PLoT Manual

PLT (scheme@plt-scheme.org)

352
Released July 2006

Copyright notice

Copyright©1996-2006 PLT

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

Contents

1 Quick Start 1
1.1 OVEIVIEW . . . o e o e e e e e e e e e e e e e e e e 1
1.2 BasicPlotting. e e e 1
1.3 Curve Fitting o e e e 2
1.4 Creating Custom PIOtS. o o e e 3

2 Module: plot.ss 4
2.1 PIotting e e e e e e e e 4
2.2 Curve Fitting e e e e 6
2.3 MiISCFUNCLIONS. o e e e e e 6

3 Module: plot-extend.ss 8
3.1 2d-VIEW%D . . e e e e e 8
3.2 3d-VIEWYD . . e e e e e 8
3.3 define-plot-type . . e e 9

License 10

Index 14

CONTENTS CONTENTS

1. Quick Start

1.1 Overview

PLoT (aka PLTplot) provides a basic interface for producing common types of plots such as line and vector field plots
as well as an advanced interface for producing customized plot types. Additionally, plots and plot-items are first-class
values and can be generated in and passed to other programs.

1.2 Basic Plotting

After loading the correct module usingrequire (lib "plot.ss" "plot")) try (plot (line
(lambda (x) x)))

Any other function with the contractumber - > number can be plotted using the same form. To plot multiple
items, use the functiomsix andmix x to combine the items to be plotted.

(plot (mix (line (lambda (x) (sin x)))
(line (lambda (x) (cos x))))

The display area and appearance of the plot can be changed by adding parenthesized argument/value pairs after the
first argument.

(plot (line (lambda (x) (sin x)))
(x-min —1)
(x-max 1)
(title "Sin(x)"))

The appearance of each individual plot item can be altered by adding parameter-value pairs after the data.

(plot (line (lambda (x) x)
(color ’'green)
(width 3)))

Besides plotting lines from functions in 2d, the plotter can also render a variety of other data in several ways:

e Discrete data, such as

(define data
(list (vector 1 1 2)
(vector 2 2 2))

can be interpreted in several ways:

— As points:(plot (points data))
— As Error Data:(plot (error-bars data)

1.3. Curve Fitting 1. Quick Start

e A function of two variables, such as
(define 3dfun (lambda (x y) (= (sin x) (sin y))))

can be plotted on a 2d graph
— Using contours to represent height (z)

(plot (contour 3dfun))
— Using color shading
(plot (shade 3dfun))
— Using a gradient field
(plot (vector-field (gradient 3dfun)))

or in a 3d box
— Displaying only the top of the surface

(plot3d (surface 3dfun))

1.3 Curve Fitting
The scheme-plot library uses a Non-Linear Least Squares fit algorithm to fit parametrized functions to given data.

To fit a particular function to a curve:

1. Set up the independent and dependent variable data. The first item in each vector is the independent var, the
second is the result. The last item must is the weight of the erro—we can leave it as 1 since all the items weigh

the same.
(define data '(#(0 3 1)
#1 5 1)
#2 7 1)
#3 9 1)
#(4 11 1))

2. Set up the function to be fitted using fit. This particular function looks like a line. The independent variables
must come before the parameters.

(define fit-fun
(lambda (x m b) (+ b (* m x)))

3. If possible, come up with some guesses for the values of the parameters. The guesses can be left as one, but
each parameter must be named.

4. Do the fit — the details of the function are described in the Curve Fitting section

(define fit-result
(fit fit-fun

(m1) (b 1)
data))

5. View the resulting parameters

(fit-result-final-params fit-result) ; will produce ((m 2) (b 3))

1. Quick Start 1.4. Creating Custom Plots

6. For some visual feedback of the fit result, plot the function with the new parameters. For convenience, the
structure that is returned by the fit command has already created the function.

(plot (mix (points data)
(line (fit-result-function fit-result)
(y-max 15))

A more realistic example can be founddemos/fit-demo-2.ss .

1.4 Creating Custom Plots

Defining custom plots is simple: a Plot-item (that is passed to plot or mix) is just a function that acts on a view. Both
the 2d and 3d view snip have several drawing functions defined that the plot-item can call in any order. The full details
of the view interface can be found in thit-extend.ss section.

For example, if we wanted to create a constructor that creates Plot-items that draw dashed-lines given a number-number
function we could do the following: Load the required modules

(require (lib "class.ss")
(lib "etc.ss")
(lib "plot-extend.ss" "plot"))

Set up the constructor

(define-plot-type dashed-line
fun 2dview (x-min x-max) ((samples 100) (segments 20) (color ’red) (width 1))
(let * ((dash-size (/ (— x-max x-min) segments))
(x-lists (build-list
(/ segments 2)
(lambda (index)
(x-values
(/ samples segments)
(+ x-min (% 2 index dash-size))
(+ x-min (% (addl (= 2 index)) dash-size)))))))
(send * 2dview
(set-line-color color)
(set-line-width width)
(for-each
(lambda (dash)
(send 2dview plot-line
(map (lambda (x) (vector x (fun x))) dash)))
x-lists 1))

Plot a test case
(plot (dashed-line (lambda (x) x) (color ’blue)))

2. Module: plot.ss

Theplot.ss module provides the ability to make basic plots, fit curves to data, and some useful miscellaneous func-
tions.

2.1 Plotting

Theplot andplot3d forms generate plots that can be viewed in the DrScheme Interactions window. The functions
and data definitions for this module are as follows:

Forms:
(plot 2d-plot-item 2d-plot-option x¥) -> VIEW
(plot3d 3d-plot-item 3d-plot-option x) -> VIEW

2d-plot-option is one of:
(x-min number)
(x-max number)
(y-min number)
(y-max number)

(x-label string)
(y-label string)
(title string)

3d-plot-option is one of:
2d-plot-option
(z-label)
(z-min number)
(z-max number)
(alt number) ; altitude angle, in degrees
(az number) ; azimuthal angle, in degrees

The 2d and 3d plot-options modify the view in which the graph is drawn. The 3d-plot-options alt and az set the viewing
altitude (in degrees) and azimuth (also in degrees) respectively. The rest of the options should be self-explanatory.

Data Definitions:

2d-plot-item is one of:

(points (list-of (vector number number)) point-options)

(line [(number - > number) | (number - > (vector number number))] line-options *)
(‘error-bars (list-of (vector number number number)) error-bar-options %)

(vector-field ((vector number number) -> (vector humber number)) field-options %)

(contour (number number - > number) contour-options %)
(shade (number number - > number) shade-options %)
(mix 2d-plot-item 2d-plot-item +)

(custom (2d-view \% -> void))

2. Module: plot.ss 2.1. Plotting

3d-plot-item is one of:
(surface (number number - > number) surface-options *)
(mix 3d-plot-item 3d-plot-item +)
(custom (3d-view \% -> void))

note: all of the options appear as

option-name : enumeration of values with default enclosed in [
or

option-name : type [default]

color is one of:
‘'white ’black 'yellow 'green 'aqua ’pink
‘wheat 'grey 'brown ’blue ’violet 'cyan
‘turquoise 'magenta ’'salmon 'red

point-options are:
sym . ['square], ’circle, 'odot, ’bullet
color . color [black]

line-options are:

samples : number [150]

width : number [1]

color . color [red]

mode . ['standard], 'parametric
mapping . [cartesian], 'polar
t-min : number [-5]

t-max . number [5]

error-bar-options are:
color : color [red]

field-options are:

color . color [red]
width : number [1]
style . ['scaled],’normalized, read

contour-options are:

samples : number [50]

color . color [black]

width : number [1]

levels : number U (list-of number) [10]

shade-options are:
samples . number [50]
levels : number [10]

surface-options are:

samples : number [50]
color : color ['black]
width : number [1]

The 2d and 3d plot-items can be created in several ways. The first is by using the built-in constructors with your own
data.

2.2. Curve Fitting 2. Module: plot.ss

points will draw points on a graph given a list of vectors specifying their location. Sym specifies the appearance of
the points.

line will draw a line specified in either functional, ie. y=f(x), or parametric mode, x,y = f(t). If the function
is parametric, the line-optiomode must be set tgparametric . t-min andt-max set the parameter when in
parametric modemapping can be set taradial

error-bars will draw error bars given a list of vectors. The vector specifies the center of the error bar (x,y) as the
first two elements, and its magnitude as the third.

vector-field will draw a vector field from a vector valued function. Styles are eitteal , scaled , or
normalized

Both shade andcontour will render 3d functions on a 2d graph using colored shades and contours (respectively)
to represent the value of the function at that positmmtour will let you choose the levels explicitly if desired, by
setting thdevels option to a list of contour levels to be plotted.

surface plots a 3d surface in a 3d box, showing only thp of the surface.

2.2 Curve Fitting

PLTPIlot uses the standard Non-Linear Least Squares fit algorithm for curve fitting. The code that implements the
algorithm is public domain, and is used by the gnuplot package.

Data:
a fit-result is
(fit (numberx- > number) parameter-guess-list data)
parameter-guess-list is a set of name-value pairs enclosed in (..)
data is
(list-of (vector number number number))
| (list-of (vector number number number number)
Functions:
fit-result-function . fit-result - > procedure
fit-result-final-params . fit-result - > guess-list
Thefit form attempts to fit dittable-function to the data that is given. Thliuess-list ~ should be set of

parameters and values. The more accurate your initial guesses are, the more likely the fit is to succeed. If there are no
good values for the guesses, leave them as 1.

fit-result-final-params returns an associative list of the parameters specified in fit and their values. Note
that the values may not be correct if the fit failed to converge. For a visual teft-ussult-function to get
the function with the parameters in place and plot it along with the original data.

2.3 Misc Functions

The plot library comes with a few useful miscellaneous functions:

derivative : (number - > number) [h .000001] -> (number - > number)
gradient : (number number - > number) [h .000001] -> (vector - > vector)
make-vec : (number number - > number) (number number - > number) -> (vector - > vector)

2. Module: plot.ss 2.3. Misc Functions

derivative creates a function that evaluates the numeric derivative of the given single-variable function using the
definition. h is the divisor used in the calculation.

gradient creates a vector-valued function that is the gradient of the given fund¢timpresents the numeric divisor,
as with the derivative function.

make-vec creates one vector valued function from two parts.

3. Module: plot-extend.ss

plot-extend.ss allows you to create your own constructors, further customize the appearance of the plot windows, and
in general extend the package.

3.1 2d-view%

Provides an interface to drawing 2dplots. Some methods call low-level functions while others are emulated in scheme.

e set-labels . string string string - > void
Sets x, y and title labels

e plot-vector . vector vector - > void
Plots a single vector. First argument is the head, second is the tail.

e plot-vectors . (listof (list vector vector)) -> void
Plots a list of vectors. Each vector is a list of two schemeetor s.

e plot-points . (listof vector) number - >void
Plots points using a specified character. ** provide character map **

e plot-line . (listof (vector number number)) -> void
Plots a line given a set of points. Each point is representedvegi@r

e plot-contours . (listof (lisftof number)) (listof number) (listof number) (listof
number) - >void
Plots a grid representing a 3d function using contours to distinguish levels. Args are grid, xvalues yvalues and
levels to plot.

¢ plot-shades . (listof (lisftof number)) (listof number) (listof number) (listof
number) - >void
Plots a grid representing a 3d function using shades to represent height (z).

3.2 3d-view%

Provides an interface to drawing 3d plots.

e plot-surface . (listof (lisftof number)) (listof number) (listof number) - >void
Plots a grid representing a 3d function in a 3D box, showing only the top of the surface.

e plot-line . (listof number) (listof number) (listof number) -> void
Plots a line in 3d space. The arguments are lists of x,y and z coordinates respectively.

e get-z-min : -> number
Returns the minimum plottable Z coordinate.

3. Module: plot-extend.ss 3.define-plot-type

e get-z-max : -> number
Returns the maximum plottable Z coordinate.

e get-alt . -> number
Returns the altitude (in degrees) from which the 3d box is viewed.

e get-az : -> number
Returns the azimuthal angle.

3.3 define-plot-type

Macro used to create new constructors. It is easiest to explain with an example, so here is an implementation of a
simple line constructor:

(define-plot-type line
func 2dplotview (x-min x-max) ((samples 150) (color ‘’'red) (width 1))
(send * 2dplotview
(set-line-color color) (set-line-width width)
(plot-line (map (lambda (x) (vector x (func x)))
(x-values samples x-min x-max N))

e The first keyword after then name of the new plot type, is used to refer to the data that will be rendered. In this
case, we will are calling our dafanc . For example, in the execution ¢plot (line (lambda (x)
x))) func would refer to the identity function.

e 2dplotview refers to the name of the view object that the Plot-item will be applied toldty

e Thex-min andx-max are fields in the2d-view \%object. They will be bound to the values of those fields
before the execution of the body, assuming the object has the megebdsmin andget-x-max . This
entire expression can be omitted if none of the fields are necessary (such as for plotting discrete data points).

e The last set of parenthesized expressions sets keywords based arguments and their default values for the con-
structor. To over-ride values the user needs to provide an associative list with the desired valUdgeEx:
(lambda (x) x) '((color blue)))

License

GNU Library General Public License
Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]
Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

10

3. Module: plot-extend.ss 3.define-plot-type

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries
themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and madification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d) Ifafacility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

11

3.3. define-plot-type 3. Module: plot-extend.ss

4.

10.

12

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms

of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked

with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work

containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing

the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not

covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may notimpose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

3. Module: plot-extend.ss 3.define-plot-type

11.

12.

13.

14.

15.

16.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

13

Index

2d-view%,8
3d-view%,8

curve fitting,2
define-plot-type9
fitting, 2

plot-extend.ss/
plot.ss,3

Quick Start,1

14

	1 Quick Start
	1.1 Overview
	1.2 Basic Plotting
	1.3 Curve Fitting
	1.4 Creating Custom Plots

	2 Module: plot.ss
	2.1 Plotting
	2.2 Curve Fitting
	2.3 Misc Functions

	3 Module: plot-extend.ss
	3.1 2d-view%
	3.2 3d-view%
	3.3 define-plot-type

	License
	Index

