Intermediate Student Language
- PROGRAM
- DEF-OR-EXP
- DEFINITION
- EXPRESSION
- REQUIRE
- DEFINITION
- EXPRESSION
- EXPRESSION-FOR-LET
- NAME
- a sequence of keyboard characters not including: space " , ' ` ( ) [ ] { } | ; #
- QUOTED
- QUASIQUOTED
- REQUIRE
- PRIM-OPs
- Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
- Booleans
- Symbols
- Lists
- append : ((listof any) (listof any) (listof any) ... -> (listof any))
- assq : (X (listof (cons X Y)) -> (union false (cons X Y)))
- caaar : ((cons (cons (cons W (listof Z)) (listof Y)) (listof X)) -> W)
- caadr : ((cons (cons (cons W (listof Z)) (listof Y)) (listof X)) -> (listof Z))
- caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)
- cadar : ((cons (cons W (cons Z (listof Y))) (listof X)) -> Z)
- cadddr : ((listof Y) -> Y)
- caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)
- cadr : ((cons Z (cons Y (listof X))) -> Y)
- car : ((cons Y (listof X)) -> Y)
- cdaar : ((cons (cons (cons W (listof Z)) (listof Y)) (listof X)) -> (listof Z))
- cdadr : ((cons W (cons (cons Z (listof Y)) (listof X))) -> (listof Y))
- cdar : ((cons (cons Z (listof Y)) (listof X)) -> (listof Y))
- cddar : ((cons (cons W (cons Z (listof Y))) (listof X)) -> (listof Y))
- cdddr : ((cons W (cons Z (cons Y (listof X)))) -> (listof X))
- cddr : ((cons Z (cons Y (listof X))) -> (listof X))
- cdr : ((cons Y (listof X)) -> (listof X))
- cons : (X (listof X) -> (listof X))
- cons? : (any -> boolean)
- eighth : ((listof Y) -> Y)
- empty? : (any -> boolean)
- fifth : ((listof Y) -> Y)
- first : ((cons Y (listof X)) -> Y)
- fourth : ((listof Y) -> Y)
- length : (list -> number)
- list : (any ... (listof any) -> (listof any))
- list : (any ... -> (listof any))
- list* : (any ... (listof any) -> (listof any))
- list-ref : ((listof X) natural-number -> X)
- member : (any list -> (union false list))
- memq : (any list -> (union false list))
- memv : (any list -> (union false list))
- null : empty
- null? : (any -> boolean)
- pair? : (any -> boolean)
- rest : ((cons Y (listof X)) -> (listof X))
- reverse : (list -> list)
- second : ((cons Z (cons Y (listof X))) -> Y)
- seventh : ((listof Y) -> Y)
- sixth : ((listof Y) -> Y)
- third : ((cons W (cons Z (cons Y (listof X)))) -> Y)
- Posns
- Characters
- Strings
- Images
- Misc
- =~ : (real real non-negative-real -> boolean)
- eof : eof
- eof-object? : (any -> boolean)
- eq? : (any any -> boolean)
- equal? : (any any -> boolean)
- equal~? : (any any non-negative-real -> boolean)
- eqv? : (any any -> boolean)
- error : (symbol string -> void)
- exit : (-> void)
- identity : (any -> any)
- struct? : (any -> boolean)
- Higher-Order Functions
- andmap : ((X -> boolean) (listof X) -> boolean)
- apply : ((X-1 ... X-N -> Y) X-1 ... X-i (list X-i+1 ... X-N) -> Y)
- build-list : (nat (nat -> X) -> (listof X))
- build-string : (nat (nat -> char) -> string)
- compose : ((Y-1 -> Z) ... (Y-N -> Y-N-1) (X-1 ... X-N -> Y-N) -> (X-1 ... X-N -> Z))
- filter : ((X -> boolean) (listof X) -> (listof X))
- foldl : ((X Y -> Y) Y (listof X) -> Y)
- foldr : ((X Y -> Y) Y (listof X) -> Y)
- for-each : ((any ... -> any) (listof any) ... -> void)
- map : ((X ... -> Z) (listof X) ... -> (listof Z))
- memf : ((X -> boolean) (listof X) -> (union false (listof X)))
- ormap : ((X -> boolean) (listof X) -> boolean)
- procedure? : (any -> boolean)
- quicksort : ((listof X) (X X -> boolean) -> (listof X))
This language is a superset of Beginning Student with List Abbreviations.