PLT mzc: MzScheme Compiler Manual

PLT (scheme@plt-scheme.org)

370
Released May 2007

Copyright notice
Copyright ©1996-2007 PLT

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

Contents

1 About mzc

1.1.1 Byte-Code Compilation 0 i i ittt e e e e e e
1.1.2 Native-Code Compilation ottt e
1.2 mzcIsNot...
1.3 Runningmze e

1.4 Native Code Optimization v v v v vttt e et e e e e e e e e e e
2 Foreign-Function Interface to C

3 Compiling Individual Files with mzc
3.1 Compiling with Modules e e e e
3.2 Compilation without Modules L e
3.3 Autodetecting Compiled Files for Loading

3.4 Compiling Multiple Files to a Single Native-Code Library
4 Compiling Collections with mzc

5 Building and Distributing Stand-alone Executables
5.1 Stand-Alone Executables from Scheme Code
5.2 Distributing Stand-Alone Executables

5.3 Stand-Alone Executables from Native Code 0 i e
6 Creating Library Distribution Archives
7 info.ss File Format

License

12

13

13

14

14

16

18

19

CONTENTS CONTENTS

Index 23

il

1. About mzc

1.1 mzc Is...

The mzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte-code com-
piled files (.zo files, which are just-in-time compiled to native code when loaded on x86, x86_64, and PowerPC
platforms) or platform-specific native-code libraries (.so or .dll files) to be loaded into MzScheme (or MrEd). In the
latter mode, mzc provides limited support for interfacing directly to C libraries.

mzc works on either individual files or on collections. (A collection is a group of files that conform to MzScheme’s
library collection system; see § in PLT MzScheme: Language Manual). In general, mzc works best with code using
the module form.

As a convenience for programmers writing low-level MzScheme extensions, mzc can compile and link plain C files
that use MzScheme’s escheme.h header. This facility is described in Inside PLT MzScheme.

Finally, mzc can perform miscellaneous tasks, such as embedding Scheme code in a copy of the MzScheme (or MrEd)
binary to produce a stand-alone executable, or creating .plt distribution archives.

1.1.1 Byte-Code Compilation
A byte-code file typically uses the file extension .zo. The file starts with #~ followed by the byte-code data.

Byte-code files are loaded into MzScheme in the same way as regular Scheme source files (e.g., with 1oad). The #~
marker causes MzScheme’s reader to load byte codes instead of normal Scheme expressions. When a .zo file exists in
a compiled subdirectory, it is sometimes loaded in place of a source file; see §3.3 for details.

Byte-code programs produced by mzc run exactly the same as source code compiled by MzScheme directly (assuming
the same set of bindings are in place at compile time and load time). In other words, byte-code compilation does
not optimize the code any more than MzScheme’s normal evaluator. However, a byte-code file can be loaded into
MzScheme much faster than a source-code file.

Whether loading from source or byte code, MzScheme compiles as needed to native code on x86, x86_64, and Pow-
erPC platforms. Setting the environment variable PLTNOMZJIT disables just-in-time compilation on all platforms. (In
addition, the stand-alone MzScheme executable also accepts a —3j or ——no—-7jit flag to disable just-in-time compila-
tion.) See §1.4 for information on obtaining the best possible performance.

1.1.2 Native-Code Compilation

A native-code file is a platform-specific shared library. Under Windows, native-code files use the extension .dll. Under
Mac OS X, native-code files use the extension .dylib. Under Unix, native-code files use the extension .s0.

Native-code files are loaded into MzScheme with the 1oad-extension procedure (see § in PLT MzScheme: Lan-
guage Manual). When a native-code file exists in a compiled subdirectory, it is sometimes loaded in place of a source
file; see §3.3 for details.

1.2. mzc Is Not... 1. About mze

The native-code ahead-of-time compiler uses C as an intermediate language, instead of byte code, and it works on
all platforms (when a C compiler is available). The ahead-of-time native compiler can sometimes produce better
performance than the just-in-time compiler (where available), but the difference is small compared to the difference
between direct byte-code interepretation and just-in-time compilation. See §1.4 for information on obtaining the best
possible performance from mzc-compiled programs.

The cffi.ss library of the compiler collection defines Scheme forms, such as c—1ambda, for accessing C functions
from Scheme. The forms produce run-time errors when interpreted directly or compiled to byte code. See §2 for
further information.

Since native-code compilation produces C source code in an intermediate stage, your system must provide an external
C compiler for ahead-of-time native code.

e Under Unix and Mac OS X, gcc is used as the C compiler if it can be found in any of the directories listed in
the PATH environment variable. If gcc is not found, cc is used if it can be found.

e Under Windows, cl.exe, Microsoft Visual C, is used as the C compiler if it can be found in any of the directories
listed in the PATH environment variable. If cl.exe is not found, then gcc.exe is used if it can be found. If neither
cl.exe nor gcc.exe is found, then bcc32.exe (Borland) is used if it can be found.

e In either case, if the MZSCHEME_DYNEXT_COMPILER or CC environment variable is defined, it overrides the
above search paths (and MZSCHEME _DYNEXT_COMPILER takes precedence over CC).

The C compiler and compiler flags used by mzc can be adjusted via command line flags.

1.2 mzc Is Not...

mzc does not generally produce stand-alone executables from Scheme source code. The compiler’s output is intended
to be loaded into MzScheme (or MrEd or DrScheme). However, see also §5 for information about embedding code
into a copy of the MzScheme (or MrEd) executable.

mzc does not translate Scheme code into similar C code. Native-code compilation produces C code that relies on
MzScheme to provide run-time support, which includes memory management, closure creation, procedure application,
and primitive operations.

1.3 Running mzc

Run mzc from a shell, passing flags and arguments on the command line.

In this manual, each example command line is shown as follows:

mzc ——extension ——prefix macros.ss file.ss

To run this example, type the command line into a shell (replacing mzc with the path to mzc on your system, if
necessary).

Simple on-line help is available for mzc’s command-line arguments by running mze¢ with the —h or ——help flag.

1.4 Native Code Optimization

Native code compilation (either just-in-time or ahead-of-time) can provide significant speedups compared to interpret-
ing byte code or running directly from source code (when just-in-time compilation is unavailable or disabled).

1. About mze 1.4. Native Code Optimization

Significant speedup from native-code compilation is typically due to two optimizations:

e Direct function calls — When the compiler detects a function call to an immediately visible function, it gener-
ates more efficient code than for a generic call, especially for tail calls. For example, given the program

(letrec ([odd (lambda (x)
(if (zero? x)
#£
(even (subl x))))]
[even (lambda (x)
(if (zero? x)
#t
(odd (subl x))))1)
(odd 400000))

the compiler can detect the odd—even loop and produce native code that runs twice as fast as byte-code
interpretation. In contrast, given a similar program using top-level definitions,

(define (odd x) ...)
(define (even x) ...)

the compiler cannot assume an odd—even loop, because the global variables odd and even can be redefined
at any time. Within a module, defined variables are lexically scoped like 1et rec variables, and module
definitions therefore permit call optimizations. !

e Primitive inlining — When mzc encounters the application of certain primitives, it inlines the primitive pro-
cedure. However, the compiler must be certain that a variable reference will resolve to a primitive procedure
when the code is loaded into MzScheme. In the preceding example, the compiler cannot inline the application
of sub1 because the global variable subl might be redefined. To encourage the inlining of primitives—which
produces native code that runs about 30 times faster than byte-code interpretation for the preceding example—
the programmer has three options:

— Use module — If the original example is encapsulated in a module that imports mzscheme, then each
primitive name, such as sub1, is guaranteed to access the primitive procedure (assuming that the name is
not lexically bound). The “modulized” version of the preceding program follows:

(module oe mzscheme
(letrec ([odd (lambda (x)
(1f (zero? x)
#£
(even (subl x))))]
[even (lambda (x)
(1f (zero? x)
#t
(odd (subl x))))]1)
(odd 400000)))
To run this program, the oe module must be required at the top level.

— Use a (require mzscheme) prefix — If the preceding example is prefixed with (require
mzscheme), then subl refers not to the global variable, but to the sub1l export of the mzscheme
module. See §3.2 for more information about prefixing compilation.

— Use the ——prim flag — The ——prim flag for mzc effectively prefixes the program with (require
mzscheme).

'The compiler cannot always prove that module definitions have been evaluated before the corresponding variable is used in an expression.
With ahead-of-time compilation via mzc, use the —v or ——verbose flag to check whether mzc reports a “last known module binding” warning
when compiling a module expression, which indicates that definitions after a particular line in the source file might be referenced before they are
defined.

1.4. Native Code Optimization 1. About mze

Programs that permit these optimizations also to encourage a host of other optimizations, such as procedure inlining
(for programmer-defined procedures) and static closure detection. In general, module-based programs provide the
most opportunities for optimization.

Native-code compilation rarely produces significant speedup for programs that are not loop-intensive, programs that
are heavily object-oriented, programs that are allocation-intensive, or programs that exploit built-in procedures (e.g.,
list operations, regular expression matching, or file manipulations) to perform most of the program’s work.

2. Foreign-Function Interface to C

MzLib’s foreign.ss provides an interface to dynamic C libraries that requires no C compiler and works completely at
run time. See PLT Foreign Interface Manual for more information. The manual Inside PLT MzScheme, meanwhile,
describes a C-level API for extending MzScheme. This section describes the cffi.ss library of the compiler collection,
which provides a third alternative (in conjuction with mzc).

The cffi.ss library relies on a C compiler to statically construct an interface to C code through directives embedded
in a Scheme program. The library implements a subset of Gambit-C’s foreign-function interface (see Marc Feeley’s
Gambit-C, version 3.0).

The cffi.ss module defines three forms: c-lambda, c-declare, and c-include. When interpreted directly
or compiled to byte code, c-1lambda produces a function that always raises exn:fail, and c-declare and
c—include raise exn: fail. When compiled by mzc, the forms provide access to C. The mzec compiler implicitly
imports cffi.ss into the top-level environment.

The c-1lambda form creates a Scheme procedure whose body is implemented in C. Instead of declaring argument
names, a c—lambda form declares argument types, as well as a return type. The implementation can be simply the
name of a C function, as in the following definition of fmod:

(define fmod (c—-lambda (double double) double "fmod"))

Alternatively, the implementation can be C code to serve as the body of a function, where the arguments are bound to
___arg]l (three underscores), etc., and the result is installed into ___result (three underscores):

(define machine-string->float
(c-lambda (char-string) float
" __result = *x(float *)___argl;"))

The c-lambda form provides only limited conversions between C and Scheme data. For example, the following
function does not reliably produce a string of four characters:

(define broken-machine-float->string
(c—lambda (float) char-string
"char b[5]; *(float *x)b = __argl; b[4] = 0; ___result = b;"))

because the representation of a f1oat can contain null bytes, which terminate the string. However, the full MzScheme
API, which is described in Inside PLT MzScheme, can be used in a function body:

(define machine—-float->string
(c—lambda (float) scheme-object
"char b[4]; *x(float *x)b = __argl; ___result = scheme_make_sized byte_string(b, 4, 1);")

The c-declare form declares arbitrary C code to appear after escheme.h or scheme.h is included, but before any
other code in the compilation environment of the declaration. It is often used to declare C header file inclusions. For
example, a proper definition of fmod needs the math.h header file:

(c—declare "#include <math.h>")

2. Foreign-Function Interface to C

(define fmod (c—-lambda (double double) double "fmod"))

The c-declare form can also be used to define helper C functions to be called through c—1ambda.

The c-include form expands to a c-declare form using the content of a specified file. Use (c-include
file) instead of (c-declare "#include file") when it’s easier to have MzScheme resolve the file path
than to have the C compiler resolve it.

The plt/collects/mzscheme/examples directory in the PLT distribution contains additional examples.

When compiling for MzScheme3m (see Inside PLT MzScheme), C code inserted by c-lambda, c-declare, and
c—include will be transformed in the same was as mz¢’s ——xform mode (which may or may not be enough to
make the code work correctly in MzScheme3m; see Inside PLT MzScheme for more information).

The c-lambda, c—declare, and c-include forms are defined as follows:

e (c-lambda (argument-type --+-) result—-type funcname—-or-body-string) createsaScheme
procedure whose body is implemented in C. The procedure takes as many arguments as the supplied
argument—types, and it returns one value. If return—-type is void, the procedure’s result is always
void. The funcname—-or-body-string is either the name of a C function (or macro) or the body of a C
function.

If funcname-or-body-string is a string containing only alphanumeric characters and _, then the created
Scheme procedure passes all of its arguments to the named C function (or macro) and returns the function’s
result. Each argument to the Scheme procedure is converted according to the corresponding argument-type
(as described below) to produce an argument to the C function. Unless return-type is void, the C func-
tion’s result is converted according to return—type for the Scheme procedure’s result.

If funcname-or-body-string contains more than alphanumeric characters and _, then it must contain C
code to implement the function body. The converted arguments for the function will be in variables ___argl,
___arg?2, ... (with three underscores in each name) in the context where the funcname—-or-body—-string
is placed for compilation. Unless return—-type is void, the funcname-or-body-string code
should assign a result to the variable ___result (three underscores), which will be declared but not ini-
tialized. The funcname-or-body-string code should not return explicitly; control should always
reach the end of the body. If the funcname-or—-body-string code defines the pre-processor macro
___AT_END (with three leading underscores), then the macro’s value should be C code to execute after the value
___result is converted to a Scheme result, but before the result is returned, all in the same block; defining
___AT_END is primarily useful for deallocating a string in ___result that has been copied by conversion. The
funcname-or-body-string code will start on a new line at the beginning of a block in its compilation
context, and ___AT_END will be undefined after the code.

In addition to ___arg1, etc., the variable argc is bound in funcname—-or—-body—-string to the number
of arguments supplied to the function, and argv is bound to a Scheme_Object* array of length argc
containing the function arguments as Scheme values. The argv and argc variables are mainly useful for error
reporting (e.g., with scheme_wrong_type).

Each argument—type must be one of the following:

- bool

Scheme range: any value

Ctype: int

Scheme to C conversion: #f = 0, anything else = 1

C to Scheme conversion: 0 = #£, anything else = #t
— char

Scheme range: character

C type: char

2. Foreign-Function Interface to C

Scheme to C conversion: character’s ASCII value cast to signed byte
C to Scheme conversion: ASCII value from unsigned cast mapped to character
— unsigned-char
Scheme range: character
C type: unsigned char
Scheme to C conversion: character’s ASCII value
C to Scheme conversion: ASCII value mapped to character
— signed-char
Scheme range: character
Ctype: signed char
Scheme to C conversion: character’s ASCII value cast to signed byte
C to Scheme conversion: ASCII value from unsigned cast mapped to character
- int
Scheme range: exact integer that fits into an int
Ctype: int
conversions: (obvious and precise)
— unsigned-int
Scheme range: exact integer that fits into an unsigned int
C type: unsigned int
conversions: (obvious and precise)
- long
Scheme range: exact integer that fits into a long
C type: long
conversions: (obvious and precise)
— unsigned-long
Scheme range: exact integer that fits into an unsigned long
C type: unsigned long
conversions: (obvious and precise)
- short
Scheme range: exact integer that fits into a short
C type: short
conversions: (obvious and precise)
— unsigned-short
Scheme range: exact integer that fits into an unsigned short
C type: unsigned short
conversions: (obvious and precise)
- float
Scheme range: real number
Ctype: float
Scheme to C conversion: number converted to inexact and castto f1loat
C to Scheme conversion: cast to double and encapsulated as an inexact number
— double
Scheme range: real number
C type: double
Scheme to C conversion: number converted to inexact
C to Scheme conversion: encapsulated as an inexact number
— char-string
Scheme range: byte string or # £
C type: charx
Scheme to C conversion: string = contained byte-array pointer, # £ = NULL
C to Scheme conversion: NULL = # £, anything else = new byte string created by copying the string
— nonnull-char-string
Scheme range: byte string

2. Foreign-Function Interface to C

C type: charx
Scheme to C conversion: byte string’s contained byte-array pointer
C to Scheme conversion: new byte string created by copying the string
— scheme-object
Scheme range: any value
C type: Scheme_Objectx*
Scheme to C conversion: no conversion
C to Scheme conversion: no conversion
- (pointer bytes)
Scheme range: an opaque c-pointer value, identified as type bytes, or # £
C type: bytesx
Scheme to C conversion: #f = NULL, c-pointer = contained pointer cast to bytesx*
C to Scheme conversion: NULL = # £, anything else = new c-pointer containing the pointer and identified
as type bytes

The return-type must be void or one of the arg-type keywords.
e (c-declare code-string) declares arbitrary C code to appear after escheme.h or scheme.h is in-

cluded, but before any other code in the compilation environment of the declaration. A c-declare form can
appear only at the top-level or within a module’s top-level sequence.

The code-string code will appear on a new line in the file for C compilation. Multiple c-include
declarations are concatenated (with newlines) in order to produces a sequence of declarations.

e (c—include path-spec) expands to a use of c—declare with the content of path-spec. The
path-spec has the same form as for include in MzLib’s include.ss.

3. Compiling Individual Files with mzc

To compile an individual file with mze, provide the file name as the command line argument to mze. To compile to
byte code, use the -k, ——make, —z, or ——zo flag; to compile to native code, use the —e or ——extension flag. If
no compilation mode flag is specified, -—extension is assumed.

The difference between —k/—-make and —z/--zo is that the former works only on modules, it recursively compiles
imported modules, it reads and writes .dep files to manage dependencies, and it automatically places files in the right
directory for autodetection (see §3.3).

The input file must have a file extension that designates it as a Scheme file, either .ss or .sem. The output file will
have the same base name and same directory (by default) as the input file, but with an extension appropriate to the
type of the output file (either .zo, .dll, .so, or .dylib).

Example:
mzc ——extension file.ss

Under Windows, the above command reads file.ss from the current directory and produces file.dll in the current
directory.

Multiple Scheme files can be specified for compilation at once. A separate compiled file is produced for each Scheme
file. By default, each compiled file is placed in the directory containing the corresponding input file. When multiple
non-module files are compiled at once, macros defined in a file are visible in the files that are compiled afterwards.

3.1 Compiling with Modules

In terms of both optimization and proper loading of syntax definitions, mzc works best with programs that are en-
capsulated within per-file module expressions. Using a single module expression in a file eliminates the code’s
dependence on the top-level environment. Consequently, all dependencies of the code on loadable syntax extensions
are evident to the compiler.

When compiling a module that requires another module (that is not built into MzScheme), mzc loads the required
module, but does not invoke it. Instead, mzc uses the loaded module only for its syntax exports, if any (which means
that mzc executes the transformer code in the module, but not any of its normal code). In ——make mode, mzc
compiles imported modules before loading them for syntax exports.

3.2 Compilation without Modules

Outside of a module, top-level define-syntax[es], module, require, require-for-syntax,
begin-for-syntax,define[-values]-for-syntax, and begin expressions are handled specially by mzc:
the compile-time portion of the expression is evaluated, because it might affect later expressions.! For example, when
compiling the file containing

I'The —m or ——module flag turns off this special handling.

3.3. Autodetecting Compiled Files for Loading 3. Compiling Individual Files with mzc

(require (lib "etc.ss"))
(define f (opt-lambda (a [b 7]) (+ a b)))

the opt —lambda syntax from the "etc.ss" library must be bound in the compilation namespace at compile time.
Thus, the requi re expression is both compiled (to appear in the output code) and evaluated (for further computation).

Many definition forms expand to define-syntax. For example, define-signature expands to a
define-syntax definition. mze detects define—syntax and other expressions after expansion, so top-level
define-signature expressions affect the compilation of later expressions, as a programmer would expect.

In contrast, a Load or eval expression in a source file is compiled—but not evaluated!—as the source file is com-
piled. Even if the 1 oad expression loads syntax or signature definitions, these will not be loaded as the file is compiled.
The same is true of application expressions that affect the reader, such as (read-case-sensitive #t).

mzc’s —p or ——prefix flag takes a file and loads it before compiling the source files specified on the command line.
In general, a better solution is to put all compiled code into module expressions, as explained in §3.1.

Note that MzScheme provides no eval-when form for controlling the evaluation of compiled code, because module
provides a simpler and more consistent interface for separating compile-time and run-time code.

3.3 Autodetecting Compiled Files for Loading

When MzScheme’s 1oad/use—-compiled, load-relative, or require is used to load a file, MzScheme au-
tomatically detects an alternate byte-code and/or native-code file that resides near the requested file. Byte-code files are
found in a compiled subdirectory in the directory of the requested file. Native-code files are found in (build-path
dir "compiled" "native" (system-library-subpath)) where dir is the directory of the requested
file. A byte-code or native-code file is used in place of the requested file only if its modification date is later than
the requested file, or if the requested file does not exist. If both byte-code and native-code files can be loaded, the
native-code file is loaded.

Example:
mzc ——extension ——destination compiled/native/i386-linux file.ss

Under Linux, the above command compiles file.ss in the current directory and produces compiled/native/i386-
linux/file.so. Evaluating (load/use-compiled "file.ss") in MzScheme will then load compiled/native/i386-
linux/file.so instead of file.ss. If file.ss is changed without recreating file.so, then 1oad/use—compiled loads
file.ss, because file.so is out-of-date.

Use ——auto-dir instead of ——destination to have mzec compute the autodetect location from the input file’s
path:

mzc ——extension ——auto-dir file.ss

3.4 Compiling Multiple Files to a Single Native-Code Library

When the —o or ——object flag is provided to mzc, .kp and .o/.obj files are produced instead of a loadable library.
The .o/.0bj files contain the native code for a single source file. The .kp files contain information used for global
optimizations.

Multiple .kp and .o/.obj files are linked into a single library using mzc with the —1 or ——1link-extension flag.
All of the .kp and .o/.obj files to be linked together are provided on the command line to mzc. The output library is

10

3. Compiling Individual Files with mzc 3.4. Compiling Multiple Files to a Single Native-Code Library

always named _loader.so or _loader.dll.

Example:

mzc —-object filel.ss
mzc —-object file2.ss
mzc --link-extension file1.kp file1.o file2.kp file2.0

Under Unix, the above commands produce a _loader.so library that encapsulates both file1.ss and file2.ss.

Loading _loader into MzScheme is not quite the same as loading all of the Source files that are encapsulated by
_loader. The return value from (load-extension "_loader.so") isa procedure that takes a symbol or #t. If
a symbol is provided and it is the same as the base name of a source file (i.e., the name without a path or file extension)
encapsulated by _loader, then a thunk is returned, along with a symbol (or # £) indicating a module name declared by
the file. Applying the thunk has the same effect as loading the corresponding source file. If a symbol is not recognized
by the _loader procedure, #f is returned instead of a thunk. If #t is provided, a thunk is returned that “loads” all of
the files (using the order of the .0/.0bj files provided to mzc) and returns the result from loading the last one.

The _loader procedure can be called any number of times to obtain thunks, and each thunk can be applied
any number of times (where each application has the same effect as loading the source file again). Evaluating
(load-extension "_loader.so") multiple times returns an equivalent loader procedure each time.

Given the _loader.so constructed by the example commands above, the following Scheme expressions have the same
effect as loading file1.ss and file2.ss:

(let-values ([(go modname) ((load-extension "_loader.so") ’filel)]) (go))
(let-values ([(go modname) ((load-extension "_loader.so") ’"file2)]) (go))

or, equivalently:

(let-values ([(go modname) ((load-extension "_loader.so") #t)]) (go))

The special _loader convention is recognized by MzScheme’s 1oad/use—-compiled, load-relative, and
require. MzScheme automatically detects _loader.so or _loader.dll in the same directory as individual native-code
files (see §3.3). If both an individual native-code file and a _loader are available, the _loader file is used.

11

4. Compiling Collections with mzc

A collection is a group of files that conform to MzScheme’s library collection system; see § in PLT MzScheme:
Language Manual for details. Every source file in a collection should contain a single module declaration.

The --collection-zos and —-collection-extension flags direct mzc to compile a whole collec-
tion. The —-collection-zos flag produces individual .zo files for each library in the collection. The
-—collection-extension flag produces a single _loader library for the collection.

The (sub-)collection to compile is specified on the command line for mze. The specified collection must contain an
info.ss library that provides information about how to compile the collection. (See §7 for information on the format
of info.ss.)

To compile a collection, mzc extracts info.ss information for the following fields:

e name — the name of the collection as a string.

e compile-omit-files — alist of library filenames (without paths); all Scheme files in the collection are
compiled except for the files in this list. This information is optional.

e compile-zo-omit-files — a list of library filenames that should not be compiled to byte code (but
possibly to native code). This information is optional.

e compile-extension-omit-files — a list of library filenames that should not be compiled to native
code (but possibly to byte code). This information is optional.

e compile-subcollections — a list of sub-collection sub-paths, where each sub-path is a list of strings;
each full sub-collection path is formed by appending the sub-path to the path of the collection being compiled.
Each sub-collection is compiled in the same way as the current collection, using the info.ss library of the sub-
collection. This information is optional.

When compiling a collection to byte-code files, mzc automatically creates a compiled directory in the collection
directory and puts .zo files there.

When compiling a collection to native code, mzc automatically created a compiled directory in the collection direc-
tory, a native directory in that compiled directory, and a platform-specific directory in native using the directory name
returned by system-library-subpath. Intermediate .c and .kp files are kept in native. The platform-specific
directory gets intermediate .0/.obj files and the final _loader.so or _loader.dIl.

To compile a collection, mzec compiles only the library files that have changed since the last compilation. This form
of dependency checking is usually too weak. For example, when a signature file changes, mzc does not automatically
recompile all files that rely on the signatures. In this case, delete the compiled directory when a macro or signature file
changes to ensure that the collection is compiled correctly. Alternately, for compiling to .zo, use Setup PLT instead of
mzc, because Setup PLT tracks dependencies reliably.

12

S. Building and Distributing Stand-alone Executables

For all compilation modes, the output of mzc relies on MzScheme (and MrEd) to provide run-time support to the
compiled code. However, mzc can also package code together with its run-time support to form an executable that
works on the source machine or a package that can be distributed to other machines.

5.1 Stand-Alone Executables from Scheme Code

The command-line flag ——exe directs mzc to embed a module (from source or byte code) into a copy of the
MzScheme executable. (Under Unix, the embedding executable is actually a copy of a wrapper executable.) The
created executable invokes the embedded module on startup. The ——gui-exe flag is similar, but it copies the MrEd
executable.

If the embedded module refers statically (i.e., through require) to modules in MzLib or other collections, then those
modules are also included in the embedding executable.

Library modules or other files that are referenced dynamically—through eval, load, or dynamic-require—are
not automatically embedded into the created executable. Such modules can be explicitly included using mzc’s ——1ib
flag. Alternately, use the forms of the runtime-path.ss MzLib library to embed references to the run-time files in
the executable; the files are then copied and packaged together with the executable when creating a distribution (as
described in the following section).

Modules that are implemented directly by extensions — i.e., extensions that are automatically loaded from

(build-path "compiled" "native" (system—-library-subpath)) to satisfy a require — are
treated like other run-time files: a generated executable uses them from their original location, and they are copied and
packaged together when creating a distribution.

The ——exe and ——gui-exe flags work only with module-based programs. The embed.ss library in the compiler
collection provides a more general interface to the embedding mechanism.

Example:
mzc -—gui-exe hello hello.ss

Under Windows, this command produces hello.exe, which runs the same as invoking the hello.ss module. Under
Mac OS X, the resulting executable is an application hello.app.

A stand-alone executable is “stand-alone” in the sense that you can run it without starting MzScheme, MrEd, or
DrScheme. However, the executable depends on MzScheme and/or MrEd shared libraries, and possibly other run-time
files declared via runtime-path.ss. The executable can be packaged with support libraries to create a distribution, as
described in the following section.

13

5.2. Distributing Stand-Alone Executables 5. Building and Distributing Stand-alone Executables

5.2 Distributing Stand-Alone Executables

The command-line flag ——exe-dir directs mzc to combine a stand-alone executable (created via ——exe or
-—gui-exe) with all of the shared libraries that are needed to run it, along with any run-time files declared via
the runtime-path.ss MzLib library. The resulting package can be moved to other machines that run the same operat-
ing system.

After the ——exe—dir flag, supply a directory to contain the combined files for a distribution. Each command-line
argument is an executable to include in the distribution, so multiple executables can be packaged together:

Example:
mzc ——exe-dir geetings hello.exe goodbye.exe

Under Windows, this example creates a directory greetings (if the directory doesn’t exist already), and it copies the
executables hello.exe and goodbye.exe into greetings. It also creates a lib sub-directory in greetings to contain
DLLs, and it adjusts the copied hello.exe and goodbye.exe to use the DLLs in lib.

The layout of files within a distribution directory is platform-specific:

e Under Windows, executables are put directly into the distribution directory, and DLLs and other run-time files
go into a lib sub-directory.

e Under Mac OS X, ——gui-exe executables go into the distribution directory, ——exe executables go into a bin
subdirectory, and frameworks (i.e., shared libraries) go into a lib sub-directory along with other run-time files.
As a special case, if the distribution has a single ~—gui-exe executable, then the lib directory is hidden inside
the application bundle.

e Under Unix, executables go into a bin subdirectory, shared libraries (if any) go into a lib subdirectory along with
other run-time files, and wrapped executables are placed into a lib/plt subdirectory with version-specific names.
This layout is consistent with Unix installation conventions; the version-specific names for shared libraries and
wrapped executables means that distributions can be safely unpacked into a standard place on target machines
without colliding with an existing PLT Scheme installation or other executables created by mzc.

A distribution also has a collects directory that is used as the main library collection directory for the packaged
executables. By default, the directory is empty. Use the ++copy—-collects flag to supply a directory whose
content is copied into the distribution’s collects directory. The ++copy—-collects flag can be used multiple times
to supply multiple directories.

When multiple executables are disrtibuted together, then separately creating the executables with —-exe and
—-—gui-exe can generate multiple copies of collection-based libraries that are used by multiple executables. To share
the library code, instead, specify a target directory for library copies using the ——collects—-dest flag with ——exe
and ——gui-exe, and specify the same directory for each executable (so that the set of libraries used by all executa-
bles are pooled together). Finally, when packaging the distribution with ——exe~-dir, use the ++copy—-collects
flag to include the copied libraries in the distribution.

5.3 Stand-Alone Executables from Native Code

Creating a stand-alone executable that embeds native code from mzc requires downloading the MzScheme source
code and using a C compiler and linker directly.

To build an executable with an embedded MzScheme engine:

e Download the source code from http://www.drscheme.org/ and compile MzScheme.

14

5. Building and Distributing Stand-alone Executables 5.3. Stand-Alone Executables from Native Code

e Recompile MzScheme’s main.c with the preprocessor symbol STANDALONE _WITH_EMBEDDED_EXTENSION
defined. Under Unix, the Makefile distributed with MzScheme provides a target ee-main that performs this step.

The preprocessor symbol causes MzScheme’s startup code to skip command line parsing, the user’s ini-
tialization file, and the read-eval-print loop. Instead, the C function scheme_initialize
is called, which is the entry point into mzc-compiled Scheme code. After compiling main.c with
STANDALONE _WITH_EMBEDDED_EXTENSION defined, MzScheme will not link by itself; it must be linked
with objects produced by mzc.

e Compile each Scheme source file in the program with mzc¢’s —o or ——ob ject flag and the ——embedded flag,
producing a set of .kp files and object (.o or .obj) files.

e After each Scheme file is compiled, run mzc with the —g or ——1ink—-glue and the ——embedded flag,
providing all of the .kp files and object files on the command line. (Put the object files in the order that they
should be “loaded.”) The —g or ——1ink-glue step produces a new object file, loader.o or _loader.obj.

Each of the Scheme source files in the program must have a different base name (i.e., the file name without its
directory path or extension), otherwise _loader cannot distinguish them. The files need not reside in the same
directory.

e Link all of the mzc-created object files with the MzScheme implementation (having compiled main.c with
STANDALONE _WITH_EMBEDDED_EXTENSION defined) to produce a stand-alone executable.

Under Unix, the Makefile distributed with MzScheme provides a target ee-app that performs the final linking
step. To use the target, call mzmake with a definition for the makefile macro EEAPP to the output file name,
and a definition for the makefile macro EEOBJECTS to the list of mzc-created object files. (The example below
demonstrates how to define makefile variables on the command line.)

For example, under Unix, to create a standalone executable MyApp that is equivalent to
mzscheme -mv - £ filel.ss - £ file2.ss
unpack the MzScheme source code and perform the following steps:

cd plt/src/mzscheme

./mzmake

./mzmake ee-main

mzc —-object ——embedded filel.ss

mzc —-object ——embedded file2.ss

mzc —-1link—-glue ——embedded file1.kp file1.o file2.kp file2.0
./mzmake EEAPP=MyApp EEOBJECTS="file1.0 file2.0 _loader.0” ee-app

To produce an executable that embeds the MrEd engine, the procedure is essentially the same; MrEd’s main file is
mrmain.cxx instead of main.c. See the compilation notes in the MrEd source code distribution for more information.

15

6. Creating Library Distribution Archives

The command-line flags ——plt and -~—collection-plt direct mzc to create an archive for distributing files to
PLT users. A distribution archive usually has the suffix .plt, which Help Desk and DrScheme recognize as archives to
provide automatic unpacking facilities. The Setup PLT program also supports .plt unpacking.

An archive contains the following elements:

e a set of files and directories to be unpacked, and flags indicating whether they are to be unpacked relative to the
PLT add-ons directory (which is user-specific), the PLT installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line to mzc, either directly with ——plt or
in the form of collection names with ——collection-plt.

The ——at-plt flag indicates that the files and directories should be unpacked relative to the user’s add-ons
directory, unless the user specifies the PLT installation directory when unpacking. The -—collection-plt
flag implies ——at-plt. The ——all-users flag overrides ——at-plt, and it indicates that the files and
directories should be unpacked relative to the PLT installation directory, always.

o a flag for each file indicating whether it overwrites an existing file when the archive is unpacked; the default is
to leave the old file in place, but mzc’s ——replace flag enables replacing for all files in the archive.

e a list of collections to be set-up (via Setup PLT) after the archive is unpacked; mzc’s ++setup flag adds a
collection name to the archive’s list, but each collection for ——collection-plt is added automatically.

e aname for the archive, which is reported to the user by the unpacking interface; mze’s ——plt-name flag sets
the archive’s name, but a default name is determined automatically for -——collection-plt.

e a list of required collections (with associated version numbers) and a list of conflicting collections; mzc always
names the mzscheme collection in the required list (using the collection’s pack-time version), mzc names each
packed collection in the conflict list (so that a collection is not unpacked on top of a different version of the
same collection), and mzc extracts other requirements and conflicts from the info.ss files of collections for
—-collection-plt.

Use the ——p1t flag to specify individual directories and files for the archive. Each file and directory must be specified
with a relative path. By default, if the archive is unpacked with Help Desk or DrScheme, the user will be prompted
for a target directory, and if Setup PLT is used to unpack the archive, the files and directories will be unpacked relative
to the current directory. If the ——at-plt flag is provided to mzc, the files and directories will be unpacked relative
to the PLT add-ons directory, instead. Finally, if the ~——all-users flag is provided to mzc, the files and directories
will be unpacked relative to the PLT installation directory, instead.

Use the ——collection-plt flag to pack one or more collections; sub-collections can be designated by using
a forward slash (“/”) as a path separator on all platforms. In this mode, mzc automatically uses paths relative to
the PLT installation or add-ons directory for the archived files, and the collections will be set-up after unpacking.
In addition, mzc consults each collection’s info.ss file, as described below, to determine the set of required and
conflicting collections. Finally, mzc consults the first collection’s info.ss file to obtain a default name for the archive.
For example, the following command creates a sirmail.plt archive for distributing a sirmail collection:

16

6. Creating Library Distribution Archives

mzc ——-collection-plt sirmail.plt sirmail

When packing collections, mzc checks the following fields of each collection’s info.ss file (see §7):

e requires — a list of the form (list (list coll-path vers) ---) where each coll-pathisa
non-empty list of relative-path strings, and each vers is a (possibly empty) list of exact integers. The indicated
collections must be installed at unpacking time, with version sequences that match as much of the version
sequence specified in the corresponding vers.

A collection’s version is indicated by a version field in it’s info.ss file, and the default version is the empty
list. The version sequence generalized major and minor version numbers. For example, version / (2 5 4 7)
of a collection can be used when any of * (), ” (2),’ (2 5),’ (2 5 4),or’ (2 5 4 7) isrequired.

e conflicts —alistof the form (list coll-path ---) where each coll-path is a non-empty list of
relative-path strings. The indicated collections must not be installed at unpacking time.

For example, the info.ss file in the sirmail collection might contain the following info declaration:

(module info (lib "infotab.ss" "setup")
(define name "SirMail")
(define mred-launcher-libraries (list "sirmail.ss"))
(define mred-launcher—-names (list "SirMail"))
(define requires (list (list "mred"))))

Then, the sirmail.plt file (created by the command-line example above) will contain the name “SirMail”. When the
archive is unpacked, the unpacker will check that the MrEd collection is installed (not just MzScheme), and that MrEd
has the same version as when sirmail.plt was created.

Although mzc’s command-line interface is sufficient for most purposes, the pack.ss library of the setup collection
provides a general interface for constructing archives.

17

7. info.ss File Format

An info.ss file provides general information about a collection. The file must have the following format:

(module info (lib "infotab.ss" "setup")
(define identifier info-expr)

info-expr is one of

(quote datum)

(quasiquote datum) ; with unguote and unquote-splicing

(info-primitive info-expr ---)

identifier ; an identifier defined in the info module

literal ; a string, number, boolean, etc.

(string-constant identifier) ; a string constant defined in
the string-constants collection

4
info-primitive is one of
cons car cdr list
list*x reverse append
string—-append
path->string build-path collection-path
system-library-subpath

For example, the following declaration is in the info.ss library of the help collection. It contains definitions for three
info tags:
(module info (lib "infotab.ss" "setup")
(define name "Help")

(define mred-launcher-libraries (list "help.ss"))
(define mred-launcher-names (list "Help Desk")))

The setup collection’s getinfo.ss library defines a get —info function for extracting field values from a collection’s
info.ss file. See the setup collection’s documentation for details.

18

License

GNU Library General Public License
Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]
Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a

derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

19

7. info.ss File Format

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the

library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

20

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party

saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you

conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute

such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

7. info.ss File Format

4.

10.

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked

with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work

containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not

covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

21

7. info.ss File Format

22

11.

12.

13.

14.

15.

16.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Index

++copy-collects, 14 C compiler, 2

++setup, 16 c—-declare, 5
—-—-all-users, 16 c—include, 6
--at-plt, 16 c—-lambda, 5
——auto-dir, 10 CC,2
—-collection—-extension, 12 cffi.ss, 2,5
—-collection—-plt, 16 char, 6
—-—collection-zos, 12 char-string,7
—-collects-dest, 14 command line flags, 2
—-—embedded, 15 compiling

——exe, 13 collections, 12
-—exe-dir, 14 files, 9
——extension, 9 multiple files, 10
-—gui-exe, 13

—~help, 2 double, 7

—-1ib, 13 eval-when, 10
——link-extension, 10

--link-glue, 15 Feeley, Marc, 5

—--make, 9 float,7

—--object, 10, 15 foreign-function interface (FFI), 5
--plt, 16

——-plt—-name, 16 Gambit-C, 5

——prefix, 10

——prim,3 help, 2

~—replace, 16 info.ss, 12

——xform, 6 .

206.9 info.ss format, 18

e 9’ infotab.ss library, 18

g, 15 int,7

~h,2 loading compiled files, 1, 10
-k, 9 long, 7

-1, 10

-0, 10, 15 module, 9

-p, 10 mzc, |

-z,9 MZSCHEME _DYNEXT_COMPILER, 2
Jdil 1

.dylib, 1 native code, 1

.plt, 16 nonnull-char-string,7

.plt distribution archives, 16 ,
pointer, 8

.scm, 9

S0, | require, 9

88, 9 running mzc, 2

.zo, |

_loader.dll, 11 scheme-object, 8

_loader.so, 11 scheme_initialize, 15
short, 7

bool, 6 signed-char, 7

byte code, 1 stand-alone executables, 2, 13

INDEX

STANDALONE _WITH_EMBEDDED_EXTENSION, I5
syntax, 9

unsigned-char, 7
unsigned-int, 7

unsigned-long, 7
unsigned-short, 7

24

	1 About mzc
	1.1 mzc Is...
	1.1.1 Byte-Code Compilation
	1.1.2 Native-Code Compilation

	1.2 mzc Is Not...
	1.3 Running mzc
	1.4 Native Code Optimization

	2 Foreign-Function Interface to C
	3 Compiling Individual Files with mzc
	3.1 Compiling with Modules
	3.2 Compilation without Modules
	3.3 Autodetecting Compiled Files for Loading
	3.4 Compiling Multiple Files to a Single Native-Code Library

	4 Compiling Collections with mzc
	5 Building and Distributing Stand-alone Executables
	5.1 Stand-Alone Executables from Scheme Code
	5.2 Distributing Stand-Alone Executables
	5.3 Stand-Alone Executables from Native Code

	6 Creating Library Distribution Archives
	7 info.ss File Format
	License
	Index

