from unsigned long halves ,

10
scheme make integer value from unsigned long long ,

10
scheme make locale string , 11
scheme make named file input port , 66
scheme make namespace , 31
scheme make output port , 59, 64
scheme make pair , 11, 29
scheme make parameter , 50
scheme make path , 68
scheme make path without copying , 68
scheme make port type , 63
scheme make prim , 28
scheme make prim closure w arity , 27, 28
scheme make prim w arity , 27, 28
scheme make provided string , 37
scheme make rational , 57
scheme make sema, 44
scheme make sized byte string , 11
scheme make sized char string , 12
scheme make sized offset byte string , 11
scheme make sized offset char string , 12
scheme make sized offset utf8 string , 12
scheme make sized path , 68
scheme make sized utf8 string , 11
scheme make stderr , 79
scheme make stdin , 79
scheme make stdout , 79
scheme make struct instance , 70, 71
scheme make struct names, 70
scheme make struct type , 70
scheme make struct values , 70, 71
scheme make symbol , 13
scheme make thread cell , 48

scheme make type , 6, 13
scheme make utf8 string , 11
scheme make vector , 13
scheme make weak box , 13
scheme making progress , 45, 47
scheme malloc , 2, 3, 15, 21
scheme malloc allow interior , 15, 16, 22
scheme malloc atomic , 15, 21
scheme malloc eternal , 22
scheme malloc fail ok , 22
scheme malloc tagged , 15, 22
scheme malloc uncollectable , 15, 21
scheme module bucket , 26
scheme module name, 1
scheme multiple array , 30
scheme multiple count , 30
scheme multiple values , 30
SCHEMENAMESPACEP, 8
scheme need wakeup , 62
scheme new param , 50
scheme notify multithread , 41
scheme null , 6
SCHEMENULLP, 9
SCHEMENUMBERP, 8
Scheme Object , 6
Scheme Object * , 1
scheme open input file , 65
scheme open output file , 66
scheme os getcwd , 68
scheme os setcwd , 68
SCHEMEOUTPORTVAL, 8, 64
SCHEMEOUTPORTP, 8
Scheme Output Port * , 65
scheme output port type , 59
SCHEMEPAIRP, 7
scheme param config , 50, 51
SCHEMEPATHLEN, 7
scheme path to char string , 68
SCHEMEPATHVAL, 7
SCHEMEPATHP, 7
scheme peek byte , 61
scheme peek byte skip , 61
scheme peekc , 61
scheme peekc skip , 61
scheme pipe , 67
scheme pipe with limit , 67
scheme pop break enable , 36, 38
scheme pop continuation frame , 52
scheme post sema, 44
Scheme Prim , 27
SCHEMEPRIM CLOSUREELS, 16, 28
Scheme Prim Closure Proc , 28
scheme primitive module , 25, 26

88

INDEX

scheme print bytes , 14
scheme print string , 14
scheme printf , 69
scheme printf utf8 , 69
SCHEMEPROCP, 8
scheme proper list length , 75
scheme push break enable , 36, 38
scheme push continuation frame , 52
scheme put byte string , 60
scheme put char string , 60
scheme raise exn , 33, 37
scheme rational denominator , 57
scheme rational from double , 57
scheme rational from float , 58
scheme rational numerator , 57
scheme rational to double , 57
scheme rational to float , 57
scheme rational type , 56
SCHEMERATIONALP, 7
scheme read , 59
scheme read bignum , 57
scheme read bignum bytes , 57
scheme real to double , 11
SCHEMEREALP, 8
scheme register extension global , 2, 15,

22
scheme register finalizer , 23
scheme register parameter , 51
scheme register static , 16, 22
scheme reload , 1
scheme remove all finalization , 24
scheme remove managed, 73
scheme security check file , 72
scheme security check network , 72
SCHEMESEMAP, 8
scheme set box , 76
scheme set can break , 38
scheme set cont mark , 52
scheme set file position , 62
scheme set global bucket , 26
scheme set param , 31, 49, 50
scheme set stack base , 4, 16, 22
scheme set thread param , 50
scheme set type printer , 13
scheme setjmp , 33
scheme signal error , 33, 36
Scheme Simple Object , 6
scheme sleep , 43
scheme start atomic , 48
scheme strdup , 22
scheme strdup eternal , 22
SCHEMESTRUCTGENGET, 70
SCHEMESTRUCTGENSET, 70

SCHEMESTRUCTNOCONSTR, 70
SCHEMESTRUCTNOGET, 70
SCHEMESTRUCTNOPRED, 70
SCHEMESTRUCTNOSET, 70
SCHEMESTRUCTNOTYPE, 70
scheme struct ref , 70, 71
scheme struct set , 70, 71
SCHEMESTRUCTTYPEP, 7
SCHEMESTRUCTP, 7
scheme subtract finalizer , 24
scheme swap thread , 45
SCHEMESYMLEN, 7
SCHEMESYMVAL, 7, 16
SCHEMESYMBOLP, 7
scheme tail apply , 29–31
scheme tail apply no copy , 32
scheme tail apply to list , 32
scheme tell , 62
scheme tell line , 62
Scheme Thread , 39
scheme thread , 39, 44
scheme thread block , 45, 47
scheme thread block enable break , 45
scheme thread cell get , 48
scheme thread cell set , 48
scheme thread w details , 44
SCHEMETHREADP, 8
scheme tls allocate , 47
scheme tls get , 47
scheme tls set , 47
scheme true , 6
SCHEMETRUEP, 9
SCHEMETYPE, 6
Scheme Type , 6
Scheme Type Printer , 14
scheme ucs4 to utf16 , 55
scheme unbound global , 37
scheme unbox , 76
scheme undefined , 6
scheme ungetc , 62
SCHEMEUNLESSREADY, 63
SCHEMEUSEFUEL, 39
scheme utf16 to ucs4 , 55
scheme utf8 decode , 53
scheme utf8 decode all , 54
scheme utf8 decode as prefix , 53
scheme utf8 decode count , 54
scheme utf8 decode prefix , 54
scheme utf8 decode to buffer , 54
scheme utf8 decode to buffer len , 54
scheme utf8 encode , 54
scheme utf8 encode all , 55
scheme utf8 encode to buffer , 55

89

INDEX

scheme utf8 encode to buffer len , 55
scheme values , 30, 32
SCHEMEVECELS, 7, 16
SCHEMEVECSIZE , 7
scheme vector to list , 76
SCHEMEVECTORP, 7
scheme version , 78
scheme void , 6
SCHEMEVOIDP, 9
scheme wait sema, 44
scheme wake up , 46
scheme wakeup on input , 41
scheme warning , 37
SCHEMEWEAKPTR, 8
scheme weak reference , 23
scheme weak reference indirect , 23
SCHEMEWEAKP, 8
scheme write , 59
scheme write byte string , 59
scheme write char string , 60
scheme write evt via write , 65
scheme write special evt via write special ,

65
scheme write to string , 60
scheme write to string w max, 60
scheme write w max, 59
scheme wrong count , 37
scheme wrong return arity , 37
scheme wrong type , 37
security guards,72
short , 5
sleeping,43
strings

conversion to C,7
reading and writing,59

structures,70

tail recursion,29
threads,5, 39

blocking,40
giving time,40
interaction with C,39
sleeping,43

types
creating,6
standard,6

umzlonglong , 5
Unicode,5
use-compiled-file-kinds , 49
user breaks,79

values,6

working directory,68
write , 59

90

	1 Overview
	1.1 Writing MzScheme Extensions
	1.2 Embedding MzScheme into a Program
	1.3 MzScheme and Threads
	1.4 MzScheme, Unicode, Characters, and Strings
	1.5 Integers

	2 Values and Types
	2.1 Standard Types
	2.2 Global Constants
	2.3 Strings
	2.4 Library Functions

	3 Memory Allocation
	3.1 Cooperating with 3m
	3.1.1 Tagged Objects
	3.1.2 Local Pointers
	3.1.3 Local Pointers and mzc

	3.2 Library Functions

	4 Namespaces and Modules
	4.1 Library Functions

	5 Procedures
	5.1 Library Functions

	6 Evaluation
	6.1 Top-level Evaluation Functions
	6.2 Tail Evaluation
	6.3 Multiple Values
	6.4 Library Functions

	7 Exceptions and Escape Continuations
	7.1 Temporarily Catching Error Escapes
	7.2 Enabling and Disabling Breaks
	7.3 Library Functions

	8 Threads
	8.1 Integration with Threads
	8.2 Allowing Thread Switches
	8.3 Blocking the Current Thread
	8.4 Threads in Embedded MzScheme with Event Loops
	8.4.1 Callbacks for Blocked Threads

	8.5 Sleeping by Embedded MzScheme
	8.6 Library Functions

	9 Parameterizations
	9.1 Library Functions

	10 Continuation Marks
	10.1 Library Functions

	11 String Encodings
	11.1 Library Functions

	12 Bignums, Rationals, and Complex Numbers
	12.1 Library Functions

	13 Ports and the Filesystem
	13.1 Library Functions

	14 Structures
	14.1 Library Functions

	15 Security Guards
	15.1 Library Functions

	16 Custodians
	16.1 Library Functions

	17 Miscellaneous Utilities
	17.1 Library Functions

	18 Flags and Hooks
	License
	Index

