
PLT MzLib: Libraries Manual

PLT (scheme@plt-scheme.org)

370
Released May 2007

Copyright notice

Copyright c©1996-2007 PLT

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line at scheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Contributors to MzLib include Dorai Sitaram, Bruce Hauman, Jens Axel Søgaard, Gann Bierner, and Kurt Howard
(working from Steve Moshier’s Cephes library). Publicly available packages have been assimilated from others,
including Andrew Wright (match) and Marc Feeley (original pretty-printing implementation).

This manual was typeset using LATEX, SLATEX, and tex2page. Some typesetting macros were originally taken from
Julian Smart’s Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on May 20, 2007.

Contents

1 MzLib 1

2 a-signature.ss: Whole-module Unit Signatures 3

3 a-unit.ss: Whole-module Units 4

4 async-channel.ss: Buffered Asynchronous Channels 5

5 awk.ss: Awk-like Syntax 6

6 class.ss: Classes and Objects 7

6.1 Object Example . 8

6.2 Creating Interfaces . 10

6.3 Creating Classes . 11

6.3.1 Initialization Variables . 13

6.3.2 Fields . 14

6.3.3 Methods . 15

6.4 Creating Objects . 18

6.5 Field and Method Access . 19

6.5.1 Methods . 20

6.5.2 Fields . 21

6.5.3 Generics . 21

6.6 Mixins . 22

6.7 Object Serialization . 22

6.8 Object, Class, and Interface Utilities . 23

6.9 Expanding to a Class Declaration . 24

7 class100.ss: Version-100-Style Classes 26

i

CONTENTS CONTENTS

8 cm.ss: Compilation Manager 28

9 cm-accomplice.ss: Compilation Manager Hook for Syntax Transformers 30

10 cmdline.ss: Command-line Parsing 31

11 cml.ss: Concurrent ML Compatibility 35

12 compat.ss: Compatibility 36

13 compile.ss: Compiling Files 38

14 contract.ss: Contracts 39

14.1 Flat Contracts . 39

14.2 Function Contracts . 45

14.3 Lazy Data-structure Contracts . 49

14.4 Object and Class Contracts . 50

14.5 Attaching Contracts to Values . 51

14.6 Contract Utility . 53

15 control.ss: Control Operators 55

16 date.ss: Dates 59

17 deflate.ss: Deflating (Compressing) Data 60

18 defmacro.ss: Non-Hygienic Macros 61

19 etc.ss: Useful Procedures and Syntax 62

20 file.ss: Filesystem Utilities 67

21 foreign.ss: Foreign Interface 72

22 include.ss: Textually Including Source 73

23 inflate.ss: Inflating Compressed Data 75

ii

CONTENTS CONTENTS

24 integer-set.ss: Integer Sets 76

25 kw.ss: Keyword Arguments 79

25.1 Required Arguments . 80

25.2 Optional Arguments . 80

25.3 Keyword Arguments . 80

25.4 Rest and Rest-like Arguments . 81

25.5 Body Argument . 82

25.6 Mode Keywords . 83

25.7 Property Lists . 84

26 list.ss: List Utilities 85

27 match.ss: Pattern Matching 89

27.1 Patterns . 91

27.2 Extending Match . 92

27.3 Examples . 93

28 math.ss: Math 95

29 md5.ss: MD5 Message Digest 96

30 os.ss: System Utilities 97

31 package.ss: Local-Definition Scope Control 98

32 pconvert.ss: Converted Printing 103

33 pconvert-prop.ss: Converted Printing Property 106

34 plt-match.ss: Pattern Matching 107

35 port.ss: Port Utilities 109

36 pregexp.ss: Perl-Style Regular Expressions 115

36.1 Introduction . 115

iii

CONTENTS CONTENTS

36.2 Regexp procedures . 115

36.2.1 pregexp . 116

36.2.2 pregexp-match-positions . 116

36.2.3 pregexp-match . 116

36.2.4 pregexp-split . 117

36.2.5 pregexp-replace . 117

36.2.6 pregexp-replace* . 118

36.2.7 pregexp-quote . 118

36.3 The regexp pattern language . 118

36.3.1 Basic assertions . 118

36.3.2 Characters and character classes . 119

36.3.3 Quantifiers . 121

36.3.4 Clusters . 122

36.3.5 Alternation . 124

36.3.6 Backtracking . 125

36.3.7 Looking ahead and behind . 125

36.4 An extended example . 126

37 pretty.ss: Pretty Printing 129

38 process.ss: Process and Shell-Command Execution 134

39 restart.ss: Simulating Stand-alone MzScheme 136

40 runtime-path.ss: Declaring Paths Needed at Run Time 137

41 sandbox.ss: Sandboxed Evaluation 139

41.1 Customizing Evaluators . 141

41.2 Interacting with Evaluators . 143

41.3 Miscellaneous . 145

42 sendevent.ss: AppleEvents 146

42.1 AppleEvents . 146

iv

CONTENTS CONTENTS

43 serialize.ss: Serializing Data 148

44 shared.ss: Graph Constructor Syntax 153

45 string.ss: String Utilities 154

46 struct.ss: Structure Utilities 158

47 stxparam.ss: Syntax Parameters 159

48 surrogate.ss: Proxy-like Design Pattern 160

49 tar.ss: Creating tar Files 162

50 thread.ss: Thread Utilities 163

51 trace.ss: Tracing Top-level Procedure Calls 165

52 traceld.ss: Tracing File Loads 166

53 trait.ss: Object-Oriented Traits 167

54 transcr.ss: Transcripts 170

55 unit.ss: Units 171

55.1 Creating Units . 171

55.2 Invoking Units . 175

55.3 Linking Units and Creating Compound Units . 176

55.4 Inferred Linking . 178

55.5 Generating A Unit from Context . 181

55.6 Structural Matching . 182

55.7 Extending the Syntax of Signatures . 183

55.8 Unit Utilities . 184

56 unit-exptime.ss: Unit Utilities for Macro Transformers 185

57 unit200.ss: Old Units without Signatures 186

v

CONTENTS CONTENTS

58 unitsig200.ss: Old Units with Signatures 187

59 zip.ss: Creating zip Files 188

License 189

Index 193

vi

1. MzLib

The MzLib collection consists of several libraries, each of which provides a set of procedures and syntax.

To use a MzLib library, either at the top-level or within a module, import it with

(require (lib libname))

For example, to use the list.ss library:

(require (lib "list.ss"))

The MzLib collection provides the following libraries:

• a-signature.ss — whole-module unit signature
• a-unit.ss — whole-module unit
• async-channel.ss — buffered channels
• awk.ss — AWK-like syntax
• class.ss — object system
• cm.ss — compilation manager
• cm-accomplice.ss — compilation support hook syntax transformers
• cmdline.ss — command-line parsing
• cml.ss — Concurrent ML compatibility
• compat.ss — compatibility procedures and syntax
• compile.ss — bytecode compilation
• contract.ss — programming by contract
• control.ss — control operators
• date.ss — date-processing procedures
• deflate.ss — gzip
• defmacro.ss — define-macro and defmacro
• etc.ss — semi-standard procedures and syntax
• file.ss — file-processing procedures
• include.ss — textual source inclusion
• inflate.ss — gunzip
• integer-set.ss — sets of exact integers
• kw.ss — keyword argument procedures
• list.ss — list-processing procedures
• match.ss — pattern matching (backwards compatible library)
• math.ss — arithmetic procedures and constants
• md5.ss — MD5 message-digest algorithm
• os.ss — system utilities
• package.ss — local-definition scope control
• pconvert.ss — print values as expressions
• pconvert-prop.ss — property to adjust printed form
• plt-match.ss — pattern matching (improved syntax for patterns)

1

1. MzLib

• port.ss — port utilities
• pregexp.ss – Perl-style regular expressions
• pretty.ss — pretty-printer
• restart.ss — stand-alone MzScheme emulator
• runtime-path.ss — declaring paths needed at run time
• sandbox.ss — sandboxed evaluation
• sendevent.ss — AppleEvents
• serialize.ss — serialization of data
• shared.ss — graph constructor syntax
• string.ss — string-processing procedures
• struct.ss — structure unilities
• stxparam.ss — support for parameter-like syntax bindings
• surrogate.ss — a proxy-like design pattern
• tar.ss — create tar files
• thread.ss — thread utilities
• trace.ss — procedure tracing
• traceld.ss — file-load tracing
• trait.ss — traits
• transcr.ss — transcripts
• unit.ss — component system
• unit-exptime.ss — component system
• unit200.ss — old component system
• unitsig200.ss — old component system with signatures
• zip.ss — create zip files

2

2. a-signature.ss: Whole-module Unit Signatures

To load: (require (lib "a-signature.ss"))

The a-signature.ss library serves as a module for the language position of another module. As a language, it provides
a shorthand for implementing a module that defines and provides a single unit signature (see §55).

(module name (lib "a-signature.ss")
require-decl · · ·
sig-spec · · ·)

require-decl is one of
(require require-spec · · ·)
(require-for-syntax require-spec · · ·)
(require-for-template require-spec · · ·)

See §55.1 for the grammar of sig-spec. The expansion of this module defines and provides a signature nameˆ
containing the sig-specs.

Unlike the body of a a-unit.ss module, a require-decl in a a-signature.ss module must be a literal use of
require, require-for-syntax, or require-for-template.

If name is of the form base-sig, then the expansion of the module defines a provides a signature baseˆ with the
given content. Otherwise, the defined and provided signature is nameˆ.

3

3. a-unit.ss: Whole-module Units

To load: (require (lib "a-unit.ss"))

The a-unit.ss library serves as a module for the language position of another module. As a language, it provides a
shorthand for implementing a module that defines and provides a single unit (see §55).

(module name (lib "a-unit.ss")
require-decl · · ·
(import tagged-sig-expr · · ·)
(export tagged-sig-expr · · ·)
init-depends-decl
unit-body-expr-or-defn
· · ·)

require-decl is one of
(require require-spec · · ·)
(require-for-syntax require-spec · · ·)
(require-for-template require-spec · · ·)
(begin require-decl · · ·)
require-macro-use

A require-decl can be a require-macro-use, which is a use of a macro that expands to a require-decl.
After any number of require-decls, the content of the module is the same as a unit body; see §55.1 for more
information.

If name is of the form base-unit, then the expansion of the module defines a provides a unit base@ with the given
content. Otherwise, the defined and provided unit is name@.

4

4. async-channel.ss: Buffered Asynchronous Channels

To load: (require (lib "async-channel.ss"))

This library implemented buffered asynchronous channels to complement MzScheme’s synchronous channels (see
§7.5 in PLT MzScheme: Language Manual).

(make-async-channel [limit-k]) PROCEDURE

Returns an asynchronous channel with a buffer limit of limit-k items. A get operation blocks when the channel is
empty, and a put operation blocks when the channel has limit-k items already.

If limit-k is #f (the default), the channel buffer has no limited (so a put never blocks). Otherwise, limit-k must
be a positive exact integer.

The asynchronous channel value can be used directly with sync (see §7.7 in PLT MzScheme: Language Manual).
The channel blocks until async-channel-get would return a value, and the unblock result is the received value.

(async-channel-get async-channel) PROCEDURE

Blocks until at least one value is available in async-channel, and then returns the first of the values that was put
into async-channel.

(async-channel-try-get async-channel) PROCEDURE

If at least one value is immediately available in async-channel, returns the first of the values that was put into
async-channel. If async-channel is empty, the result is #f.

(async-channel-put async-channel v) PROCEDURE

Puts v into async-channel, blocking if async-channel’s buffer is full until space is available. The result is
void.

(async-channel-put-evt async-channel v) PROCEDURE

Returns a synchronizable event that is blocked while (async-channel-put async-channel v) would
block. The unblock result is the event itself. See also §7.7 in PLT MzScheme: Language Manual.

5

5. awk.ss: Awk-like Syntax

To load: (require (lib "awk.ss"))

This library defines the awk macro from Scsh:

(awk next-record-expr
(record field-variable · · ·)
counter-variable/optional
((state-variable init-expr) · · ·)
continue-variable/optional

clause · · ·)

counter-variable/optional is either empty or
variable

continue-variable/optional is either empty or
variable

clause is one of
(test body-expr · · ·1)
(test => procedure-expr)
(/ regexp-str / (variable-or-false · · ·1) body-expr · · ·1)
(range exclusive-start-test exclusive-stop-test body-expr · · ·1)
(:range inclusive-start-test exclusive-stop-test body-expr · · ·1)
(range: exclusive-start-test inclusive-stop-test body-expr · · ·1)
(:range: inclusive-start-test inclusive-inclusive-stop-test body-expr · · ·1)
(else body-expr · · ·1)
(after body-expr · · ·1)

test is one of
integer
regexp-str
expr

variable-or-false is one of
variable
#f

For detailed information about awk, see Olin Shivers’s Scsh Reference Manual. In addition to awk, the Scsh-
compatible procedures match:start, match:end, match:substring, and regexp-exec are defined.
These match: procedures must be used to extract match information in a regular expression clause when using
the => form.

6

6. class.ss: Classes and Objects

To load: (require (lib "class.ss"))

A class specifies

• a collection of fields;

• a collection of methods;

• initial value expressions for the fields; and

• initialization variables that are bound to initialization arguments.

An object is a collection of bindings for fields that are instantiated according to a class description.

The object system allows a program to define a new class (a derived class) in terms of an existing class (the superclass)
using inheritance, overriding, and augmenting:

• inheritance: An object of a derived class supports methods and instantiates fields declared by the derived class’s
superclass, as well as methods and fields declared in the derived class expression.

• overriding: Some methods declared in a superclass can be replaced in the derived class. References to the
overridden method in the superclass use the implementation in the derived class.

• augmenting: Some methods declared in a superclass can be merely extended in the derived class. The superclass
method specifically delegates to the augmenting method in the derived class.

An interface is a collection of method names to be implemented by a class, combined with a derivation requirement.
A class implements an interface when it

• declares (or inherits) a public method for each variable in the interface;

• is derived from the class required by the interface, if any; and

• specifically declares its intention to implement the interface.

A class can implement any number of interfaces. A derived class automatically implements any interface that its su-
perclass implements. Each class also implements an implicitly-defined interface that is associated with the class. The
implicitly-defined interface contains all of the class’s public method names, and it requires that all other implementa-
tions of the interface are derived from the class.

A new interface can extend one or more interfaces with additional method names; each class that implements the
extended interface also implements the original interfaces. The derivation requirements of the original interface must
be consistent, and the extended interface inherits the most specific derivation requirement from the original interfaces.

Classes, objects, and interfaces are all first-class Scheme values. However, a MzScheme class or interface is not a
MzScheme object (i.e., there are no “meta-classes” or “meta-interfaces”).

7

6.1. Object Example 6. class.ss: Classes and Objects

6.1 Object Example

The following example conveys the object system’s basic style.

(define stack<%> (interface () push! pop! none?))

(define stack%
(class∗ object% (stack<%>)
; Declare public methods that can be overridden:
(public push! pop! none?)
; Declare a public method that can be augmented, only:
(pubment print-name)

(define stack null) ; A private field
(init-field (name ’stack)) ; A public field

; Method implementations:
(define (push! v)
(set! stack (cons v stack)))

(define (pop!)
(let ([v (car stack)])

(set! stack (cdr stack))
v))

(define (none?)
(null? stack))

(define (print-name)
(display name)
(inner (void) print-name) ; Let subclass print more
(newline))

; Call superclass initializer:
(super-new)))

(define fancy-stack%
(class stack%
; Declare override
(override push!)
; Implement override:
(define (push! v)
(super push! (cons ’fancy v)))

; Add inherited field to local environment
(inherit-field name)

; Declare augment
(augment print-name)
; Implement augment
(define (print-name)
(when (equal? name ’Bob)
(display ", Esq."))

(inner (void) print-name))

(super-new)))

8

6. class.ss: Classes and Objects 6.1. Object Example

(define double-stack%
(class stack%
(inherit push!)

(public double-push!)
(define (double-push! v) (push! v) (push! v))

; Always supply name
(super-new (name ’double-stack))))

(define-values (make-safe-stack-class is-safe-stack?)
(let ([safe-stack<%> (interface (stack<%>))])
(values
(lambda (super%)
(class∗ super% (safe-stack<%>)
(inherit none?)
(override pop!)
(define (pop!)
(if (none?)

#f
(super pop!)))

(super-new)))
(lambda (obj)
(is-a? obj safe-stack<%>)))))

(define safe-stack% (make-safe-stack-class stack%))

The interface stack<%>1 defines the ever-popular stack interface with the methods push!, pop!, and none?.
Since it has no superinterfaces, the only derivation requirement of stack<%> is that its classes are derived from
the built-in empty class, object%. The class stack%2 is derived from object% and implements the stack<%>
interface. Three additional classes are derived from the basic stack% implementation:

• The class fancy-stack% defines a stack that overrides push! to tag each item as fancy. It also augments
print-name to add an “Esq.” suffix if the stack’s name is ’Bob.

• The class double-stack% extends the functionality stack% with a new method, double-push!. It also
supplies a specific name to stack%.

• The class safe-stack% overrides the pop! method of stack%, ensuring that #f is returned whenever the
stack is empty.

In each derived class, the (super-new ...) form causes the superclass portion of the object to be initialized,
including the initialization of its fields.

The creation of safe-stack% illustrates the use of classes as first-class values. Applying make-safe-stack-class
to fancy-stack% or double-stack% — indeed, any class with push, pop!, and none? methods — creates
a “safe” version of the class. A stack object can be recognized as a safe stack by testing it with is-safe-stack?;
this predicate returns #t only for instances of a class created with make-safe-stack-class (because only those
classes implement the safe-stack<%> interface).

In each of the example classes, the field name contains the name of the class. The name instance variable is introduced
as a new instance variable in stack%, and it is declared there with the init-field keyword, which means that

1A bracketed percent sign (“<%>”) is used by convention in MzScheme to indicate that a variable’s value is an interface.
2A percent sign (“%”) is used by convention in MzScheme to indicate that a variable’s value is a class.

9

6.2. Creating Interfaces 6. class.ss: Classes and Objects

an instantiation of the class can specify the initial value, but it defaults to ’stack. The double-stack% class
provides name when initializing the stack% part of the object, so a name cannot be supplied when instantiating
double-stack%. When the print-name method of an object from double-stack% is invoked, the name
printed to the screen is always “double-stack”.

While all of fancy-stack%, double-stack%, and safe-stack% inherit the push! method of stack%, it is
declared with inherit only in double-stack%; new declarations in fancy-stack% and safe-stack% do
not need to refer to push!, so the inheritance does not need to be declared. Similarly, only safe-stack% needs to
declare (inherit none?).

The fancy-stack% class overrides pop! to extend the implementation of pop!. The new definition of pop! must
accesses the original pop! method that is defined in stack% through the super form.

The stack% class declares its print-name method using pubment, which means that the method is public, but
it can only be augmented in subclasses, and not overridden. The implementation of print-name uses inner to
execute a subclass-supplied augmenting method. If no such augmenting method is available, the (void) expression
is evaluated, instead. The fancy-stack% classes uses augment to declare an augmentation of print-name, and
also uses inner to allow further augmenting in later subclasses.

The instantiate form, the new form, and the make-object procedure all create an object from a class. The
instantiate form supports initialization arguments by both position and name, the new form only supports by
name initialization arguments, and make-object supports initialization arguments by position only. The following
examples create objects using the classes above:

(define stack (make-object stack%))
(define fred (new stack% (name ’Fred)))
(define joe (instantiate stack% () (name ’Joe)))
(define double-stack (make-object double-stack%))
(define safe-stack (new safe-stack% (name ’safe)))

The send form calls a method on an object, finding the method by name. The following example uses the objects
created above:

(send stack push! fred)
(send stack push! double-stack)
(let loop ()
(if (not (send stack none?))
(begin
(send (send stack pop!) print-name)
(loop))))

This loop displays ’double-stack and ’Fred to the standard output port.

6.2 Creating Interfaces

The interface form creates a new interface:

(interface (super-interface-expr · · ·) identifier · · ·)

All of the identifiers must be distinct.

Each super-interface-expr is evaluated (in order) when the interface expression is evaluated. The result
of each super-interface-expr must be an interface value, otherwise the exn:fail:object exception is
raised. The interfaces returned by the super-interface-exprs are the new interface’s superinterfaces, which

10

6. class.ss: Classes and Objects 6.3. Creating Classes

are all extended by the new interface. Any class that implements the new interface also implements all of the superin-
terfaces.

The result of an interface expression is an interface that includes all of the specified identifiers, plus all
identifiers from the superinterfaces. Duplicate identifier names among the superinterfaces are ignored, but if a super-
interface contains one of the identifiers in the interface expression, the exn:fail:object exception is
raised.

If no super-interface-exprs are provided, then the derivation requirement of the resulting interface is trivial:
any class that implements the interface must be derived from object%. Otherwise, the implementation requirement
of the resulting interface is the most specific requirement from its superinterfaces. If the superinterfaces specify
inconsistent derivation requirements, the exn:fail:object exception is raised.

6.3 Creating Classes

The built-in class object% has no methods fields, implements only its own interface (class->interface
object%), and is transparent (i.e,. its inspector is #f, so all immediate instances are equal?). All other classes are
derived from object%.

The class∗ form creates a new class:

(class∗ superclass-expr (interface-expr · · ·)
class-clause
· · ·)

class-clause is one of
(inspect inspector-expr)
(init init-declaration · · ·)
(init-field init-declaration · · ·)
(field field-declaration · · ·)
(inherit-field optionally-renamed-id · · ·)
(init-rest id)
(init-rest)
(public optionally-renamed-id · · ·)
(pubment optionally-renamed-id · · ·)
(public-final optionally-renamed-id · · ·)
(override optionally-renamed-id · · ·)
(overment optionally-renamed-id · · ·)
(override-final optionally-renamed-id · · ·)
(augment optionally-renamed-id · · ·)
(augride optionally-renamed-id · · ·)
(augment-final optionally-renamed-id · · ·)
(private id · · ·)
(inherit optionally-renamed-id · · ·)
(inherit/super optionally-renamed-id · · ·)
(inherit/inner optionally-renamed-id · · ·)
(rename-super renamed-id · · ·)
(rename-inner renamed-id · · ·)
method-definition
definition
expr
(begin class-clause · · ·)

init-declaration is one of

11

6.3. Creating Classes 6. class.ss: Classes and Objects

identifier
(optionally-renamed-id)
(optionally-renamed-id default-value-expr)

field-declaration is
(optionally-renamed-id default-value-expr)

optionally-renamed-id is one of
identifier
renamed-id

renamed-id is
(internal-id external-id)

method-definition is
(define-values (identifier) method-procedure)

method-procedure is
(lambda formals expr · · ·1)
(case-lambda (formals expr · · ·1) · · ·)
(let-values (((identifier) method-procedure) · · ·) method-procedure)
(letrec-values (((identifier) method-procedure) · · ·) method-procedure)
(let-values (((identifier) method-procedure) · · ·1) identifier)
(letrec-values (((identifier) method-procedure) · · ·1) identifier)

The superclass-expr expression is evaluated when the class∗ expression is evaluated. The result must
be a class value (possibly object%), otherwise the exn:fail:object exception is raised. The result of the
superclass-expr expression is the new class’s superclass.

The interface-expr expressions are also evaluated when the class∗ expression is evaluated, after
superclass-expr is evaluated. The result of each interface-expr must be an interface value, otherwise
the exn:fail:object exception is raised. The interfaces returned by the interface-exprs are all imple-
mented by the class. For each identifier in each interface, the class (or one of its ancestors) must declare a public
method with the same name, otherwise the exn:fail:object exception is raised. The class’s superclass must
satisfy the implementation requirement of each interface, otherwise the exn:fail:object exception is raised.

An inspect class-clause selects an inspector (see §4.5 in PLT MzScheme: Language Manual) for the class
extension. The inspector-expr must evaluate to an inspector or #f when the class∗ form is evaluated. Just as
for structure types, an inspector controls access to the class’s fields, including private fields, and also affects compar-
isons using equal?. If no inspect clause is provided, access to the class is controlled by the parent of the current
inspector (see §4.5 in PLT MzScheme: Language Manual). A syntax error is reported if more than one inspect
clause is specified.

The other class-clauses define initialization arguments, public and private fields, and public and private meth-
ods. For each identifier or optionally-renamed-id in a public, override, augment, pubment,
overment, augride, public-final, override-final, augment-final, or private clause, there
must be one method-definition. All other definition class-clauses create private fields. All remaining
exprs are initialization expressions to be evaluated when the class is instantiated (see §6.4).

The result of a class∗ expression is a new class, derived from the specified superclass and implementing the specified
interfaces. Instances of the class are created with the instantiate form or make-object procedure, as described
in §6.4.

Each class-clause is (partially) macro-expanded to reveal its shapes. If a class-clause is a begin expres-
sion, its sub-expressions are lifted out of the begin and treated as class-clauses, in the same way that begin
is flattened for top-level and embedded definitions.

12

6. class.ss: Classes and Objects 6.3. Creating Classes

Within a class∗ form for instances of the new class, this is bound to the object itself; super-instantiate,
super-make-object, and super-new are bound to forms to initialize fields in the superclass (see §6.4); super
is available for calling superclass methods (see §6.3.3.1); and inner is available for calling subclass augmentations
of methods (see §6.3.3.1).

The public, override, augment, pubment, overment, augride, public-final, override-final,
augment-final, private, inherit, inherit/super, inherit/inner, rename-super, rename-inner
this, super, inner, super-instantiate, super-make-object, and super-new keywords are all ex-
ported by class.ss as syntactic forms that raise an error when used outside of a class declaration.

The class form is like class∗, but omits the interface-exprs, for the case that none are needed:

(class superclass-expr
class-clause
· · ·)

The public∗, pubment∗, public-final∗, override∗, overment∗, override-final∗, augment∗,
augride∗, augment-final∗, and private∗ forms abbreviate a public, etc. declaration and a sequence of
definitions:

(public∗ (name expr) · · ·)
=expands=>
(begin
(public name · · ·)
(define name expr) · · ·)

etc.

The define/public, define/pubment, define/public-final, define/override, define/overment,
define/override-final, define/augment, define/augride, define/augment-final, and
define/private forms similarly abbreviate a public, etc. declaration with a definition:

(define/public name expr)
=expands=>
(begin
(public name)
(define name expr))

(define/public (name . formals) expr)
=expands=>
(begin
(public name)
(define (name . formals) expr))

etc.

6.3.1 Initialization Variables

A class’s initialization variables, declared with init, init-field, and init-rest, are instantiated for each ob-
ject of a class. Initialization variables can be used in the initial value expressions of fields, default value expressions for
initialization arguments, and in initialization expressions. Only initialization variables declared with init-field
can be accessed from methods; accessing any other initialization variable from a method is a syntax error.

The values bound to initialization variables are

13

6.3. Creating Classes 6. class.ss: Classes and Objects

• the arguments provided with instantiate or passed to make-object, if the object is created as a direct
instance of the class; or,

• the arguments passed to the superclass initialization form or procedure, if the object is created as an instance of
a derived class.

If an initialization argument is not provided for an initialization variable that has an associated default-value-expr,
then the default-value-expr expression is evaluated to obtain a value for the variable. A
default-value-expr is only evaluated when an argument is not provided for its variable. The environment
of default-value-expr includes all of the initialization variables, all of the fields, and all of the methods of the
class. If multiple default-value-exprs are evaluated, they are evaluated from left to right. Object creation and
field initialization are described in detail in §6.4.

If an initialization variable has no default-value-expr, then the object creation or superclass initialization call
must supply an argument for the variable, otherwise the exn:fail:object exception is raised.

Initialization arguments can be provided by name or by position. The external name of an initialization variable can be
used with instantiate or with the superclass initialization form. Those forms also accept by-position arguments.
The make-object procedure and the superclass initialization procedure accept only by-position arguments.

Arguments provided by position are converted into by-name arguments using the order of init and init-field
clauses and the order of variables within each clause. When a instantiate form provides both by-position and
by-name arguments, the converted arguments are placed before by-name arguments. (The order can be significant; see
also §6.4.)

Unless a class contains an init-rest clause, when the number of by-position arguments exceeds the number of
declared initialization variables, the order of variables in the superclass (and so on, up the superclass chain) determines
the by-name conversion.

If a class expression contains an init-rest clause, there must be only one, and it must be last. If it declares
a variable, then the variable receives extra by-position initialization arguments as a list (similar to a dotted “rest
argument” in a procedure). An init-rest variable can receive by-position initialization arguments that are left
over from a by-name conversion for a derived class. When a derived class’s superclass initialization provides even
more by-position arguments, they are prefixed onto the by-position arguments accumulated so far.

If too few or too many by-position initialization arguments are provided to an object creation or superclass initializa-
tion, then the exn:fail:object exception is raised. Similarly, if extra by-position arguments are provided to a
class with an init-rest clause, the exn:fail:object exception is raised.

Unused (by-name) arguments are to be propagated to the superclass, as described in §6.4. Multiple initialization argu-
ments can use the same name if the class derivation contains multiple declarations (in different classes) of initialization
variables with the name. See §6.4 for further details.

See also §6.3.3.3 for information about internal and external names.

6.3.2 Fields

Each field, init-field, and non-method define-values clause in a class declares one or more new fields for
the class. Fields declared with field or init-field are public. Public fields can be accessed and mutated by sub-
classes using inherit-field. Public fields are also accessible outside the class via class-field-accessor
and mutable via class-field-mutator (see §6.5). Fields declared with define-values are accessible only
within the class.

A field declared with init-field is both a public field and an initialization variable. See §6.3.1 for information
about initialization variables.

14

6. class.ss: Classes and Objects 6.3. Creating Classes

An inherit-field declaration makes a public field defined by a superclass directly accessible in the class ex-
pression. If the indicated field is not defined in the superclass, the exn:fail:object exception is raised when
the class expression is evaluated. Every field in a superclass is present in a derived class, even if it is not declared
with inherit-field in the derived class. The inherit-field clause does not control inheritance, but merely
controls lexical scope within a class expression.

When an object is first created, all of its fields have the undefined value (see §3.1 in PLT MzScheme: Language
Manual). The fields of a class are initialized at the same time that the class’s initialization expressions are evaluated;
see §6.4 for more information.

See also §6.3.3.3 for information about internal and external names.

6.3.3 Methods

6.3.3.1 METHOD DEFINITIONS

Each public, override, augment, pubment, overment, augride, public-final, override-final,
augment-final, and private clause in a class declares one or more method names. Each method name must
have a corresponding method-definition. The order of public, etc. clauses and their corresponding defini-
tions (among themselves, and with respect to other clauses in the class) does not matter.

As shown in §6.3, a method definition is syntactically restricted to certain procedure forms, as defined by the grammar
for method-procedure; in the last two forms of method-procedure, the body identifier must be one
of the identifiers bound by let-values or letrec-values. A method-procedure expression is not
evaluated directly. Instead, for each method, a class-specific method procedure is created; it takes an initial object
argument, in addition to the arguments the procedure would accept if the method-procedure expression were
evaluated directly. The body of the procedure is transformed to access methods and fields through the object argument.

A method declared with public, pubment, or public-final introduces a new method into a class. The method
must not be present already in the superclass, otherwise the exn:fail:object exception is raised when the class
expression is evaluated. A method declared with public can be overridden in a subclass that uses override,
overment, or override-final. A method declared with pubment can be augmented in a subclass that uses
augment, augride, or augment-final. A method declared with public-final cannot be overridden or
augmented in a subclass.

A method declared with override, overment, or override-final overrides a definition already present in the
superclass. If the method is not already present, the exn:fail:object exception is raised when the class expres-
sion is evaluated. A method declared with override can be overridden again in a subclass that uses override,
overment, or override-final. A method declared with overment can be augmented in a subclass that uses
augment, augride, or augment-final. A method declared with override-final cannot be overridden
further or augmented in a subclass.

A method declared with augment, augride, or augment-final augments a definition already present in the
superclass. If the method is not already present, the exn:fail:object exception is raised when the class expres-
sion is evaluated. A method declared with augment can be augmented further in a subclass that uses augment,
augride, or augment-final. A method declared with augride can be overridden in a subclass that uses
override, overment, or override-final. (Such an override merely replaces the augmentation, not the
method that is augmented.) A method declared with augment-final cannot be overridden or augmented further
in a subclass.

A method declared with private is not accessible outside the class expression, cannot be overridden, and never
overrides a method in the superclass.

When a method is declared with override, overment, or override-final, then the superclass implementa-

15

6.3. Creating Classes 6. class.ss: Classes and Objects

tion of the method can be called using super form:

(super identifier arg-expr · · ·)

Such a super call always accesses the superclass method, independent of whether the method is overridden again in
subclasses.

When a method is declared with pubment, augment, or overment, then a subclass augmenting method can be
called using the inner form:

(inner default-expr identifier arg-expr · · ·)

If the object’s class does not supply an augmenting method, then default-expr is evaluated, and the arg-exprs
are not evaluated. Otherwise, the augmenting method is called with the arg-expr results as arguments, and
default-expr is not evaluated. If no inner call is evaluated for a particular method, then augmenting meth-
ods supplied by subclasses are never used. (The only difference between public-final and pubment without
a corresponding inner is that public-final prevents the declaration of augmenting methods that would be ig-
nored.)

6.3.3.2 INHERITED AND SUPERCLASS METHODS

Each inherit, inherit/super, inherit/inner, rename-super, and rename-inner clause declares
one or more methods that are defined in the class, but must be present in the superclass. The rename-super
and rename-inner declarations are rarely used, since inherit/super and inherit/inner provide the
same access. Also, superclass and augmenting methods are typically accessed through super and inner in a
class that also declares the methods, instead of through inherit/super, inherit/inner, rename-super,
or rename-inner.

Method names declared with inherit, inherit/super, or inherit/inner access overriding declarations, if
any, at run time. Method names declared with inherit/super can also be used with the super form to access
the superclass implementation, and method names declared with inherit/inner can also be used with the inner
form to access an augmenting method, if any.

Method names declared with rename-super always access the superclass’s implementation at run-time. Methods
declared with rename-inner access a subclass’s augmenting method, if any, and must be called with the form

(identifier (lambda () default-expr) arg-expr · · ·)

so that a default-expr is available to evaluate when no augmenting method is available. In such a form, lambda
is a keyword to separate the default-expr from the arg-expr. When an augmenting method is available, it
receives the results of the arg-exprs as arguments.

Methods that are present in the superclass but not declared with inherit, inherit/super, or inherit/inner
or rename-super are not directly accessible in the class (through they can be called with send). Every public
method in a superclass is present in a derived class, even if it is not declared with inherit in the derived class; the
inherit clause does not control inheritance, but merely controls lexical scope within a class expression.

If a method declared with inherit, inherit/super, inherit/inner, rename-super, or rename-inner
is not present in the superclass, the exn:fail:object exception is raised when the class expression is evaluated.

6.3.3.3 INTERNAL AND EXTERNAL NAMES

Each method declared with public, override, augment, pubment, overment, augride, public-final,
override-final, augment-final, inherit, inherit/super, inherit/inner, rename-super,

16

6. class.ss: Classes and Objects 6.3. Creating Classes

and rename-inner can have separate internal and external names when (internal-id external-id) is
used for declaring the method. The internal name is used to access the method directly within the class expression
(including within super or inner forms), while the external name is used with send and generic (see §6.5). If
a single identifier is provided for a method declaration, the identifier is used for both the internal and external
names.

Method inheritance, overriding, and augmentation are based external names, only. Separate internal and external
names are required for rename-super and rename-inner (for historical reasons, mainly).

Each init, init-field, field, or inherit-field variable similarly has an internal and an external name.
The internal name is used within the class to access the variable, while the external name is used outside the class when
providing initialization arguments (e.g., to instantiate), inheriting a field, or accessing a field externally (e.g.,
with class-field-accessor). As for methods, when inheriting a field with inherit-field, the external
name is matched to an external field name in the superclass, while the internal name is bound in the class expression.

A single identifier can be used as an internal identifier and an external identifier, and it is possible to use the same iden-
tifier as internal and external identifiers for different bindings. Furthermore, within a single class, a single name can be
used as an external method name, an external field name, and an external initialization argument name. Overall, each
internal identifier must be distinct from all other internal identifiers, each external method name must be distinct from
all other method names, each external field name must be distinct from all other field names, and each initialization
argument name must be distinct from all other initialization argument names

By default, external names have no lexical scope, which means, for example, that an external method name matches
the same syntactic symbol in all uses of send. The define-local-member-name form introduces a set of
scoped external names:

(define-local-member-name identifier · · ·)

Unless it appears as the top-level definition, this form binds each identifier so that, within the scope of the
definition, each use of each identifier as an external name is resolved to a hidden name generated by the
define-local-member-name declaration. Thus, methods, fields, and initialization arguments declared with
such external-name identifiers are accessible only in the scope of the define-local-member-name dec-
laration. As a top-level definition, define-local-member-name binds identifier to its symbolic form.

The binding introduced by define-local-member-name is a syntax binding that can be exported and imported
with modules (see §5 in PLT MzScheme: Language Manual). Each execution of a define-local-member-name
declaration generates a distinct hidden name (except as a top-level definitions). The interface->method-names
procedure (see §6.8) does not expose hidden names.

Example:

(define o (let ()
(define-local-member-name m)
(define c% (class object%

(define/public (m) 10)
(super-new))

(define o (new c%))

(send o m) ; ⇒ 10
o))

(send o m) ; ⇒ error: no method m

The define-local-name form maps a single external name to an external name that is determined by an expres-
sion:

17

6.4. Creating Objects 6. class.ss: Classes and Objects

(define-member-name identifier key-expr)

The value of key-expr must be the result of either a member-name-key expression,

(member-name-key identifier)

or (generate-member-key). The latter produces a hidden name, just like the binding for define-local-member-name.
The (member-name-key identifier) form produces a representation of the external name for
identifier in the environment of the member-name-key expression. (member-name-key? obj)
returns #t for values produced by member-name-key and generate-member-key, #f otherwise.
(member-name-key=? a-key b-key) produces #t if member-name keys a-key and b-key represent the
same external name. (member-name-key-hash-code a-key) produces an integer hash code consistent with
member-name-key=? comparsions, analogous to equal-hash-code.

Example:

(define (make-c% key)
(define-member-name m key)
(class object%
(define/public (m) 10)
(super-new)))

(send (new (make-c% (member-name-key m))) m) ; ⇒ 10
(send (new (make-c% (member-name-key p))) m) ; ⇒ error: no method m
(send (new (make-c% (member-name-key p))) p) ; ⇒ 10

(define (fresh-c%)
(let ([key (generate-member-name)])
(values (make-c% key) key)))

(define-values (fc% key) (fresh-c%))
(send (new fc%) m) ; ⇒ error: no method m
(let ()
(define-member-name p key)
(send (new fc%) p)) ; ⇒ 10

When a class expression is compiled, identifiers used in place of external names must be symbolically distinct (when
the corresponding external names are required to be distinct), otherwise a syntax error is reported. When no external
name is bound by define-member-name, then the actual external names are guaranteed to be distinct when class
expression is evaluated. When any external name is bound by define-member-name, the exn:fail:object
exception is raised by class if the actual external names are not distinct.

6.4 Creating Objects

The make-object procedure creates a new object with by-position initialization arguments:

(make-object class init-v · · ·)

An instance of class is created, and the init-vs are passed as initialization arguments, bound to the initial-
ization variables of class for the newly created object as described in §6.3.1. If class is not a class, the
exn:fail:contract exception is raised.

The new form creates a new object with by-name initialization arguments:

(new class-expr (identifier by-name-expr) · · ·)

18

6. class.ss: Classes and Objects 6.5. Field and Method Access

An instance of the value of class-expr is created, and the value of each by-name-expr is provided as a by-name
argument for the corresponding identifier.

The instantiate form creates a new object with both by-position and by-name initialization arguments:

(instantiate class-expr (by-pos-expr · · ·) (identifier by-name-expr) · · ·)

An instance of the value of class-expr is created, and the values of the by-pos-exprs are provided as by-
position initialization arguments. In addition, the value of each by-name-expr is provided as a by-name argument
for the corresponding identifier.

All fields in the newly created object are initially bound to the special undefined value (see §3.1 in PLT MzScheme:
Language Manual). Initialization variables with default value expressions (and no provided value) are also initial-
ized to undefined. After argument values are assigned to initialization variables, expressions in field clauses,
init-field clauses with no provided argument, init clauses with no provided argument, private field defini-
tions, and other expressions are evaluated. Those expressions are evaluated as they appear in the class expression,
from left to right.

Sometime during the evaluation of the expressions, superclass-declared initializations must be executed once by using
the super-instantiate form:

(super-instantiate (by-position-super-init-expr · · ·) (identifier by-name-super-init-expr · · ·) · · ·)

or by using the procedure produced by the super-make-object form:

(super-make-object super-init-v · · ·)

or by using super-new form:

(super-new (identifier by-name-super-init-expr · · ·) · · ·)

The by-position-super-init-exprs, by-name-super-init-exps, and super-init-vs are mapped
to initialization variables in the same way as for instantiate, make-object, and new.

By-name initialization arguments to a class that have no matching initialization variable are implicitly added as by-
name arguments to a super-instantiate, super-make-object, or super-new invocation, after the ex-
plicit arguments. If multiple initialization arguments are provided for the same name, the first (if any) is used, and
the unused arguments are propagated to the superclass. (Note that converted by-position arguments are always placed
before explicit by-name arguments.) The initialization procedure for the object% class accepts zero initialization
arguments; if it receives any by-name initialization arguments, then exn:fail:object exception is raised.

Fields inherited from a superclass will not be initialized until the superclass’s initialization procedure is invoked. In
contrast, all methods are available for an object as soon as the object is created; the overriding of methods is not affect
by initialization (unlike objects in C++).

It is an error to reach the end of initialization for any class in the hierarchy without invoking superclasses initialization;
the exn:fail:object exception is raised in such a case. Also, if superclass initialization is invoked more than
once, the exn:fail:object exception is raised.

6.5 Field and Method Access

In expressions within a class definition, the initialization variables, fields, and methods of the class all part of the
environment. Within a method body, only the fields and other methods of the class can be referenced; a reference to
any other class-introduced identifier is a syntax error. Elsewhere within the class, all class-introduced identifiers are
available, and fields and initialization variables can be mutated with set!.

19

6.5. Field and Method Access 6. class.ss: Classes and Objects

6.5.1 Methods

Method names within a class can only be used in the procedure position of an application expression; any other use is
a syntax error. To allow methods to be applied to lists of arguments, a method application can have the form

(method-id arg-expr · · · . arg-list-expr)
(super method-id arg-expr · · · . arg-list-expr)
(inner default-expr method-id arg-expr · · · . arg-list-expr)

which calls the method in a way analogous to (apply method-id arg-expr · · · arg-list-expr). The
arg-list-expr must not be a parenthesized expression, otherwise the dot and the parentheses will cancel each
other.

Methods are called from outside a class with the send and send/apply forms:

(send obj-expr method-name arg-expr · · ·)
(send obj-expr method-name arg-expr · · · . arg-list-expr)
(send/apply obj-expr method-name arg-expr · · · arg-list-expr)

where the last two forms apply the method to a list of argument values; in the second form, arg-list-expr
cannot be a parenthesized expression. For any send or send/apply, if obj-expr does not produce an ob-
ject, the exn:fail:contract exception is raised. If the object has no public method method-name, the
exn:fail:object exception is raised.

The send∗ form calls multiple methods of an object in the specified order:

(send∗ obj-expr msg · · ·)

msg is one of
(method-name arg-expr · · ·)
(method-name arg-expr · · · . arg-list-expr)

where arg-list-expr is not a parenthesized expression.

Example:

(send∗ edit (begin-edit-sequence)
(insert "Hello")
(insert #\newline)
(end-edit-sequence))

which is the same as

(let ([o edit])
(send o begin-edit-sequence)
(send o insert "Hello")
(send o insert #\newline)
(send o end-edit-sequence))

The with-method form extracts a method from an object and binds a local name that can be applied directly (in the
same way as declared methods within a class):

(with-method ((identifier (object-expr method-name)) · · ·)
expr · · ·1)

20

6. class.ss: Classes and Objects 6.5. Field and Method Access

Example:

(let ([s (new stack%)])
(with-method ([push (s push!)]

[pop (s pop!)])
(push 10)
(push 9)
(pop)))

which is the same as

(let ([s (new stack%)])
(send s push! 10)
(send s push! 9)
(send s pop!))

6.5.2 Fields

The get-field form,

(get-field identifier object-expr)

extracts the field named by identifier from the value of the object-expr.

The field-bound? form,

(field-bound? identifier object-expr)

produces #t if object-expr evaluates to an object that has a field named identifier, #f otherwise.

If you have access to the class of an object, the class-field-accessor and class-field-mutator forms
provide efficient access to the object’s fields.

• (class-field-accessor class-expr field-name) returns an accessor procedure that takes an
instance of the class produced by class-expr and returns the value of the object’s field-name field.

• (class-field-mutator class-expr field-name) returns a mutator procedure that takes an in-
stance of the class produced by class-expr and a new value for the field, mutates the field in the object
named by field-name, then returns void.

6.5.3 Generics

A generic can be used instead of a method name to avoid the cost of relocating a method by name within a class. The
make-generic procedure and generic form create generics:

• (make-generic class-or-interface symbol) returns a generic that works on instances of
class-or-interface (or an instance of a class/interface derived from class-or-interface) to call
the method named by symbol.

If class-or-interface does not contain a method with the (external and non-scoped) name symbol, the
exn:fail:object exception is raised.

• (generic class-or-interface-expr name) is analogous to (make-generic class-or-interface-expr
’name), except that name can be a scoped method name declared by define-local-member-name (see
§6.3.3.3).

21

6.6. Mixins 6. class.ss: Classes and Objects

A generic is applied with send-generic:

(send-generic obj-expr generic-expr arg-expr · · ·)
(send-generic obj-expr generic-expr arg-expr · · · . arg-list-expr)

where the value of obj-expr is an object and the value of generic-expr is a generic.

6.6 Mixins

A mixin is a class parameterization modeled on a paper published by Flatt, Felleisen, and Krishnamurthi, available at
http://www.ccs.neu.edu/scheme/pubs/#popl98-fkf.

The implementation of these mixins in MzScheme is with the combination of lambda and class. This macro
simplifies the checking and implementation of these mixins. Its syntax is very similar to the syntax for class∗. The
shape of a mixin is:

(mixin (interface-expr ...) (interface-expr ...)
class-clause ...)

This macro expands into a procedure that accepts a class. The argument passed to this procedure must match the
interfaces of the first interface-exprs expressions. The procedure returns a class that is derived from its ar-
gument. This result class must match the interfaces specified in the second interface-exprs section; it has
clauses specified by instance-variable-clauses. The syntax of the initialization-variables and
instance-variable-clause are exactly the same as class∗/names.

The mixin macro does some checking to be sure that variables that the instance-variable-clauses refer
to in their super class are in the interfaces. That checking and the checking that the input class matches the declared
interfaces aside, the mixin macro’s expansion is something like this:

(mixin (i<%> ...) (j<%> ...)
class-clause ...)

=
(lambda (%)
(class∗ % (j<%> ...)
class-clause ...))

The i<%> interfaces do not appear in the output because they are only used for the error checking and are discarded
by the time the class is created.

6.7 Object Serialization

The define-serializable-class and define-serializable-class∗ forms define classes whose in-
stances are serializable using serialize (see §43).

(define-serializable-class class-id superclass-expr
class-clause
· · ·)

(define-serializable-class∗ class-id superclass-expr (interface-expr · · ·)
class-clause
· · ·)

These forms can only be used at the top level, either within a module or outside. The class-id identifier is bound
to the new class, and deserialize-info:class-id is also defined; if the definition is within a module, then

22

6. class.ss: Classes and Objects 6.8. Object, Class, and Interface Utilities

the latter is provided from the module. The superclass-expr, interface-exprs, and class-clauses are
as for class and class∗ (see §6.3).

Serialization for the class works in one of two ways:

• If the class implements the built-in interface externalizable<%>, then an object is serialized by calling its
externalize method; the result can be anything that is serializable (but, obviously, should not be the object
itself). Deserialization creates an instance of the class with no initialization arguments, and then calls the object’s
internalize method with the result of externalize (or, more precisely, a deserialized version of the
serialized result of a previous call). The externalizable<%> interface includes only the externalize
and internalize methods.

To support this form of serialization, the class must be instantiable with no initialization arguments. Further-
more, cycles involving only instances of the class (and other such classes) cannot be serialized.

• If the class does not implement externalizable<%>, then every superclass of the class must be either
serializable or transparent (i.e,. have #f as its inspector). Serialization and deserialization are fully automatic,
and may involve cycles of instances.

To support cycles of instances, deserialization may create an instance of the call with all fields as the undefined
value, and then mutate the object to set the field values. Serialization support does not otherwise make an
object’s fields mutable.

In the second case, a serializable subclass can implement externalizable<%>, in which case the externalize
method is responsible for all serialization (i.e., automatic serialization is lost for instances of the subclass). In the first
case, all serializable subclasses implement externalizable<%>, since a subclass implements all of the interfaces
of its parent class.

In either case, if an object is an immediate instance of a subclass (that is not itself serializable), the object is serialized
as if it was an immediate instance of the serializable class. In particular, overriding declarations of the externalize
method are ignored for instances of non-serializable subclasses.

6.8 Object, Class, and Interface Utilities

(object? v) returns #t if v is an object, #f otherwise.

(class? v) returns #t if v is a class, #f otherwise.

(interface? v) returns #t if v is an interface, #f otherwise.

(object=? object [object]) determines if two objects are the same object, or not (uses eq?, but also works
properly with contracts).

(object->vector object [opaque-v]) returns a vector representing object that shows its inspectable
fields, analogous to struct->vector (see §4.9 in PLT MzScheme: Language Manual).

(class->interface class) returns the interface implicitly defined by class (see the overview at the begin-
ning of Chapter 6).

(object-interface object) returns the interface implicitly defined by the class of object.

(is-a? v interface) returns #t if v is an instance of a class that implements interface, #f otherwise.

(is-a? v class) returns #t if v is an instance of class (or of a class derived from class), #f otherwise.

(subclass? v class) returns #t if v is a class derived from (or equal to) class, #f otherwise.

23

6.9. Expanding to a Class Declaration 6. class.ss: Classes and Objects

(implementation? v interface) returns #t if v is a class that implements interface, #f otherwise.

(interface-extension? v interface) returns #t if v is an interface that extends interface, #f oth-
erwise.

(method-in-interface? symbol interface) returns #t if interface (or any of its ancestor inter-
faces) includes a member with the name symbol, #f otherwise.

(interface->method-names interface) returns a list of symbols for the method names in interface,
including methods inherited from superinterfaces, but not including methods whose names are local (i.e., declared
with define-local-member-names).

(object-method-arity-includes? object symbol k) returns #t if object has a method named
symbol that accepts k arguments, #f otherwise.

(field-names object) returns a list of all of the names of the fields bound in object, includ-
ing fields inherited from superinterfaces, but not including fields whose names are local (i.e., declared with
define-local-member-names).

(object-info object) returns two values, analogous to the return values of struct-info (see §4.5 in PLT
MzScheme: Language Manual):

• class: a class or #f; the result is #f if the current inspector does not control any class for which the object
is an instance.

• skipped?: #f if the first result corresponds to the most specific class of object, #t otherwise.

(class-info class) returns seven values, analogous to the return values of struct-type-info (see §4.5
in PLT MzScheme: Language Manual):

• name-symbol: the class’s name as a symbol;

• field-k: the number of fields (public and private) defined by the class;

• field-name-list: a list of symbols corresponding to the class’s public fields; this list can be larger than
field-k because it includes inherited fields;

• field-accessor-proc: an accessor procedure for obtaining field values in instances of the class; the
accessor takes an instance and a field index between 0 (inclusive) and field-k (exclusive);

• field-mutator-proc: a mutator procedure for modifying field values in instances of the class; the mutator
takes an instance, a field index between 0 (inclusive) and field-k (exclusive), and a new field value;

• super-class: a class for the most specific ancestor of the given class that is controlled by the current inspec-
tor, or #f if no ancestor is controlled by the current inspector;

• skipped?: #f if the sixth result is the most specific ancestor class, #t otherwise.

6.9 Expanding to a Class Declaration

The class/derived form is like class∗, but it includes a sub-expression to use used as the source for all syntax
errors within the class definition. For example, define-serializable-class expands to class/derived
so that error in the body of the class are reported in terms of define-serializable-class instead of class.

(class/derived original-datum

24

6. class.ss: Classes and Objects 6.9. Expanding to a Class Declaration

(name-id super-expr (interface-expr ...) deserialize-id-expr)
class-clause
· · ·)

The original-datum is the original expression to use for reporting errors.

The name-id is used to name the resulting class; if it is #f, the class name is inferred.

The super-expr, interface-exprs, and class-clauses are as for class∗ (see §6.3).

If the deserialize-id-expr is not literally #f, then a serializable class is generated, and the result is two
values instead of one: the class and a deserialize-info structure produced by make-deserialize-info. The
deserialize-id-expr should produce a value suitable as the second argument to make-serialize-info,
and it should refer to an export whose value is the deserialize-info structure.

Future optional forms may be added to the sequence that currently ends with deserialize-id-expr.

25

7. class100.ss: Version-100-Style Classes

To load: (require (lib "class100.ss"))

The class100 and class100∗ forms provide a syntax close to that of class and class∗ in MzScheme versions
100 through 103, but with the semantics of the current class.ss system (see Chapter 6). For a class defined with
class100, keyword-based initialization arguments can be propagated to the superclass, but by-position arguments
are not (i.e., the expansion of class100 to class always includes an init-rest clause).

The class100 form uses keywords (e.g., public) that are defined by the class library, so typically class.ss must
be imported into any context that imports class100.ss.

The class100∗ form creates a new class:

(class100∗ superclass-expr (interface-expr · · ·) initialization-ids
class100-clause
· · ·)

initialization-ids is one of
variable
(variable · · · variable-with-default · · ·)
(variable · · · variable-with-default · · · . variable)

variable-with-default is
(variable default-value-expr)

class100-clause is one of
(sequence expr · · ·)
(public public-method-declaration · · ·)
(override public-method-declaration · · ·)
(augment public-method-declaration · · ·)
(pubment public-method-declaration · · ·)
(overment public-method-declaration · · ·)
(augride public-method-declaration · · ·)
(private private-method-declaration · · ·)
(private-field private-var-declaration · · ·)
(inherit inherit-method-declaration · · ·)
(rename rename-method-declaration · · ·)

public-method-declaration is one of
((internal-id external-id) method-procedure)
(identifier method-procedure)

private-method-declaration is one of
(identifier method-procedure)

private-var-declaration is one of

26

7. class100.ss: Version-100-Style Classes

(identifier initial-value-expr)
(identifier)
identifier

inherit-method-declaration is one of
identifier
(internal-instance-id external-inherited-id)

rename-method-declaration is
(internal-id external-id)

In local-names, if super-instantiate-id is not provided, the instantiate-like superclass initialization
form will not be available in the class100∗/names body.

The class100 macro omits the interface-exprs:

(class100 superclass-expr initialization-ids
class100-clause
· · ·)

(class100-asi superclass instance-id-clause · · ·) SYNTAX

Like class100, but all initialization arguments are automatically passed on to the superclass initialization procedure
by position.

(class100∗-asi superclass interfaces instance-id-clause · · ·) SYNTAX

Like class100∗, but all initialization arguments are automatically passed on to the superclass initialization proce-
dure by position.

(super-init init-arg-expr · · ·) SYNTAX

An alias for super-make-object in class.ss.

27

8. cm.ss: Compilation Manager

To load: (require (lib "cm.ss"))

(make-compilation-manager-load/use-compiled-handler) PROCEDURE

Returns a procedure suitable as a value for the current-load/use-compiled parameter (see §7.9.1.6
in PLT MzScheme: Language Manual). The returned procedure passes it arguments on to the current
current-load/use-compiled procedure (i.e., the one installed when this procedure is called), but first it auto-
matically compiles source files to a .zo file if

• the file is expected to contain a module (i.e., the second argument to the handler is a symbol);

• the value of each of current-eval, current-load, and current-namespace is the same as when
make-compilation-manager-load/use-compiled-handler was called;

• the value of use-compiled-file-paths contains the first path that was present when make-compilation-manager-load/use-compiled-handler
was called;

• the value of current-load/use-compiled is the result of this procedure; and

• one of the following holds:

– the source file is newer than the .zo file in the first sub-directory listed in use-compiled-file-paths
(at the time that make-compilation-manager-load/use-compiled-handler was called)

– no .dep file exists next to the .zo file;
– the version recorded in the .dep file does not match the result of (version);
– one of the files listed in the .dep file has a .zo timestamp newer than the one recorded in the .dep file.

After the handler procedure compiles a .zo file, it creates a corresponding .dep file that lists the current ver-
sion, plus the .zo timestamp for every file that is required by the module in the compiled file (including
require-for-syntaxes and require-for-templates).

The handler caches timestamps when it checks .dep files, and the cache is maintained across calls to the same handler.
The cache is not consulted to compare the immediate source file to its .zo file, which means that the caching behavior
is consistent with the caching of the default module name resolver (see §5.4 in PLT MzScheme: Language Manual).

If use-compiled-file-paths contains an empty list when make-compilation-manager-load/use-compiled-handler
is called, then exn:fail:contract exception is raised.

Do not install the result of make-compilation-manager-load/use-compiled-handler when the cur-
rent namespace contains already-loaded versions of modules that may need to be recompiled — unless the already-
loaded modules are never referenced by not-yet-loaded modules. References to already-loaded modules may produce
compiled files with inconsistent timestamps and/or .dep files with incorrect information.

(managed-compile-zo file) PROCEDURE

Compiles the given module source file to a .zo, installing a compilation-manager handler while the file is com-

28

8. cm.ss: Compilation Manager

piled (so that required modules are also compiled), and creating a .dep file to record the timestamps of immedi-
ate files used to compile the source (i.e., files required in the source, including require-for-syntaxes and
require-for-templates).

(trust-existing-zos on? [procedure])

A parameter that is intended for use by Setup PLT when installing with pre-built .zo files. It causes a compilation-
manager load/use-compiled handler to “touch” out-of-date .zo files instead of re-compiling from source.

(make-caching-managed-compile-zo) PROCEDURE

Returns a procedure that behaves like managed-compile-zo, but a cache of timestamp information is preserved
across calls to the procedure.

(manager-compile-notify-handler [notify-proc]) PROCEDURE

A parameter for a procedure of one argument that is called whenever a compilation starts. The argument to the
procedure is the file’s path.

(manager-trace-handler [notify-proc]) PROCEDURE

A parameter for a procedure of one argument that is called to report compilation-manager actions, such as checking a
file. The argument to the procedure is a string.

29

9. cm-accomplice.ss: Compilation Manager Hook for Syntax
Transformers

To load: (require (lib "cm-accomplice.ss"))

(register-external-file file) PROCEDURE

Registers the complete path file with a compilation manager, if one is active. The compilation manager then records
the path as contributing to the implementation of the module currently being compiled. Afterward, if the registered
file is modified, the compilation manager will know to recompile the module.

The include macro, for example, calls this procedure with the path of an included file as it expands an include
form.

30

10. cmdline.ss: Command-line Parsing

To load: (require (lib "cmdline.ss"))

(command-line program-name-expr argv-expr clause · · ·) SYNTAX

Parses a command line according to the specification in the clauses. The program-name-expr should produce
a string to be used as the program name for reporting errors when the command-line is ill-formed. The argv-expr
must evaluate to a list or a vector of strings; typically, it is (current-command-line-arguments) or the cdr
of an argument to a main procedure (when using ‘-C’ to invoke a script).

The command-line is disassembled into flags (possibly with flag-specific arguments) followed by (non-flag) argu-
ments. Command-line strings starting with “-” or “+” are parsed as flags, but arguments to flags are never parsed as
flags, and integers and decimal numbers that start with “-” or “+” are not treated as flags. Non-flag arguments in the
command-line must appear after all flags and the flags’ arguments. No command-line string past the first non-flag
argument is parsed as a flag. The built-in -- flag signals the end of command-line flags; any command-line string past
the -- flag is parsed as a non-flag argument.

For defining the command line, each clause has one of the following forms:

(multi flag-spec · · ·)
(once-each flag-spec · · ·)
(once-any flag-spec · · ·)
(final flag-spec · · ·)
(help-labels string · · ·)
(args arg-formals body-expr · · ·1)
(=> finish-proc-expr arg-help-expr help-proc-expr unknown-proc-expr)

flag-spec is one of
(flags variable · · · help-str · · ·1 body-expr · · ·1)
(flags => handler-expr help-expr)

flags is one of
flag-str
(flag-str · · ·1)

arg-formals is one of
variable
(variable · · ·)
(variable · · ·1 . variable)

A multi, once-each, once-any, or final clause introduces a set of command-line flag specifications. The
clause tag indicates how many times the flag can appear on the command line:

• multi — Each flag specified in the set can be represented any number of times on the command line; i.e., the
flags in the set are independent and each flag can be used multiple times.

31

10. cmdline.ss: Command-line Parsing

• once-each — Each flag specified in the set can be represented once on the command line; i.e., the flags in
the set are independent, but each flag should be specified at most once. If a flag specification is represented in
the command line more than once, the exn:fail exception is raised.

• once-any — Only one flag specified in the set can be represented on the command line; i.e., the flags in the set
are mutually exclusive. If the set is represented in the command line more than once, the exn:fail exception
is raised.

• final — Like multi, except that no argument after the flag is treated as a flag. Note that multiple final
flags can be specified if they have short names; for example, if -a is a final flag, then --aa combines two
instances of -a in a single command-line argument.

A normal flag specification has four parts:

1. flags — a flag string, or a set of flag strings. If a set of flags is provided, all of the flags are equivalent. Each
flag string must be of the form "-x" or "+x" for some character x, or "--x" or "++x" for some sequence
of characters x. An x cannot contain only digits or digits plus a single decimal point, since simple (signed)
numbers are not treated as flags. In addition, the flags "--", "-h", and "--help" are predefined and cannot
be changed.

2. variables — variables that are bound to the flag’s arguments. The number of variables specified here de-
termines how many arguments can be provided on the command line with the flag, and the names of these
variables will appear in the help message describing the flag. The variables are bound to string values in the
body-exprs for handling the flag.

3. help-str — a string that describes the flag. This string is used in the help message generated by the handler
for the built-in -h (or --help) flag. If multiple help-strs are provided, the rest are displayed on subsequent
lines.

4. body-exprs — expressions that are evaluated when one of the flags appears on the command line. The
flags are parsed left-to-right, and each sequence of body-exprs is evaluated as the corresponding flag is
encountered. When the body-exprs are evaluated, the variables are bound to the arguments provided for
the flag on the command line.

A flag specification using => escapes to a more general method of specifying the handler and help strings. In this
case, the handler procedure and help string list returned by handler-expr and help-expr are embedded directly
in the table for parse-command-line, the procedure used to implement command-line parsing.

A help-labels clause inserts text lines into the help table of command-line flags. Each string in the clause provides
a separate line of text.

An args clause can be specified as the last clause. The variables in arg-formals are bound to the leftover
command-line strings in the same way that variables are bound to the formals of a lambda expression. Thus,
specifying a single variable (without parentheses) collects all of the leftover arguments into a list. The effective
arity of the arg-formals specification determines the number of extra command-line arguments that the user can
provide, and the names of the variables in arg-formals are used in the help string. When the command-line is
parsed, if the number of provided arguments cannot be matched to variables in arg-formals, the exn:fail
exception is raised. Otherwise, args clause’s body-exprs are evaluated to handle the leftover arguments, and the
result of the last body-expr is the result of the command-line expression.

Instead of an args clause, the => clause can be used to escape to a more general method of handling the left-
over arguments. In this case, the values of the expressions with => are passed on directly as arguments to
parse-command-line. The help-proc-expr and unknown-proc-expr expressions are optional.

Example:

32

10. cmdline.ss: Command-line Parsing

(command-line "compile" (current-command-line-arguments)
(once-each

[("-v" "--verbose") "Compile with verbose messages"
(verbose-mode #t)]

[("-p" "--profile") "Compile with profiling"
(profiling-on #t)])

(once-any
[("-o" "--optimize-1") "Compile with optimization level 1"

(optimize-level 1)]
["--optimize-2" "" ; show help on separate lines

"Compile with optimization level 2,"
"which implies all optimizations of level 1"
(optimize-level 2)])

(multi
[("-l" "--link-flags") lf ; flag takes one argument

"Add a flag for the linker"
(link-flags (cons lf (link-flags)))])

(args (filename) ; expects one command-line argument: a filename
filename)) ; return a single filename to compile

(parse-command-line progname argv table finish-proc arg-help [help-proc unknown-proc])
PROCEDURE

Parses a command-line using the specification in table. For an overview of command-line parsing, see the
command-line form. The table argument to this procedural form encodes the information in command-line’s
clauses, except for the args clause. Instead, arguments are handled by the finish-proc procedure, and help in-
formation about non-flag arguments is provided in arg-help. In addition, the finish-proc procedure receives
information accumulated while parsing flags. The help-proc and unknown-proc arguments allow customization
that is not possible with command-line.

When there are no more flags, the finish-proc procedure is called with a list of information accumulated for
command-line flags (see below) and the remaining non-flag arguments from the command-line. The arity of the
finish-proc procedure determines the number of non-flag arguments accepted and required from the command-
line. For example, if finish-proc accepts either two or three arguments, then either one or two non-flag arguments
must be provided on the command-line. The finish-proc procedure can have any arity (see §3.12.1 in PLT
MzScheme: Language Manual) except 0 or a list of 0s (i.e., the procedure must at least accept one or more arguments).

The arg-help argument is a list of strings identifying the expected (non-flag) command-line arguments, one for
each argument. (If an arbitrary number of arguments are allowed, the last string in arg-help represents all of them.)

The help-proc procedure is called with a help string if the -h or --help flag is included on the command line.
If an unknown flag is encountered, the unknown-proc procedure is called just like a flag-handling procedure (as
described below); it must at least accept one argument (the unknown flag), but it may also accept more arguments. The
default help-proc displays the string and exits and the default unknown-proc raises the exn:fail exception.

A table is a list of flag specification sets. Each set is represented as a list of two items: a mode symbol and a
list of either help strings or flag specifications. A mode symbol is one of ’once-each, ’once-any, ’multi,
’final, or ’help-labels, with the same meanings as the corresponding clause tags in command-line. For
the ’help-labels mode, a list of help string is provided. For the other modes, a list of flag specifications is
provided, where each specification maps a number of flags to a single handler procedure. A specification is a list of
three items:

1. A list of strings for the flags defined by the spec. See command-line for information about the format of flag

33

10. cmdline.ss: Command-line Parsing

strings.

2. A procedure to handle the flag and its arguments when one of the flags is found on the command line. The arity
of this handler procedure determines the number of arguments consumed by the flag: the handler procedure is
called with a flag string plus the next few arguments from the command line to match the arity of the handler
procedure. The handler procedure must accept at least one argument to receive the flag. If the handler accepts
arbitrarily many arguments, all of the remaining arguments are passed to the handler. A handler procedure’s arity
must either be a number or an arity-at-least value (see §3.12.1 in PLT MzScheme: Language Manual).

The return value from the handler is added to a list that is eventually passed to finish-proc. If the handler
returns void, no value is added onto this list. For all non-void values returned by handlers, the order of the values
in the list is the same as the order of the arguments on the command-line.

3. A non-empty list for constructing help information for the spec. The first element of the list describes the flag;
it can be a string or a non-empty list of strings, and in the latter case, each string is shown on its own line.
Additional elements of the main list must be strings to name the expected arguments for the flag. The number
of extra help strings provided for a spec must match the number of arguments accepted by the spec’s handler
procedure.

The following example is the same as the example for command-line, translated to the procedural form:

(parse-command-line "compile" (current-command-line-arguments)
‘((once-each

[("-v" "--verbose")
,(lambda (flag) (verbose-mode #t))
("Compile with verbose messages")]

[("-p" "--profile")
,(lambda (flag) (profiling-on #t))
("Compile with profiling")])

(once-any
[("-o" "--optimize-1")
,(lambda (flag) (optimize-level 1))
("Compile with optimization level 1")]

[("--optimize-2")
,(lambda (flag) (optimize-level 2))
(("Compile with optimization level 2,"
"which implies all optimizations of level 1"))])

(multi
[("-l" "--link-flags")
,(lambda (flag lf) (link-flags (cons lf (link-flags))))
("Add a flag for the linker" "flag")]))

(lambda (flag-accum file) file) ; return a single filename to compile
’("filename")) ; expects one command-line argument: a filename

34

11. cml.ss: Concurrent ML Compatibility

To load: (require (lib "cml.ss"))

This library defines a number of procedures that wrap MzScheme concurrency procedures. The wrapper procedures
have names and interfaces that more closely match those of Concurrent ML.

(spawn thunk) PROCEDURE

Equivalent to (thread/suspend-to-kill thunk) (see §7.1 in PLT MzScheme: Language Manual).

(channel) procedure

Equivalent to (make-channel) (see §7.5 in PLT MzScheme: Language Manual).

(channel-recv-evt channel) PROCEDURE

Equivalent to channel.

(channel-send-evt channel v) PROCEDURE

Equivalent to (channel-put-evt channel v) (see §7.5 in PLT MzScheme: Language Manual).

(thread-done-evt thread) PROCEDURE

Equivalent to (thread-dead-evt thread) (see §7.2 in PLT MzScheme: Language Manual).

(current-time) PROCEDURE

Equivalent to (current-inexact-milliseconds) (see §15.1 in PLT MzScheme: Language Manual).

(time-evt x) PROCEDURE

Equivalent to (alarm-evt x) (see §7.6 in PLT MzScheme: Language Manual).

35

12. compat.ss: Compatibility

To load: (require (lib "compat.ss"))

This library defines a number of procedures and syntactic forms that are commonly provided by other Scheme imple-
mentations. Most of the procedures are aliases for built-in MzScheme procedures, as shown in the table below. The
remaining procedures and forms are described below.

Compatible MzScheme
=? =
<? <
>? >
<=? <=
>=? >=
1+ add1
1- sub1

gentemp gensym
flush-output-port flush-output

real-time current-milliseconds

(atom? v) PROCEDURE

Same as (not (pair? v)).

(define-structure (name-identifier field-identifier · · ·)) SYNTAX

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields. A second
form of define-structure, below, supports initial-value expressions for fields.

(define-structure (name-identifier field-identifier ···) ((init-field-identifier
init-expr) · · ·)) SYNTAX

Like define-struct, except that the name-identifier is moved inside the parenthesis for fields, and addi-
tional fields can be specified with initial-value expressions.

The init-field-identifiers do not have corresponding arguments for the make-name-identifier
constructor. Instead, the init-field-identifier’s init-expr is evaluated to obtain the field’s
value when the constructor is called. The field-identifiers are bound in init-exprs, but not the
init-field-identifiers.

Example:

(define-structure (add left right) ([sum (+ left right)]))
(add-sum (make-add 3 6)) ; ⇒ 9

36

12. compat.ss: Compatibility

(getprop sym property default) PROCEDURE

Gets a property value associated with the symbol sym. The property argument is also a symbol that names the
property to be found. If the property is not found, default is returned. If the default argument is omitted, #f is
used as the default.

(new-cafe [eval-handler]) PROCEDURE

Emulates Chez Scheme’s new-cafe.

(putprop sym property value) PROCEDURE

Installs a value for property of the symbol sym. See getprop above.

37

13. compile.ss: Compiling Files

To load: (require (lib "compile.ss"))

(compile-file src [dest filter]) PROCEDURE

Compiles the Scheme file src and saves the compiled code to dest. If dest is not specified, a filename is con-
structed by taking src’s directory path, adding a compiled subdirectory, and then adding src’s filename with its
suffix replaced by .zo. Also, if dest is not provided and the compiled subdirectory does not already exist, the sub-
directory is created. If the filter procedure is provided, it is applied to each source expression and the result is
compiled (otherwise, the identity function is used as the filter). The result of compile-file is the destination file’s
path.

The compile-file procedure is designed for compiling modules files; each expression in src is compiled inde-
pendently. If src does not contain a single module expression, then earlier expressions can affect the compilation of
later expressions when src is loaded directly. An appropriate filter can make compilation behave like evaluation,
but the problem is also solved (as much as possible) by the compile-zos procedure provided by the compiler
collection’s compiler.ss module.

See also managed-compile-zo in §8.

38

14. contract.ss: Contracts

To load: (require (lib "contract.ss"))

MzLib’s contract.ss library defines new forms of expression that specify contracts and new forms of expression that
attach contracts to values.

This section describes three classes of contracts: contracts for flat values (described in section 14.1), contracts for
functions (described in section 14.2), and contracts for objects and classes (described in section 14.4).

In addition, this section describes how to establish a contract, that is, how to indicate that a particular contract should
be enforced at a particular point in the program (in section 14.5).

14.1 Flat Contracts

A contract for a flat value can be a predicate that accepts the value and returns a boolean indicating if the contract
holds.

(flat-contract predicate) FLAT-CONTRACT

Constructs a contract from predicate.

(flat-named-contract type-name predicate) FLAT-CONTRACT

For better error reporting, a flat contract can be constructed with flat-named-contract, a procedure that accepts
two arguments. The first argument must be a string that describes the type that the predicate checks for. The second
argument is the predicate itself.

any/c FLAT-CONTRACT

any/c is a flat contract that accepts any value.

If you are using this predicate as the result portion of a function contract, consider using any instead. It behaves the
same, but in that one restrictive context has better memory performance.

none/c FLAT-CONTRACT

none/c is a flat contract that accepts no values.

(or/c contract · · ·) OR/C

or/c accepts any number of predicates and higher-order contracts and returns a contract that accepts any value that
any one of the contracts accepts, individually.

39

14.1. Flat Contracts 14. contract.ss: Contracts

If all of the arguments are predicates or flat contracts, it returns a flat contract. If only one of the arguments is a higher-
order contract, it returns a contract that just checks the flat contracts and, if they don’t pass, applies the higher-order
contract.

If there are multiple higher-order contracts, or/c uses contract-first-order-passes? to distinguish be-
tween them. More precisely, when an or/c is checked, it first checks all of the flat contracts. If none of them pass, it
calls contract-first-order-passes? with each of the higher-order contracts. If only one returns true, or/c
uses that contract. If none of them return true, it signals a contract violation. If more than one returns true, it signals
an error indicating that the or/c contract is malformed.

or/c tests any values by applying the contracts in order, from left to right, with the exception that it always moves
the non-flat contracts (if any) to the end, checking them last.

(and/c contract · · ·) CONTRACT

and/c accepts any number of contracts and returns a contract that checks that accepts any value that satisfies all of
the contracts, simultaneously.

If all of the arguments are predicates or flat contracts, and/c produces a flat contract.

and/c tests any values by applying the contracts in order, from left to right.

(not/c flat-contract) FLAT-CONTRACT

not/c accepts a flat contracts or a predicate and returns a flat contract that checks the inverse of the argument.

(=/c number) FLAT-CONTRACT

=/c accepts a number and returns a flat contract that requires the input to be a number and equal to the original input.

(>=/c number) FLAT-CONTRACT

>=/c accepts a number and returns a flat contract that requires the input to be a number and greater than or equal to
the original input.

(<=/c number) FLAT-CONTRACT

<=/c accepts a number and returns a flat contract that requires the input to be a number and less than or equal to the
original input.

(between/c number number) FLAT-CONTRACT

between/c accepts two numbers and returns a flat contract that requires the input to between the two numbers (or
equal to one of them).

(>/c number) FLAT-CONTRACT

>/c accepts a number and returns a flat contract that requires the input to be a number and greater than the original
input.

40

14. contract.ss: Contracts 14.1. Flat Contracts

(</c number) FLAT-CONTRACT

</c accepts a number and returns a flat contract that requires the input to be a number and less than the original input.

(integer-in number number) FLAT-CONTRACT

integer-in accepts two numbers and returns a flat contract that recognizes if integers between the two inputs, or
equal to one of its inputs.

(real-in number number) FLAT-CONTRACT

real-in accepts two numbers and returns a flat contract that recognizes real numbers between the two inputs, or
equal to one of its inputs.

natural-number/c FLAT-CONTRACT

natural-number/c is a contract that recognizes natural numbers (i.e., an integer that is either positive or zero).

(string/len number) FLAT-CONTRACT

string/len accepts a number and returns a flat contract that recognizes strings that have fewer than that number of
characters.

false/c FLAT-CONTRACT

false/c is a flat contract that recognizes #f.

printable/c FLAT-CONTRACT

printable/c is a flat contract that recognizes values that can be written out and read back in with write and
read.

(one-of/c value · · ·1) FLAT-CONTRACT

one-of/c accepts any number of atomic values and returns a flat contract that recognizes those values, using eqv?
as the comparison predicate. For the purposes of one-of/c, atomic values are defined to be: characters, symbols,
booleans, null keywords, numbers, void, and undefined.

(symbols symbol · · ·1) FLAT-CONTRACT

symbols accepts any number of symbols and returns a flat contract that recognizes those symbols.

(is-a?/c class-or-interface) FLAT-CONTRACT

is-a?/c accepts a class or interface and returns a flat contract that recognizes if objects are subclasses of the class
or implement the interface.

(implementation?/c interface) FLAT-CONTRACT

implementation?/c accepts an interface and returns a flat contract that recognizes if classes are implement the
given interface.

41

14.1. Flat Contracts 14. contract.ss: Contracts

(subclass?/c class) FLAT-CONTRACT

subclass?/c accepts a class and returns a flat-contract that recognizes classes that are subclasses of the original
class.

(vectorof flat-contract) FLAT-CONTRACT

vectorof accepts a flat contract (or a predicate which is converted to a flat contract via flat-contract) and
returns a predicate that checks for vectors whose elements match the original flat contract.

(vector-immutableof contract) CONTRACT

vector-immutableof accepts a contract (or a predicate which is converted to a flat contract) and returns a
contract that checks for immutable lists whose elements match the original contract. In contrast to vectorof,
vector-immutableof accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not be eq? to the input.

(vector/c flat-contract · · ·) FLAT-CONTRACT

vector/c accepts any number of flat contracts (or predicates which are converted to flat contracts via
flat-contract) and returns a flat-contract that recognizes vectors. The number of elements in the vector must
match the number of arguments supplied to vector/c and the elements of the vector must match the corresponding
flat contracts.

(vector-immutable/c contract · · ·) CONTRACT

vector-immutable/c accepts any number of contracts (or predicates which are converted to flat contracts via
flat-contract) and returns a contract that recognizes vectors. The number of elements in the vector must match
the number of arguments supplied to vector-immutable/c and the elements of the vector must match the corre-
sponding contracts.

In contrast to vector/c, vector-immutable/c accepts arbitrary contracts, not just flat contracts. Beware,
however, that when a value is applied to this contract, the result will not be eq? to the input.

(box/c flat-contract) FLAT-CONTRACT

box/c accepts a flat contract (or predicate that is converted to a flat contract via flat-contract) and returns a
flat contract that recognizes for boxes whose contents match box/c’s argument.

(box-immutable/c contract) CONTRACT

box-immutable/c one contracts (or a predicate that is converted to a flat contract via flat-contract)
and returns a contract that recognizes boxes. The contents of the box must match the contract passed to
box-immutable/c.

In contrast to box/c, box-immutable/c accepts an arbitrary contract, not just a flat contract. Beware, however,
that when a value is applied to this contract, the result will not be eq? to the input.

(listof flat-contract) FLAT-CONTRACT

listof accepts a flat contract (or a predicate which is converted to a flat contract) and returns a flat contract that

42

14. contract.ss: Contracts 14.1. Flat Contracts

checks for lists whose elements match the original flat contract.

(list-immutableof contract) CONTRACT

list-immutableof accepts a contract (or a predicate which is converted to a flat contract) and returns a
contract that checks for immutable lists whose elements match the original contract. In contrast to listof,
list-immutableof accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not be eq? to the input.

(listof-unsafe contract) CONTRACT

Use this contract combinator with care.

listof-unsafe is like listof in that the contracts it produces accept mutable lists and it is like
listof-immutable in that it accepts a an arbitrary contract as an argument.

It is unlike both in that it is unsafe, because it copies the list. This is unsafe because it can affect the behavior of
a program whose contracts always pass. In particular, since the contract copies the list, the behavior of programs
that use set-car! or set-cdr! might change. We include this contract in the library because many of Scheme’s
primitives produce lists and many Scheme programs never use set-car! or set-cdr! on those lists. In that case,
this contract combinator is safe.

(cons/c flat-contract flat-contract) FLAT-CONTRACT

cons/c accepts two flat contracts (or predicates that are converted to flat contracts via flat-contract) and
returns a flat contract that recognizes cons cells whose car and cdr correspond to cons/c’s two arguments.

(cons-immutable/c contract contract) CONTRACT

cons-immutable/c accepts two contracts (or predicates that are converted to flat contracts via flat-contract)
and returns a contract that recognizes immutable cons cells whose car and cdr correspond to cons-immutable/c’s
two arguments. In contrast to cons/c, cons-immutable/c accepts arbitrary contracts, not just flat contracts.

Beware, however, that when a value is applied to this contract, the result will not be eq? to the input.

(cons-unsafe/c contract contract) CONTRACT

Use this contract combinator with care.

cons-unsafe/c is like cons/c in that the contracts it produces accept mutable lists and it is like
cons-immutable/c in that it accepts a an arbitrary contract as an argument.

It is unlike both in that it is unsafe, because it copies the list. This is unsafe because it can affect the behavior of
a program whose contracts always pass. In particular, since the contract copies the list, the behavior of programs
that use set-car! or set-cdr! might change. We include this contract in the library because many of Scheme’s
primitives produce lists and many Scheme programs never use set-car! or set-cdr! on those lists. In that case,
this contract combinator is safe.

(list/c flat-contract · · ·) FLAT-CONTRACT

list/c accepts an arbitrary number of flat contracts (or predicates that are converted to flat contracts via
flat-contract) and returns a flat contract that recognizes for lists whose length is the same as the number of

43

14.1. Flat Contracts 14. contract.ss: Contracts

arguments to list/c and whose elements match those arguments.

(list-immutable/c contract · · ·) CONTRACT

list-immutable/c accepts an arbitrary number of contracts (or predicates that are converted to flat contracts
via flat-contract) and returns a contract that recognizes for lists whose length is the same as the number of
arguments to list-immutable/c and whose elements match those contracts.

In contrast to list/c, list-immutable/c accepts arbitrary contracts, not just flat contracts. Beware, however,
that when a value is applied to this contract, the result will not be eq? to the input.

(list-unsafe/c contract · · ·) CONTRACT

Use this contract combinator with care.

list-unsafe/c is like list/c in that the contracts it produces accept mutable lists and it is like
list-immutable/c in that it accepts a an arbitrary contract as an argument.

It is unlike both in that it is unsafe, because it copies the list. This is unsafe because it can affect the behavior of
a program whose contracts always pass. In particular, since the contract copies the list, the behavior of programs
that use set-car! or set-cdr! might change. We include this contract in the library because many of Scheme’s
primitives produce lists and many Scheme programs never use set-car! or set-cdr! on those lists. In that case,
this contract combinator is safe.

(syntax/c flat-contract) FLAT-CONTRACT

syntax/c accepts a flat contract and produces a flat contract that recognizes syntax objects whose contents match
the argument to syntax/c.

(struct/c struct-name flat-contract ...) FLAT-CONTRACT

struct/c accepts a struct name and as many flat contracts as there are fields in the named struct. It returns a contract
that accepts instances of that struct whose fields match the given contracts.

(flat-rec-contract name flat-contract · · ·) SYNTAX

Each flat-rec-contract form constructs a flat recursive contract. The first argument is the name of the contract
and the following arguments are flat contract expressions that may refer to name.

As an example, this contract:

(flat-rec-contract sexp
(cons/c sexp sexp)
number?
symbol?)

is a flat contract that checks for (a limited form of) s-expressions. It says that an sexp is either two sexp combined
with cons, or a number, or a symbol.

Note that if the contract is applied to a circular value, contract checking will not terminate.

44

14. contract.ss: Contracts 14.2. Function Contracts

(flat-murec-contract ([name flat-contract · · ·] · · ·) body · · ·) SYNTAX

The flat-murec-contract form is a generalization of flat-rec-contracts for defining several mutually
recursive flat contracts simultaneously.

Each of the names is visible in the entire flat-murec-contract and the result of the final body expression is the
result of the entire form.

Note that if the contract is applied to a circular value, contract checking will not terminate.

14.2 Function Contracts

This section describes the contract constructors for function contracts. This is their shape:

contract-expr ::==
| (case-> arrow-contract-expr · · ·)
| arrow-contract-expr

arrow-contract-expr ::==
| (-> expr · · · expr)
| (-> expr · · · any)
| (-> expr · · · (values expr · · ·))

| (->∗ (expr · · ·) (expr · · ·))
| (->∗ (expr · · ·) any)
| (->∗ (expr · · ·) expr (expr · · ·))
| (->∗ (expr · · ·) expr any)

| (->d expr · · · expr)
| (->d∗ (expr · · ·) expr)
| (->d∗ (expr · · ·) expr expr)

| (->r ((id expr) · · ·) expr)
| (->r ((id expr) · · ·) any)
| (->r ((id expr) · · ·) (values (id expr) · · ·))
| (->r ((id expr) · · ·) id expr expr)
| (->r ((id expr) · · ·) id expr any)
| (->r ((id expr) · · ·) id expr (values (id expr) · · ·))

| (->pp ((id expr) · · ·) pre-expr expr res-id post-expr)
| (->pp ((id expr) · · ·) pre-expr any)
| (->pp ((id expr) · · ·) pre-expr (values (id expr) · · ·) post-expr)

| (->pp-rest ((id expr) · · ·) id expr pre-expr expr res-id post-expr)
| (->pp-rest ((id expr) · · ·) id expr pre-expr any)
| (->pp-rest ((id expr) · · ·) id expr pre-expr (values (id expr) · · ·) post-expr)

| (opt-> (expr · · ·) (expr · · ·) expr)
| (opt->∗ (expr · · ·) (expr · · ·) any)
| (opt->∗ (expr · · ·) (expr · · ·) (expr · · ·))

| (unconstrained-domain-> expr · · ·)

45

14.2. Function Contracts 14. contract.ss: Contracts

where expr is any expression.

(-> expr · · ·) SYNTAX

(-> expr · · ·any) SYNTAX

The -> contract is for functions that accept a fixed number of arguments and return a single result. The last argument
to -> is the contract on the result of the function and the other arguments are the contracts on the arguments to
the function. Each of the arguments to -> must be another contract expression or a predicate. For example, this
expression:

(integer? boolean? . -> . integer?)

is a contract on functions of two arguments. The first must be an integer and the second a boolean and the function
must return an integer. (This example uses MzScheme’s infix notation so that the -> appears in a suggestive place;
see §11.2.4 in PLT MzScheme: Language Manual).

If any is used as the last argument to ->, no contract checking is performed on the result of the function, and
tail-recursion is preserved. Except for the memory performance, this is the same as using any/c in the result.

The final case of -> expressions treats values as a local keyword — that is, you may not return multiple values to
this position, instead if the word values syntactically appears in the in the last argument to -> the function is treated
as a multiple value return.

(->∗ (expr · · ·) (expr · · ·)) SYNTAX

(->∗ (expr · · ·) any) SYNTAX

(->∗ (expr · · ·) expr (expr · · ·)) SYNTAX

(->∗ (expr · · ·) expr any) SYNTAX

The ->∗ expression is for functions that return multiple results and/or have rest arguments. If two arguments are
supplied, the first is the contracts on the arguments to the function and the second is the contract on the results of the
function. These situations are also covered by ->.

If three arguments are supplied, the first argument contains the contracts on the arguments to the function (excluding
the rest argument), the second contains the contract on the remaining arguments, which will have already been pack-
aged up as a list. The final argument is the contracts on the results of the function. The final argument can be any
which, like ->, means that no contract is enforced on the result of the function and tail-recursion is preserved.

For example, a function that accepts one or more integer arguments and returns one boolean would have the contract:

(->∗ (integer?) (listof integer?) (boolean?))

(->d expr · · ·) SYNTAX

(->d∗ (expr · · ·) expr)) SYNTAX

(->d∗ (expr · · ·) expr expr) SYNTAX

The ->d and ->d∗ contract constructors are like their d-less counterparts, except that the result portion is a function

46

14. contract.ss: Contracts 14.2. Function Contracts

that accepts the original arguments to the function and returns the range contracts. The range contract function for
->d∗ must return multiple values: one for each result of the original function. As an example, this is the contract for
sqrt:

(number?
. ->d .
(lambda (in)
(lambda (out)
(and (number? out)

(< (abs (− (∗ out out) in)) 0.01)))))

It says that the input must be a number and that the difference between the square of the result and the original number
is less than 0.01.

(->r ([id expr] · · ·) expr) SYNTAX

The ->r contract allows you to build a contract where the arguments to a function may all depend on each other and
the result of the function may depend on all of the arguments.

Each of the ids names one of the actual arguments to the function with the contract. Each of the names is available to
all of the other contracts. For example, to define a function that accepts three arguments where the second argument
and the result must both be between the first, you might write:

(->r ([x number?] [y (and/c (>=/c x) (<=/c z))] [z number?])
(and/c number? (>=/c x) (<=/c z)))

(->r ([id expr] · · ·) any) SYNTAX

This variation on ->r does not check anything about the result of the function, which preserves tail recursion.

(->r ([id expr] · · ·) (values [id expr] ...)) SYNTAX

This variation on ->r allows multiple value return values. The ids for the domain are bound in all of the exprs, but
the ids for the range (the ones inside values) are only bound in the exprs inside the values.

As an example, this contract:

(->r () (values [x number?]
[y (and/c (>=/c x) (<=/c z))]
[z number?]))

matches functions that accept no arguments and that return three numeric values that are in ascending order.

(->r ([id expr] · · ·) id expr expr) SYNTAX

(->r ([id expr] · · ·) id expr any) SYNTAX

(->r ([id expr] · · ·) id expr (values [id expr] ...)) SYNTAX

These three forms of the ->r contract are just like the previous ones, except that the functions they matches must
accept arbitrarily many arguments. The extra id and the expr just following it specify the contracts on the extra
arguments. The value of id will alway be a list (of the extra arguments).

47

14.2. Function Contracts 14. contract.ss: Contracts

(->pp ([id expr] · · ·) pre-expr expr res-id post-expr) SYNTAX

(->pp ([id expr] · · ·) pre-expr any) SYNTAX

(->pp ([id expr] · · ·) pre-expr (values [id expr] ...) post-expr) SYNTAX

(->pp-rest ([id expr] · · ·) id expr pre-expr expr res-id post-expr) SYNTAX

(->pp-rest ([id expr] · · ·) id expr pre-expr any) SYNTAX

(->pp-rest ([id expr] ···) id expr pre-expr (values [id expr] ...) post-expr) SYN-
TAX

These six shapes of ->pp match up to the six shapes of ->r forms explained above, with the addition that the extra
pre- and post-condition expressions must not evaluate to #f.

If the pre-condition evaluates to #f, the caller is blamed and if the post-condition expression evaluates to #f the
function itself is blamed.

The argument variables are bound in the pre-expr and the post-expr and the variables in the values result
clauses are bound in the post-expr.

Additionally, the variable res-id is bound to the result in the first ->pp case and in the first ->pp-rest case.

(case-> arrow-contract-expr · · ·) CONTRACT-CASE-¿

The case-> expression constructs a contract for case-λ function. It’s arguments must all be function contracts, built
by one of ->, ->d, ->∗, ->d∗, ->r, ->pp, or ->pp-rest.

(opt-> (req-contracts · · ·) (opt-contracts · · ·) res-contract)) SYNTAX

(opt->∗ (req-contracts · · ·) (opt-contracts · · ·) (res-contracts · · ·)) SYNTAX

(opt->∗ (req-contracts · · ·) (opt-contracts · · ·) any) SYNTAX

The opt-> expression constructs a contract for an opt-lambda function. The first arguments are the re-
quired parameters, the second arguments are the optional parameters and the final argument is the result. The
req-contracts expressions, the opt-contracts expressions, and the res-contract expressions can be
any expression that evaluates to a contract value.

Each opt-> expression expands into case->.

The opt->∗ expression constructs a contract for an opt-lambda function. The only difference between opt->
and opt->∗ is that multiple return values are permitted with opt->∗ and they are specified in the last clause of an
opt->∗ expression. A result of any means any value or any number of values may be returned, and the contract
does not inhibit tail-recursion.

(unconstrained-domain-> contract · · ·) CONTRACT

Constructs a contract that accepts functions, but makes no constraint on their domain. Generally speaking, this contract
must be combined with another contract to ensure that the domain is actually known to be able to safely call the

48

14. contract.ss: Contracts 14.3. Lazy Data-structure Contracts

function itself. For example, this contract

(provide/contract
[f (->r ([size natural-number/c]

[proc (and/c (unconstrained-domain-> number?)
(lambda (p) (procedure-arity-includes? p size)))])

number?)])

says that the function f accepts a natural number and a function. The domain of the function that f accepts must
include a case for size arguments, meaning that f can safely supply size arguments to its input. For example, this
is a definition of f that cannot be blamed:

(define (f i g)
(apply g (build-list i add1)))

(promise/c contract) CONTRACT

Constructs a contract on a promise. The contract does not force the promise, but when the promise is forced, the
contract checks that the value meets the contract.

14.3 Lazy Data-structure Contracts

Typically, constracts on data structures can be written using flat contracts. For example, one might write a sorted
list contract as a function that accepts a list and traverses it, ensuring that the elements are in order. Such contracts,
however, can change the asymptotic running time of the program, since the contract may end up exploring more of a
function’s input than the function itself does. To circumvent this problem, the define-contract-struct form
introduces contract combinators that are lazy that is, they only verify the contract holds for the portion of some data
structure that is actually inspected. More precisely, a lazy data structure contract on a struct is not checked until a
selector extracts a field of a struct.

The form

(define-contract-struct struct-name (field ...))

is like the corresponding define-struct, with two differences: it does not define field mutators and it does define
two contract constructors: struct-name/c and struct-name/dc. The first is a procedure that accepts as many
arguments as there are fields and returns a contract for struct values whose fields match the arguments. The second is
a syntactic form that also produces contracts on the structs, but the contracts on later fields may depend on the values
of earlier fields. It syntax is:

(struct-name/dc field-spec ...)

where each field-spec is one of the following two lines:

[field contract-expr]
[field (field ...) contract-expr]

In each case, the first field name specifies which field the contract applies to, and the fields must be specified in the
same order as the original define-contract-struct. The first case is for when the contract on the field does
not depend on the value of any other field. The second case is for when the contract on the field does depend on some
other fields, and the field names in middle second indicate which fields it depends on. These dependencies can only
be to fields that come earlier in the struct.

As an example consider this module:

49

14.4. Object and Class Contracts 14. contract.ss: Contracts

(module product mzscheme
(require (lib "contract.ss"))

(define-contract-struct kons (hd tl))

;; sorted-list/gt : number -> contract
;; produces a contract that accepts
;; sorted kons-lists whose elements
;; are all greater than ‘num’.
(define (sorted-list/gt num)
(or/c null?

(kons/dc [hd (>=/c num)]
[tl (hd) (sorted-list/gt hd)])))

;; product : kons-list -> number
;; computes the product of the values
;; in the list. if the list contains
;; zero, it avoids traversing the rest
;; of the list.
(define (product l)
(cond
[(null? l) 1]
[else
(if (zero? (kons-hd l))

0
(∗ (kons-hd l)

(product (kons-tl l))))]))

(provide kons? make-kons kons-hd kons-tl)
(provide/contract [product (-> (sorted-list/gt −inf.0) number?)]))

It provides a single function, product whose contract indicates that it accepts sorted lists of numbers and produces
numbers. Using an ordinary flat contract for sorted lists, the product function cannot avoid traversing having its
entire argument be traversed, since the contract checker will traverse it before the function is called. As written above,
however, when the product function aborts the traversal of the list, the contract checking also stops, since the kons/dc
contract constructor generates a lazy contract.

14.4 Object and Class Contracts

This section describes contracts on classes and objects. Here is the basic shape of an object contract:

contract-expr ::== · · ·
| (object-contract meth/field-spec · · ·)

meth/field-spec ::==
(meth-name meth-contract)

| (field field-name contract-expr)

meth-contract ::==
(opt-> (required-contract-expr · · ·)

(optional-contract-expr · · ·)
any)

(opt-> (required-contract-expr · · ·)

50

14. contract.ss: Contracts 14.5. Attaching Contracts to Values

(optional-contract-expr · · ·)
result-contract-expr)

| (opt->∗ (required-contract-expr · · ·)
(optional-contract-expr · · ·)
(result-contract-expr · · ·))

| (case-> meth-arrow-contract · · ·)
| meth-arrow-contract

meth-arrow-contract ::==
(-> dom-contract-expr · · · rng-contract-expr)

| (-> dom-contract-expr · · · (values rng-contract-expr · · ·))
| (->∗ (dom-contract-expr · · ·) (rng-contract-expr · · ·))
| (->∗ (dom-contract-expr · · ·) rest-arg-contract-expr (rng-contract-expr · · ·))
| (->d dom-contract-expr · · · rng-contract-proc-expr)
| (->d∗ (dom-contract-expr · · ·) rng-contract-proc-expr)
| (->d∗ (dom-contract-expr · · ·) rest-contract-expr rng-contract-proc-expr)
| (->r ((id expr) · · ·) expr)
| (->r ((id expr) · · ·) id expr expr)
| (->pp ((id expr) · · ·) pre-expr expr res-id post-expr)
| (->pp ((id expr) · · ·) pre-expr any)
| (->pp ((id expr) · · ·) pre-expr (values (id expr) · · ·) post-expr)
| (->pp-rest ((id expr) · · ·) id expr pre-expr expr res-id post-expr)
| (->pp-rest ((id expr) · · ·) id expr pre-expr any)
| (->pp-rest ((id expr) · · ·) id expr pre-expr (values (id expr) · · ·) post-expr)

Each of the contracts for methods has the same semantics as the corresponding function contract (discussed above),
but the syntax of the method contract must be written directly in the body of the object-contract (much like the way that
methods in class definitions use the same syntax as regular function definitions, but cannot be arbitrary procedures).

The only exception is that the ->r, ->pp, and ->pp-rest contracts implicitly bind this to the object itself.

mixin-contract CONTRACT

mixin-contract is a contract that recognizes mixins. It is a function contract. It guarantees that the input to the
function is a class and the result of the function is a subclass of the input.

(make-mixin-contract class-or-interface · · ·) CONTRACT

make-mixin-contract is a function that constructs mixins contracts. It accepts any number of classes and
interfaces and returns a function contract. The function contract guarantees that the input to the function implements
the interfaces and is derived from the classes and that the result of the function is a subclass of the input.

14.5 Attaching Contracts to Values

There are three special forms that attach contract specification to values: provide/contract, define/contract,
and contract.

(provide/contract p/c-item · · ·) SYNTAX

p/c-item is one of
(struct identifier ((identifier contract-expr) · · ·))
(struct (identifier identifier) ((identifier contract-expr) · · ·))

51

14.5. Attaching Contracts to Values 14. contract.ss: Contracts

(rename id id contract-expr)
(id contract-expr)

A provide/contract form can only appear at the top-level of a module (see §5 in PLT MzScheme: Language
Manual). As with provide, each identifier is provided from the module. In addition, clients of the module must live
up to the contract specified by contract-expr.

The provide/contract form treats modules as units of blame. The module that defines the provided variable is
expected to meet the positive (co-variant) positions of the contract. Each module that imports the provided variable
must obey the negative (contra-variant) positions of the contract.

Only uses of the contracted variable outside the module are checked. Inside the module, no contract checking occurs.

The rename form of a provide/contract exports the first variable (the internal name) with the name specified
by the second variable (the external name).

The struct form of a provide/contract clause provides a structure definition. Each field has a contract that
dictates the contents of the fields.

If the struct has a parent, the second struct form (above) must be used, with the first name referring to the struct
itself and the second name referring to the parent struct. Unlike define-struct, however, all of the fields (and
their contracts) must be listed. The contract on the fields that the sub-struct shares with its parent are only used in the
contract for the sub-struct’s maker, and the selector or mutators for the super-struct are not provided.

Note that the struct definition must come before the provide clause in the module’s body.

(define/contract id contract-expr init-value-expr) SYNTAX

The define/contract form attaches the contract contract-expr to init-value-expr and binds that to
id.

The define/contract form treats individual definitions as units of blame. The definition itself is responsible for
positive (co-variant) positions of the contract and each reference to id (including those in the initial value expression)
must meet the negative positions of the contract.

Error messages with define/contract are not as clear as those provided by provide/contract because
define/contract cannot detect the name of the definition where the reference to the defined variable occurs.
Instead, it uses the source location of the reference to the variable as the name of that definition.

(contract contract-expr to-protect-expr positive-blame negative-blame) SYNTAX

(contract contract-expr to-protect-expr positive-blame negative-blame contract-source)
SYNTAX

The contract special form is the primitive mechanism for attaching a contract to a value. Its purpose is as a target
for the expansion of some higher-level contract specifying form.

The contract expression adds the contract specified by the first argument to the value in the second argument.
The result of a contract expression is the result of the to-protect-expr expression, but with the con-
tract specified by contract-expr enforced on to-protect-expr. The expressions positive-blame and
negative-blame must be symbols indicating how to assign blame for positive and negative positions of the con-
tract specified by contract-expr. Finally, contract-source, if specified, indicates where the contract was
assumed. It must be a syntax object specifying the source location of the location where the contract was assumed.
If the syntax object wraps a symbol, the symbol is used as the name of the primitive whose contract was assumed. If

52

14. contract.ss: Contracts 14.6. Contract Utility

absent, it defaults to the source location of the contract expression.

14.6 Contract Utility

(guilty-party exn) PROCEDURE

Extracts the name of the guilty party from an exception raised by the contract system.

contract? PREDICATE

The procedure contract? returns #t if its argument is a contract (ie, constructed with one of the combinators
described in this section).

flat-contract? PREDICATE

This predicate returns true when its argument is a contract that has been constructed with flat-contract (and
thus is essentially just a predicate).

(flat-contract-predicate value) SELECTOR

This function extracts the predicate from a flat contract.

(contract-first-order-passes? contract value) PROCEDURE

Returns a boolean indicating if the first-order tests of contract pass for value.

If it returns #f, the contract is guaranteed not to hold for that value; if it returns #t, the contract may or may not hold.
If the contract is a first-order contract, a result of #t guarantees that the contract holds.

(make-none/c sexp-name) PROCEDURE

Makes a contract that accepts no values, and reports the name sexp-name when signaling a contract violation.

(contract-violation->string [violation-renderer]) PROCEDURE

This is a parameter that is used when constructing a contract violation error. Its value is procedure that accepts six
arguments: the value that the contract applies to, a syntax object representing the source location where the contract
was established, the names of the two parties to the contract (as symbols) where the first one is the guilty one, an
sexpression representing the contract, and a message indicating the kind of violation. The procedure then returns a
string that is put into the contract error message. Note that the value is often already included in the message that
indicates the violation.

(recursive-contract contract) SYNTAX

Unfortunately, the standard contract combinators (like ->, etc) evaluate their arguments eagerly, leading to either
references to undefined variables or infinite loops, while building recursive contracts.

The recursive-contract form delays the evaluation of its argument until the contract is checked, making recur-
sive contracts possible.

53

14.6. Contract Utility 14. contract.ss: Contracts

(opt/c expr) SYNTAX

This optimizes its argument contract expression by traversing its syntax and, for known contract combinators, fuses
them into a single contract combinator that avoids as much allocation overhad as possible. The result is a contract that
should behave identically to its argument, except faster (due to the less allocation).

(define-opt/c (id id ...) expr) SYNTAX

This defines a recursive contract and simultaneously optimizes it. Semantically, it behaves just as if the -opt/c were
not present, defining a function on contracts (except that the body expression must return a contract). But, it also
optimizes that contract definition, avoiding extra allocation, much like opt/c does.

For example,

(define-contract-struct bt (val left right))

(define-opt/c (bst-between/c lo hi)
(or/c null?

(bt/c [val (between/c lo hi)]
[left (val) (bst-between/c lo val)]
[right (val) (bst-between/c val hi)])))

(define bst/c (bst-between/c −inf.0 +inf.0))

defines the bst/c contract that checks the binary search tree invariant. Removing the -opt/c also makes a binary
search tree contract, but one that is (approximately) 20 times slower.

54

15. control.ss: Control Operators

To load: (require (lib "control.ss"))

This library provides various control operators from the literature on higher-order control operators. These control
operators are implemented in terms of MzScheme’s prompt and continuations (see §6.5 in PLT MzScheme: Language
Manual), and they generally work sensibly together. For example, reset and shift are aliases.

(% expr [handler-expr]) SYNTAX

(fcontrol obj) SYNTAX

See Sitaram, “Handling Control,” Proc. Conference on Programming Language Design and Implementation, 1993.

The essential reduction rules are:

(% obj proc) => obj
(% E[(fcontrol obj)] proc) => (proc obj (lambda (x) E[x]))
; where E has no %

When handler-expr is omitted, % is the same as prompt.

(prompt expr · · ·1) SYNTAX

(control identifer expr · · ·1) SYNTAX

See Felleisen, Wand, Friedman, and Duba, “Abstract Continuations: A Mathematical Semantics for Handling Full
Functional Jumps,” Proc. Conference on LISP and Functional Programming, 1988. See also Sitaram and Felleisen,
“Control Delimiters and Their Hierarchies,” Lisp and Symbolic Computation, 1990.

The essential reduction rules are:

(prompt obj) => obj
(prompt E[(control k expr)]) => (prompt ((lambda (k) expr)

(lambda (v) E[v])))
; where E has no prompt

(prompt-at prompt-tag-expr expr · · ·1) SYNTAX

(control-at prompt-tag-expr identifer expr · · ·1) SYNTAX

Like prompt and control, but using the specified prompt tags:

(prompt-at tag obj) => obj
(prompt-at tag E[(control-at tag k expr)]) => (prompt-at tag

55

15. control.ss: Control Operators

((lambda (k) expr)
(lambda (v) E[v])))

; where E has no prompt-at for tag

(reset expr · · ·1) SYNTAX

(shift identifer expr · · ·1) SYNTAX

See Danvy and Filinski, “Abstracting Control,” Proc. Conference on LISP and Functional Programming, 1990.

The essential reduction rules are:

(reset obj) => obj
(reset E[(shift k expr)]) => (reset ((lambda (k) expr)

(lambda (v) (reset E[v]))))
; where E has no reset

This library’s reset and prompt and interchangable.

(reset-at prompt-tag-expr expr · · ·1) SYNTAX

(shift-at prompt-tag-expr identifer expr · · ·1) SYNTAX

Like reset and shift, but using the specified prompt tags.

(prompt0 expr · · ·1) SYNTAX

(reset0 expr · · ·1) SYNTAX

(control0 identifer expr · · ·1) SYNTAX

(shift0 identifer expr · · ·1) SYNTAX

See Shan, “Shift to Control,” Proc. Workshop on Scheme and Functional Programming, 2004.

The essential reduction rules are:

(prompt0 obj) => obj
(prompt0 E[(control0 k expr)]) => ((lambda (k) expr)

(lambda (v) E[v]))
(reset0 obj) => obj
(reset0 E[(shift0 k expr)]) => ((lambda (k) expr)

(lambda (v) (reset0 E[v])))

This library’s reset0 and prompt0 and interchangable. Furthermore, the following reductions apply:

(prompt E[(control0 k expr)]) => (prompt ((lambda (k) expr)
(lambda (v) E[v])))

(reset E[(shift0 k expr)]) => (reset ((lambda (k) expr)
(lambda (v) (reset0 E[v]))))

(prompt0 E[(control k expr)]) => (prompt0 ((lambda (k) expr)
(lambda (v) E[v])))

56

15. control.ss: Control Operators

(reset0 E[(shift k expr)]) => (reset0 ((lambda (k) expr)
(lambda (v) (reset E[v]))))

That is, both the prompt/reset and control/shift sites must agree for 0-like behavior, otherwise the non-0
behavior applies.

(prompt0-at prompt-tag-expr expr · · ·1) SYNTAX

(reset0-at prompt-tag-expr expr · · ·1) SYNTAX

(control0-at prompt-tag-expr identifer expr · · ·1) SYNTAX

(shift0-at prompt-tag-expr identifer expr · · ·1) SYNTAX

Variants that accept a prompt tag.

(spawn proc) PROCEDURE

See Hieb and Dybvig, “Continuations and Concurrency,”, Proc. Principles and Practice of Parallel Programming,
1990.

The essential reduction rules are:

(prompt-at tag obj) => obj
(spawn proc) => (prompt tag (proc (lambda (x) (abort tag x))))
(prompt-at tag E[(abort tag proc)]) => (proc (lambda (x)

(prompt-at tag E[x])))
; where E has no prompt-at for tag

(splitter proc) PROCEDURE

See Queinnec and Serpette, “A Dynamic Extent Control Operator for Partial Continuations,” Proc. Symposium on
Principles of Programming Languages, 1991.

The essential reduction rules are:

(splitter proc) => (prompt-at tag
(proc (lambda (thunk)

(abort tag thunk))
(lambda (proc)
(control0-at tag k (proc k)))))

(prompt-at tag E[(abort tag thunk)]) => (thunk)
; where E has no prompt-at for tag

(prompt-at tag E[(control0-at tag k expr)]) => ((lambda (k) expr)
(lambda (x) E[x]))

; where E has no prompt-at for tag

(new-prompt) PROCEDURE

(set prompt-expr expr · · ·1) SYNTAX

57

15. control.ss: Control Operators

(cupto prompt-expr identifier expr · · ·1) SYNTAX

See Gunter, Remy, and Rieke, “A Generalization of Exceptions and Control in ML-like Languages,” Proc. Functional
Programming Languages and Computer Architecture, 1995.

In this library, new-prompt is an alias for make-continuation-prompt-tag, set is an alias for
prompt0-at, and cupto is an alias for control0-at.

58

16. date.ss: Dates

To load: (require (lib "date.ss"))

See also §15.1 in PLT MzScheme: Language Manual.

(date->string date [time?]) PROCEDURE

Converts a date structure value (such as returned by MzScheme’s seconds->date) to a string. The returned string
contains the time of day only if time? is a true value; the default is #f. See also date-display-format.

(date-display-format [format-symbol]) PROCEDURE

Parameter that determines the date display format, one of ’american, ’chinese, ’german, ’indian, ’irish,
’iso-8601, ’rfc2822, or ’julian. The initial format is ’american.

(find-seconds second minute hour day month year) PROCEDURE

Finds the representation of a date in platform-specific seconds. The arguments correspond to the fields of the date
structure. If the platform cannot represent the specified date, an error is signaled, otherwise an integer is returned.

(date->julian/scalinger date) PROCEDURE

Converts a date structure (up to 2099 BCE Gregorian) into a Julian date number. The returned value is not a strict
Julian number, but rather Scalinger’s version, which is off by one for easier calculations.

(julian/scalinger->string date) PROCEDURE

Converts a Julian number (Scalinger’s off-by-one version) into a string.

59

17. deflate.ss: Deflating (Compressing) Data

To load: (require (lib "deflate.ss"))

(gzip in-filename [out-filename]) PROCEDURE

Compresses data to the same format as the GNU gzip utility, writing the compressed data directly to a file. The
in-filename argument is the name of the file to compress. The default output file name is in-filename with
.gz appended. If the file named by out-filename exists, it will be overwritten. The return value is void.

(gzip-through-ports in out orig-filename timestamp) PROCEDURE

Reads the port in for data and compresses it to out, outputting the same format as the GNU gzip utility. The
orig-filename string is embedded in this output; orig-filename can be #f to omit the filename from the
compressed stream. The timestamp number is also embedded in the output stream, as the modification date of
the original file (in Unix seconds, as file-or-directory-modify-seconds would report under Unix). The
return value is void.

(deflate in out) PROCEDURE

Writes pkzip-format “deflated” data to the port out, compressing data from the port in. The data in a file created
by gzip uses this format (preceded with some header information).

The result is three values: the number of bytes read from in, the number of bytes written to out, and a cyclic
redundancy check (CRC) value for the input.

60

18. defmacro.ss: Non-Hygienic Macros

To load: (require (lib "defmacro.ss"))

(define-macro identifier expr) SYNTAX

(define-macro (identifier . formals) expr · · ·1) SYNTAX

Defines a (non-hygienic) macro identifier as a procedure that manipulates S-expressions (as opposed to syntax
objects). In the first form, expr must produce a procedure. In the second form, formals determines the formal
arguments of the procedure, as in lambda, and the exprs are the procedure body. In both cases, the procedure is
generated in the transformer environment, not the normal environment (see §12 in PLT MzScheme: Language Manual).

In a use of the macro,

(identifier expr · · ·)

syntax-object->datum is applied to the expression (see §12.2.2 in PLT MzScheme: Language Manual), and the
macro procedure is applied to the cdr of the resulting list. If the number of exprs does not match the procedure’s
arity (see §3.12.1 in PLT MzScheme: Language Manual) or if identifier is used in a context that does not match
the above pattern, then a syntax error is reported.

After the macro procedure returns, the result is compared to the procedure’s arguments. For each value that appears
exactly once within the arguments (or, more precisely, within the S-expression derived from the original source syntax),
if the same value appears in the result, it is replaced with a syntax object from the original expression. This heuristic
substitution preserves source location information in many cases, despite the macro procedure’s operation on raw
S-expressions.

After substituting syntax objects for preserved values, the entire macro result is converted to syntax with
datum->syntax-object (see §12.2.2 in PLT MzScheme: Language Manual). The original expression supplies
the lexical context and source location for converted elements.

(defmacro identifier formals expr · · ·1) SYNTAX

Same as (define-macro (identifier . formals) expr · · ·1).

Important: define-macro is still restricted by MzScheme’s phase separation rules. This means that a macro
cannot access run-time bindings because it is executed in the syntax expansion phase. Translating code that involves
define-macro or defmacro from an implementation without this restriction usually implies separating macro re-
lated functionality into a begin-for-syntax or a module (that will be imported with require-for-syntax)
and properly distinguishing syntactic information from run-time information.

61

19. etc.ss: Useful Procedures and Syntax

To load: (require (lib "etc.ss"))

(begin-lifted expr · · ·1) SYNTAX

Lifts the exprs so that they are evaluated once at the “top level” of the current context, and the result of the last expr
is used for every evaluation of the begin-lifted form.

When this form is used as a run-time expression within a module, the “top level” corresponds to the module’s top
level, so that each expr is evaluated once for each invocation of the module. When it is used as a run-time expression
outside of a module, the “top level” corresponds to the true top level. When this form is used in a define-syntax,
letrec-syntax, etc. binding, the “top level” corresponds to the beginning of the binding’s right-hand side. Other
forms may redefine “top level” (using local-expand/capture-lifts) for the expressions that they enclose.

(begin-with-definitions defn-or-expr · · ·) SYNTAX

Supports a mixture of expressions and mutually recursive definitions, much like a module body. Unlike in a module,
however, syntax definitions cannot be used to generate other immediate definitions (though they can be used for
expressions).

The result of the begin-with-definitions form is the result of the last defn-or-expr if it is an expression,
void otherwise. If no defn-or-expr is provided (after flattening begin forms), the result is void.

(boolean=? bool1 bool2) PROCEDURE

Returns #t if bool1 and bool2 are both #t or both #f, and returns #f otherwise. If either bool1 or bool2 is
not a Boolean, the exn:fail:contract exception is raised.

(build-list n f) PROCEDURE

Creates a list of n elements by applying f to the integers from 0 to n−1 in order, where n is a non-negative integer.
If r is the resulting list, (list-ref r i) is (f i).

(build-string n f) PROCEDURE

Creates a string of length n by applying f to the integers from 0 to n−1 in order, where n is a non-negative integer
and f returns a character for the n invocations. If r is the resulting string, (string-ref r i) is (f i).

(build-vector n f) PROCEDURE

Creates a vector of n elements by applying f to the integers from 0 to n−1 in order, where n is a non-negative integer.
If r is the resulting vector, (vector-ref r i) is (f i).

62

19. etc.ss: Useful Procedures and Syntax

(compose f · · ·1) PROCEDURE

Returns a procedure that composes the given functions, applying the last f first and the first f last. The composed
functions can consume and produce any number of values, as long as each function produces as many values as the
preceding function consumes.

For example, (compose f g) returns the equivalent of (lambda l (call-with-values (lambda ()
(apply g l)) f)).

(define-syntax-set (identifier · · ·) defn · · ·) SYNTAX

This form is similar to define-syntaxes, but instead of a single body expression, a sequence of definitions
follows the sequence of defined identifiers. For each identifier, the defns should include a definition for
identifier/proc. The value for identifier/proc is used as the (expansion-time) value for identifier.

The define-syntax-set form is especially useful for defining a set of syntax transformers that share helper
functions.

Example:

(define-syntax-set (let-current-continuation let-current-escape-continuation)
(define (mk call-id)

(lambda (stx)
(syntax-case stx ()
[(id body1 body ...)
(with-syntax ([call call-id])
(syntax (call (lambda (id) body1 body ...))))])))

(define let-current-continuation/proc (mk (quote-syntax call/cc)))
(define let-current-escape-continuation/proc (mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr · · ·) · · ·1) SYNTAX

The evcase form is similar to case, except that expressions are provided in each clause instead of a sequence of
data. After key-expr is evaluated, each value-expr is evaluated until a value is found that is eqv? to the key
value; when a matching value is found, the corresponding body-exprs are evaluated and the value(s) for the last is
the result of the entire evcase expression.

A value-expr can be the special identifier else. This identifier is recognized as in case (see §2.3 in PLT
MzScheme: Language Manual).

false BOOLEAN

Boolean false.

(identity v) PROCEDURE

Returns v .

(let+ clause body-expr · · ·1) SYNTAX

A new binding construct that specifies scoping on a per-binding basis instead of a per-expression basis. It helps
eliminate rightward-drift in programs. It looks similar to let, except each clause has an additional keyword tag
before the binding variables.

63

19. etc.ss: Useful Procedures and Syntax

Each clause has one of the following forms:

• (val target expr) binds target non-recursively to expr.

• (rec target expr) binds target recursively to expr.

• (vals (target expr) · · ·) the targets are bound to the exprs. The environment of the exprs is the
environment active before this clause.

• (recs (variable expr) · · ·) the targetss are bound to the exprs. The environment of the exprs
includes all of the targetss.

• (expr · · ·) evaluates the exprs without binding any variables.

The clauses bind left-to-right. Each target above can either be an identifier or (values variable · · ·). In the
latter case, multiple values returned by the corresponding expression are bound to the multiple variables.

Examples:

(let+ ([val (values x y) (values 1 2)])
(list x y)) ; ⇒ ’(1 2)

(let ([x 1])
(let+ ([val x 3]

[val y x])
y)) ; ⇒ 3

(local (definition · · ·) body-expr · · ·1) SYNTAX

This is a binding form similar to letrec, except that each definition is a define-values expression (after
partial macro expansion). The body-exprs are evaluated in the lexical scope of these definitions.

(loop-until start done? next f) PROCEDURE

Repeatedly invokes the f procedure until the done? procedure returns #t. The procedure is best described by its
implementation:

(define loop-until
(lambda (start done? next f)
(let loop ([i start])
(unless (done? i)
(f i)
(loop (next i))))))

(namespace-defined? symbol) PROCEDURE

Returns #t if namespace-variable-value would return a value for symbol, #f otherwise. See §8.2 in PLT
MzScheme: Language Manual for further information.

(nand expr · · ·) SYNTAX

Returns (not (and expr · · ·)).

64

19. etc.ss: Useful Procedures and Syntax

(nor expr · · ·) SYNTAX

Returns (not (or expr · · ·)).

(opt-lambda formals body-expr · · ·1) SYNTAX

The opt-lambda form is like lambda, except that default values are assigned to arguments (C++-
style). Default values are defined in the formals list by replacing each variable by [variable
default-value-expression]. If a variable has a default value expression, then all (non-aggregate) variables
after it must have default value expressions. A final aggregate variable can be used as in lambda, but it cannot be
given a default value. Each default value expression is evaluated only if it is needed. The environment of each default
value expression includes the preceding arguments.

For example:

(define f
(opt-lambda (a [b (add1 a)] . c)

...))

In the example, f is a procedure which takes at least one argument. If a second argument is specified, it is the value of
b, otherwise b is (add1 a). If more than two arguments are specified, then the extra arguments are placed in a new
list that is the value of c.

See also §25 for a library that generalizes both optional and keyword arguments.

(recur name bindings body-expr · · ·1) SYNTAX

This is equivalent to a named let: (let name bindings body-expr · · ·1).

(rec name value-expr) SYNTAX

This is equivalent to a letrec expression that returns its binding: (letrec ((name value-expr)) name).

(rec (name id ...) expr) SYNTAX

(rec (name id id) expr) SYNTAX

These two are shorthands for the use of rec above, much like define allows shorthands for defining procedures.
In particular the first one expands into a use of rec bound to a lambdaexpression whose body is expr and whose
parameters are id The second is like the first, but with a rest argument.

(symbol=? symbol1 symbol2) PROCEDURE

Returns #t if symbol1 and symbol2 are equivalent (as determined by eq?), #f otherwise. If either symbol1 or
symbol2 is not a symbol, the exn:fail:contract exception is raised.

(this-expression-source-directory) SYNTAX

Note: see §40 for a definition form that works better when creating executables.

Expands to an expression that evaluates to the name of the directory of the file containing the source expression. The
source expression’s file is determined through source location information associated with the syntax, if it is present.
Otherwise, current-load-relative-directory is used if it is not #f, and current-directory is used

65

19. etc.ss: Useful Procedures and Syntax

if all else fails.

If the expression has a source module, then the expansion attempts to determine the module’s run-time location. This
location is determined by preserving the original expression as a syntax object, extracting its source module path at
run time, and then resolving the module path.

If the expression has no source, or if no directory can be determined at run time, the expansion falls back to using
source-location information associated with the expression. A simple (bytes->path #"...") expression is
used, unless the directory is within the result of find-collects-dir from (lib "dirs.ss" "setup"),
in which case the expansion records the path relative to (find-collects-dir) and then reconstructs it using
(find-collects-dir) at run time.

(this-expression-file-name) SYNTAX

Expands to an expression that evaluates to the file name of the source expression. The source expression’s file name
is determined through source location information associated with the syntax if it is present. If this information is
missing, or is not a path (e.g., for a standard-input expression), then #f will be used instead.

true BOOLEAN

Boolean true.

(hash-table ’flag ...(key value) ...) SYNTAX

This creates a new hash-table providing the quoted flags (if any) to make-hash-table, and make each of the keys
map to the corresponding values. (Flags must be specified by a quoted form.)

66

20. file.ss: Filesystem Utilities

To load: (require (lib "file.ss"))

See also §11.3 in PLT MzScheme: Language Manual.

(build-absolute-path base path · · ·) PROCEDURE

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be an absolute path-
name. If base is not an absolute pathname, error is called.

(build-relative-path base path · · ·) PROCEDURE

Like build-path (see §11.3 in PLT MzScheme: Language Manual), but base is required to be a relative pathname.
If base is not a relative pathname, error is called.

(call-with-input-file* pathname proc flag-symbol · · ·) PROCEDURE

Like call-with-input-file, except that the opened port is closed if control escapes from the body of proc.

(call-with-output-file* pathname proc flag-symbol · · ·) PROCEDURE

Like call-with-output-file, except that the opened port is closed if control escapes from the body of proc.

(copy-directory/files src-path dest-path) PROCEDURE

Copies the file or directory src-path to dest-path, raising exn:fail:filesystem if the file or directory
cannot be copied, possibly because dest-path exists already. If src-path is a directory, the copy applies recur-
sively to the directory’s content. If a source is a link, the target of the link is copied rather than the link itself.

(delete-directory/files path) PROCEDURE

Deletes the file or directory specified by path, raising exn:fail:filesystem if the file or directory cannot be
deleted. If path is a directory, then delete-directory/files is first applied to each file and directory in path
before the directory is deleted. The return value is void.

(explode-path path) PROCEDURE

Returns the list of directories that constitute path. The path argument must be normalized in the sense of
normalize-path (see below).

(file-name-from-path path) PROCEDURE

If path is a file pathname, returns just the file name part without the directory path.

67

20. file.ss: Filesystem Utilities

(filename-extension path) PROCEDURE

Returns a byte string that is the extension part of the filename in path. If path is (syntactically) a directory, #f is
returned.

(find-files predicate [start-pathname]) PROCEDURE

Traverses the filesystem starting at start-pathname and creates a list of all files and directories for which
predicate returns true. If start-pathname is #f (the default), then the traversal starts from the current direc-
tory (as determined by current-directory; see §7.9.1.1 in PLT MzScheme: Language Manual). The resulting
list has directories precede their contents.

The predicate procedure is called with a single argument for each file or directory. If start-pathname is
#f, the argument is a pathname string that is relative to the current directory. Otherwise, it is a pathname that starts
with start-pathname. Consequently, supplying (current-directory) for start-pathname is different
from supplying #f, because predicate receives complete paths in the former case and relative paths in the latter.
Another difference is that predicate is not called for the current directory when start-pathname is #f.

The find-files traversal follows soft links. To avoid following links, use the more general fold-files proce-
dure.

If start-pathname does not refer to an existing file or directory, then predicate will be called exactly once
with start-pathname as the argument.

(pathlist-closure path-list) PROCEDURE

This procedure consumes a list of paths, either absolute or relative to the current directory. The paths in the given
path-list are all expected to be path names of existing directories and files. The return value is a list of paths such
that

• if a nested path is given, all of its ancestors are also included in the result (but the same ancestor is not added
twice);

• if a path points at a directory, all of its descendants are also included in the result;

• ancestor directories come before their descendants.

(find-library name collection) PROCEDURE

Returns the path of the specified library (see Chapter 16 in PLT MzScheme: Language Manual), returning #f if the
specified library or collection cannot be found. The collection argument is optional, defaulting to "mzlib".

(find-relative-path basepath path) PROCEDURE

Finds a relative pathname with respect to basepath that names the same file or directory as path. Both basepath
and path must be normalized in the sense of normalize-path (see below). If path is not a proper subpath of
basepath (i.e., a subpath that is strictly longer), path is returned.

(fold-files proc init-val [start-pathname follow-links?]) PROCEDURE

Traverses the filesystem starting at start-pathname, calling proc on each discovered file, directory, and link.
If start-pathname is #f (the default), then the traversal starts from the current directory (as determined by
current-directory; see §7.9.1.1 in PLT MzScheme: Language Manual).

68

20. file.ss: Filesystem Utilities

The proc procedure is called with three arguments for each file, directory, or link:

• If start-pathname is #f, the first argument is a pathname string that is relative to the current directory.
Otherwise, the first argument is a pathname that starts with start-pathname. Consequently, supplying
(current-directory) for start-pathname is different from supplying #f, because proc receives
complete paths in the former case and relative paths in the latter. Another difference is that proc is not called
for the current directory when start-pathname is #f.

• The second argument is a symbol, either ’file, ’dir, or ’link. The second argument can be ’link when
follow-links? is #f, in which case the filesystem traversal does not follow links. If follow-links?
is #t (the default), then proc will only get a ’link as a second argument when it encounters a dangling
symbolic link (one that does not resolve to an existing file or directory).

• The third argument is the accumulated result. For the first call to proc, the third argument is init-val. For
the second call to proc (if any), the third argument is the result from the first call, and so on. The result of the
last call to proc is the result of fold-files.

proc is used in an analogous way to the procedure argument of foldl, where its result is used as the new accumu-
lated result. There is an exception for the case of a directory (when the second argument is ’dir): in this case the
procedure may return two values, the second indicating whether the recursive scan should include the given directory
or not. If it returns a single value, the directory is scanned.

An error is signaled if the start-pathname is provided but no such path exists, or if paths disappear during the
scan.

(get-preference name [failure-thunk flush-mode filename]) PROCEDURE

Extracts a preference value from the file designated by (find-system-path ’pref-file) (see §11.3 in PLT
MzScheme: Language Manual), or by filename if it is provided and is not #f. In the former case, if the preference
file doesn’t exist, get-preferences attempts to read a plt-prefs.ss file in the defaults collection, instead. If
neither file exists, the preference set is empty.

The preference file should contain a symbol-keyed association list (written to the file with the default parameter
settings). Keys starting with mzscheme:, mred:, and plt: in any letter case are reserved for use by PLT.

The result of get-preference is the value associated with name if it exists in the association list, or the result of
calling failure-thunk otherwise. The default failure-thunk returns #f.

Preference settings are cached (weakly) across calls to get-preference, using (path->complete-path
filename) as a cache key. If flush-cache is provided as #f, the cache is used instead of the re-consulting
the preferences file. If flush-cache is provided as ’timestamp (the default), then the cache is used only if the
file has a timestamp that is the same as the last time the file was read.

See also put-preferences. The framework collection supports a more elaborate preference system; see PLT
Framework: GUI Application Framework for details.

(make-directory* path) PROCEDURE

Creates directory specified by path, creating intermediate directories as necessary.

(make-temporary-file [format-string copy-from-filename directory]) PROCEDURE

Creates a new temporary file and returns a pathname string for the file. Instead of merely generating a fresh file
name, the file is actually created; this prevents other threads or processes from picking the same temporary name.

69

20. file.ss: Filesystem Utilities

If copy-from-filename is provided as path, the temporary file is created as a copy of the named file (us-
ing copy-file). If copy-from-filename is #f or not provided, the temporary file is created as empty. If
copy-from-filename is ’directory, then the temporary “file” is created as a directory. If directory is
provided and is not #f, then the file name generated from format-string is combined with directory to
obtain a full path.

When a temporary file is created, it is not opened for reading or writing when the pathname is returned. The client
program calling make-temporary-file is expected to open the file with the desired access and flags (probably
using the ’truncate flag; see §11.1.3 in PLT MzScheme: Language Manual) and to delete it when it is no longer
needed.

If format-string is specified, it must be a format string suitable for use with format and one additional
string argument (where the string contains only digits). If the resulting string is a relative path, it is combined with
the result of (find-system-path ’temp-dir), unless directory is provided and non-#f. The default
format-string is "mztmp∼a".

(normalize-path path wrt) PROCEDURE

Returns a normalized, complete version of path, expanding the path and resolving all soft links. If path is relative,
then the pathname wrt is used as the base path. The wrt argument is optional; if is omitted, then the current directory
is used as the base path.

Letter case is not normalized by normalize-path. For this and other reasons, the result of normalize-path is
not suitable for comparisons that determine whether two paths refer to the same file (i.e., the comparison may produce
false negatives).

An error is signaled by normalize-path if the input path contains an embedded path for a non-existent directory,
or if an infinite cycle of soft-links is detected.

(path-only path) PROCEDURE

If path is a filename, the file’s path is returned. If path is syntactically a directory, #f is returned.

(put-preferences name-list val-list [locked-proc filename]) PROCEDURE

See also get-preference.

Installs a set of preference values and writes all current values to the preference file designated by
(find-system-path ’pref-file) (see §11.3 in PLT MzScheme: Language Manual), or filename if it is
supplied and not #f. The name-list argument must be a list of symbols for the preference names, and val-list
must have the same length as name-list. Each element of val-list must be an instance of a built-in data type
whose write output is readable (i.e., the print-unreadable parameter is set to #f while writing preferences;
see §7.9.1.4 in PLT MzScheme: Language Manual).

Current preference values are read from the preference file before updating, and an update “lock” is held starting
before the file read, and lasting until after the preferences file is updated. The lock is implemented by the existence
of a file in the same directory as the preference file. If the directory of the preferences file does not already exist, it is
created.

If the update lock is already held (i.e., the lock file exists), then locked-proc is called with a single argument: the
path of the lock file. The default locked-proc reports an error; an alternative thunk might wait a while and try
again, or give the user the choice to delete the lock file (in case a previous update attempt encountered disaster).

If filename is #f or not supplied, and the preference file does not already exist, then values read from the defaults

70

20. file.ss: Filesystem Utilities

collection (if any) are written for preferences that are not mentioned in name-list.

71

21. foreign.ss: Foreign Interface

To load: (require (lib "foreign.ss"))

The foreign.ss module provides functionality for interfacing with foreign functions and data, as well as making
some of MzScheme’s internal functionality available from Scheme. Unlike other modules in this manual, foreign.ss
is intended to be used as a substitute for C extensions, making it inherently unsafe — code that uses such unsafe
functionality can crash the running process. It is therefore documented in its own manual: PLT Foreign Interface
Manual.

72

22. include.ss: Textually Including Source

To load: (require (lib "include.ss"))

(include path-spec) SYNTAX

Inlines the syntax in the designated file in place of the include expression.

The path-spec can be any of the following:

• a literal string that specifies a path to include (parsed according to the platform’s conventions).

• a path construction of the form (build-path elem ···1), where build-path is module-identifier=?
either to the build-path export from mzscheme or to the top-level build-path, and where each elem
is a path string, up (unquoted), or same (unquoted). The elems are combined in the same way as for the
build-path function (see §11.3.1 in PLT MzScheme: Language Manual) to obtain the path to include.

• a path construction of the form (lib file-string collection-string · · ·), where lib is free
or refers to a top-level lib variable. The collection-strings are passed to collection-path to
obtain a directory; if no collection-strings are supplied, "mzlib" is used. The file-string is
then appended to the directory using build-path to obtain the path to include.

If path-spec specifies a relative path to include, the path is resolved relative to the source for the include
expression, if that source is a complete path string. If the source is not a complete path string, then path-spec is
resolved relative to the current load relative directory if one is available, or to the current directory otherwise.

The included syntax is given the lexical context of the include expression.

(include-at/relative-to context source path-spec) SYNTAX

Like include, except that the lexical context of context is used for the included syntax, and a relative
path-spec is resolved with respect to the source of source. The context and source elements are other-
wise discarded by expansion.

(include-at/relative-to/reader context source path-spec reader-expr) SYNTAX

Combines include-at/relative-to and include/reader.

(include/reader path-spec reader-expr) SYNTAX

Like include, except that the procedure produced by the expression reader-expr is used to read the included
file, instead of read-syntax.

The reader-expr is evaluated at expansion time in the transformer environment. Since it serves as a replacement
for read-syntax, the expression’s value should be a procedure that consumes two inputs—a string representing

73

22. include.ss: Textually Including Source

the source and an input port—and produces a syntax object or eof. The procedure will be called repeatedly until it
produces eof.

The syntax objects returned by the procedure should have source location information, but usually no lexical context;
any lexical context in the syntax objects will be ignored.

74

23. inflate.ss: Inflating Compressed Data

To load: (require (lib "inflate.ss"))

(gunzip file [output-name-filter]) PROCEDURE

Extracts data that was compressed using the GNU gzip utility (or gzip in the deflate.ss library; see §17), writing
the uncompressed data directly to a file. The file argument is the name of the file containing compressed data. The
default output file name is the original name of the compressed file as stored in file. If a file by this name exists,
it will be overwritten. If no original name is stored in the source file, "unzipped" is used as the default output file
name.

The output-name-filter procedure is applied to two arguments — the default destination file name and a
Boolean that is #t if this name was read from file— before the destination file is created. The return value of the file
is used as the actual destination file name (opened with the ’truncate flag). The default output-name-filter
procedure returns its first argument.

The return value is void. If the compressed data is corrupted, the exn:fail exception is raised.

(gunzip-through-ports in out) PROCEDURE

Reads the port in for compressed data that was created using the GNU gzip utility, writing the uncompressed data
to the port out.

The return value is void. If the compressed data is corrupted, the exn:fail exception is raised.

The unzipping process may peek further into in than needed to decompress the data, but it will not consume the
unneeded bytes.

(inflate in out) PROCEDURE

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“inflated”) data to the port out.
The data in a file created by gzip uses this format (preceded with some header information).

The return value is void. If the compressed data is corrupted, the exn:fail exception is raised.

The inflate process may peek further into in than needed to decompress the data, but it will not consume the unneeded
bytes.

75

24. integer-set.ss: Integer Sets

To load: (require (lib "integer-set.ss"))

The integer-set.ss module provides functions for working with finite sets of integers. This module is designed for
sets that are compactly represented as groups of intervals, even when their cardinality is large. For example, the set
of integers from −1000000 to 1000000 except for 0, can be represented as {[−1000000,−1], [1,1000000]}. This
data structure would not be a good choice for the set of all odd integers between 0 and 1000000 (which would be
{[1,1], [3,3], . . . [999999,999999]}).

In addition to the integer-set abstract type, we define a well-formed-set to be a list of pairs of exact
integers, where each pair represents a closed range of integers, and the entire set is the union of the ranges. The ranges
must be disjoint and increasing. Further, adjacent ranges must have at least one integer between them. For example:
’((-1 . 2) (4 . 10)) is a well-formed-set as is ’((1 . 1) (3 . 3)), but ’((1 . 5) (6 . 7)),
’((1 . 5) (-3 . -1)), ’((5 . 1)), and ’((1 . 5) (3 . 6)) are not.

(make-integer-set well-formed-set) PROCEDURE

Creates an integer set from a well-formed set.

(integer-set-contents integer-set) PROCEDURE

Produces a well-formed set from an integer set.

(set-integer-set-contents! integer-set well-formed-set) PROCEDURE

Mutates an integer set.

(integer-set? v) PROCEDURE

Returns #t if v is an integer set, #f otherwise.

(make-range) make-range/empty

Produces an empty integer set.

(make-range k) PROCEDURE

Produces an integer set containing only k.

(make-range start-k end-k) PROCEDURE

Produces an integer set containing the integers from start-k to end-k inclusive, where start-k <= end-k.

76

24. integer-set.ss: Integer Sets

(intersect x-integer-set y-integer-set) PROCEDURE

Returns the intersection of the given sets.

(difference x-integer-set y-integer-set) PROCEDURE

Returns the difference of the given sets (i.e., elements in x-integer-set that are not in y-integer-set).

(union x-integer-set y-integer-set) PROCEDURE

Returns the union of the given sets.

(split x-integer-set y-integer-set) PROCEDURE

Produces three values: the first is the intersection of x-integer-set and y-integer-set, the second is the
difference x-integer-set remove y-integer-set, and the third is the difference y-integer-set remove
x-integer-set.

(complement integer-set start-k end-k) PROCEDURE

Returns the a set containing the elements between start-k to end-k inclusive that are not in integer-set,
where start-k <= end-k.

(xor x-integer-set y-integer-set) PROCEDURE

Returns an integer set containing every member of x-integer-set and y-integer-set that is not in both sets.

(member? k integer-set) PROCEDURE

Returns #t if k is in integer-set, #f otherwise.

(get-integer integer-set) PROCEDURE

Returns a member of integer-set, or #f if integer-set is empty.

(foldr proc base-v integer-set) PROCEDURE

Applies proc to each member of integer-set in ascending order, where the first argument to proc is the set
member, and the second argument is the fold result starting with base-v . For example, (foldr cons null x)
returns a list of all the integers in x, sorted in increasing order.

(partition integer-set-list) PROCEDURE

Returns the coarsest refinement of the sets in integer-set-list such that the sets in the result list are pairwise
disjoint. For example, partitioning the sets that represent ’((1 . 2) (5 . 10)) and ’((2 . 2) (6 . 6)
(12 . 12)) produces the a list containing the sets for ’((1 . 1) (5 . 5) (7 . 10)) ’((2 . 2) (6
. 6)), and ’((12 . 12)).

(card integer-set) PROCEDURE

Returns the number of integers in the given integer set.

77

24. integer-set.ss: Integer Sets

(subset? x-integer-set y-integer-set) PROCEDURE

Returns true if every integer in x-integer-set is also in y-integer-set, otherwise #f.

78

25. kw.ss: Keyword Arguments

To load: (require (lib "kw.ss"))

The kw.ss library provides the lambda/kw and define/kw forms.

(lambda/kw formals body-expr · · ·1) SYNTAX

Like lambda, but with optional and keyword-based argument processing. This form is similar to an extended ver-
sion of Common Lisp procedure arguments (but note the differences below). When used with plain variable names,
lambda/kw expands to a plain lambda, so lambda/kw is suitable for a language module that will use it to replace
lambda. Also, when used with only optionals, the resulting procedure is similar to opt-lambda (but a bit faster).
This facility uses MzScheme keyword values (see §3.8 in PLT MzScheme: Language Manual) for its implementation.

In addition to lambda/kw, this library provides a define/kw form that is similar to the built-in define (see §2.8.1
in PLT MzScheme: Language Manual), except that the formals are as in lambda/kw. Like define, this form
can be used with nested parenthesis for curried functions (the MIT-style generalization of §2.8.1 in PLT MzScheme:
Language Manual).

The syntax of lambda/kw is the same as lambda, except for the list of formal argument specifications. These
specifications can hold (zero or more) plain argument names, then an optionals (and defaults) section that begins after
an #:optional marker, then a keyword section that is marked by #:keyword, and finally a section holding rest
and “rest-like” arguments which are described below, together with argument processing flag directives. Each section
is optional, but the order of the sections must be as listed.

More formally, the syntax is:

(lambda/kw kw-formals body ...)

kw-formals is one of
variable
(variable · · · [#:optional optional-spec · · ·]

[#:key key-spec · · ·]
[rest/mode-spec · · ·])

(variable · · · . variable)

optional-spec is one of
variable
(variable default-expr)

key-spec is one of
variable
(variable default-expr)
(variable keyword default-expr)

rest/mode-spec is one of
#:rest variable

79

25.1. Required Arguments 25. kw.ss: Keyword Arguments

#:other−keys variable
#:other−keys+body variable
#:all−keys variable
#:body kw-formals
#:allow−other−keys
#:forbid−other−keys
#:allow−duplicate−keys
#:forbid−duplicate−keys
#:allow−body
#:forbid−body
#:allow−anything
#:forbid−anything

Of course, all bound identifiers must be unique. The following section describes each part of the kw-formals.

25.1 Required Arguments

Required arguments correspond to identifiers that appear before any keyword marker in the argument list. They
determine the minimum arity of the resulting procedure.

25.2 Optional Arguments

The optional-arguments section follows an #:optional marker in the kw-formals. Each optional argument can
take the form of a parenthesized variable and a default expression; the latter is used if a value is not given at the call
site. The default expression can be omitted (along with the parentheses), in which case #f is the default.

The default expression’s environment includes all previous arguments, both required and optional names. With
k optionals after n required arguments, and with no keyword arguments or rest-like arguments, the resulting
procedure has an arity ’(n + k ... n + 1 n). Adding keywords or rest-like arguments makes the first arity
(make-arity-at-least n+ k).

The treatment of optionals is efficient, with an important implication: default expressions appear multiple times in the
resulting case-lambda. For example, the default expression for the last optional argument appears k−1 times (but
no expression is ever evaluated more than once in a procedure call). This expansion risks exponential blow-up is if
lambda/kw is used in a default expression of a lambda/kw, etc. The bottom line, however, is that lambda/kw is
a sensible choice, due to its enhanced efficiency, even when you need only optional arguments.

Using both optional and keyword arguments is possible, but note that the resulting behavior differs from traditional
keyword facilities (including the one in Common Lisp). See the following section for details.

25.3 Keyword Arguments

A keyword argument section is marked by a #:key. If it is used with optional arguments, then the keyword spec-
ifications must follow the optional arguments (which mirrors the use in call sites; where optionals are given before
keywords).

When a procedure accepts both optional and keyword arguments, the argument-handling convention is slightly dif-
ferent than in traditional keyword-argument facilities: a keyword after required arguments marks the beginning of
keyword arguments, no matter how many optional arguments have been provided before the keyword. This conven-
tion restricts the procedure’s non-keyword optional arguments to non-keyword values, but it also avoids confusion
when mixing optional arguments and keywords. For example, when a procedure that takes two optional arguments

80

25. kw.ss: Keyword Arguments 25.4. Rest and Rest-like Arguments

and a keyword argument #:x is called with #:x 1, then the optional arguments get their default values and the key-
word argument is bound to 1. (The traditional behavior would bind #:x and 1 to the two optional arguments.) When
the same procedure is called with 1 #:x 2, the first optional argument is bound to 1, the second optional argument is
bound to its default, and the keyword argument is bound to 2. (The traditional behavior would report an error, because
2 is provided where #:x is expected.)

Like optional arguments, each keyword argument is specified as a parenthesized variable name and a default expres-
sion. The default expression can be omitted (with the parentheses), in which case #f is the default value. The keyword
used at a call site for the corresponding variable has the same name as the variable; a third form of keyword arguments
has three parts — a variable name, a keyword, and a default expression — to allow the name of the locally bound
variable to differ from the keyword used at call sites.

When calling a procedure with keyword arguments, the required argument (and all optional arguments, if specified)
must be followed by an even number of arguments, where the first argument is a keyword that determines which
variable should get the following value, etc. If the same keyword appears multiple times (and if multiple instances of
the keyword are allowed; see §25.6), the value after the first occurrence is used for the variable:

((lambda/kw (#:key x [y 2] [z #:zz 3] #:allow−duplicate−keys) (list x y z))
#:x ’x #:zz ’z #:x "foo")

⇒ ’(x 2 z)

Default expressions are evaluated only for keyword arguments that do not receive a value for a particular call. Like op-
tional arguments, each default expression is evaluated in an environment that includes all previous bindings (required,
optional, and keywords that were specified on its left).

See §25.6 for information on when duplicate or unknown keywords are allowed at a call site.

25.4 Rest and Rest-like Arguments

The last kw-formals section — after the required, optional, and keyword arguments — may contain specifications
for rest-like arguments and/or mode keywords. Up to five rest-like arguments can be declared, each with a variable
to bind:

• #:rest — the variable is bound to the list of “rest” arguments, which is the list of all values after the required
and the optional values. This list includes all keyword-value pairs, exactly as they are specified at the call site.

Scheme’s usual dot-notation is accepted in kw-formals only if no other meta-keywords are specified, since
it is not clear whether it should specify the same binding as a #:rest or as a #:body. The dot notation is
allowed without meta-keywords to make the lambda/kw syntax compatible with lambda.

• #:body — the variable is bound to all arguments after keyword–value pairs. (This is different from Common
Lisp’s &body, which is a synonym for &rest.) More generally, a #:body specification can be followed by
another kw-formals, not just a single variable; see §25.5 for more information.

• #:all-keys — the variable is bound to the list of all keyword-values from the call site, which is always a
proper prefix of a #:rest argument. (If no #:body arguments are declared, then #:all-keys binds the
same as #:rest.) See also keyword-get in §25.7.

• #:other-keys — the variable is bound like an #:all-keys variable, except that all keywords specified in
the kw-formals are removed from the list. When a keyword is used multiple times at a call cite (and this is
allowed), only the first instances is removed for the #:other-keys binding.

• #:other-keys+body — the variable is bound like a #:rest variable, except that all keywords specified
in the kw-formals are removed from the list. When a keyword is used multiple times at a call site (and this

81

25.5. Body Argument 25. kw.ss: Keyword Arguments

is allowed), only the first instance us removed for the #:other-keys+body binding. (When no #:body
variables are specified, then #:other-keys+body is the same as #:other-keys.)

In the following example, all rest-like arguments are used and have different bindings:

((lambda/kw (#:key x y
#:rest r
#:other−keys+body rk
#:all−keys ak
#:other−keys ok
#:body b)

(list r rk b ak ok))
#:z 1 #:x 2 2 3 4)

⇒
’((#:z 1 #:x 2 2 3 4)
(#:z 1 2 3 4)
(2 3 4)
(#:z 1 #:x 2)
(#:z 1))

Note that the following invariants always hold:

• rest = (append all-keys body)

• other-keys+body = (append other-keys body)

To write a procedure that uses a few keyword argument values, and that also calls another procedure with the same
list of arguments (including all keywords), use #:other-keys (or #:other-keys+body). The Common Lisp
approach is to specify :allow-other-keys, so that the second procedure call will not cause an error due to
unknown keywords, but the :allow-other-keys approach risks confusing the two layers of keywords.

25.5 Body Argument

The most notable divergence from Common Lisp in lambda/kw is the #:body argument, and the fact that it is
possible at a call site to pass plain values after the keyword-value pairs. The #:body binding is useful for procedure
calls that use keyword-value pairs as sort of an attribute list before the actual arguments to the procedure. For example,
consider a procedure that accepts any number of numeric arguments and will apply a procedure to them, but the
procedure can be specified as an optional keyword argument. It is easily implemented with a #:body argument:

(define/kw (mathop #:key [op +] #:body b)
(apply op b))

(mathop 1 2 3) ; ⇒ 6
(mathop #:op max 1 2 3) ; ⇒ 3

(Note that the first body value cannot itself be a keyword.)

A #:body declaration works as an arbitrary kw-formals, not just a single variable like b in the above example. For
example, to make the above mathop work only on three arguments that follow the keyword, use (x y z) instead
of b:

(define/kw (mathop #:key [op +] #:body (x y z))
(op x y z))

82

25. kw.ss: Keyword Arguments 25.6. Mode Keywords

In general, #:body handling is compiled to a sub procedure using lambda/kw, so that a procedure can use more
then one level of keyword arguments. For example:

(define/kw (mathop #:key [op +]
#:body (x y z #:key [convert values]))

(op (convert x) (convert y) (convert z)))
(mathop #:op ∗ 2 4 6 #:convert exact->inexact) −−> 48.0

Obviously, nested keyword arguments works only when non-keyword arguments separate the sets.

Run-time errors during such calls report a mismatch for a procedure with a name that is based on the original name
plus a ˜body suffix:

(mathop #:op ∗ 2 4)

⇒ procedure mathop body: expects at least 3 arguments, given 2: 2 4

25.6 Mode Keywords

Finally, the argument list of a lambda/kw can contain keywords that serve as mode flags to control error reporting.

• #:allow-other-keys — the keyword-value sequence at the call site can include keywords that are not
listed in the keyword part of the lambda/kw form.

• #:forbid-other-keys — the keyword-value sequence at the call site cannot include keywords that are
not listed in the keyword part of the lambda/kw form, otherwise exn:fail:contract exception is raised.

• #:allow-duplicate-keys — the keyword-value list at the call site can include duplicate values associ-
ated with same keyword, the first one is used.

• #:forbid-duplicate-keys — the keyword-value list at the call site cannot include duplicate values for
keywords, otherwise exn:fail:contract exception is raised. This restriction applies only to keywords
that are listed in the keyword part of the lambda/kw form — if other keys are allowed, this restriction does
not apply to them.

• #:allow-body — body arguments can be specified at the call site after all keyword-value pairs.

• #:forbid-body — body arguments cannot be specified at the call site after all keyword-value pairs.

• #:allow-anything — allows all of the above, and treat a single keyword at the end of an argument list as
a #:body, a situation that is usually an error. When this is used and no rest-like arguments are used except
#:rest, an extra loop is saved and calling the procedures is faster (around 20%).

• #:forbid-anything — forbids all of the above, ensuring that calls are as restricted as possible.

These mode markers are rarely needed, because the default modes are determined by the declared rest-like arguments:

• The default is to allow other keys if a #:rest, #:other-keys+body, #:all-keys, or #:other-keys
variable is declared (and an #:other-keys declaration requires allowing other keys).

• The default is to allow duplicate keys if a #:rest or #:all-keys variable is declared;

• The default is to allow body arguments if a #:rest, #:body, or #:other-keys+body variable is declared
(and a #:body argument requires allowing them).

83

25.7. Property Lists 25. kw.ss: Keyword Arguments

Here’s an alternate specification, which maps rest-like arguments to the behavior that they imply:

• #:rest: everything is allowed (a body, other keys, and duplicate keys);

• #:other-keys+body: other keys and body are allowed, but duplicates are not;

• #:all-keys: other keys and duplicate keys are allowed, but a body is not;

• #:other-keys: other keys must be allowed (on by default, cannot use with #:forbid-other-keys),
and duplicate keys and body are not allowed;

• #:body: body must be allowed (on by default, cannot use with #:forbid-body) and other keys and dupli-
cate keys and body are not allowed;

• Except for the previous two “must”s, defaults can be overridden by an explicit #:allow-... or a
#:forbid-... mode.

25.7 Property Lists

(keyword-get args keyword [not-found-thunk]) PROCEDURE

Searches a list of keyword arguments (a “property list” or “plist” in Lisp jargon) for the given keyword, and returns
the associated value. It is the facility that is used by lambda/kw to search for keyword values.

The args list is scanned from left to right, if the keyword is found, then the next value is returned. If the keyword
was not found, then the not-found-thunk value is used to produce a value by applying it. If the keyword
was not found, and not-found-thunk is not given, #f is returned. (No exception is raised if the args list is
imbalanced, and the search stops at a non-keyword value.)

84

26. list.ss: List Utilities

To load: (require (lib "list.ss"))

The procedures second, third, fourth, fifth, sixth, seventh, and eighth access the corresponding
element from a list.

(assf f l) PROCEDURE

Applies f to the car of each element of l (from left to right) until f returns a true value, in which case that element
is returned. If f does not return a true value for the car of any element of l, #f is returned.

(cons? v) PROCEDURE

Returns #t if v is a value created with cons, #f otherwise.

empty EMPTY LIST

The empty list.

(empty? v) PROCEDURE

Returns #t if v is the empty list, #f otherwise.

(filter f l) PROCEDURE

Applies f to each element in l (from left to right) and returns a new list that is the same as l, but omitting all the
elements for which f returned #f.

(findf f l) PROCEDURE

Applies f to each element of l (from left to right) until f returns a true value for some element, in which case that
element is returned. If f does not return a true value for any element of l, #f is returned.

(first l) PROCEDURE

Returns the first element of the list l. (The first procedure is a synonym for car.)

(foldl f init l · · ·1) PROCEDURE

Like map, foldl applies a procedure f to the elements of one or more lists. While map combines the return values
into a list, foldl combines the return values in an arbitrary way that is determined by f. Unlike foldr, foldl
processes l in constant space (plus the space for each call to f).

85

26. list.ss: List Utilities

If foldl is called with n lists, the f procedure takes n+1 arguments. The extra value is the combined return values
so far. The f procedure is initially invoked with the first item of each list; the final argument is init. In subsequent
invocations of f, the last argument is the return value from the previous invocation of f. The input lists are traversed
from left to right, and the result of the whole foldl application is the result of the last application of f. (If the lists
are empty, the result is init.)

For example, reverse can be defined in terms of foldl:

(define reverse
(lambda (l)
(foldl cons ’() l)))

(foldr f init l · · ·1) PROCEDURE

Like foldl, but the lists are traversed from right to left. Unlike foldl, foldr processes l in space proportional to
the length of l (plus the space for each call to f).

For example, a restricted map (that works only on single-argument procedures) can be defined in terms of foldr:

(define simple-map
(lambda (f list)
(foldr (lambda (v l) (cons (f v) l)) ’() list)))

(last-pair list) PROCEDURE

Returns the last pair in list, raising an error if list is not a pair (but list does not have to be a proper list).

(memf f l) PROCEDURE

Applies f to each element of l (from left to right) until f returns a true value for some element, in which case the tail
of l starting with that element is returned. If f does not return a true value for any element of l, #f is returned.

(sort list less-than?) PROCEDURE

Sorts list using the comparison procedure less-than?. This implementation is stable (i.e., if two elements in the
input are “equal,” their relative positions in the output will be the same).

(sort! list less-than?) PROCEDURE

The destructive version of sort. (Actually, sort is implemented by copying the list and using sort! on the copy.)

(merge-sorted-lists! list1 list2 less-than?) PROCEDURE

Merges the two sorted input lists by modifying cdr fields, to create a single sorted output list. The merged result is
stable: equal items in both lists stay in the same order, and these in list1 precede list2. This is used by sort!,
but is also useful by itself.

(merge-sorted-lists list1 list2 less-than?) PROCEDURE

The non-destructive version of merge-sorted-lists!.

86

26. list.ss: List Utilities

(mergesort list less-than?) PROCEDURE

Deprecated: use sort instead.

This is a different name for sort, provided for backward compatibility.

(quicksort list less-than?) PROCEDURE

Deprecated: use sort instead.

Sorts list using the comparison procedure less-than?. This implementation is not stable (i.e., if two elements
in the input are “equal,” their relative positions in the output may be reversed). Kept for backward compatibility, it is
slower than sort above.

(remove item list [equal?]) PROCEDURE

Returns list without the first instance of item, where an instance is found by comparing item to the list items
using equal?. The default value for equal? is equal?. When equal? is invoked, item is the first argument.

(remove* items list [equal?]) PROCEDURE

Like remove, except that the first argument is a list of items to remove instead of a single item, and all instances of
these items are removed rather than just the first.

(remq item list) PROCEDURE

Calls remove with eq? as the comparison procedure.

(remq* items list) PROCEDURE

Calls remove* with eq? as the comparison procedure.

(remv item list) PROCEDURE

Calls remove with eqv? as the comparison procedure.

(remv* items list) PROCEDURE

Calls remove* with eqv? as the comparison procedure.

(rest l) PROCEDURE

Returns a list that contains all but the first element of the non-empty list l. (The rest procedure is a synonym for
cdr.)

(set-first! l v) PROCEDURE

Destructively modifies l so that its first element is v . (The set-first! procedure is a synonym for set-car!.)

87

26. list.ss: List Utilities

(set-rest! l1 l2) PROCEDURE

Destructively modifies l1 so that the rest of the list (after the first element) is l2. (The set-rest! procedure is a
synonym for set-cdr!.)

88

27. match.ss: Pattern Matching

To load: (require (lib "match.ss"))

This library provides functions for pattern-matching Scheme values. (This chapter adapted from Andrew K. Wright
and Bruce Duba’s original manual, entitled Pattern Matching for Scheme. The PLT Scheme port was originally done
by Bruce Hauman and is maintained by Sam Tobin-Hochstadt.) The following forms are provided:

(match expr clause ...)
(match-lambda clause ...)
(match-lambda∗ clause ...)
(match-let ((pat expr) ...) expr · · ·1)
(match-let∗ ((pat expr) ...) expr · · ·1)
(match-letrec ((pat expr) ...) expr · · ·1)
(match-let var ((pat expr) ...) expr · · ·1)
(match-define pat expr)

clause is one of
(pat expr · · ·1)
(pat (=> identifier) expr · · ·1)

Figure 27.1 gives the full syntax for pat patterns. The next subsection describes the various patterns.

The match-lambda and match-lambda∗ forms are convenient combinations of match and lambda, and can
be explained as follows:

(match-lambda (pat expr · · ·1) ...) = (lambda (x) (match x (pat expr · · ·1) ...))
(match-lambda∗ (pat expr · · ·1) ...) = (lambda x (match x (pat expr · · ·1) ...))

where x is a unique variable. The match-lambda form is convenient when defining a single argument function that
immediately destructures its argument. The match-lambda∗ form constructs a function that accepts any number of
arguments; the patterns of match-lambda∗ should be lists.

The match-let, match-let∗, match-letrec, and match-define forms generalize Scheme’s let, let∗,
letrec, and define expressions to allow patterns in the binding position rather than just variables. For example,
the following expression:

(match-let ([(x y z) (list 1 2 3)]) body)

binds x to 1, y to 2, and z to 3 in the body. These forms are convenient for destructuring the result of a function
that returns multiple values. As usual for letrec and define, pattern variables bound by match-letrec and
match-define should not be used in computing the bound value.

The match, match-lambda, and match-lambda∗ forms allow the optional syntax (=> identifier) be-
tween the pattern and the body of a clause. When the pattern match for such a clause succeeds, the identifier is bound
to a failure procedure of zero arguments within the body. If this procedure is invoked, it jumps back to the pattern

89

27. match.ss: Pattern Matching

pat ::= identifier Match anything, bind identifier as a variable
| Match anything
| literal Match literal
| ’datum Match equal? datum
| ’symbol Match equal? symbol (special case of datum)
| (lvp ...) Match sequence of lvps
| (lvp pat) Match sequence of lvps consed onto a pat
| #(lvp ...) Match vector of pats
| #&pat Match boxed pat
| ($ struct-name pat ...) Match struct-name instance with matching fields
| (and pat ...) Match when all pats match
| (or pat ...) Match when any pat match
| (not pat ...) Match when no pat match
| (= expr pat) Match when result of applying expr to the value matches pat
| (? pred-expr pat ...) Match if pred-expr is true on the value, and all pats match
| (set! identifier) Match anything, bind identifier as a setter
| (get! identifier) Match anything, bind identifier as a getter
| ‘qp Match quasipattern

literal ::= #t Match true
| #f Match false
| string Match equal? string
| number Match equal? number
| character Match equal? character

lvp ::= pat ooo Greedily match pat instances
| pat Match pat

ooo ::= ... Zero or more (where ... is a keyword)
| Zero or more
| ..k k or more, where k is a non-negative integer
| k k or more, where k is a non-negative integer

qp ::= literal Match literal
| identifier Match equal? symbol
| (qp ...) Match sequences of qps
| (qp qp) Match sequence of qps consed onto a qp
| (qp ... qp ooo) Match qps consed onto a repeated qp
| #(qp ...) Match vector of qps
| #&qp Match boxed qp
| ,pat Match pat
| ,@pat Match pat, spliced

Figure 27.1: Pattern Syntax

90

27. match.ss: Pattern Matching 27.1. Patterns

matching expression, and resumes the matching process as if the pattern had failed to match. The body must not
mutate the object being matched, otherwise unpredictable behavior may result.

27.1 Patterns

Figure 27.1 gives the full syntax for patterns. Explanations of these patterns follow.

• identifier (excluding the reserved names ?, =, $, , and, or, not, set!, get!, ..., and ..k for
non-negative integers k) — matches anything, and binds a variable of this name to the matching value in the
body.

• — matches anything, without binding any variables.

• #t, #f, string, number, character, ’s-expression — constant patterns that match themselves (i.e.,
the corresponding value must be equal? to the pattern).

• (pat1 · · · patn) matches a proper list of n elements that match pat1 through patn.

• (lvp1 · · · lvpn) generalizes the preceding pattern, where each lvp corresponds to a “spliced” list of greedy
matches.

For example, (pat1 · · · patn patn+1 ...) matches a proper list of n or more elements, where each
element past the nth matches patn+1. Each pattern variable in patn+1 is bound to a list of the matching values.
For example, the expression:

(match ’(let ([x 1][y 2]) z)
[(’let ((binding vals) ...) exp) expr · · ·1])

binds binding to the list ’(x y), vals to the list ’(1 2), and exp to ’z in the body of the match-
expression. For the special case where patn+1 is a pattern variable, the list bound to that variable may share
with the matched value.

Instead of ... or (which are equivalent), ..k or k can be used to match a sequence that is at least k long.
The pattern keywords ..0, ..., and are equivalent.

• (pat1 · · · patn . patn+1) — matches a (possibly improper) list of at least n elements that ends in some-
thing matching patn+1.

• (lvp1 · · · lvpn . patn+1) — generalizes the preceding pattern with greedy-sequence lvps.

• #(pat1 · · · patn) — matches a vector of length n, whose elements match pat1 through patn. The general-
ization to lvps matches consecutive elements of the vector greedily.

• #&pat — matches a box containing something matching pat.

• ($ struct-name pat1 · · · patn) — matches an instance of a structure type struct-name, where the
instance contains n fields.

Usually, struct-name is defined with define-struct. More generally, struct-name must be bound
to expansion-time information for a structure type (see §12.6.4 in PLT MzScheme: Language Manual), where
the information includes at least a predicate binding and some field accessor bindings (and pat1 through patn
correspond to the provided accessors). In particular, a module import or a unit import with a signature con-
taining a struct declaration (see §55.7) can provide the structure type information.

• (= field pat) — applies field to the object being matched and uses pat to match the extracted object.
The field subexpression may be any expression, but is often useful as a struct selector.

• (and pat1 · · · patn) — matches if all of the subpatterns match. This pattern is often used as (and x
pat) to bind x to the entire value that matches pat.

91

27.2. Extending Match 27. match.ss: Pattern Matching

• (or pat1 · · · patn) — matches if any of the subpatterns match. At least one subpattern must be present.
All subpatterns must bind the same set of pattern variables.

• (not pat1 · · · patn) — matches if none of the subpatterns match. The subpatterns may not bind any
pattern variables.

• (? predicate-expr pat1 · · · patn) — In this pattern, predicate-expr must be an expression
evaluating to a single argument function. This pattern matches if predicate-expr applied to the corre-
sponding value is true, and the subpatterns pat1 through patn all match. The predicate-expr should not
have side effects, as the code generated by the pattern matcher may invoke predicates repeatedly in any order.
The predicate-expr expression is bound in the same scope as the match expression, so free variables in
predicate-expr are not bound by pattern variables.

• (set! identifier) — matches anything, and binds identifier to a procedure of one argument that
mutates the corresponding field of the matching value. This pattern must be nested within a pair, vector, box, or
structure pattern. For example, the expression:

(define x (list 1 (list 2 3)))
(match x [(((set! setit))) (setit 4)])

mutates the cadadr of x to 4, so that x is ’(1 (2 4)).

• (get! identifier) — matches anything, and binds identifier to a procedure of zero arguments that
accesses the corresponding field of the matching value. This pattern is the complement to set!. As with set!,
this pattern must be nested within a pair, vector, box, or structure pattern.

• ‘quasipattern — introduces a quasipattern, in which identifiers are considered to be symbolic constants.
Like Scheme’s quasiquote for data, unquote (,) and unquote-splicing (,@) escape back to normal
patterns.

If no clause matches the value, an exn:misc:match exception is raised.

27.2 Extending Match

There are two ways to extend or alter the behavior of match.

The match-equality-test parameter controls the behavior of non-linear patterns:

(match-equality-test [expr]) PROCEDURE

When a variable appears more than once in a pattern, the values matched by each instance are constrained to be the
same in the sense of the runtime value of match-equality-test. The default value of this parameter is equal?.

The define-match-expander form extends the syntax of match patterns:

(define-match-expander id proc-expr) SYNTAX

(define-match-expander id proc-expr proc-expr) SYNTAX

(define-match-expander id proc-expr proc-expr proc-expr) SYNTAX

This form binds an identifier to a pattern transformer.

92

27. match.ss: Pattern Matching 27.3. Examples

The first proc-expr subexpression must evaluate to a transformer that produces a pattern in the syntax of Chapter 34.
Whenever id appears as the beginning of a pattern in a the context of the pattern matching forms defined in Chapter 34,
this transformer is given, at expansion time, a syntax object corresponding to the entire pattern (including id). The
pattern is the replaced with the result of the transformer.

If a second proc-expr subexpression is provided, it must produce a similar transformer, but in the context of patterns
written in the syntax of the current chapter.

A transformer produced by a third proc-expr subexpression is used when the id keyword is used in a traditional
macro use context. In this way, id can be given meaning both inside and outside patterns.

27.3 Examples

This section illustrates the convenience of pattern matching with some examples. The following function recognizes
some s-expressions that represent the standard Y operator:

(define Y?
(match-lambda
[(’lambda (f1)

(’lambda (y1)
(((’lambda (x1) (f2 (’lambda (z1) ((x2 x3) z2))))
(’lambda (a1) (f3 (’lambda (b1) ((a2 a3) b2)))))
y2)))

(and (symbol? f1) (symbol? y1) (symbol? x1) (symbol? z1) (symbol? a1) (symbol? b1)
(eq? f1 f2) (eq? f1 f3) (eq? y1 y2)
(eq? x1 x2) (eq? x1 x3) (eq? z1 z2)
(eq? a1 a2) (eq? a1 a3) (eq? b1 b2))]

[#f]))

Writing an equivalent piece of code in raw Scheme is tedious.

The following code defines abstract syntax for a subset of Scheme, a parser into this abstract syntax, and an unparser.

(define-struct Lam (args body))
(define-struct Var (s))
(define-struct Const (n))
(define-struct App (fun args))

(define parse
(match-lambda
[(and s (? symbol?) (not ’lambda))
(make-Var s)]

[(? number? n)
(make-Const n)]

[(’lambda (and args ((? symbol?) ...) (not (? repeats?))) body)
(make-Lam args (parse body))]

[(f args ...)
(make-App
(parse f)
(map parse args))]

[x (error ’syntax "invalid expression")]))

(define repeats?
(lambda (l)

93

27.3. Examples 27. match.ss: Pattern Matching

(and (not (null? l))
(or (memq (car l) (cdr l)) (repeats? (cdr l))))))

(define unparse
(match-lambda
[($ Var s) s]
[($ Const n) n]
[($ Lam args body) ‘(lambda ,args ,(unparse body))]
[($ App f args) ‘(,(unparse f) ,@(map unparse args))]))

With pattern matching, it is easy to ensure that the parser rejects all incorrectly formed inputs with an error message.

With match-define, it is easy to define several procedures that share a hidden variable. The following code defines
three procedures, inc, value, and reset, that manipulate a hidden counter variable:

(match-define (inc value reset)
(let ([val 0])
(list
(lambda () (set! val (add1 val)))
(lambda () val)
(lambda () (set! val 0)))))

Although this example is not recursive, the bodies could recursively refer to each other. The following code illus-
trates the creation of a match-expander that works for both (lib "match.ss") and (lib "plt-match.ss")
syntax.

(require (prefix plt: (lib "plt-match.ss")))
(define-struct point (x y))
(define-match-expander Point
(lambda (stx)
(syntax-case stx ()
((Point a b) #’(struct point (a b)))))

(lambda (stx)
(syntax-case stx ()
((Point a b) #’($ point a b))))

(lambda (stx)
(syntax-case stx ()
((Point a b) #’(make-point a b)))))

(define p (Point 3 4))

(match p
((Point x y) (+ x y)))

;; => 7
(plt:match p

((Point x y) (∗ x y)))
;; => 12

94

28. math.ss: Math

To load: (require (lib "math.ss"))

(conjugate z) PROCEDURE

Returns the complex conjugate of z.

(cosh z) PROCEDURE

Returns the hyperbolic cosine of z.

e NUMBER

Approximation of Euler’s number, equivalent to (exp 1.0).

pi NUMBER

Approximation of π , equivalent to (atan 0.0 −1.0).

(sinh z) PROCEDURE

Returns the hyperbolic sine of z.

(sgn n) PROCEDURE

Returns 1 if n is positive, -1 if n is negative, and 0 otherwise. If n is exact, the result is exact, otherwise the result is
inexact.

(sqr z) PROCEDURE

Returns (∗ z z)).

95

29. md5.ss: MD5 Message Digest

To load: (require (lib "md5.ss"))

(md5 input-port) PROCEDURE

(md5 bytes) PROCEDURE

Produces a byte string containing 32 hexadecimal digits (lowercase) that is the MD5 hash of the given input-port or
byte string. For example, (md5 #"abc") produces #"900150983cd24fb0d6963f7d28e17f72".

96

30. os.ss: System Utilities

To load: (require (lib "os.ss"))

(gethostname) PROCEDURE

Returns a string for the current machine’s hostname (including its domain).

(getpid) PROCEDURE

Returns an exact integer identifying the current process within the operating system.

(truncate-file path [size-k]) PROCEDURE

Truncates or extends the given file so that it is size-k bytes long, where size-k defaults to 0. If the file does not
exist, or if the process does not have sufficient privilege to truncate the file, the exn:fail exception is raised.

WARNING: under Unix, the implementation assumes that the system’s ftruncate function accepts a long long
second argument.

97

31. package.ss: Local-Definition Scope Control

To load: (require (lib "package.ss"))

The package form provides fine-grained control over binding visibility. A package is an expansion-time entity only;
it has no run-time identity.The package and open constructs correspond to module and import in Chez Scheme.
The package∗ and open∗ constructs correspond to structures in Standard ML (without types).

(package name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package name all-defined body-expr-or-defn · · ·1) SYNTAX

Defines name (in any definition context) to a compile-time package description, much in the way that
(define-syntax a (syntax-rules ...)) binds a to a syntax expander, or (define-struct a ())
binds a to a compile-time structure type description.

Each export must be an identifier that is defined within the package body. The all-defined variant is shorthand
for listing all identifiers that are defined in the package body.

Although package does not introduce a new binding scope, it hides all of the definitions in its body from definitions
and expressions that are outside the package. The exported definitions become visible only when the package is opened
with forms such as open.

Each body-expr-or-defn can be a definition or expression. Each defined identifier is visible in the
entire package body, except definitions introduced by define∗, define∗-syntax, define∗-values,
define∗-syntaxes, open∗, package∗, or define∗-dot. The ∗ forms expose identifiers to expressions and
definitions that appear later in the package body, only, much like the sequential binding of let∗. As with let∗, an
identifier can be defined multiple times within the package using ∗ forms; if such an identifier is exported, the export
corresponds to the last definition. For any other form of definition, the identifiers that it defines must be defined only
once within the package.

When used in an internal-definition context (see §2.8.5 in PLT MzScheme: Language Manual), name is immediately
available for use with other forms, such as open, in the same internal-definition sequence.

For example, see open, below.

(package∗ name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package∗ name all-defined body-expr-or-defn · · ·1) SYNTAX

Like package, but within a package body, the package name is visible only to later definitions and expressions.

(open name · · ·1) SYNTAX

If a single name is provided, it must be defined as a package, and the package’s exports are exposed in the definition

98

31. package.ss: Local-Definition Scope Control

context of the open declaration.

The open form acts like a definition form, in that it introduces bindings in a definition context, and such bindings can
be exported from a package (even using all-defined). More precisely, however, open exposes bindings hidden
by a package, rather than introducing identifiers. This exposure overrides any identifier that would shadow the binding
(were it not hidden by the package in the first place).

If multiple names are provided, the first name must correspond to a defined package, the second must correspond to a
package exported from the first, and so on. Only the package corresponding to the last name is opened into the open’s
definition context.

Examples:

(package p (f)
(define (f a) (+ a x))
(define x 1))

(f 0) ; ⇒ error: reference to undefined identifier f
(let ([p 5])
(open p) ...) ; ⇒ error: p is not a package name

(open p)
(f 0) ; ⇒ 1

(let ([f (lambda (x) x)])
(open p)
(f 0)) ; ⇒ 1

(let ([x 2])
(open p)
(f 0)) ; ⇒ 1

(package p (p2)
(package p2 (f)
(define (f a) (− a x)))

(define x 2))
(open p p2)
(f 3) ; ⇒ 1

(package p (p2)
(package p2 (f)
(define (f a) (− a x)))

(define x 2))
(open p p2)
(f 3) ; ⇒ 1

(package p1 (x f1 p2 p3)
(define x 1)
(define (f1) x)
(package p2 (x f2)
(define x 2)
(define (f2) x))

(package p3 (f3)
(open p2)
(define (f3) x)))

(open p1)
x ; ⇒ 1

99

31. package.ss: Local-Definition Scope Control

(f1) ; ⇒ 1
(open p2)
x ; ⇒ 2
(f2) ; ⇒ 2
(open p3)
(f3) ; ⇒ 2
(open p1)
x ; ⇒ 1

(define-syntax package2
(syntax-rules ()
[(name id def)
(package name (id foo)
def
(define foo 3))]))

(let ()
(package2 p foo (define foo 1))
(open p)
foo) ; ⇒ 1

(let ()
(package2 p bar (define bar 1))
(open p)
foo) ; ⇒ error: reference to undefined identifier foo

(define-syntax open2
(syntax-rules ()
[(name) (open name)]))

(let ()
(package p (x) (define x 1))
(open2 p)
x) ; ⇒ 1

(define-syntax package3
(syntax-rules ()
[(name id)
(package name (id foo)
(define (id) foo)
(define foo 3))]))

(let ([foo 17])
(package3 p f)
(open p)
(+ foo (f))) ; ⇒ 20

(open∗ name · · ·1) SYNTAX

Like open, but within a package, the opened package’s exports are exposed only to later definitions and expressions.

(dot name · · ·1export) SYNTAX

Equivalent to (let () (open name · · ·1) export) when export is exported from the package selected by
name · · ·1.

Example:

100

31. package.ss: Local-Definition Scope Control

(package p (x)
(define x 1))

(+ 2 (dot p x)) ; ⇒ 3

(define-dot variable name · · ·1) SYNTAX

Defines variable as an alias for the package export selected by name · · ·1. The export can correspond to a nested
package, in which case the alias is available for immediate use in forms like open or define-dot.

(define∗-dot variable name · · ·1) SYNTAX

Like define-dot, but within a package, the alias applies only to later definitions and expressions.

(rename-potential-package old-name new-name) SYNTAX

Introduces old-name as an alias for new-name.

Although make-rename-transformer (see §12.6 in PLT MzScheme: Language Manual) can be used to cre-
ate an alias for a package name, only an alias created by rename-potential-package, define-dot, or
define∗-dot is available for immediate use by forms such as open.

(define∗ variable expr) SYNTAX

(define∗ (header . formals) expr · · ·1) SYNTAX

(define∗-syntax variable expr) SYNTAX

(define∗-syntax (header . formals) expr · · ·1) SYNTAX

(define∗-values (variable · · ·) expr) SYNTAX

(define∗-syntaxes (variable · · ·) expr) SYNTAX

(rename∗-potential-package old-name new-name) SYNTAX

Like define, etc., but when used in a package, they define identifiers that are visible only to later definitions and
expressions.

(package/derived expr name (export · · ·) body-expr-or-defn · · ·1) SYNTAX

(package/derived expr name all-defined body-expr-or-defn · · ·1) SYNTAX

Like package, but syntax errors (such as duplicate definitions) are reported as originating from expr.

This form is useful for writing macros that expand to package and rely on the syntax checks of the package
transformer, but where syntax errors should be reported in terms of the source expression or declaration.

(open/derived expr orig-name name · · ·1) SYNTAX

101

31. package.ss: Local-Definition Scope Control

(open∗/derived expr orig-name name · · ·1) SYNTAX

Like open and open∗, but syntax errors (such as duplicate definitions) are reported as originating from expr.
Furthermore, if name is not a package name, the error message reports that orig-name is not defined as a package.

102

32. pconvert.ss: Converted Printing

To load: (require (lib "pconvert.ss"))

This library defines routines for printing Scheme values as evaluable S-expressions rather than readable S-
expressions. The print-convert procedure does not print values; rather, it converts a Scheme value into an-
other Scheme value such that the new value pretty-prints as a Scheme expression that evaluates to the original value.
For example, (pretty-print (print-convert ‘(9 ,(box 5) #(6 7))) prints the literal expression
(list 9 (box 5) (vector 6 7)) to the current output port.

To install print converting into the read-eval-print loop, require pconvert.ss and call the procedure
install-converting-printer.

In addition to print-convert, this library provides print-convert, build-share, get-shared, and
print-convert-expr. The last three are used to convert sub-expressions of a larger expression (potentially with
shared structure).

See also prop:print-convert-constructor-name in §33.

(abbreviate-cons-as-list [abbreviate?]) PROCEDURE

Parameter that controls how lists are represented with constructor-style conversion. If the parameter’s value is #t, lists
are represented using list. Otherwise, lists are represented using cons. The initial value of the parameter is #t.

(booleans-as-true/false [use-name?]) PROCEDURE

Parameter that controls how #t and #f are represented. If the parameter’s value is #t, then #t is represented as
true and #f is represented as false. The initial value of the parameter is #t.

(use-named/undefined-handler [use-handler]) PROCEDURE

Parameter for a procedure that controls how values that have inferred names are represented. The procedure is passed
a value. If the parameter returns #t, the procedure associated with named/undefined-handler is invoked to
render that value. Only values that have inferred names but are not defined at the top-level are used with this handler.

The initial value of the parameter is (lambda (x) #f).

(named/undefined-handler [use-handler]) PROCEDURE

Parameter for a procedure that controls how values that have inferred names are represented. The procedure is called
only if use-named/undefined-handler returns true for some value. In that case, the procedure is passed that
same value, and the result of the parameter is used as the representation for the value.

The initial value of the parameter is (lambda (x) #f).

103

32. pconvert.ss: Converted Printing

(build-share v) PROCEDURE

Takes a value and computes sharing information used for representing the value as an expression. The return value is
an opaque structure that can be passed back into get-shared or print-convert-expr.

(constructor-style-printing [use-constructors?]) PROCEDURE

Parameter that controls how values are represented after conversion. If this parameter is #t, then constructors are
used, e.g., pair containing 1 and 2 is represented as (cons 1 2). Otherwise, quasiquote-style syntax is used, e.g.
the pair containing 1 and 2 is represented as ‘(1 . 2). The initial value of the parameter is #f.

See also quasi-read-style-printing, and see prop:print-convert-constructor-name in §33.

(current-build-share-hook [hook]) PROCEDURE

Parameter that sets a procedure used by print-convert and build-share to assemble sharing information. The
procedure hook takes three arguments: a value v , a procedure basic-share, and a procedure sub-share; the
return value is ignored. The basic-share procedure takes v and performs the built-in sharing analysis, while the
sub-share procedure takes a component of v ands analyzes it. These procedures return void; sharing information
is accumulated as values are passed to basic-share and sub-share.

A current-build-share-hook procedure usually works together with a current-print-convert-hook
procedure.

(current-build-share-name-hook [hook]) PROCEDURE

Parameter that sets a procedure used by print-convert and build-share to generate a new name for a shared
value. The hook procedure takes a single value and returns a symbol for the value’s name. If hook returns #f, a
name is generated using the form “-n-” (where n is an integer).

(current-print-convert-hook [hook]) PROCEDURE

Parameter that sets a procedure used by print-convert and print-convert-expr to convert values. The pro-
cedure hook takes three arguments — a value v , a procedure basic-convert, and a procedure sub-convert
— and returns the converted representation of v . The basic-convert procedure takes v and returns the default
conversion, while the sub-convert procedure takes a component of v and returns its conversion.

A current-print-convert-hook procedure usually works together with a current-build-share-hook
procedure.

(current-read-eval-convert-print-prompt [str]) PROCEDURE

Parameter that sets the prompt used by install-converting-printer. The initial value is "|- ".

(get-shared share-info [cycles-only?]) PROCEDURE

The shared-info value must be a result from build-share. The procedure returns a list matching variables to
shared values within the value passed to build-share. For example,

(get-shared (build-share (shared ([a (cons 1 b)][b (cons 2 a)]) a)))

might return the list

104

32. pconvert.ss: Converted Printing

((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

The default value for cycles-only? is #f; if it is not #f, get-shared returns only information about cycles.

(install-converting-printer) PROCEDURE

Sets the current print handler to print values using print-convert. The current read handler is also set to use the
prompt returned by current-read-eval-convert-print-prompt.

(print-convert v [cycles-only?]) PROCEDURE

Converts the value v . If cycles-only? is not #f, then only circular objects are included in the output. The default
value of cycles-only? is the value of (show-sharing).

(print-convert-expr share-info v unroll-once?) PROCEDURE

Converts the value v using sharing information share-info previously returned by build-share for a value
containing v . If the most recent call to get-shared with share-info requested information only for cycles, then
print-convert-expr will only display sharing among values for cycles, rather than showing all value sharing.

The unroll-once? argument is used if v is a shared value in share-info. In this case, if unroll-once? is
#f, then the return value will be a shared-value identifier; otherwise, the returned value shows the internal structure of
v (using shared value identifiers within v’s immediate structure as appropriate).

(quasi-read-style-printing [on?]) PROCEDURE

Parameter that controls how vectors and boxes are represented after conversion when the value of
constructor-style-printing is #f. If quasi-read-style-printing is set to #f, then boxes and
vectors are unquoted and represented using constructors. For example, the list of a box containing the number 1 and a
vector containing the number 1 is represented as ‘(,(box 1) ,(vector 1)). If the parameter is #t, then #&
and #() are used, e.g., ‘(#&1 #(1)). The initial value of the parameter is #t.

(show-sharing [show?]) PROCEDURE

Parameter that determines whether sub-value sharing is conserved (and shown) in the converted output by default. The
initial value of the parameter is #t.

(whole/fractional-exact-numbers [whole-frac?]) PROCEDURE

Parameter that controls how exact, non-integer numbers are converted when the numerator is greater than the de-
nominator. If the parameter’s value is #t, the number is converted to the form (+ integer fraction) (i.e., a
list containing ’+, an exact integer, and an exact rational less than 1 and greater than -1). The initial value of the
parameter is #f.

105

33. pconvert-prop.ss: Converted Printing Property

To load: (require (lib "pconvert-prop.ss"))

prop:print-convert-constructor-name PROPERTY

(print-convert-named-constructor? v) PROCEDURE

(print-convert-constructor-name v) PROCEDURE

The prop:print-convert-constructor-name property can be given a symbol value for a structure type. In
that case, for constructor-style print conversion via print-convert (see §32), instances of the structure are shown
using the symbol as the constructor name. Otherwise, the constructor name is determined by prefixing make- onto
the result of object-name.

The print-convert-named-constructor? predicate recognizes instances of structure types that have the
prop:print-convert-constructor-name property, and print-convert-constructor-name ex-
tracts the property value.

106

34. plt-match.ss: Pattern Matching

To load: (require (lib "plt-match.ss"))

This library provide a pattern matcher just like Chapter 27, but with an improved syntax for patterns. This pattern
syntax uses keywords for each of the different pattern matches, making the syntax both extensible and more clear. It
also provides extensions that are unavailable in match.ss.

The only difference between plt-match.ss and match.ss is the syntax of the patterns and the set of available patterns.
The forms where the patterns may appear are identical.

Figure 34.1 gives the full syntax for patterns.

107

34. plt-match.ss: Pattern Matching

pat ::= identifier [not ooo] Match anything, bind identifier as a variable
| Match anything
| literal Match literal
| ’datum Match equal? datum
| ’symbol Match equal? symbol (special case of datum)
| (list lvp ...) Match sequence of lvps
| (list-rest lvp ... pat) Match sequence of lvps consed onto a pat
| (list-no-order pat ... lvp) Match arguments in a list in any order
| (vector lvp ... lvp) Match vector of pats
| (hash-table (pat pat) ...) Match hash table mapping pats to pats
| (hash-table (pat pat) ... ooo) Match hash table mapping pats to pats
| (box pat) Match boxed pat
| (struct struct-name (pat ...)) Match struct-name instance with matching fields
| (regexp rx-expr) Match string using (regexp-match rx-expr ...)
| (regexp rx-expr pat) Match string to rx-expr, pat matches regexp result
| (pregexp prx-expr) Match string using (pregexp-match prx-expr ...)
| (pregexp prx-expr pat) Match string to prx-expr, pat matches pregexp result
| (and pat ...) Match when all pats match
| (or pat ...) Match when any pat match
| (not pat ...) Match when no pat match
| (app expr pat) Match when result of applying expr to the value matches pat
| (? pred-expr pat ...) Match if pred-expr is true on the value, and all pats match
| (set! identifier) Match anything, bind identifier as a setter
| (get! identifier) Match anything, bind identifier as a getter
| ‘qp Match a quasipattern

literal ::= () Match the empty list
| #t Match true
| #f Match false
| string Match equal? string
| number Match equal? number
| character Match equal? character

lvp ::= pat ooo Greedily match pat instances
| pat Match pat

ooo ::= ... Zero or more (where ... is a keyword)
| Zero or more
| ..k k or more, where k is a non-negative integer
| k k or more, where k is a non-negative integer

qp ::= literal Match literal
| identifier Match equal? symbol
| (qp ...) Match sequences of qps
| (qp qp) Match sequence of qps consed onto a qp
| (qp ... ooo) Match qps consed onto a repeated qp
| #(qp ...) Match vector of qps
| #&qp Match boxed qp
| ,pat Match pat
| ,@(list lvp ...) Match lvp sequence, spliced
| ,@(list-rest lvp ... pat) Match lvp sequence plus pat, spliced
| ,@’qp Match list-matching qp, spliced

Figure 34.1: Pattern Syntax

108

35. port.ss: Port Utilities

To load: (require (lib "port.ss"))

(convert-stream from-encoding-string input-port from-encoding-string output-port)
PROCEDURE

Reads data from input-port, converts it using (bytes-open-converter from-encoding-string
to-encoding-string) and writes the converted bytes to output-port. The convert-stream procedure
returns after reaching eof in input-port.

See §3.6 in PLT MzScheme: Language Manual for more information on bytes-open-converter. If opening the
converter fails, the exn:fail exception is raised. Similarly, if a conversion error occurs at any point while reading
input-port, then exn:fail exception is raised.

(copy-port input-port output-port · · ·1) PROCEDURE

Reads data from input-port and writes it back out to output-port, returning when input-port pro-
duces eof. The copy is efficient, and it is without significant buffer delays (i.e., a byte that becomes available on
input-port is immediately transferred to output-port, even if future reads on input-port must block). If
input-port produces a special non-byte value, it is transferred to output-port using write-special.

This function is often called from a “background” thread to continuously pump data from one stream to another.

If multiple output-ports are provided, case data from input-port is written to every output-port. The
different output-ports block output to each other, because each quantum of data read from input-port is
written completely to one output-port before moving to the next output-port. The output-ports are
written in the provided order, so non-blocking ports (e.g., to a file) should be placed first in the argument list.

(input-port-append close-at-eof? input-port · · ·) PROCEDURE

Takes any number of input ports and returns an input port. Reading from the input port draws bytes (and special
non-byte values) from the given input ports in order. If close-at-eof? is true, then each port is closed when an
end-of-file is encountered from the port, or when the result input port is closed. Otherwise, data not read from the
returned input port remains available for reading in its original input port.

See also merge-input, which interleaves data from multiple input ports as it becomes available.

(make-input-port/read-to-peek name read-proc optional-fast-peek-proc close-proc)
PROCEDURE

Similar to make-input-port, but the given read procedure must never block, and if it returns an event, the
event’s value must be 0. The resulting port’s peek operation is implemented automatically (in terms of read-proc)
in a way that can handle special non-byte values. The progress-event and commit operations are also implemented
automatically. The resulting port is thread-safe, but not kill-safe (i.e., if a thread is terminated or suspended while

109

35. port.ss: Port Utilities

using the port, the port may become damaged).

The read-proc and close-proc procedures are the same as for make-input-port. The optional-fast-peek-proc
argument can be either #f or a procedure of three arguments: a byte string to receive a peek, a skip count, and a pro-
cedure of two arguments. The optional-fast-peek-proc can either implement the requested peek, or it can
dispatch to its third argument to implement the peek. The optional-fast-peek-proc is not used when a peek
request has an associated progress event.

(make-limited-input-port input-port limit-k [close-orig?]) PROCEDURE

Returns a port whose content is drawn from input-port, but where an end-of-file is reported after limit-k bytes
(and non-byte special values) are read. If close-orig? is true, then the original port is closed if the returned port
is closed.

Bytes are consumed from input-port only when they are consumed from the returned port. In particular, peeking
into the returned port peeks into the original port.

If input-port is used directly while the resulting port is also used, then the limit-k bytes provided by the port
need not be contiguous parts of the original port’s stream.

(make-pipe-with-specials [limit-k in-name-v out-name-v]) PROCEDURE

Returns two ports: an input port and an output port. The pipes behave like those returned by make-pipe, except that
the ports support non-byte values written with procedures such as write-special and read with procedures such
as get-byte-or-special.

The limit-k argument determines the maximum capacity of the pipe in bytes, but this limit is disabled if special
values are written to the pipe before limit-k is reached. The limit is re-enabled after the special value is read from
the pipe.

The optional in-name-v and out-name-v arguments determine the names of the result ports, and both names
default to ’pipe.

(merge-input a-input-port b-input-port [limit-k]) PROCEDURE

Accepts two input ports and returns a new input port. The new port merges the data from two original ports, so data
can be read from the new port whenever it is available from either original port. The data from the original ports are
interleaved. When EOF has been read from an original port, it no longer contributes characters to the new port. After
EOF has been read from both original ports, the new port returns EOF. Closing the merged port does not close the
original ports.

The optional limit-k argument limits the number of bytes to be buffered from a-input-port and
b-input-port, so that the merge process does not advance arbitrarily beyond the rate of consumption of the
merged data. A #f value disables the limit; the default is 4096. As for make-pipe-with-specials, limit-k
does not apply when a special value is produced by one of the input ports before the limit is reached.

See also input-port-append, which concatenates input streams instead of interleaving them.

(open-output-nowhere [name special-ok?]) PROCEDURE

Creates and returns an output port that discards all output sent to it (without blocking). The name argument is used as
the port’s name, and it defaults to ’nowhere. If the special-ok? argument is true (the default), then the resulting
port supports write-special, otherwise it does not.

110

35. port.ss: Port Utilities

(peeking-input-port input-port [name skip-k]) PROCEDURE

Returns an input port whose content is determined by peeking into input-port. In other words, the resulting port
contains an internal skip count, and each read of the port peeks into input-port with the internal skip count, and
then increments the skip count according to the amount of data successfully peeked.

The optional name argument is the name of the resulting port, and it defaults to (object-name input-port).
The skip-k argument is the port initial skip count, and it defaults to 0.

(eof-evt input-port) PROCEDURE

Returns a synchronizable event (see §7.7 in PLT MzScheme: Language Manual) is that is ready when input-port
produces an eof. If input-port produces a mid-stream eof, the eof is consumed by the event only if the event
is chosen in a synchronization.

(read-bytes-evt k input-port) PROCEDURE

Returns a synchronizable event (see §7.7 in PLT MzScheme: Language Manual) is that is ready when k bytes can
be read from input-port, or when an end-of-file is encountered in input-port. If k is 0, then the event is
ready immediately with "". For non-zero k, if no bytes are available before an end-of-file, the event’s result is eof.
Otherwise the event’s result is a byte string of up to k bytes, which contains as many bytes as are available (up to k)
before an available end-of-file. (The result is a string on less than k bytes only when an end-of-file is encountered.)

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned bytes always
represent contiguous bytes in the port’s stream.

The event can be synchronized multiple times—event concurrently—and each synchronization corresponds to a dis-
tinct read request.

The input-port must support progress events, and it must not produce a special non-byte value during the read
attempt.

(read-bytes!-evt mutable-bytes input-port) PROCEDURE

Like read-bytes-evt, except that the read bytes are placed into mutable-bytes, and the number of bytes to
read corresponds to (bytes-length mutable-bytes). The event’s result is either eof or the number of read
bytes.

The mutable-bytes string may be mutated any time after the first synchronization attempt on the event. If the event
is not synchronized multiple times concurrently, mutable-bytes is never mutated by the event after it is chosen
in a synchronization (no matter how many synchronization attempts preceded the choice). Thus, the event may be
sensibly used multiple times until a successful choice, but should not be used in multiple concurrent synchronizations.

(read-bytes-avail!-evt mutable-bytes input-port) PROCEDURE

Like read-bytes!-evt, except that the event reads only as many bytes as are immediately available, after at least
one byte or one eof becomes available.

(read-string-evt k input-port) PROCEDURE

Like read-bytes-evt, but for character strings instead of byte strings.

111

35. port.ss: Port Utilities

(read-string!-evt mutable-string input-port) PROCEDURE

Like read-bytes!-evt, but for a character string instead of a byte string.

(read-line-evt input-port [mode-symbol]) PROCEDURE

Returns a synchronizable event (see §7.7 in PLT MzScheme: Language Manual) that is ready when a line of characters
or end-of-file can be read from inport. The meaning of mode-symbol is the same as for read-line (see
§11.2.1 in PLT MzScheme: Language Manual). The event result is the read line of characters (not including the line
separator).

A line is read from the port if and only if the event is chosen in a synchronization, and the returned line always
represents contiguous bytes in the port’s stream.

(read-bytes-line-evt input-port [mode-symbol]) PROCEDURE

Like read-line, but returns a byte string instead of a string.

(peek-bytes-evt k skip-k progress-evt input-port) PROCEDURE

(peek-bytes-bytes!-evt mutable-bytes skip-k progress-evt input-port) PROCEDURE

(peek-bytes-avail!-evt mutable-bytes skip-k progress-evt input-port) PROCEDURE

(peek-string-evt k input-port) PROCEDURE

(peek-string!-evt mutable-string input-port) PROCEDURE

Like the read-...-evt functions, but for peeking. The skip-k argument indicates the number of bytes to skip,
and progress-evt indicates an event that effectively cancels the peek (so that the event never becomes ready). The
progress-evt argument can be #f, in which case the event is never cancelled.

(reencode-input-port input-port encoding-str [error-bytes close? name-v]) PROCE-
DURE

Produces an input port that draws bytes from input-port, but converts the byte stream using
(bytes-open-converter encoding-str "UTF-8").

If error-bytes is provided and not #f, then the given byte sequence is used in place of bytes from input-port
that trigger conversion errors. Otherwise, if a conversion is encountered, the exn:fail exception is raised.

If close? is true, then closing the result input port also closes input-port.

If name-v is provided, it is used as the name of the result input port, otherwise the port is named by (object-name
input-port).

In non-buffered mode, the resulting input port attempts to draw bytes from input-port only as needed to satisfy
requests. Toward that end, the input port assumes that at least n bytes must be read to satisfy a request for n bytes. (This
is true even if the port has already drawn some bytes, as long as those bytes form an incomplete encoding sequence.)

(reencode-output-port output-port encoding-str [error-bytes close? name-v buffer-sym])

112

35. port.ss: Port Utilities

PROCEDURE

Produces an output port that direct bytes to output-port, but converts its byte stream using (bytes-open-converter
encoding-str "UTF-8").

If error-bytes is provided and not #f, then the given byte sequence is used in place of bytes send to the output
port that trigger conversion errors. Otherwise, if a conversion is encountered, the exn:fail exception is raised.

If close? is true, then closing the result output port also closes output-port.

If name-v is provided, it is used as the name of the result output port, otherwise the port is named by
(object-name output-port).

The buffer-sym argument determines the buffer mode of the output port, and it must be ’block, ’line, or
’none. If output-port is a file-stream port, the default is (file-stream-buffer-mode output-port),
otherwise the default is ’block. In ’block mode, the port’s buffer is flushed only when it is full or a flush is
requested explicitly. In ’line mode, the buffer is flushed whenever a newline or carriage-return byte is written to the
port. In ’none mode, the port’s buffer is flushed after every write. Implicit flushes for ’line or ’none leave bytes
in the buffer when they are part of an incomplete encoding sequence.

The resulting output port does not support atomic writes. An explicit flush or special-write to the output port can hang
if the most recently written bytes form an incomplete encoding sequence.

(regexp-match-evt pattern input-port) PROCEDURE

Returns a synchronizable event (see §7.7 in PLT MzScheme: Language Manual) that is ready when patternmatches
the stream of bytes/characters from input-port (see also §10 in PLT MzScheme: Language Manual). The event’s
value is the result of the match, in the same form as the result of regexp-match.

If pattern does not require a start-of-stream match, then bytes skipped to complete the match are read and discarded
when the event is chosen in a synchronization.

Bytes are read from the port if and only if the event is chosen in a synchronization, and the returned match always
represents contiguous bytes in the port’s stream. If not-yet-available bytes from the port might contribute to the match,
the event is not ready. Similarly, if pattern begins with a start-of-string caret (“ˆ”) and the pattern does not
initially match, then the event cannot become ready until bytes have been read from the port.

The event can be synchronized multiple times—even concurrently—and each synchronization corresponds to a distinct
match request.

The input-port must support progress events. If input-port returns a special non-byte value during the match
attempt, it is treated like eof.

(relocate-input-port input-port line-k column-k position-k [close?]) PROCEDURE

Produces an input port that is equivalent to input-port except in how it reports location information. The resulting
port’s content starts with the remaining content of input-port, and it starts at the given line, column, and position.
The line-k argument must be a positive exact integer or #f, column-k must be a non-negative exact integer or
#f, and position-k must be a positive exact integer (#f is not allowed for position-k). A #f for the line or
column means that the line and column will always be reported as #f.

The line-k and column-k values are used only if line counting is enabled for input-port and for the re-
sulting port, typically through port-count-lines! (see §11.2.1.1 in PLT MzScheme: Language Manual). The
column-k value determines the column for the first line (i.e., the one numbered line-k), and later lines start at
column 0. The given position-k is used even if line counting is not enabled.

113

35. port.ss: Port Utilities

When line counting is on for the resulting port, reading from input-port instead of the resulting port increments
location reports from the resulting port. Otherwise, the resulting port’s position does not increment when data is read
from input-port.

If close? is true (the default), then closing the resulting port also closes input-port. If close? is #f, then
closing the resulting port does not close input-port.

(relocate-output-port output-port line-k column-k position-k [close?]) PROCEDURE

Like relocate-input-port, but for output ports.

(transplant-input-port input-port position-thunk position-k [close? count-lines!-proc])
PROCEDURE

Like relocate-input-port, except that arbitrary position information can be produced (when line counting
is enabled) via position-thunk. If position-thunk is #f, then the port counts lines in the usual way,
independent of locations reported by input-port.

If count-lines!-proc is supplied, it is called when line counting is enabled for the resulting port. The default is
void.

(transplant-output-port input-port position-thunk position-k [close? count-lines!-proc])
PROCEDURE

Like transplant-input-port, but for output ports.

(strip-shell-command-start input-port) PROCEDURE

Reads and discards a leading #! in input-port (plus continuing lines if the line ends with a backslash) in the same
way as the default load handler.

114

36. pregexp.ss: Perl-Style Regular Expressions

To load: (require (lib "pregexp.ss"))

This library provides regular expressions modeled on Perl’s , and includes such powerful directives as numeric and
nongreedy quantifiers, capturing and non-capturing clustering, POSIX character classes, selective case- and space-
insensitivity, backreferences, alternation, backtrack pruning, positive and negative lookahead and lookbehind, in addi-
tion to the more basic directives familiar to all regexp users.

The pregexp exported by this library is MzScheme’s pregexp. The other functions are the same for exports either
from MzScheme or from the "string.ss" MzLib library, except that a string or byte-string pattern is converted to
a regexp value using pregexp instead of regexp.

36.1 Introduction

A regexp is a string that describes a pattern. A regexp matcher tries to match this pattern against (a portion of) another
string, which we will call the text string. The text string is treated as raw text and not as a pattern.

Most of the characters in a regexp pattern are meant to match occurrences of themselves in the text string. Thus, the
pattern "abc" matches a string that contains the characters a, b, c in succession.

In the regexp pattern, some characters act as metacharacters, and some character sequences act as metasequences.
That is, they specify something other than their literal selves. For example, in the pattern "a.c", the characters a
and c do stand for themselves but the metacharacter ‘.’ can match any character (other than newline). Therefore, the
pattern "a.c" matches an a, followed by any character, followed by a c.

If we needed to match the character ‘.’ itself, we escape it, ie, precede it with a backslash (\). The character sequence
\. is thus a metasequence, since it doesn’t match itself but rather just ‘.’. So, to match a followed by a literal ‘.’
followed by c, we use the regexp pattern "a\\.c".1

We will call the string representation of a regexp the U-regexp, where U can be taken to mean Unix-style or universal,
because this notation for regexps is universally familiar. Our implementation uses an internal representation called the
S-regexp.

36.2 Regexp procedures

This library provides the procedures pregexp, pregexp-match-positions, pregexp-match, pregexp-split,
pregexp-replace, pregexp-replace*, and pregexp-quote.

1The double backslash is an artifact of Scheme strings, not the regexp pattern itself. When we want a literal backslash inside a Scheme string,
we must escape it so that it shows up in the string at all. Scheme strings use backslash as the escape character, so we end up with two backslashes
— one Scheme-string backslash to escape the regexp backslash, which then escapes the dot. Another character that would need escaping inside a
Scheme string is ‘"’.

115

36.2. Regexp procedures 36. pregexp.ss: Perl-Style Regular Expressions

36.2.1 pregexp

(pregexp U-regexp) PROCEDURE

Takes a U-regexp, which is a string, and returns an S-regexp, which is a compiled regexp.

(pregexp "c.r")
=> #<regexp>

36.2.2 pregexp-match-positions

(pregexp-match-positions regexp text-string [start end]) PROCEDURE

Takes a regexp pattern and a text string, and returns a match if the regexp matches (some part of) the text string.

The regexp may be either a U- or an S-regexp. (pregexp-match-positions will internally compile a U-regexp
to an S-regexp before proceeding with the matching. If you find yourself calling pregexp-match-positions re-
peatedly with the same U-regexp, it may be advisable to explicitly convert the latter into an S-regexp once beforehand,
using pregexp, to save needless recompilation.)

pregexp-match-positions returns #f if the regexp did not match the string; and a list of index pairs if it did
match. Eg,

(pregexp-match-positions "brain" "bird")
=> #f

(pregexp-match-positions "needle" "hay needle stack")
=> ((4 . 10))

In the second example, the integers 4 and 10 identify the substring that was matched. 4 is the starting (inclusive) index
and 10 the ending (exclusive) index of the matching substring.

(substring "hay needle stack" 4 10)
=> "needle"

Here, pregexp-match-positions’s return list contains only one index pair, and that pair represents the entire
substring matched by the regexp. When we discuss subpatterns later, we will see how a single match operation can
yield a list of submatches.

pregexp-match-positions takes optional third and fourth arguments that specify the indices of the text string
within which the matching should take place.

(pregexp-match-positions "needle"
"his hay needle stack -- my hay needle stack -- her hay needle stack"
24 43)

=> ((31 . 37))

Note that the returned indices are still reckoned relative to the full text string.

36.2.3 pregexp-match

(pregexp-match regexp text-string [start end]) PROCEDURE

Called like pregexp-match-positions but instead of returning index pairs it returns the matching substrings:

116

36. pregexp.ss: Perl-Style Regular Expressions 36.2. Regexp procedures

(pregexp-match "brain" "bird")
=> #f

(pregexp-match "needle" "hay needle stack")
=> ("needle")

pregexp-match also takes optional third and fourth arguments, with the same meaning as does
pregexp-match-positions.

36.2.4 pregexp-split

(pregexp-split regexp text-string) PROCEDURE

Takes two arguments, a regexp pattern and a text string, and returns a list of substrings of the text string, where the
pattern identifies the delimiter separating the substrings.

(pregexp-split ":" "/bin:/usr/bin:/usr/bin/X11:/usr/local/bin")
=> ("/bin" "/usr/bin" "/usr/bin/X11" "/usr/local/bin")

(pregexp-split " " "pea soup")
=> ("pea" "soup")

If the first argument can match an empty string, then the list of all the single-character substrings is returned.

(pregexp-split "" "smithereens")
=> ("s" "m" "i" "t" "h" "e" "r" "e" "e" "n" "s")

To identify one-or-more spaces as the delimiter, take care to use the regexp " +", not " *".

(pregexp-split " +" "split pea soup")
=> ("split" "pea" "soup")

(pregexp-split " *" "split pea soup")
=> ("s" "p" "l" "i" "t" "p" "e" "a" "s" "o" "u" "p")

36.2.5 pregexp-replace

(pregexp-replace regexp text-string proc-or-insert-string) PROCEDURE

Replaces the matched portion of the text string by another string. The first argument is the pattern, the second the text
string, and the third is either the insert string (string to be inserted) or a procedure to convert matches to the insert
string.

(pregexp-replace "te" "liberte" "ty")
=> "liberty"
(pregexp-replace "." "scheme" string-upcase)
=> "Scheme"

If the pattern doesn’t occur in the text string, the returned string is identical (eq?) to the text string.

117

36.3. The regexp pattern language 36. pregexp.ss: Perl-Style Regular Expressions

36.2.6 pregexp-replace*

(pregexp-replace* regexp text-string proc-or-insert-string) PROCEDURE

Replaces all matches in the text string by the insert string:

(pregexp-replace* "te" "liberte egalite fraternite" "ty")
=> "liberty egality fratyrnity"
(pregexp-replace* "[ds]" "drscheme" string-upcase)
=> "DrScheme"

As with pregexp-replace, if the pattern doesn’t occur in the text string, the returned string is identical (eq?) to
the text string.

36.2.7 pregexp-quote

(pregexp-quote string) PROCEDURE

Takes an arbitrary string and returns a U-regexp (string) that precisely represents it. In particular, characters in the
input string that could serve as regexp metacharacters are escaped with a backslash, so that they safely match only
themselves.

(pregexp-quote "cons")
=> "cons"

(pregexp-quote "list?")
=> "list\\?"

pregexp-quote is useful when building a composite regexp from a mix of regexp strings and verbatim strings.

36.3 The regexp pattern language

Here is a complete description of the regexp pattern language recognized by the pregexp procedures.

36.3.1 Basic assertions

The assertions ˆ and $ identify the beginning and the end of the text string respectively. They ensure that their
adjoining regexps match at one or other end of the text string. Examples:

(pregexp-match-positions "ˆcontact" "first contact")
=> #f

The regexp fails to match because contact does not occur at the beginning of the text string.

(pregexp-match-positions "laugh$" "laugh laugh laugh laugh")
=> ((18 . 23))

The regexp matches the last laugh.

The metasequence \b asserts that a word boundary exists.

(pregexp-match-positions "yack\\b" "yackety yack")
=> ((8 . 12))

118

36. pregexp.ss: Perl-Style Regular Expressions 36.3. The regexp pattern language

The yack in yackety doesn’t end at a word boundary so it isn’t matched. The second yack does and is.

The metasequence \B has the opposite effect to \b. It asserts that a word boundary does not exist.

(pregexp-match-positions "an\\B" "an analysis")
=> ((3 . 5))

The an that doesn’t end in a word boundary is matched.

36.3.2 Characters and character classes

Typically a character in the regexp matches the same character in the text string. Sometimes it is necessary or con-
venient to use a regexp metasequence to refer to a single character. For example, the metasequence \. matches the
period character.

The metacharacter period (.) matches any character other than newline.

(pregexp-match "p.t" "pet")
=> ("pet")

It also matches pat, pit, pot, put, and p8t but not peat or pfffft.

A character class matches any one character from a set of characters. A typical format for this is the bracketed
character class [...], which matches any one character from the non-empty sequence of characters enclosed within
the brackets.2 Thus "p[aeiou]t" matches pat, pet, pit, pot, put and nothing else.

Inside the brackets, a hyphen (-) between two characters specifies the ascii range between the characters. Eg,
"ta[b-dgn-p]" matches tab, tac, tad, and tag, and tan, tao, tap.

An initial caret (ˆ) after the left bracket inverts the set specified by the rest of the contents, ie, it specifies the set of
characters other than those identified in the brackets. Eg, "do[ˆg]" matches all three-character sequences starting
with do except dog.

Note that the metacharacter ˆ inside brackets means something quite different from what it means outside. Most other
metacharacters (., *, +, ?, etc) cease to be metacharacters when inside brackets, although you may still escape them
for peace of mind. - is a metacharacter only when it’s inside brackets, and neither the first nor the last character.

Bracketed character classes cannot contain other bracketed character classes (although they contain certain other types
of character classes — see below). Thus a left bracket ([) inside a bracketed character class doesn’t have to be a
metacharacter; it can stand for itself. Eg, "[a[b]" matches a, [, and b.

Furthermore, since empty bracketed character classes are disallowed, a right bracket (]) immediately occurring after
the opening left bracket also doesn’t need to be a metacharacter. Eg, "[]ab]" matches], a, and b.

36.3.2.1 SOME FREQUENTLY USED CHARACTER CLASSES

Some standard character classes can be conveniently represented as metasequences instead of as explicit bracketed
expressions. \d matches a digit ([0-9]); \s matches a whitespace character; and \w matches a character that could
be part of a “word”.3

2Requiring a bracketed character class to be non-empty is not a limitation, since an empty character class can be more easily represented by an
empty string.

3Following regexp custom, we identify “word” characters as [A-Za-z0-9], although these are too restrictive for what a Schemer might
consider a “word”.

119

36.3. The regexp pattern language 36. pregexp.ss: Perl-Style Regular Expressions

The upper-case versions of these metasequences stand for the inversions of the corresponding character classes. Thus
\D matches a non-digit, \S a non-whitespace character, and \W a non-“word” character.

Remember to include a double backslash when putting these metasequences in a Scheme string:

(pregexp-match "\\d\\d"
"0 dear, 1 have 2 read catch 22 before 9")

=> ("22")

These character classes can be used inside a bracketed expression. Eg, "[a-z\\d]" matches a lower-case letter or
a digit.

36.3.2.2 POSIX CHARACTER CLASSES

A POSIX character class is a special metasequence of the form [:...:] that can be used only inside a bracketed
expression. The POSIX classes supported are

[:alnum:] letters and digits
[:alpha:] letters
[:ascii:] 7-bit ascii characters
[:blank:] widthful whitespace, ie, space and tab
[:cntrl:] “control” characters, viz, those with code < 32
[:digit:] digits, same as \d
[:graph:] characters that use ink
[:lower:] lower-case letters
[:print:] ink-users plus widthful whitespace
[:space:] whitespace, same as \s
[:upper:] upper-case letters
[:word:] letters, digits, and underscore, same as \w
[:xdigit:] hex digits

For example, the regexp "[[:alpha:]_]" matches a letter or underscore.

(pregexp-match "[[:alpha:]_]" "--x--")
=> ("x")

(pregexp-match "[[:alpha:]_]" "--_--")
=> ("_")

(pregexp-match "[[:alpha:]_]" "--:--")
=> #f

The POSIX class notation is valid only inside a bracketed expression. For instance, [:alpha:], when not inside
a bracketed expression, will not be read as the letter class. Rather it is (from previous principles) the character class
containing the characters :, a, l, p, h.

(pregexp-match "[:alpha:]" "--a--")
=> ("a")

(pregexp-match "[:alpha:]" "--_--")
=> #f

By placing a caret (ˆ) immediately after [:, you get the inversion of that POSIX character class. Thus, [:ˆalpha]
is the class containing all characters except the letters.

120

36. pregexp.ss: Perl-Style Regular Expressions 36.3. The regexp pattern language

36.3.3 Quantifiers

The quantifiers *, +, and ? match respectively: zero or more, one or more, and zero or one instances of the preceding
subpattern.

(pregexp-match-positions "c[ad]*r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]*r" "cr")
=> ((0 . 2))

(pregexp-match-positions "c[ad]+r" "cadaddadddr")
=> ((0 . 11))
(pregexp-match-positions "c[ad]+r" "cr")
=> #f

(pregexp-match-positions "c[ad]?r" "cadaddadddr")
=> #f
(pregexp-match-positions "c[ad]?r" "cr")
=> ((0 . 2))
(pregexp-match-positions "c[ad]?r" "car")
=> ((0 . 3))

36.3.3.1 NUMERIC QUANTIFIERS

You can use braces to specify much finer-tuned quantification than is possible with *, +, ?.

The quantifier {m} matches exactly m instances of the preceding subpattern. m must be a nonnegative integer.

The quantifier {m,n} matches at least m and at most n instances. m and n are nonnegative integers with m <= n.
You may omit either or both numbers, in which case m defaults to 0 and n to infinity.

It is evident that + and ? are abbreviations for {1,} and {0,1} respectively. * abbreviates {,}, which is the same
as {0,}.

(pregexp-match "[aeiou]{3}" "vacuous")
=> ("uou")

(pregexp-match "[aeiou]{3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "evolve")
=> #f

(pregexp-match "[aeiou]{2,3}" "zeugma")
=> ("eu")

36.3.3.2 NON-GREEDY QUANTIFIERS

The quantifiers described above are greedy, ie, they match the maximal number of instances that would still lead to an
overall match for the full pattern.

(pregexp-match "<.*>" "<tag1> <tag2> <tag3>")
=> ("<tag1> <tag2> <tag3>")

121

36.3. The regexp pattern language 36. pregexp.ss: Perl-Style Regular Expressions

To make these quantifiers non-greedy, append a ? to them. Non-greedy quantifiers match the minimal number of
instances needed to ensure an overall match.

(pregexp-match "<.*?>" "<tag1> <tag2> <tag3>")
=> ("<tag1>")

The non-greedy quantifiers are respectively: *?, +?, ??, {m}?, {m,n}?. Note the two uses of the metacharacter ?.

36.3.4 Clusters

Clustering, ie, enclosure within parens (...), identifies the enclosed subpattern as a single entity. It causes the matcher
to capture the submatch, or the portion of the string matching the subpattern, in addition to the overall match.

(pregexp-match "([a-z]+) ([0-9]+), ([0-9]+)" "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1" "1970")

Clustering also causes a following quantifier to treat the entire enclosed subpattern as an entity.

(pregexp-match "(poo)*" "poo poo platter")
=> ("poo poo " "poo ")

The number of submatches returned is always equal to the number of subpatterns specified in the regexp, even if a
particular subpattern happens to match more than one substring or no substring at all.

(pregexp-match "([a-z]+;)*" "lather; rinse; repeat;")
=> ("lather; rinse; repeat;" " repeat;")

Here the *-quantified subpattern matches three times, but it is the last submatch that is returned.

It is also possible for a quantified subpattern to fail to match, even if the overall pattern matches. In such cases, the
failing submatch is represented by #f.

(define date-re
;match ‘month year’ or ‘month day, year’.
;subpattern matches day, if present
(pregexp "([a-z]+) +([0-9]+,)? *([0-9]+)"))

(pregexp-match date-re "jan 1, 1970")
=> ("jan 1, 1970" "jan" "1," "1970")

(pregexp-match date-re "jan 1970")
=> ("jan 1970" "jan" #f "1970")

36.3.4.1 BACKREFERENCES

Submatches can be used in the insert string argument of the procedures pregexp-replace and
pregexp-replace*. The insert string can use \n as a backreference to refer back to the nth submatch, ie, the
substring that matched the nth subpattern. \0 refers to the entire match, and it can also be specified as \&.

(pregexp-replace "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the _pinta_, and the _santa maria_"

122

36. pregexp.ss: Perl-Style Regular Expressions 36.3. The regexp pattern language

(pregexp-replace* "_(.+?)_"
"the _nina_, the _pinta_, and the _santa maria_"
"*\\1*")

=> "the *nina*, the *pinta*, and the *santa maria*"

;recall: \S stands for non-whitespace character

(pregexp-replace "(\\S+) (\\S+) (\\S+)"
"eat to live"
"\\3 \\2 \\1")

=> "live to eat"

Use \\ in the insert string to specify a literal backslash. Also, \$ stands for an empty string, and is useful for
separating a backreference \n from an immediately following number.

Backreferences can also be used within the regexp pattern to refer back to an already matched subpattern in the pattern.
\n stands for an exact repeat of the nth submatch.4

(pregexp-match "([a-z]+) and \\1"
"billions and billions")

=> ("billions and billions" "billions")

Note that the backreference is not simply a repeat of the previous subpattern. Rather it is a repeat of the particular
substring already matched by the subpattern.

In the above example, the backreference can only match billions. It will not match millions, even though the
subpattern it harks back to — ([a-z]+) — would have had no problem doing so:

(pregexp-match "([a-z]+) and \\1"
"billions and millions")

=> #f

The following corrects doubled words:

(pregexp-replace* "(\\S+) \\1"
"now is the the time for all good men to to come to the aid of of the party"
"\\1")

=> "now is the time for all good men to come to the aid of the party"

The following marks all immediately repeating patterns in a number string:

(pregexp-replace* "(\\d+)\\1"
"123340983242432420980980234"
"{\\1,\\1}")

=> "12{3,3}40983{24,24}3242{098,098}0234"

36.3.4.2 NON-CAPTURING CLUSTERS

It is often required to specify a cluster (typically for quantification) but without triggering the capture of submatch
information. Such clusters are called non-capturing. In such cases, use (?: instead of (as the cluster opener. In the
following example, the non-capturing cluster eliminates the “directory” portion of a given pathname, and the capturing
cluster identifies the basename.

4

0, which is useful in an insert string, makes no sense within the regexp pattern, because the entire regexp has not matched yet that you could refer
back to it.

123

36.3. The regexp pattern language 36. pregexp.ss: Perl-Style Regular Expressions

(pregexp-match "ˆ(?:[a-z]*/)*([a-z]+)$"
"/usr/local/bin/mzscheme")

=> ("/usr/local/bin/mzscheme" "mzscheme")

36.3.4.3 CLOISTERS

The location between the ? and the : of a non-capturing cluster is called a cloister.5 You can put modifiers there
that will cause the enclustered subpattern to be treated specially. The modifier i causes the subpattern to match
case-insensitively:

(pregexp-match "(?i:hearth)" "HeartH")
=> ("HeartH")

A minus sign before a modifier inverts its meaning. Thus, you can use -i in a subcluster to overturn the insensitivities
caused by an enclosing cluster.

(pregexp-match "(?i:the (?-i:TeX)book)"
"The TeXbook")

=> ("The TeXbook")

This regexp will allow any casing for the and book but insists that TeX not be differently cased.

36.3.5 Alternation

You can specify a list of alternate subpatterns by separating them by |. The | separates subpatterns in the nearest
enclosing cluster (or in the entire pattern string if there are no enclosing parens).

(pregexp-match "f(ee|i|o|um)" "a small, final fee")
=> ("fi" "i")

(pregexp-replace* "([yi])s(e[sdr]?|ing|ation)"
"it is energising to analyse an organisation
pulsing with noisy organisms"
"\\1z\\2")

=> "it is energizing to analyze an organization
pulsing with noisy organisms"

Note again that if you wish to use clustering merely to specify a list of alternate subpatterns but do not want the
submatch, use (?: instead of (.

(pregexp-match "f(?:ee|i|o|um)" "fun for all")
=> ("fo")

An important thing to note about alternation is that the leftmost matching alternate is picked regardless of its length.
Thus, if one of the alternates is a prefix of a later alternate, the latter may not have a chance to match.

(pregexp-match "call|call-with-current-continuation"
"call-with-current-continuation")

=> ("call")

To allow the longer alternate to have a shot at matching, place it before the shorter one:

5A useful, if terminally cute, coinage from the abbots of Perl .

124

36. pregexp.ss: Perl-Style Regular Expressions 36.3. The regexp pattern language

(pregexp-match "call-with-current-continuation|call"
"call-with-current-continuation")

=> ("call-with-current-continuation")

In any case, an overall match for the entire regexp is always preferred to an overall nonmatch. In the following, the
longer alternate still wins, because its preferred shorter prefix fails to yield an overall match.

(pregexp-match "(?:call|call-with-current-continuation) constrained"
"call-with-current-continuation constrained")

=> ("call-with-current-continuation constrained")

36.3.6 Backtracking

We’ve already seen that greedy quantifiers match the maximal number of times, but the overriding priority is that the
overall match succeed. Consider

(pregexp-match "a*a" "aaaa")

The regexp consists of two subregexps, a* followed by a. The subregexp a* cannot be allowed to match all four a’s
in the text string "aaaa", even though * is a greedy quantifier. It may match only the first three, leaving the last one
for the second subregexp. This ensures that the full regexp matches successfully.

The regexp matcher accomplishes this via a process called backtracking. The matcher tentatively allows the greedy
quantifier to match all four a’s, but then when it becomes clear that the overall match is in jeopardy, it backtracks to a
less greedy match of three a’s. If even this fails, as in the call

(pregexp-match "a*aa" "aaaa")

the matcher backtracks even further. Overall failure is conceded only when all possible backtracking has been tried
with no success.

Backtracking is not restricted to greedy quantifiers. Nongreedy quantifiers match as few instances as possible, and
progressively backtrack to more and more instances in order to attain an overall match. There is backtracking in
alternation too, as the more rightward alternates are tried when locally successful leftward ones fail to yield an overall
match.

36.3.6.1 DISABLING BACKTRACKING

Sometimes it is efficient to disable backtracking. For example, we may wish to commit to a choice, or we know that
trying alternatives is fruitless. A nonbacktracking regexp is enclosed in (?>...).

(pregexp-match "(?>a+)." "aaaa")
=> #f

In this call, the subregexp ?>a* greedily matches all four a’s, and is denied the opportunity to backpedal. So the
overall match is denied. The effect of the regexp is therefore to match one or more a’s followed by something that is
definitely non-a.

36.3.7 Looking ahead and behind

You can have assertions in your pattern that look ahead or behind to ensure that a subpattern does or does not occur.
These “look around” assertions are specified by putting the subpattern checked for in a cluster whose leading characters
are: ?= (for positive lookahead), ?! (negative lookahead), ?<= (positive lookbehind), ?<! (negative lookbehind).

125

36.4. An extended example 36. pregexp.ss: Perl-Style Regular Expressions

Note that the subpattern in the assertion does not generate a match in the final result. It merely allows or disallows the
rest of the match.

36.3.7.1 LOOKAHEAD

Positive lookahead (?=) peeks ahead to ensure that its subpattern could match.

(pregexp-match-positions "grey(?=hound)"
"i left my grey socks at the greyhound")

=> ((28 . 32))

The regexp "grey(?=hound)" matches grey, but only if it is followed by hound. Thus, the first grey in the
text string is not matched.

Negative lookahead (?!) peeks ahead to ensure that its subpattern could not possibly match.

(pregexp-match-positions "grey(?!hound)"
"the gray greyhound ate the grey socks")

=> ((27 . 31))

The regexp "grey(?!hound)" matches grey, but only if it is not followed by hound. Thus the grey just before
socks is matched.

36.3.7.2 LOOKBEHIND

Positive lookbehind (?<=) checks that its subpattern could match immediately to the left of the current position in the
text string.

(pregexp-match-positions "(?<=grey)hound"
"the hound in the picture is not a greyhound")

=> ((38 . 43))

The regexp (?<=grey)hound matches hound, but only if it is preceded by grey.

Negative lookbehind (?<!) checks that its subpattern could not possibly match immediately to the left.

(pregexp-match-positions "(?<!grey)hound"
"the greyhound in the picture is not a hound")

=> ((38 . 43))

The regexp (?<!grey)hound matches hound, but only if it is not preceded by grey.

Lookaheads and lookbehinds can be convenient when they are not confusing.

36.4 An extended example

Here’s an extended example from Friedl’s Mastering Regular Expressions that covers many of the features described
above. The problem is to fashion a regexp that will match any and only IP addresses or dotted quads, ie, four numbers
separated by three dots, with each number between 0 and 255. First, a subregexp n0-255 that matches 0 through
255.

(define n0-255
(string-append

126

36. pregexp.ss: Perl-Style Regular Expressions 36.4. An extended example

"(?x:"
"\\d¨ ; 0 through 9
"\\d\\d¨ ; 00 through 99
"[01]\\d\\d¨ ; 000 through 199
"2[0-4]\\d¨ ; 200 through 249
"25[0-5]" ; 250 through 255
")"))

The first two alternates simply get all single- and double-digit numbers. Since 0-padding is allowed, we need to match
both 1 and 01. We need to be careful when getting 3-digit numbers, since numbers above 255 must be excluded. So
we fashion alternates to get 000 through 199, then 200 through 249, and finally 250 through 255.6

An IP-address is a string that consists of four n0-255s with three dots separating them.

(define ip-re1
(string-append

"ˆ" ;nothing before
n0-255 ;the first n0-255,
"(?x:" ;then the subpattern of
"\\." ;a dot followed by
n0-255 ;an n0-255,
")" ;which is
"{3}" ;repeated exactly 3 times
"$" ;with nothing following
))

Let’s try it out.

(pregexp-match ip-re1
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re1
"55.155.255.265")

=> #f

which is fine, except that we also have

(pregexp-match ip-re1
"0.00.000.00")

=> ("0.00.000.00")

All-zero sequences are not valid IP addresses! Lookahead to the rescue. Before starting to match ip-re1, we look
ahead to ensure we don’t have all zeros. We could use positive lookahead to ensure there is a digit other than zero.

(define ip-re
(string-append

"(?=.*[1-9])" ;ensure there’s a non-0 digit
ip-re1))

Or we could use negative lookahead to ensure that what’s ahead isn’t composed of only zeros and dots.

6Note that n0-255 lists prefixes as preferred alternates, something we cautioned against in sec 36.3.5. However, since we intend to anchor this
subregexp explicitly to force an overall match, the order of the alternates does not matter.

127

36.4. An extended example 36. pregexp.ss: Perl-Style Regular Expressions

(define ip-re
(string-append

"(?![0.]*$)" ;not just zeros and dots
;(note: dot is not metachar inside [])

ip-re1))

The regexp ip-re will match all and only valid IP addresses.

(pregexp-match ip-re
"1.2.3.4")

=> ("1.2.3.4")

(pregexp-match ip-re
"0.0.0.0")

=> #f

128

37. pretty.ss: Pretty Printing

To load: (require (lib "pretty.ss"))

(pretty-display v [port]) PROCEDURE

Same as pretty-print, but v is printed like display instead of like write.

(pretty-print v [port]) PROCEDURE

Pretty-prints the value v using the same printed form as write, but with newlines and whitespace inserted to avoid
lines longer than (pretty-print-columns), as controlled by (pretty-print-current-style-table).
The printed form ends in a newline unless the pretty-print-columns parameter is set to ’infinity.

If port is provided, v is printed into port; otherwise, v is printed to the current output port.

In addition to the parameters defined by the pretty library, pretty-print conforms to the print-graph,
print-struct, print-hash-table, print-vector-length, and print-box parameters.

The pretty printer also detects structures that have the prop:custom-write property (see §11.2.10 in PLT
MzScheme: Language Manual) and it calls the corresponding custom-write procedure. The custom-write proce-
dure can check the parameter pretty-printing to cooperate with the pretty-printer. Recursive printing to the
port automatically uses pretty printing, but if the structure has multiple recursively printed sub-expressions, a custom-
write procedure may need to cooperate more to insert explicit newlines. Use port-next-location to deter-
mine the current output column, use pretty-print-columns to determine the target printing width, and use
pretty-print-newline to insert a newline (so that the function in the pretty-print-print-line pa-
rameter can be called appropriately). Use make-tentative-pretty-print-output-port to obtain a port
for tentative recursive prints (e.g., to check the length of the output).

(pretty-format v [columns]) PROCEDURE

Like pretty-print, except that it returns a string containing the pretty-printed value, rather than sending the output
to a port.

The optional argument columns is passed to pretty-print-columns.

(pretty-print-current-style-table style-table [procedure])

Parameter that holds a table of style mappings. See pretty-print-extend-style-table.

(pretty-print-columns [width]) PROCEDURE

Parameter that sets the default width for pretty printing to width and returns void. If no width argument is provided,
the current value is returned instead.

129

37. pretty.ss: Pretty Printing

If the display width is ’infinity, then pretty-printed output is never broken into lines, and a newline is not added
to the end of the output.

(pretty-print-depth [depth]) PROCEDURE

Parameter that controls the default depth for recursive pretty printing. Printing to depth means that elements nested
more deeply than depth are replaced with “...”; in particular, a depth of 0 indicates that only simple values are printed.
A depth of #f (the default) allows printing to arbitrary depths.

(pretty-print-exact-as-decimal [as-decimal?]) PROCEDURE

Parameter that determines how exact non-integers are printed. If the parameter’s value is #t, then an exact non-integer
with a decimal representation is printed as a decimal number instead of a fraction. The initial value is #f.

(pretty-print-extend-style-table style-table symbol-list like-symbol-list) PRO-
CEDURE

Creates a new style table by extending an existing style-table, so that the style mapping for each symbol of
like-symbol-list in the original table is used for the corresponding symbol of symbol-list in the new table.
The symbol-list and like-symbol-list lists must have the same length. The style-table argument can
be #f, in which case with default mappings are used for the original table (see below).

The style mapping for a symbol controls the way that whitespace is inserted when printing a list that starts with the
symbol. In the absence of any mapping, when a list is broken across multiple lines, each element of the list is printed
on its own line, each with the same indentation.

The default style mapping includes mappings for the following symbols, so that the output follows popular code-
formatting rules:

lambda case-lambda
define define-macro define-syntax
let letrec let∗
let-syntax letrec-syntax
let-values letrec-values let∗-values
let-syntaxes letrec-syntaxes
begin begin0 do
if set! set!-values
unless when
cond case and or
module
syntax-rules syntax-case letrec-syntaxes+values
import export link
require require-for-syntax require-for-template provide
public private override rename inherit field init
shared send class instantiate make-object

(pretty-print-remap-stylable [any -> (symbol or #f)]) PROCEDURE

Parameter that controls remapping for styles. This procedure is called with each subexpression that appears as the first
element in a sequence. If it returns a symbol, the style table is used, as if that symbol were at the head of the sequence.
If it returns #f, the style table is treated normally.

130

37. pretty.ss: Pretty Printing

(pretty-print-handler v) PROCEDURE

Pretty-prints v if v is not void or prints nothing otherwise. Pass this procedure to current-print to install the
pretty printer into the read-eval-print loop.

(pretty-print-newline port width-k) PROCEDURE

Calls the procedure associated with the pretty-print-print-line parameter to print a newline to port,
if port is the output port that is redirected to the original output port for printing, otherwise a plain new-
line is printed to port. The width-k argument should be the target column width, typically obtained from
pretty-print-columns.

(pretty-print-print-hook [proc]) PROCEDURE

Parameter that sets the print hook for pretty-printing to proc. If proc is not provided, the current hook is returned.

The print hook is applied to a value for printing when the sizing hook (see pretty-print-size-hook) returns
an integer size for the value.

The print hook receives three arguments. The first argument is the value to print. The second argument is a Boolean:
#t for printing like display and #f for printing like write. The third argument is the destination port; this port is
generally not the port supplied to pretty-print or pretty-display (or the current output port), but output to
this port is ultimately redirected to the port supplied to pretty-print or pretty-display.

(pretty-print-print-line [proc]) PROCEDURE

Parameter that sets a procedure for printing the newline separator between lines of a pretty-printed value. The proc
procedure is called with four arguments: a new line number, an output port, the old line’s length, and the number of
destination columns. The return value from proc is the number of extra characters it printed at the beginning of the
new line.

The proc procedure is called before any characters are printed with 0 as the line number and 0 as the old line length;
proc is called after the last character for a value is printed with #f as the line number and with the length of the last
line. Whenever the pretty-printer starts a new line, proc is called with the new line’s number (where the first new
line is numbered 1) and the just-finished line’s length. The destination columns argument to proc is always the total
width of the destination printing area, or ’infinity if pretty-printed values are not broken into lines.

The default proc procedure prints a newline whenever the line number is not 0 and the column count is not
’infinity, always returning 0. A custom proc procedure can be used to print extra text before each line of
pretty-printed output; the number of characters printed before each line should be returned by proc so that the next
line break can be chosen correctly.

The destination port supplied to proc is generally not the port supplied to pretty-print or pretty-display
(or the current output port), but output to this port is ultimately redirected to the port supplied to pretty-print or
pretty-display.

(pretty-print-show-inexactness [explicit?]) PROCEDURE

Parameter that determines how inexact numbers are printed. If the parameter’s value is #t, then inexact numbers are
always printed with a leading #i. The initial value is #f.

131

37. pretty.ss: Pretty Printing

(pretty-print-style-table? v) PROCEDURE

Returns #t if v is a style table,#f otherwise.

(pretty-print-post-print-hook [proc]) PROCEDURE

Parameter that sets a hook procedure to be called just after an object is printed. The hook receives two arguments: the
object and the output port. The port is the one supplied to pretty-print or pretty-display (or the current
output port).

(pretty-print-pre-print-hook [proc]) PROCEDURE

Parameter that sets a hook procedure to be called just before an object is printed. The hook receives two arguments:
the object and the output port. The port is the one supplied to pretty-print or pretty-display (or the current
output port).

(pretty-print-size-hook [hook]) PROCEDURE

Parameter that sets the sizing hook for pretty-printing to hook. If hook is not provided, the current hook is returned.

The sizing hook is applied to each value to be printed. If the hook returns #f, then printing is handled internally by
the pretty-printer. Otherwise, the value should be an integer specifying the length of the printed value in characters;
the print hook will be called to actually print the value (see pretty-print-print-hook).

The sizing hook receives three arguments. The first argument is the value to print. The second argument is a Boolean:
#t for printing like display and #f for printing like write. The third argument is the destination port; the port
is the one supplied to pretty-print or pretty-display (or the current output port). The sizing hook may be
applied to a single value multiple times during pretty-printing.

(pretty-print-.-symbol-without-bars [bool]) PROCEDURE

Parameter that controls the printing of the symbol whose print name is just a period. If set to a true value, it is printed
as only the period. If set to a false value, it is printed as a period with vertical bars surrounding it.

(pretty-print-abbreviate-read-macros [bool]) PROCEDURE

Parameter that controls whether or not quote, unquote, unquote-splicing, etc are abbreviated with ’ , and ,@. By
default the abbreviations are enabled.

(pretty-printing [on?]) PROCEDURE

Parameter that is set to #t when the pretty printer calls a custom-write procedure (see §11.2.10 in PLT MzScheme:
Language Manual) for output.

When pretty printer calls a custom-write procedure merely to detect cycles, it sets this parameter to #f.

(make-tentative-pretty-print-output-port output-port width-k overflow-thunk) PRO-
CEDURE

Produces an output port that is suitable for recursive pretty printing without actually producing output. Use such a port
to tentatively print when proper output depends on the size of recursive prints. Determine the size of the tentative print
using port-count-lines.

132

37. pretty.ss: Pretty Printing

The output-port argument should be a pretty-printing port, such as the one supplied to a custom-write procedure
when pretty-printing is set to true, or another tentative output port. The width-k argument should be a target
column width, usually obtained from pretty-print-column-count, possibly decremented to leave room for
a terminator. The overflow-thunk procedure is called if more than width-k items are printed to the port; it
can escape from the recursive print through a continuation as a short cut, but overflow-thunk can also return, in
which case it is called every time afterward that additional output is written to the port.

After tentative printing, either accept the result with tentative-pretty-print-port-transfer or reject it
with tentative-pretty-print-port-cancel. Failure to accept or cancel properly interferes with graph-
structure printing, calls to hook procedures, etc. Explicitly cancel the tentative print even when overflow-thunk
escapes from a recursive print.

(tentative-pretty-print-port-transfer tentative-output-port output-port) PROCE-
DURE

Causes the data written to tentative-output-port to be transferred as if written to output-port. The
tentative-output-port argument should be a port produced by make-tentative-pretty-print-output-port,
and output-port should be either a pretty-printing port (provided to a custom-write procedure) or another tentative
output port.

(tentative-pretty-print-port-cancel tentative-output-port) PROCEDURE

Cancels the content of tentative-output-port, which was produced by make-tentative-pretty-print-output-port.
The main effect of canceling is that graph-reference definitions are undone, so that a future print of a graph-referenced
object includes the defining #n=.

133

38. process.ss: Process and Shell-Command Execution

To load: (require (lib "process.ss"))

This library builds on MzScheme’s subprocess procedure; see also §15.2 in PLT MzScheme: Language Manual.
In contrast to subprocess, there is no restriction on the ports that are used by these functions (either explicit
arguments, or implicit as the current-...-port parameters): they need not be file-stream ports.

(system command-string) executes a Unix, Mac OS X, or Windows shell command synchronously (i.e., the
call to system does not return until the subprocess has ended). The command-string argument is a string
containing no null characters. If the command succeeds, the return value is #t, #f otherwise.

(system* command-string arg-string · · ·) is like system, except that command-string is a file-
name that is executed directly (instead of through a shell command), and the arg-strings are the arguments. The
executed file is passed the specified string arguments (which must contain no null characters). Under Windows, the
first arg-string can be ’exact where the second arg-string is a complete command line; see §15.2 in PLT
MzScheme: Language Manual for details.

(system/exit-code command-string) is like system, except that it returns the exit-code returned by the
subprocess instead of a boolean (a result of 0 indicates success).

(system*/exit-code command-string) is like system*, except that it returns the exit-code like
system/exit-code does.

(process command-string) executes a shell command asynchronously. If the subprocess is launched success-
fully, the result is a list of five values:

• an input port piped from the subprocess’s standard output,
• an output port piped to the subprocess standard input,
• the system process id of the subprocess,
• an input port piped from the subprocess’s standard error,1 and
• a procedure of one argument, either ’status, ’wait, ’interrupt, or ’kill:

– ’status returns the status of the subprocess as one of ’running, ’done-ok, or ’done-error.
– ’exit-code returns the integer exit code of the subprocess or #f if it is still running.
– ’wait blocks execution in the current thread until the subprocess has completed.
– ’interrupt sends the subprocess an interrupt signal under Unix and Mac OS X, and takes no action

under Windows. The result is void.
– ’kill terminates the subprocess and returns void.

Important: All three ports returned from process must be explicitly closed with close-input-port and
close-output-port.

(process* command-string arg-string · · ·) is like process, except that command-string is a

1 The standard error port is placed after the process id for compatibility with other Scheme implementations. For the same reason, process
returns a list instead of multiple values.

134

38. process.ss: Process and Shell-Command Execution

filename that is executed directly, and the arg-strings are the arguments. Under Windows, as for system*, the
first arg-string can be ’exact.

(process/ports output-port input-port error-output-port command-string) is like process,
except that output-port is used for the process’s standard output, input-port is used for the process’s standard
input, and error-output-port is used for the process’s standard error. Any of the ports can be #f, in which
case a system pipe is created and returned, as in process. For each port that is provided, no pipe is created and the
corresponding returned value is #f.

(process*/ports output-port input-port error-output-port command-string arg-string ··
·) is like process*, but with the port handling of process/ports.

135

39. restart.ss: Simulating Stand-alone MzScheme

To load: (require (lib "restart.ss"))

(restart-mzscheme init-argv adjust-flag-table argv init-namespace) PROCEDURE

Simulates starting the stand-alone version of MzScheme with the vector of command-line strings argv . The
init-argv , adjust-flag-table, and init-namespace arguments are used to modify the default settings
for command-line flags, adjust the parsing of command-line flags, and customize the initial namespace, respectively.

The vector of strings init-argv is read first with the standard MzScheme command-line parsing. Flags that load
files or evaluate expressions (e.g., -f and -e) are ignored, but flags that set MzScheme’s modes (e.g., -g or -m)
effectively set the default mode before argv is parsed.

Before argv is parsed, the procedure adjust-flag-table is called with a command-line flag table as accepted
by parse-command-line (see §10). The return value must also be a table of command-line flags, and this table is
used to parse argv . The intent is to allow adjust-flag-table to add or remove flags from the standard set.

After argv is parsed, a new thread and a namespace are created for the “restarted” MzScheme. (The new namespace
is installed as the current namespace in the new thread.) In the new thread, restarting performs the following actions:

• The init-namespace procedure is called with no arguments. The return value is ignored.

• Expressions and files specified by argv are evaluated and loaded. If an error occurs, the remaining expressions
and files are ignored, and the return value for restart-mzscheme is set to #f.

• The read-eval-print-loop procedure is called, unless a flag in init-argv or argv disables it. When
read-eval-print-loop returns, the return value for restart-mzscheme is set to #t.

Before evaluating command-line arguments, an exit handler is installed that immediately returns from
restart-mzscheme with the value supplied to the handler. This exit handler remains in effect when
read-eval-print-loop is called (unless a command-line argument changes it). If restart-mzscheme re-
turns normally, the return value is determined as described above. (Note that an error in a command-line expression
followed by read-eval-print-loop produces a #t result. This is consistent with MzScheme’s stand-alone
behavior.)

136

40. runtime-path.ss: Declaring Paths Needed at Run Time

To load: (require (lib "runtime-path.ss"))

The runtime-path.ss library provides forms for accessing non-module files and directories at run time us-
ing a path that is usually relative to the module’s source file. Unlike using collection-path or
this-expression-source-directory, using a runtime-path.ss form exposes each run-time path to tools
like the executable and distribution creators, so that files and directories needed at run time are carried along in a
distribution.

(define-runtime-path identifier expr) SYNTAX

Uses expr as both a compile-time expression and a run-time expression. In either context, expr should produce a
path, a string that represents a path, a list of the form (list ’lib string · · ·1), or a list of the form (list
’so string).

For run time, identifier is bound to a path that is based on the result of expr. The path is
normally computed by taking a relative path result from expr and adding it to the same path that
this-expression-source-directory would produce (see §19). However, tools like the executable cre-
ator can also arrange (by colluding with runtime-path.ss) to have a different base path substituted in a generated
executable. If expr produces an absolute path, it is normally returned directly, but again may be replaced by an exe-
cutable creator. In all cases, the executable creator preserves the relative locations of all paths. When expr produces
a relative or absolute path, then the path bound to identifier is always an absolute path.

If expr produces a list of the form (list ’lib string · · ·1), the value bound to identifier is an absolute
path. The path refers to a file named by the first string that is (originally) in the collection specified by the remaining
strings, where the collection mzlib is used if only one string is provided.

If expr produces a list of the form (list ’so string), the value bound to identifier can be either
string or an absolute path; it is an absolute path when adding the platform-specific shared-library extension —
as produced by (system-type ’so-suffix) — and then searching in the PLT-specific shared-object library
directories (as determined by find-dll-dirs from dirs.ss in the setup collection) locates the path. In this way,
shared-object libraries that are installed specifically for PLT Scheme get carried along in distributions.

For compile-time, the expr result is used by an executable creator — but not the result when the containing
module is compiled. Instead, expr is preserved in the module as a compile-time expression (in the sense of
begin-for-syntax). Later, at the time that an executable is created, the compile-time portion of the module
is executed (again), and the result of expr is the file to be included with the executable. The reason for the extra
compile-time execution is that the result of expr might be platform-dependent, so the result should not be stored in
the (platform-independent) bytecode form of the module; the platform at executable-creation time, however, is the
same as at run time for the executable. Note that expr is still evaluated at run-time; consequently, avoid procedures
like collection-path, which depends on the source installation, and instead use relative paths and forms like
(list ’lib string · · ·1).

If a path is needed only on some platforms and not on others, use define-runtime-path-list with an expr
that produces an empty list on platforms where the path is not needed.

137

40. runtime-path.ss: Declaring Paths Needed at Run Time

Examples:

;; Access a file data.txt at run-time that is originally
;; located in the same directory as the module source file:
(define-runtime-path data-file "data.txt")
(define (read-data)
(call-with-input-file data-file
(lambda ()
(read-bytes (file-size data-file)))))

;; Load a platform-specific shared object (using ffi-lib; see
;; PLT Foreign Interface Manual) that is located in a platform-specific sub-directory
;; of the module’s source directory:
(define-runtime-path libfit-path
(build-path "compiled" "native" (system-library-subpath #f)

(path-replace-suffix "libfit" (system-type ’so-suffix))))
(define libfit (ffi-lib libfit-path))

;; Load a platform-specific shared object that might be installed
;; as part of the operating system, or might be installed specifically
;; for PLT Scheme:
(define-runtime-path libssl-so
(case (system-type)
[(windows) ’(so "ssleay32")]
[else ’(so "libssl")]))

(define libssl (ffi-lib libssl-so))

(define-runtime-paths (identifier · · ·) expr) SYNTAX

Like define-runtime-path but declares and binds multiple paths at once.

(define-runtime-path-list identifier expr) SYNTAX

Like define-runtime-path, but expr should produce a list of paths.

(runtime-path module-path) SYNTAX

This form is mainly for use by tools such as executable builders. It expands to a quoted list containing the run-time
paths declared by module-path, returning the compile-time results of the declaration exprs, except that paths
are converted to byte strings. The enclosing module must require (directly or indirectly) the module specified by
module-path, which is an unquoted module path.

138

41. sandbox.ss: Sandboxed Evaluation

To load: (require (lib "sandbox.ss"))

The main function that is provided by this module is make-evaluator. The rest of this module is mostly for
customization and interaction with sandboxed evaluators. This module can be used in both MzScheme and MrEd (in
the latter, a separate eventspace is used for the sandbox).

Note: this module does not provide a test-suite framework, but can be used as the evaluation engine for one. Evaluating
expressions throws exceptions in the usual ways — but exceptions are raised for additional problems like accessing
the file system, running out of time or memory, etc.

(make-evaluator language requires input-program) PROCEDURE

This function is used to create an evaluator from a given input-program, using a given language and
requires specification. The result is a sandboxed evaluator, working in an environment that is completely pro-
tected against malicious or buggy code.

The input-program holds the input program in one of the following ways:

• an input port will be used to read the program;

• a string or a byte string holding the complete input;

• a path that names a file holding the input;

• an S-expression or a syntax value — used as-is (s-expressions are converted to syntax first, see also
get-uncovered-expressions below.). Note that it is a single expressions, not a list, but see below
for additional ways of invoking make-evaluator.

In the first three cases, the contents is read using the sandbox-reader (see below), with line-counting enabled for
sensible error messages, and with ’program as the source (used for testing coverage). In the last case, the input is
expected to be the complete program, and is converted to a syntax (using ’program as the source), unless it already
is a syntax. See below for providing multiple arguments.

The language specification can be:

• A symbol indicating a built-in language (currently, only ’mzscheme, ’r5rs, or a symbol indicating a
teaching language: ’beginner, ’beginner-abbr, ’intermediate, ’intermediate-lambda, or
’advanced. The teaching languages and the ’r5rs imply additional customization of the environment (cur-
rently only read-related parameters1 are set).

• A list that begins with a ’lib, ’file, or ’planet, which stands for the language defined by this (quoted)
module specification, or a string specifying a relative module file name directly.

1Note that reading does not affect programs given as S-expression or syntax

139

41. sandbox.ss: Sandboxed Evaluation

• A list that begins with a ’begin means that the code will not be evaluated in a module context at all, instead,
it will simply be evaluated in a new namespace, after evaluating the expressions in the tail of this list2.

The requires list specifies additional code to load for the input program. It can be one of:

• a list of module specifications to load into the program;

• a list that begins with a ’begin is arbitrary code that is prefixed into the submitted program.

There are two additional ways to call make-evaluator. The first can be used when you want to provide the
program as a sequence of S-expressions or syntax values, but you want more than a single form:

(make-evaluator language requires input-program · · ·) PROCEDURE

You can also provide no expressions at all, which is a convenient way to get a clean sandbox. For example, to get an
empty MzScheme read-eval-print loop, or a module-based evaluator3:

(define mz-repl-eval (make-evaluator ’(begin) ’()))
(define mz-module-eval (make-evaluator ’mzscheme ’()))

The ’(begin) language specification avoids a module-based read-eval-print loop, as described above.

The third form for calling make-evaluator, is for cases where you have code that is already in a complete module
form:

(make-evaluator input-program) PROCEDURE

The input-program argument must specify code that has a single module form. The form is inspected and
determines the language that is to be used. This means that these two evaluators:

(define ev1 (make-evaluator ’(module foo mzscheme ...)))
(define ev2 (make-evaluator ’(begin) ’()

’(module foo mzscheme ...)
’(require foo)))

are similar, except that the first is a module-based read-eval-print loop.

make-evaluator returns an evaluation function that works in the context of the given program. In most cases,
this means that evaluation happens in the namespace of the program’s module, unless the language argument is a
’begin expression. ’(begin) is therefore a convenient way to get a plain read-eval-print loop.

The evaluation function expects as input a value similar to the input-program argument to make-evaluator:
a string or byte string holding a sequence of expressions, a path for a file holding expressions, an S-expression, or
a syntax object. If the evaluator receives an eof value, it will be terminated and raise errors from that point on
(kill-evaluator terminates the evaluator without raising an error, see below).

The evaluator operates in an isolated and limited environment:

• it uses a new custodian and namespace, under MrEd it is also put in its own eventspace;

• since the evaluator is dynamic, both run-time and syntax-time exceptions can be caught in a uniform way;
2This is not using a begin form, because the language might not provide such a binding.
3There are certain differences between the two options in the way they treat definitions.

140

41. sandbox.ss: Sandboxed Evaluation 41.1. Customizing Evaluators

• the evaluator works under the sandbox-security-guard that restricts file system and network access (see
below);

• each evaluation is wrapped in a call-with-limits (see sandbox-eval-limits and set-eval-limits
below).

Evaluation can also be instrumented to track evaluation information if sandbox-coverage-enabled is set.

41.1 Customizing Evaluators

The evaluators that make-evaluator creates can be customized via several parameters. Note that these parameters
affect newly created evaluators, changing them does not have an effect on already running evaluators.

(sandbox-init-hook [thunk]) PROCEDURE

A parameter that holds a thunk to be called for initializing a new evaluator. The hook is called just before the program
is evaluated, in a newly created evaluator context. It can be used to setup environment parameters related to reading,
writing, evaluation, etc. Note that certain languages (’r5rs and the teaching languages) have initializations specific
to the language — the init-hook is used after that initialization, so it is possible to override some settings.

(sandbox-reader [proc]) PROCEDURE

A parameter that holds a one-argument function that reads all expressions from the current-input-port. The function
will be used to read program source (unless an S-expression or a syntax object is provided). The reader function will
receive a value to be used as input-source, and it should read its current-input and return a list of syntax objects (with
the given value for the source). The default reader does a simple loop with (read-syntax src-arg).

(sandbox-input [input-spec]) PROCEDURE

This is a parameter that specifies the input for evaluations that happen in an evaluator. It defaults to #f, which means
that evaluators work in a dynamic context where no input is available. It can also be set to:

• values that are accepted as an input-program argument to make-evaluator (except for S-expressions
and syntax values): a string or a byte string specify the complete input, an input port is used as is, and a path
indicates an input file;

• the symbol ’pipe, which will make it use a pipe for input, and put-input can return the input end of the
pipe or write to it;

• a thunk, which will be invoked to get a port (e.g., using current-input-port means that the evaluator
input is the same as the calling context’s input).

(sandbox-output [output-spec]) PROCEDURE

A parameter that specifies the output for evaluations that happen in a make-evaluator function. It defaults to #f,
which simply discards all such output. It can also be set to:

• an output port, which will be used as is;

• the symbol ’bytes, which will make get-output (see below) return the complete output as a byte string;

• the symbol ’string, similar to the above, but uses a string;

141

41.1. Customizing Evaluators 41. sandbox.ss: Sandboxed Evaluation

• the symbol ’pipe, which will make it use a pipe for output, and get-output returns the input end of the
pipe;

• a thunk, which will be invoked to get a port (e.g., using current-output-port means that the evaluator
output is not diverted).

(sandbox-error-output [error-spec]) PROCEDURE

This parameter is similar to sandbox-output above, but applies to the error output. (See also
get-error-output below.) Note that the sandbox’s error output is set after its output, so us-
ing current-output-port for this parameter means that it is linked to the output port specified by
sandbox-output.

The default is current-error-port which means that the error output of the generated evaluator goes to the
calling context’s error port.

(sandbox-coverage-enabled [thunk]) PROCEDURE

This is a boolean parameter that controls whether syntactic coverage information is collected by sandbox evaluators.
If it set to true, the mzlib/private/sandbox-coverage.ss module will be required at the new sandbox top-level so
coverage information is collected. You can retrieve this information using the get-uncovered-expressions
function that is described below.

(sandbox-namespace-specs [specs]) PROCEDURE

A parameter that holds a list of values that specify how to create a namespace for evaluation in make-evaluator.
The first item in the list is a thunk that creates the namespace, and the rest are require specs for modules that are to
be attached to the created namespace (using namespace-attach-module). The default is namespace creator
function is make-namespace if running in MzScheme, or make-namespace-with-mred if in MrEd, and no
module specs in both cases.

The module specs are needed for sharing module instantiations between the sandbox and the caller. For example,
sandbox code that return posn values (from lang/posn.ss) will not be recognized as such by your own code by
default, since the sandbox will have its own struct type for posns. To be able to use such values, you should have
(lib "posn.ss" "lang") in the list of module specs (the rest of the sandbox-namespace-specs value).

If you’re testing code that uses a teaching language, the following piece of code can be helpful:

(sandbox-namespace-specs
(let ([specs (sandbox-namespace-specs)])
‘(,(car specs)
,@(cdr specs)
(lib "posn.ss" "lang")
,@(if mred? ’((lib "cache-image-snip.ss" "mrlib")) ’()))))

(sandbox-override-collection-paths [paths]) PROCEDURE

A parameter that holds a list of collection directories. An evaluator that is created by make-evaluator will put
these directories (ones that actually exist) in front of the collections in current-library-collection-paths
— so you can put collection there that will override normal ones. This is useful for cases when you want to test code
using an alternate test-friendly version of a collection, for example, testing code that uses GUI (like the “world”
teachpack) can be done using a fake library that provides the same interface but no actual interaction. The default is
null.

142

41. sandbox.ss: Sandboxed Evaluation 41.2. Interacting with Evaluators

(sandbox-security-guard [guard-proc]) PROCEDURE

A parameter that holds a security guard that is used by sandboxed evaluations. The default value is a security guard that
forbids all I/O except for things in sandbox-path-permissions, and uses the sandbox-network-guard
for network connections. These parameters are described next.

(sandbox-path-permissions [permissions]) PROCEDURE

This parameter configures the behavior of the default sandbox security guard by listing paths and access modes that
are allowed for them. The contents of this parameter is a list of specifications, each one is a list of an access mode (a
symbol) and a byte-regexp for paths that are granted this access.

The access mode symbol is one of: ’execute, ’write, ’delete, ’read, or ’exists. These symbols are
in decreasing order: each implies access for the following modes too (e.g., ’read allows reading or checking for
existence).

The path regexp is used to identify paths that are granted access. It can also be given as a path (or a string or a byte
string) which will be (made into a complete path, expanded, and simplified, then) converted to a regexp that allows the
path and sub-directories (e.g., /foo/bar apply to /foo/bar/baz).

The default value is null, but when an evaluator is created it is augmented by ’read permissions that make it pos-
sible to use collection libraries (including sandbox-override-collection-paths), as well as files that the
program requires.

(sandbox-network-guard [proc]) PROCEDURE

This parameter holds a procedure that is used (as is) by the default sandbox-security-guard. The default
forbids all network connection.

(sandbox-eval-limits [limits]) PROCEDURE

A parameter that determines the default limits on each use of a make-evaluator function — including the initial
evaluation of the input program. Its value should be a list of two numbers, the first is a timeout value in seconds,
and the second is a memory limit in megabytes. Either one can be #f for disabling the corresponding limit (or the
parameter can be set to #f to disable all limits, in case more are available in future versions). When limits are set,
call-with-limits (see below) is wrapped around each use of the evaluator, so consuming too much time or
memory results in an exception. You can change the limits of a running evaluator using set-eval-limits below.

41.2 Interacting with Evaluators

(kill-evaluator evaluator) PROCEDURE

Releases the resources that are held by the evaluator (shuts down the evaluator’s custodian). Attempts to use an
evaluator after killing it will raise an error, attempts to kill a dead evaluator are ignored. Releases resources, from now
on using it will raise an error. This is similar to sending an eof value to the evaluator (except that an eof value will
raise an error immediately).

(set-eval-limits evaluator sec mb) PROCEDURE

Changes the per-expression limits that the evaluator uses to sec seconds and mb megabytes (either one
can be #f indicating no limit). This procedure should be used to modify an existing evaluator limits —
changing the sandbox-eval-limits parameter (see above) does not affect existing evaluators. See also

143

41.2. Interacting with Evaluators 41. sandbox.ss: Sandboxed Evaluation

call-with-limits below.

(put-input evaluator) INP procedure

If sandbox-input is ’pipe when an evaluator is created, then this procedure can be used to retrieve the output
port end of the pipe (when used with no arguments), or to add a string or a byte string into the pipe. It can also be used
with eof, which closes the pipe.

(get-output evaluator) PROCEDURE (get-error-output evaluator) PROCEDURE

These functions return the output (error output) of the evaluator, in a way that depends on the setting of
sandbox-output (sandbox-error-output):

• if it was ’pipe, then get-output returns the input port end of the created pipe;

• if it was ’bytes or ’string then get-output returns the accumulated output and resets the evaluator’s
output to a new output string or byte string (so each call returns a different piece of the evaluator’s output);

• otherwise it returns #f.

(get-uncovered-expressions evaluator [prog? src]) PROCEDURE

Retrieves uncovered expressions (a list of syntax values) from an evaluator. This can only be done if the
sandbox-coverage-enabled parameter is turned on, otherwise an error is raised indicating that no coverage
information is available.

The prog? argument specifies whether these are expressions that were uncovered after only the original input pro-
gram was evaluated (#t) or after all later uses of the evaluator (#f). (Using #t retrieves a list that is saved after the
input program is evaluated, and before the evaluator is used, so the result is always the same.) The default value is #t,
which is useful for testing student programs, where you want to find out if a submission has sufficient test coverage;
using #f is useful for writing test suites for a program, where you want to ensure that your tests cover the whole code.

The second optional argument, src, specifies that the result should be filtered to hold only syntax values with that
source field (using syntax-source). The default is a symbol, ’program, which is the source associated with
the input program by the default sandbox-reader — which means that you only get syntax values from the input
program, not from required modules and not from expressions that were passed to the evaluator. You can either provide
a different value for filtering, or use #f which will avoid any filtering.

The resulting list of syntax values has at most one expression for each position and span. This means that the con-
tents may be unreliable, but the position information is (it always indicates source code that would be painted red in
DrScheme when coverage information is used).

Note that if your input program is a sequence of syntax values, then you should wither make sure that they have
’program as the source field, or use the src argument. Note that if you use a sequence of S-expressions for an input
program, then coverage information will be unreliable, since each expression is assigned a single source location (the
first will appear to come from the first line and first character, the second from the second line etc, each with a span
value of 1).

144

41. sandbox.ss: Sandboxed Evaluation 41.3. Miscellaneous

41.3 Miscellaneous

mred? BOOLEAN

A boolean value, bound to #t if we’re currently running in MrEd, #f if in plain MzScheme. The idea is that you can
use this module from either MzScheme or MrEd. This can help writing code that adapts to the executable that was
used.

(call-with-limits sec mb thunk) PROCEDURE

This function executes the given thunk with memory and time restrictions: if execution consumes more than mb
megabytes or more than sec seconds, then the computation is aborted and the exn:fail:resource exception is
raised. Otherwise the result of the thunk is returned as usual (a value, multiple values, or an exception). Each of the
two limits can be #f to specify no limit4.

This is used by sandboxed evaluators, according to the sandbox-eval-limits setting and uses of
set-eval-limits: each expression evaluation is protected from timeouts and memory problems. This means
that you usually have no need for call-with-limits — but you may want to limit a whole testing session instead
of each expression (e.g., when you want to run tests faster).

(with-limits sec mb body · · ·) SYNTAX

A macro version of call-with-limits.

(exn:fail:resource? exn) PROCEDURE (exn:fail:resource-resource exn) PROCEDURE

A predicate and accessor for exceptions that are raised by call-with-limits. The resource field holds a
symbol, either ’time or ’memory.

4Note: memory limits requires running in a 3m executable.

145

42. sendevent.ss: AppleEvents

To load: (require (lib "sendevent.ss"))

42.1 AppleEvents

(send-event receiver-byte-string event-class-byte-string event-id-byte-string [direct-argument-v
argument-list]) PROCEDURE

Sends an AppleEvent or raises exn:fail:unsupported. Currently AppleEvents are supported only within MrEd
under Mac OS X.

The receiver-byte-string, event-class-byte-string, and event-id-byte-string arguments
specify the signature of the receiving application, the class of the AppleEvent, and the ID of the AppleEvent. Each of
these must be a four-character byte string, otherwise the exn:fail:contract exception is raised.

The direct-argument-v value is converted (see below) and passed as the main argument of the event; if
direct-argument-v is void, no main argument is sent in the event. The argument-list argument is a
list of two-element lists containing a typestring and value; each typestring is used ad the keyword name of an Ap-
pleEvent argument for the associated converted value. Each typestring must be a four-character string, otherwise the
exn:fail:contract exception is raised. The default values for direct-argument and arguments are void
and null, respectively.

The following types of MzScheme values can be converted to AppleEvent values passed to the receiver:

#t or #f⇒ Boolean
small integer ⇒ Long Integer

inexact real number ⇒ Double
string ⇒ Characters

list of convertible values ⇒ List of converted values
#(file pathname)⇒ Alias (file exists) or FSSpec (does not exist)

#(record (typestring v) · · ·)⇒ Record of keyword-tagged values

If other types of values are passed to send-event for conversion, the exn:fail:unsupported exception is
raised.

The send-event procedure does not return until the receiver of the AppleEvent replies. The result of send-event
is the reverse-converted reply value (see below), or the exn:fail exception is raised if there is an error. If there is
no error or return value, send-event returns void.

The following types of AppleEvent values can be reverse-converted into a MzScheme value returned by
send-event:

146

42. sendevent.ss: AppleEvents 42.1. AppleEvents

Boolean ⇒ #t or #f
Signed Integer ⇒ integer

Float, Double, or Extended ⇒ inexact real number
Characters ⇒ string

list of reverse-convertible values ⇒ List of reverse-converted values
Alias or FSSpec ⇒ #(file pathname)

Record of keyword-tagged values ⇒ #(record (typestring v) · · ·)

If the AppleEvent reply contains a value that cannot be reverse-converted, the exn:fail exception is raised.

147

43. serialize.ss: Serializing Data

To load: (require (lib "serialize.ss"))

(define-serializable-struct id (field-id · · ·) [inspector-expr]) SYNTAX

(define-serializable-struct (id super-id) (field-id · · ·) [inspector-expr]) SYN-
TAX

Like define-struct, but instances of the structure type are serializable with serialize. This form is allowed
only at the top level or in a module’s top level (so that deserialization information can be found later).

In addition to the bindings generated by define-struct, define-serializable-struct binds
deserialize-info:id-v0 to deserialization information. Furthermore, in a module context, it automatically
provides this binding.

Naturally, define-serializable-struct enables the construction of structure instances from places where
make-id is not accessible, since deserialization must construct instances. Furthermore, define-serializable-struct
provides limited access to field mutation, but only for instances generated through the deserialization information
bound to deserialize-info:id-v0. See make-deserialize-info for more information.

The -v0 suffix on the deserialization enables future versioning on the structure type through define-serializable-struct/version.

When super-id is supplied, compile-time information bound to super-id must include all of the supertype’s
field accessors. If any field mutator is missing, the structure type will be treated as immutable for the purposes of
marshaling (so cycles involving only instances of the structure type cannot be handled by the deserializer).

Example:

(define-serializable-struct point (x y))
(deserialize (serialize (make-point 1 2))) ; ⇒ (make-point 1 2)

(define-serializable-struct/version id vers-num (field-id · · ·) ((other-vers-num
make-proc-expr cycle-make-proc-expr)) [inspector-expr]) SYN-
TAX (define-serializable-struct/version (id super-id) vers-num (field-id · · ·)

((other-vers-num make-proc-expr cycle-make-proc-expr)) [inspector-expr]) SYNTAX

Like define-serializable-struct, but the generated deserializer binding is deserialize-info:id-vers-num.
In addition, deserialize-info:id-other-vers-num is bound for each other-vers-num.

Each make-proc-expr should produce a procedure, and the procedure should accept as many argument as fields in
the corresponding version of the structure type, and it produce an instance of id. Each graph-make-proc-expr
should produce a procedure of no arguments; this procedure should return two values: an instance x of id (typically
with #f for all fields) and a procedure that accepts another instance of id and copies its field values into x.

148

43. serialize.ss: Serializing Data

Example:

(define-serializable-struct point (x y))
(define ps (serialize (make-point 1 2)))
(deserialize ps) ; ⇒ (make-point 1 2)

(define x (make-point 1 10))
(set-point-x! x x)
(define xs (serialize x))
(deserialize xs) ; ⇒ x0, where x0 is (make-point x0 10)

(define-serializable-struct/versions point 1 (x y z)
([0
;; Constructor for simple v0 instances:
(lambda (x y) (make-point x y 0))
;; Constructor for v0 instance in a cycle:
(lambda ()
(let ([p0 (make-point #f #f 0)])
(values
p0
(lambda (p)
(set-point-x! p0 (point-x p))
(set-point-y! p0 (point-y p))))))]))

(deserialize (serialize (make-point 4 5 6))) ; ⇒ (make-point 4 5 6)
(deserialize ps) ; ⇒ (make-point 1 2 0)
(deserialize xs) ; ⇒ x1, where x1 is (make-point x1 10 0)

(serialize v) PROCEDURE

Returns a value that encapsulates the value v . This value includes only readable values, so it can be written to a
stream with write, later read from a stream using read, and then converted to a value like the original using
deserialize. Serialization followed by deserialization produces a value with the same graph structure and muta-
bility as the original value, but the serialized value is a plain tree (i.e., no sharing).

The following kinds of values are serializable:

• structures created through define-serializable-struct or define-serializable-struct/version,
or more generally structures with the prop:serializable property (see prop:serializable for more
information);

• instances of classes defined with define-serializable-class or define-serializable-class
(see §6.7);

• booleans, numbers, characters, symbols, strings, byte strings, paths (for a specific convention), void, and the
empty list;

• pairs, vectors, boxes, and hash tables; and

• date and arity-at-least structures.

Of course, serialization succeeds for a compound value, such as a pair, only if all content of the value is serializable.
If a value given to serialize is not completely serializable, the exn:fail:contract exception is raised.

See deserialize for information on the format of serialized data.

149

43. serialize.ss: Serializing Data

(deserialize v) PROCEDURE

Given a value v that was produced by serialize, produces a value like the one given to serialize, including
the same graph structure and mutability.

A serialized representation v is a list of six elements:

• A non-negative exact integer s-count that represents the number of distinct structure types represented in the
serialized data.

• A list s-types of length s-count, where each element represents a structure types. Each structure type is
encoded as a pair. The car of the pair is #f for a structure whose deserialization information is defined at the
top level, otherwise it is a quoted module path or a byte string (to be converted into a platform-specific path using
bytes->path) for a module that exports the structure’s deserialization information. The cdr of the pair is
the name of a binding (at the top level or exported from a module) for deserialization information. These two
are used with either namespace-variable-binding or dynamic-require to obtain deserialization
information. See make-deserialization-info for more information on the binding’s value.

• A non-negative exact integer, g-count that represents the number of graph points contained in the following
list.

• A list graph of length g-count, where each element represents a serialized value to be referenced during the
construction of other serialized values. Each list element is either a box or not:

– A box represents a value that is part of a cycle, and for deserialization, it must be allocated with #f for
each of its fields. The content of the box indicates the shape of the value:
∗ a non-negative exact integer i for an instance of a structure type that is represented by the ith element

of the s-types list;
∗ ’c for a pair;
∗ ’b for a box;
∗ a pair whose car is ’v and whose cdr is a non-negative exact integer s for a vector of length s; or
∗ a list whose first element is ’h and whose remaining elements are flags for make-hash-table for

a hash table.
∗ ’date for a date structure;
∗ ’arity-at-least for an arity-at-least structure;

The #f-filled value will be updated with content specified by the fifth element of the serialization list v .
– A non-box represents a serial value to be constructed immediately, and it is one of the following:

∗ a boolean, number, character, symbol, or empty list, representing itself.
∗ a string, representing an immutable string.
∗ a byte string, representing an immutable byte string.
∗ a pair whose car is ’? and whose cdr is a non-negative exact integer i; it represents the value

constructed for the ith element of graph, where i is less than the position of this element within
graph.

∗ a pair whose car is a number i; it represents an instance of a structure type that is described by the
ith element of the s-types list. The cdr of the pair is a list of serials representing arguments to be
provided to the structure type’s deserializer.

∗ a pair whose car is ’void, representing void.
∗ a pair whose car is ’u and whose cdr is either a byte string or character string; it represents a

mutable byte or character string.
∗ a pair whose car is ’p and whose cdr is a byte string; it represents a path using the serializer’s path

convention (deprecated in favor of ’p+).
∗ a pair whose car is ’p+, whose cadr is a byte string, and whose cddr is one of the possible symbol

results of system-path-convetion-type; it represents a path using the specified convention.
∗ a pair whose car is ’c and whose cdr is a pair of serials; it represents an immutable pair.
∗ a pair whose car is ’c! and whose cdr is a pair of serials; it represents a mutable pair.

150

43. serialize.ss: Serializing Data

∗ a pair whose car is ’v and whose cdr is a list of serials; it represents an immutable vector.
∗ a pair whose car is ’v! and whose cdr is a list of serials; it represents a mutable vector.
∗ a pair whose car is ’b and whose cdr is a serial; it represents an immutable box.
∗ a pair whose car is ’b! and whose cdr is a serial; it represents a mutable box.
∗ a pair whose car is ’h, whose cadr is either ’! or ’- (mutable or immutable, respectively), whose
caddr is a list of symbols to be used as flags for make-hash-table, and whose cdddr is a list
of pairs, where the car of each pair is a serial for a hash-table key and the cdr is a serial for the
corresponding value.

∗ a pair whose car is ’date and whose cdr is a list of serials; it represents a date structure.
∗ a pair whose car is ’arity-at-least and whose cdr is a serial; it represents an
arity-at-least structure.

• A list of pairs, where the car of each pair is a non-negative exact integer i and the cdr is a serial (as defined
in the previous bullet). Each element represents an update to an ith element of graphs that was specified as
a box, and the serial describes how to construct a new value with the same shape as specified by the box. The
content of this new value must be transferred into the value created for the box in graph.

• A final serial (as defined in the two bullets back) representing the result of deserialize.

The result of deserialize shares no mutable values with the argument to deserialize.

If a value provided to serialize is a simple tree (i.e., no sharing), then the fourth and fifth elements in the serialized
representation will be empty.

(make-deserialize-info make-proc cycle-make-proc) PROCEDURE

Produces a deserialization information record to be used by deserialize. This information is normally tied to
a particular structure because the structure has a prop:serializable property value that points to a top-level
variable or module-exported variable that is bound to deserialization information.

The make-proc procedure should accept as many argument as the structure’s serializer put into a vector; normally,
this is the number of fields in the structure. It should return an instance of the structure.

The cycle-make-proc procedure should accept no arguments, and it should return two values: a structure instance
x (with dummy field values) and an update procedure. The update procedure takes another structure instance generated
by the make-proc, and it transfers the field values of this instance into x.

prop:serializeable PROPERTY

This property identifies structures and structure types that are serializable. The property value should be constructed
with make-serialize-info.

(make-serialize-info to-vector-proc deserialize-id can-cycle? dir-path) PROCE-
DURE

Produces a value to be associated with a structure type through the prop:serializable property. This value is
used by serialize.

The to-vector-proc procedure should accept a structure instance and produce a vector for the instance’s content.

The deserialize-id value indicates a binding for deserialize information, to either a module export or a top-level
definition. The deserialize-id value can be an identifier syntax object, a symbol, or a pair:

• If deserialize-id is an identifier, and if (identifier-binding deserialize-id) produces a

151

43. serialize.ss: Serializing Data

list, then the third element is used for the exporting module, otherwise the top-level is assumed. In either case,
syntax-e is used to obtain the name of an exported identifier or top-level definition.

• If deserialize-id is a symbol, it indicates a top-level variable that is named by the symbol.

• If deserialize-id is a pair, the car must be a symbol to name an exported identifier, and the cdr must
be either a symbol or a module path index to specify the exporting module.

See make-deserialize-info and deserialize for more information.

The can-cycle? argument should be false if instances should not be serialized in such a way that deserialization
requires creating a structure instance with dummy field values and then updating the instance later.

The dir-path argument should be a directory path that is used to resolve a module reference for the bind-
ing of deserialize-id. This directory path is used as a last resort when deserialize-id indicates
a module that was loaded through a relative path with respect to the top level. Usually, it should be (or
(current-load-relative-directory) (current-directory)).

(serializable? v) PROCEDURE

Returns #t if v appears to be serializable, without checking the content of compound values, and #f otherwise. See
serialize for an enumeration of serializable values.

152

44. shared.ss: Graph Constructor Syntax

To load: (require (lib "shared.ss"))

(shared (shared-binding · · ·) body-expr · · ·1) SYNTAX

Binds variables with shared structure according to shared-bindings and then evaluates the body-exprs, re-
turning the result of the last expression.

The shared form is similar to letrec. Each shared-binding has the form:

(variable value-expr)

The variables are bound to the result of value-exprs in the same way as for a letrec expression, except for
value-exprs with the following special forms (after partial expansion):

• (cons car-expr cdr-expr)
• (list element-expr · · ·)
• (box box-expr)
• (vector element-expr · · ·)
• (prefix:make-name element-expr · · ·) where prefix:name is the name of a structure type (or,

more generally, is bound to expansion-time information about a structure type)

The cons above means an identifier that is module-identifier=? either to the cons export from mzscheme or
to the top-level cons. The same is true of list, box, and vector. In the \var{prefix:}make-\var{name}
case, the expansion-time information associated with prefix:name must provide a constructor binding and a com-
plete set of field mutator bindings.

For each of the special forms, the cons cell, list, box, vector, or structure is allocated with undefined content. The
content expressions are not evaluated until all of the bindings have values; then the content expressions are evaluated
and the values are inserted into the appropriate locations. In this way, values with shared structure (even cycles) can
be constructed.

Examples:

(shared ([a (cons 1 a)]) a) ; => infinite list of 1s
(shared ([a (cons 1 b)]

[b (cons 2 a)])
a) ; => (1 2 1 2 1 2 · · ·)

(shared ([a (vector b b b)]
[b (box 1)])

(set-box! (vector-ref a 0) 2)
a) ; => #(#&2 #&2 #&2)

153

45. string.ss: String Utilities

To load: (require (lib "string.ss"))

(eval-string str [err-handler]) PROCEDURE

Reads and evaluates S-expressions from the string str, returning results for all of the expressions in the string.
Note that if str contains only whitespace and comments, zero values are returned, and if str contains multiple
expressions, the result will be contain multiple values from all subexpression. str can also be a byte string.

err-handler can be:

• #f (the default) which means that errors are not caught;

• a one-argument procedure, which will be used with an exception (when an error occurs) and its result will be
returned

• a thunk, which will be used to prduce a result.

(expr->string expr) PROCEDURE

Prints expr into a string and returns the string.

(real->decimal-string n [digits-after-decimal-k]) PROCEDURE

Prints n into a string and returns the string. The printed form of n shows exactly digits-after-decimal-k
digits after the decimal point, where digits-after-decimal-k defaults to 2.

Before printing, the n is converted to an exact number, multiplied by (expt 10 digits-after-decimal-k),
rounded, and then divided again by (expt 10 digits-after-decimal-k). The result of ths process is an
exact number whose decimal representation has no more than digits-after-decimal-k digits after the decimal
(and it is padded with trailing zeros if necessary). The printed for uses a minus sign if n is negative, and it does not
use a plus sign if n is positive.

(read-from-string str [err-handler]) PROCEDURE

Reads the first S-expression from the string (or byte string) str and returns it. The err-handler is as in
eval-string.

(read-from-string-all str [err-handler]) PROCEDURE

Reads all S-expressions from the string (or byte string) str and returns them in a list. The err-handler is as in
eval-string.

154

45. string.ss: String Utilities

(regexp-match* pattern string [start-k end-k]) PROCEDURE

(regexp-match* pattern bytes [start-k end-k]) PROCEDURE

(regexp-match* pattern input-port [start-k end-k]) PROCEDURE

Like regexp-match (see §10 in PLT MzScheme: Language Manual), but the result is a list of strings or byte
strings corresponding to a sequence of matches of pattern in string, bytes, or input-port. (Unlike
regexp-match, results for parenthesized sub-patterns in pattern are not returned.) If pattern matches a
zero-length string or byte sequence along the way, the exn:fail exception is raised.

If string, bytes, or input-port contains no matches (in the range start-k to end-k), null is re-
turned. Otherwise, each item in the resulting list is a distinct substring or byte sequence from string, bytes,
or input-port that matches pattern. The end-k argument can be #f to match to the end of string or
baytes or to an end-of-file in input-port.

(regexp-match/fail-without-reading pattern input-port [start-k end-k output-port])
PROCEDURE

Like regexp-match on input ports (see §10 in PLT MzScheme: Language Manual), except that if the match fails,
no characters are read and discarded from input-port.

This procedure is especially useful with a pattern that begins with a start-of-string caret (“ˆ”) or with a non-#f
end-k, since each limits the amount of peeking into the port.

(regexp-match-exact? pattern string) PROCEDURE

(regexp-match-exact? pattern bytes) PROCEDURE

(regexp-match-exact? pattern input-port) PROCEDURE

This procedure is like MzScheme’s built-in regexp-match (see §10 in PLT MzScheme: Language Manual), but
the result is always #t or #f; #t is only returned when the entire content of string, bytes, or input-port
matches pattern.

(regexp-match-peek-positions* pattern input-port [start-k end-k]) PROCEDURE

Like regexp-match-positions*, but it works only on input ports, and the port is peeked instead of read for
matches.

(regexp-match-positions* pattern string [start-k end-k]) PROCEDURE

(regexp-match-positions* pattern bytes [start-k end-k]) PROCEDURE

(regexp-match-positions* pattern input-port [start-k end-k]) PROCEDURE

Like regexp-match-positions (see §10 in PLT MzScheme: Language Manual), but the result is a list
of integer pairs corresponding to a sequence of matches of pattern in string-or-input-port. (Unlike
regexp-match-positions, results for parenthesized sub-patterns in pattern are not returned.) If pattern
matches a zero-length string along the way, the exn:fail exception is raised.

155

45. string.ss: String Utilities

If string, bytes, or input-port contains no matches (in the range start-k to end-k), null is returned.
Otherwise, each position pair in the resulting list corresponds to a distinct substring in string or byte sequence in
bytes, input-port, or string (as UTF-8 encoded when pattern is a byte pattern), that matches pattern.
The end-k argument can be #f to match to the end of string or bytes or to an end-of-file in input-port.

(regexp-quote str [case-sensitive?]) PROCEDURE

(regexp-quote bytes [case-sensitive?]) PROCEDURE

Produces a string or byte string suitable for use with regexp (see §10 in PLT MzScheme: Language Manual) to match
the literal sequence of characters in str or sequence of bytes in bytes. If case-sensitive? is true, the resulting
regexp matches letters in str or bytes case-insensitively, otherwise (and by default) it matches case-sensitively.

(regexp-replace-quote str) PROCEDURE

(regexp-replace-quote bytes) PROCEDURE

Produces a string suitable for use as the third argument to regexp-replace (see §10 in PLT MzScheme: Language
Manual) to insert the literal sequence of characters in str or bytes in bytes as a replacement. Concretely, every
backslash and ampersand in str or bytes is protected by a quoting backslash.

(glob->regexp str [hide-dots? case-sensitive? simple?]) PROCEDURE

Produces a regexp for a an input “glob pattern” in str. A glob pattern is one that matches “*” with any string, “?”
with a single character, and character ranges are the same as in regexps. In addition, the resulting regexp does not
match strings that begin with a period, unless the glob string begins with a literal period. The resulting regexp can be
used with string file names to check the glob pattern. If the glob pattern is provided as a byte string, the result is a byte
regexp.

If hide-dots? is true (the default), the resulting regexp will not match names that begin with a dot.

If case-sensitive? is given, it determines whether the resulting regexp is case-sensitive; otherwise the default
case sensitivity depends on the system-type.

Finally, if simple? is provided as #t, then the glob is not expected to contain ranges (if it does, they will be
regexp-quoted).

(regexp-split pattern string [start-k end-k]) PROCEDURE

(regexp-split pattern bytes [start-k end-k]) PROCEDURE

(regexp-split pattern input-port [start-k end-k]) PROCEDURE

The complement of regexp-match* (see above): the result is a list of strings or byte strings from in string,
bytes, or input-port that are separated by matches to pattern; adjacent matches are separated with "" or
#"". If pattern matches a zero-length string or byte sequence along the way, the exn:fail exception is raised.

If string, bytes, or input-port contains no matches (in the range start-k to end-k), the result is be a
list containing string (UTF-8 encoded if pattern is a byte pattern), bytes, or the content of input-port —
from start-k to end-k. If a match occurs at the beginning of string, bytes, or input-port (at start-k),
the resulting list will start with an empty string or empty byte string, and if a match occurs at the end (at end-k), the

156

45. string.ss: String Utilities

list will end with an empty string or empty byte string. The end-k argument can be #f, in which case splitting goes
to the end of string or bytes or to an end-of-file in input-port.

(string-lowercase! str) PROCEDURE

Destructively changes str to contain only lowercase characters.

(string-uppercase! str) PROCEDURE

Destructively changes str to contain only uppercase characters.

157

46. struct.ss: Structure Utilities

To load: (require (lib "struct.ss"))

(copy-struct struct-id struct-expr (accessor-id field-expr) · · ·) SYNTAX

This form provides “functional update” for structure instances. The result of evaluating struct-expr must be an
instance of the structure type named by struct-id. The result of the copy-struct expression is a fresh instance
of struct-id with the same field values as the result of struct-expr, except that the value for the field accessed
by each accessor-id is replaced by the result of field-expr.

The result of struct-expr might be an instance of a sub-type of struct-id, but the result of the copy-struct
expression is an immediate instance of struct-id. If struct-expr does not produce an instance of
struct-id, the exn:fail:contract exception is raised.

If any accessor-id is not bound to an accessor of struct-id (according to the expansion-time information
associated with struct-id), or if the same accessor-id is used twice, then a syntax error is raised.

(define-struct/properties id (field-id ···) ((prop-expr val-expr) ···) [inspector-expr])
SYNTAX

Like define-struct, but properties (see §4.3 in PLT MzScheme: Language Manual) can be attached to the struc-
ture type. Each prop-expr should produce a structure-type property value, and each val-expr produces the
corresponding value for the property.

Example:

(define-struct/properties point (x y)
([prop:custom-write (lambda (p port write?)

(fprintf port "(˜a, ˜a)"
(point-x p)
(point-y p)))]))

(display (make-point 1 2)) ; prints (1, 2)

(make-->vector struct-id) SYNTAX

This form builds a function that accepts a struct instance (matching struct-id) and provides a vector of the fields
of the struct.

158

47. stxparam.ss: Syntax Parameters

To load: (require (lib "stxparam.ss"))

(define-syntax-parameter identifier expr) SYNTAX

Binds identifier as syntax to a syntax parameter. The expr is an expression in the transformer environment that
serves as the default value for the syntax parameter.

The identifier can be used with syntax-parameterize or syntax-parameter-value (in a trans-
former). If expr produces a procedure of one argument or a make-set!-transformer result, then
identifier can be used as a macro. If expr produces a rename-transformer result, then identifier
can be used as a macro that expands to a use of the target identifier, but syntax-local-value of identifier
does not produce the target’s value.

(syntax-parameterize ((identifier expr) · · ·) body-expr · · ·1) SYNTAX

Each identifier must be bound to a syntax parameter using define-syntax-parameter. Each expr is
an expression in the transformer environment. During the expansion of the body-exprs, the value of each expr is
bound to the corresponding identifier.

If an expr produces a procedure of one argument or a make-set!-transformer result, then its identifier
can be used as a macro during the expansion of the body-exprs. If expr produces a rename-transformer
result, then identifier can be used as a macro that expands to a use of the target identifier, but
syntax-local-value of identifier does not produce the target’s value.

(syntax-parameter-value id-stx) PROCEDURE

This procedure is intended for use in a transformer environment, where id-stx is an identifier bound in the nor-
mal environment to a syntax parameter. The result is the current value of the syntax parameter, as adjusted by
syntax-parameterize form.

(make-parameter-rename-transformer id-stx) PROCEDURE

This procedure is intended for use in a transformer environment, where id-stx is an identifier bound in the normal
environment to a syntax parameter. The result is transformer that behaves as id-stx, but that cannot be used with
syntax-parameterize or syntax-parameter-value.

Using make-parameter-rename-transformer is analogous to defining a procedure that calls a parameter.
Such a procedure can be exported to others to allow access to the parameter value, but not to change the parameter
value. Similarly, make-parameter-rename-transformer allows a syntax parameter to used as a macro, but
not changed.

The result of make-parameter-rename-transformer is not treated specially by syntax-local-value,
unlike the result of MzScheme’s make-rename-transformer.

159

48. surrogate.ss: Proxy-like Design Pattern

To load: (require (lib "surrogate.ss"))

This library provides an abstraction for building an instance of the proxy design pattern. The pattern consists of two
objects, a host and a surrogate object. The host object delegates method calls to its surrogate object. Each host has a
dynamically assigned surrogate, so an object can completely change its behavior merely by changing the surrogate.

The library provides a form, surrogate:

(surrogate method-spec ...) SYNTAX

where

method-spec ::== (method-name arg-spec ...)
| (override method-name arg-spec ...)
| (override-final method-name (lambda () default-expr) arg-spec ...)
arg-spec ::==
| (id ...)
| id

If neither override nor override-final is specified for a method-name, then override is assumed. Use
override

The surrogate form produces four values: a host mixin (a procedure that accepts and returns a class), a host interface,
a surrogate class, and a surrogate interface, in that order.

The host mixin adds one additional field, surrogate, to its argument and a getter method, get-surrogate, and
a setter method, set-surrogate, for changing the field. The set-surrogate form accepts instances the class
returned by the form or #f, and updates the field with its argument. Then, it calls the on-disable-surrogate on
the previous value of the field and on-enable-surrogate for the new value of the field. The get-surrogate
method returns the current value of the field.

The host mixin has a single overriding method for each method-name in the surrogate form. Each of these
methods is defined with a case-lambda with one arm for each arg-spec. Each arm has the variables as arguments
in the arg-spec. The body of each method tests the surrogate field. If it is #f, the method just returns the result
of invoking the super or inner method. If the surrogate field is not #f, the corresponding method of the object
in the field is invoked. This method receives the same arguments as the original method, plus two extras. The extra
arguments come at the beginning of the argument list. The first is the original object. The second is a procedure that
calls the super or inner method (i.e., the method of the class that is passed to the mixin or an extension, or the method
in an overriding class), with the arguments that the procedure receives.

The host interface has the names set-surrogate, get-surrogate, and each of the method-names in the
original form.

The surrogate class has a single public method for each method-name in the surrogate form. These methods are
invoked by classes constructed by the mixin. Each has a corresponding method signature, as described in the above

160

48. surrogate.ss: Proxy-like Design Pattern

paragraph. Each method just passes its argument along to the super procedure it receives.

Note: if you derive a class from the surrogate class, do not both call the super argument and the super method of the
surrogate class itself. Only call one or the other, since the default methods call the super argument.

Finally, the interface contains all of the names specified in surrogate’s argument, plus on-enable-surrogate and
on-disable-surrogate. The class returned by surrogate implements this interface.

161

49. tar.ss: Creating tar Files

To load: (require (lib "tar.ss"))

This library provides a facility for creating tar files. It creates tar files in USTAR format that are identical to files that
the Unix utility pax generates. Note that the USTAR format imposes limits on path lengths. The resulting archives
contain only directories and files (symbolic links are followed), and owner information is not preserved; the owner
that is stored in the archive is always ‘root’.

(tar tar-file path · · ·) PROCEDURE

Creates tar-file, which holds the complete content of all paths. The given paths are all expected to be rel-
ative path names of existing directories and files (i.e., relative to the current directory). If a nested path is pro-
vided as a path, its ancestor directories are also added to the resulting tar file, up to the current directory (using
pathlist-closure; see §11.3.3 in PLT MzScheme: Language Manual).

(tar->output paths [output-port]) PROCEDURE

Packages each of the given paths in a tar format archive that is written directly to the output-port or to the
current output port if output-port is not given. Also, the specified paths are included as-is; if a directory is
specified, its content is not automatically added, and nested directories are added without parent directories.

(See also §59.)

162

50. thread.ss: Thread Utilities

To load: (require (lib "thread.ss"))

(coroutine proc) PROCEDURE

Returns a coroutine object to encapsulate a thread that runs only when allowed. The proc procedure should accept
one argument, and proc is run in the coroutine thread when coroutine-run is called. If coroutine-run
returns due to a timeout, then the coroutine thread is suspended until a future call to coroutine-run. Thus, proc
only executes during the dynamic extent of a coroutine-run call.

The argument to proc is a procedure that takes a boolean, and it can be used to disable suspends (in case proc has
critical regions where it should not be suspended). A true value passed to the procedure enables suspends, and #f
disables suspends. Initially, suspends are allowed.

(coroutine? v) PROCEDURE

Returns #t if v is a coroutine produced by coroutine, #f otherwise.

(coroutine-run timeout-secs coroutine) PROCEDURE

Allows the thread associated with coroutine to execute for up to timeout-secs. If coroutine’s procedure
disables suspends, then the coroutine can run arbitrarily long until it re-enables suspends.

The coroutine-run procedure returns #t if coroutine’s procedure completes (or if it completed earlier), and
the result is available via coroutine-result. The coroutine-run procedure returns #f if coroutine’s
procedure does not complete before it is suspended after timeout-secs. If coroutine’s procedure raises an
exception, then it is re-raised by coroutine-run.

(coroutine-result coroutine) PROCEDURE

Returns the result for coroutine if it has completed with a value (as opposed to an exception), #f otherwise.

(coroutine-kill coroutine) PROCEDURE

Forcibly terminates the thread associated with coroutine if it is still running, leaving the coroutine result un-
changed.

(consumer-thread f [init]) PROCEDURE

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity as f.1 When the returned
procedure is applied, its arguments are queued to be passed on to f, and void is immediately returned. The thread

1The returned procedure actually accepts any number of arguments, but immediately raises exn:fail:contract:arity if f cannot accept
the provided number of arguments.

163

50. thread.ss: Thread Utilities

created by consumer-thread dequeues arguments and applies f to them, removing a new set of arguments from
the queue only when the previous application of f has completed; if f escapes from a normal return (via an exception
or a continuation), the f-applying thread terminates.

The init argument is a procedure of no arguments; if it is provided, init is called in the new thread immediately
after the thread is created.

(run-server port-k conn-proc conn-timeout [handler-proc listen-proc close-proc accept-proc
accept/break-proc]) PROCEDURE

Executes a TCP server on the port indicated by port-k. When a connection is made by a client, conn-proc is
called with two values: an input port to receive from the client, and an output port to send to the client.

Each client connection is managed by a new custodian, and each call to conn-proc occurs in a new thread (managed
by the connection’s custodian). If the thread executing conn-proc terminates for any reason (e.g., conn-proc
returns), the connection’s custodian is shut down. Consequently, conn-proc need not close the ports provided to it.
Breaks are enabled in the connection thread if breaks are enabled when run-server is called.

To facilitate capturing a continuation in one connection thread and invoking it in another, the parameterization of the
run-server call is used for every call to handler-proc. In this parameterization and for the connection’s thread,
the current-custodian parameter is assigned to the connection’s custodian.

If conn-timeout is not #f, then it must be a non-negative number specifying the time in seconds that a connection
thread is allowed to run before it is sent a break signal. Then, if the thread runs longer than (∗ conn-timeout
2) seconds, then the connection’s custodian is shut down. If conn-timeout is #f, a connection thread can run
indefinitely.

If handler-proc is provided, it is passed exceptions related to connections (i.e., exceptions not caught by
conn-proc, or exceptions that occur when trying to accept a connection). The default handler ignores the exception
and returns void.

The listen-proc, close-proc, accept-proc and accept/break-proc arguments default to the
tcp-listen, tcp-close, tcp-accept, and tcp-accept/enable-break procedures, respectively. The
run-server function calls these procedures without optional arguments. Provide alternate procedures to use an
alternate communication protocol (such as SSL) or to supply optional arguments in the use of tcp-listen.

The run-server procedure loops to serve client connections, so it never returns. If a break occurs, the loop will
cleanly shut down the server, but it will not terminate active connections.

164

51. trace.ss: Tracing Top-level Procedure Calls

To load: (require (lib "trace.ss"))

This library mimics the tracing facility available in Chez SchemeTM.

(trace variable · · ·) SYNTAX

Each variable must be bound to a procedure in the environment of the trace expression. Each variable is
set!ed to a new procedure that traces procedure calls and returns by printing the arguments and results of the call. If
multiple values are returned, each value is displayed starting on a separate line.

When traced procedures invoke each other, nested invocations are shown by printing a nesting prefix. If the nesting
depth grows to ten and beyond, a number is printed to show the actual nesting depth.

The trace form can be used on a variable that is already traced. In this case, assuming that the variable’s value has
not been changed, trace has no effect. If the variable has been changed to a different procedure, then a new trace is
installed.

Tracing respects tail calls to preserve loops, but its effect may be visible through continuation marks. When a call to a
traced procedure occurs in tail position with respect to a previous traced call, then the tailness of the call is preserved
(and the result of the call is not printed for the tail call, because the same result will be printed for an enclosing
call). Otherwise, however, the body of a traced procedure is not evaluated in tail position with respect to a call to the
procedure.

The value of a trace expression is the list of names (as symbols) specified for tracing.

(untrace variable · · ·) SYNTAX

Undoes the effects of the trace form for each variable, set!ing each variable back to the untraced proce-
dure, but only if the current value of variable is a traced procedure. If the current value of a variable is not a
procedure installed by trace, then the variable is not changed.

The value of an untrace expression is the list of names (as symbols) restored to their untraced definitions.

165

52. traceld.ss: Tracing File Loads

To load: (require (lib "traceld.ss"))

This library does not define any procedures or syntax. Instead, traceld.ss is imported at the top-level for its side-
effects. The trace library installs a new load handler and load extension handler to print information about the files
that are loaded. These handlers chain to the current handlers to perform the actual loads. Trace output is printed to the
port that is the current error port when the library is loaded.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested loads is printed with
indentation. After the file is loaded, the file name is printed with the “time” that the load completed.

If a loader extension is loaded (see §14.1 in PLT MzScheme: Language Manual), the tracer wraps the returned loader
procedure to print information about libraries requested from the loader. When a library is found in the loader, the
thunk procedure that extracts the library is wrapped to print the start and end times of the extraction.

166

53. trait.ss: Object-Oriented Traits

To load: (require (lib "trait.ss"))

A trait is a collection of methods that can be converted to a mixin and then applied to a class. Before a trait is converted
to a mixin, the methods of a trait can be individually renamed, and multiple traits can be merged to form a new trait.
The trait constructs provided by the trait.ss library work with the classes of the class.ss library (see §6).

The trait form creates a new trait:

(trait trait-clause · · ·)

trait-clause is one of
(public optionally-renamed-id · · ·)
(pubment optionally-renamed-id · · ·)
(public-final optionally-renamed-id · · ·)
(override optionally-renamed-id · · ·)
(overment optionally-renamed-id · · ·)
(override-final optionally-renamed-id · · ·)
(augment optionally-renamed-id · · ·)
(augride optionally-renamed-id · · ·)
(augment-final optionally-renamed-id · · ·)
(inherit optionally-renamed-id · · ·)
(inherit/super optionally-renamed-id · · ·)
(inherit/inner optionally-renamed-id · · ·)
method-definition
(field field-declaration · · ·)
(inherit-field optionally-renamed-id · · ·)

The body of a trait form is similar to the body of a class form, but restricted to non-private method definitions. In
particular, the grammar of optionally-renamed-id, method-definition, and field-declaration
are the same as for class (see §6), and every method-definition must have a corresponding declaration (one
of public, override, etc.). As in class, uses of method names in direct calls, super calls, and inner
calls depend on bringing method names into scope via inherit, inherit/super, inherit/inner, and other
method declarations in the same trait; an exception, compared to class is that overment binds a method name
only in the corresponding method, and not in other methods of the same trait. Finally, macros such as public∗ and
define/public work in trait as in class.

(trait->mixin trait) converts a trait to a mixin, which can be applied to a class to produce a new class. An
expression of the form

(trait->mixin
(trait
trait-clause · · ·))

is equivalent to

167

53. trait.ss: Object-Oriented Traits

(lambda (%)
(class %
trait-clause · · ·
(super-new)))

Normally, however, a trait’s methods are changed and combined with other traits before converting to a mixin.

(trait-sum trait · · ·1) produces a trait that combines all of the methods of the given traits. For example,

(define t1
(trait
(define/public (m1) 1)))

(define t2
(trait
(define/public (m2) 2)))

(define t3 (trait-sum t1 t2))

creates a trait t3 that is equivalent to

(trait
(define/public (m1) 1)
(define/public (m2) 2))

but t1 and t2 can still be used individually or combined with other traits.

When traits are combined with trait-sum, the combination drops inherit, inherit/super, inherit/inner,
and inherit-field declarations when a definition is supplied for the same method or field name by another trait.
The trait-sum operation fails (the exn:fail:contract exception is raised) if any of the traits to combine de-
fine a method or field with the same name, or if an inherit/super or inherit/inner declaration to be dropped
is inconsistent with the supplied definition. In other words, declaring a method with inherit, inherit/super,
or inherit/inner, does not count as defining the method; at the same time, for example, a trait that contains an
inherit/super declaration for a method m cannot be combinaed with a trait that defines m as augment, since no
class could satisfy the requirements of both augment and inherit/super when the trait is later converted to a
mixin and applied to a class.

(trait-exclude trait-expr identifier) produces a new trait that is like the result of trait-expr,
but with the definition of a method named by identifier removed; as the method definition is removed, either a
inherit, inherit/super, or inherit/inner declaration is added:

• A method declared with public, pubment, or public-final is replaced with a inherit declaration.

• A method declared with override or override-final is replaced with a inherit/super declaration.

• A method declared with augment, augride, or augment-final is replaced with a inherit/inner
declaration.

• A method declared with overment is not replaced with any inherit declaration.

If the trait produced by trait-expr has no method definition for identifier, the exn:fail:contract
exception is raised.

(trait-exclude-field trait-expr identifier) produces a new trait that is like the result of
trait-expr, but with the definition of a field named by identifier removed; as the field definition is removed,
an inherit-field declaration is added.

168

53. trait.ss: Object-Oriented Traits

(trait-alias trait-expr identifier new-identifier) produces a new trait that is like the re-
sult of trait-expr, but the definition and declaration of the method named by identifier is duplicated
with the name new-identifier. The consistency requirements for the resulting trait are the same as for
trait-sum, otherwise the exn:fail:contract exception is raised. This operation does not rename any
other use of identifier, such as in method calls (even method calls to identifer in the cloned definition
for new-identifier).

(trait-rename trait-expr identifier new-identifier) produces a new trait that is like the result
of trait-expr, but all definitions and references to methods named identifier are replaced by definitions and
references to methods named by new-identifier. The consistency requirements for the resulting trait is the same
as for trait-sum, otherwise the exn:fail:contract exception is raised.

(trait-rename-field trait-expr identifier new-identifier) produces a new trait that is like
the result of trait-expr, but all definitions and references to fields named identifier are replaced by defini-
tions and references to fields named by new-identifier. The consistency requirements for the resulting trait is
the same as for trait-sum, otherwise the exn:fail:contract exception is raised.

External identifiers in trait, trait-exclude, trait-exclude-field, trait-alias, trait-rename,
and trait-rename-field forms are subject to binding via define-member-name and define-local-member-name
(see §6.3.3.3). Although privatemethods or fields are not allowed in a trait form, they can be simulated by using
a public or field declaration and a name whose scope is limited to the trait form.

169

54. transcr.ss: Transcripts

To load: (require (lib "transcr.ss"))

MzScheme’s built-in transcript-on and transcript-off always raise exn:fail:unsupported. The
transcr.ss library provides working versions of transcript-on and transcript-off.

170

55. unit.ss: Units

To load: (require (lib "unit.ss"))

MzScheme’s units are used to organize a program into separately compilable and reusable components. A unit resem-
bles a procedure in that both are first-class values that are used for abstraction. While procedures abstract over values
in expressions, units abstract over names in collections of definitions. Just as a procedure is invoked to evaluate its
expressions given actual arguments for its formal parameters, a unit is invoked to evaluate its definitions given actual
references for its imported variables. Unlike a procedure, however, a unit’s imported variables can be partially linked
with the exported variables of another unit prior to invocation. Linking merges multiple units together into a single
compound unit. The compound unit itself imports variables that will be propagated to unresolved imported variables
in the linked units, and re-exports some variables from the linked units for further linking.

In some ways, a unit resembles a module (see Chapter 5 in PLT MzScheme: Language Manual), but units and modules
serve different purposes overall. A unit encapsulates a pluggable component—code that relies, for example, on “some
function f from a source to be determined later.” In contrast, if a module imports a function, the import is “the function
f provided by the specific module m.” Moreover, a unit is a first-class value that can be multiply instantiated, each
time with different imports, whereas a module’s context is fixed. Finally, because a unit’s interface is separate from its
implementation, units naturally support mutually recursive references across unit boundaries, while module imports
must be acyclic.

55.1 Creating Units

The unit form creates a unit:

(unit
(import tagged-sig-expr · · ·)
(export tagged-sig-expr · · ·)
init-depends-decl
unit-body-expr-or-defn
· · ·)

tagged-sig-expr is one of
sig-expr
(tag identifier sig-expr)

sig-expr is one of
sig-identifier
(prefix identifier sig-expr)
(rename sig-expr (identifier identifier) · · ·)
(only sig-expr identifier · · ·)
(except sig-expr identifier · · ·)

init-depends-decl is one of
ε

(init-depend tagged-sig-identifier · · ·)

171

55.1. Creating Units 55. unit.ss: Units

tagged-sig-identifier is one of
sig-identifier
(tag identifier sig-identifier)

The result of a unit form is a unit value that encapsulates its unit-body-expr-or-defns. Expressions in the
unit body can refer to identifiers bound by the sig-exprs of the import clause, and the body must include one
definition for each identifier of a sig-expr in the export clause. An identifer that is exported cannot be set!ed in
either the defining unit or in importing units, although the implicit assignment to initialize the variable may be visible
as a mutation.

Each import or export sig-expr ultimately refers to a sig-identifier, which is an identifier that is bound to a
signature by define-signature:

(define-signature identifier extension-decl
(sig-spec · · ·))

extension-decl is one of
ε

extends sig-identifier

sig-spec is one of
identifier
(define-syntaxes (identifier · · ·) expr)
(define-values (value-id · · ·) expr)
(open sig-expr)
(sig-form-identifier . datum)

The define-signature form binds a signature to specify a group of bindings for import or export:

• Each identifier in a signature declaration means that a unit implementing the signature must supply a
variable definition for the identifier. That is, identifier is available for use in units importing the
signature, and identifier must be defined by units exporting the signature.

• Each define-syntaxes form in a signature declaration introduces a macro to that is available for use in any
unit that imports the signature. Free variables in the definition’s expr refer to other identifiers in the signature
first, or the context of the define-signature form if the signature does not include the identifier.

• Each define-values form in a signature declaration introduces code that effectively prefixes every unit that
imports the signature. Free variables in the definition’s expr are treated the same as for define-syntaxes.

• Each (open sig-expr) adds to the signature everything specified by sig-expr.

• Each (sig-form-identifier . datum) extends the signature in a way that is defined by
sig-form-identifier, which must be bound by define-signature-form (see §55.7). One such
binding is for struct (see §55.7).

When a define-signature form includes a extends clause, then the define signature automatically includes
everything in the extended signature. Furthermore, any implementation of the new signature can be used as an imple-
mentation of the extended signature.

In a specific import or export position, the set of identifiers bound or required by a particular sig-identifier can
be adjusted in a few ways:

• (prefix identifier sig-expr) as an import binds the same as sig-expr, except that each binding
is prefixed with identifier. As an export, this form causes definitions using the identifier prefix to
satisfy the exports required by sig-expr.

172

55. unit.ss: Units 55.1. Creating Units

• (rename sig-expr (identifer identifier) · · ·) as an import binds the same as sig-expr,
except that the first identifier is used for the binding instead of the second identifier (where
sig-expr by itself must imply a binding for the second identifier). As an export, this form causes a
definition for the first identifier to satisfy the export named by the second identifier in sig-expr.

• (only sig-expr identifier · · ·) as an import binds the same as sig-expr, but restricted to just the
listed identifiers (where sig-expr by itself must imply a binding for each identifier). This form
is not allowed for an export.

• (except sig-expr identifier · · ·) as an import binds the same as sig-expr, but excluding all
listed identifiers (where sig-expr by itself must imply a binding for each identifier). This form
is not allowed for an export.

As suggested by the grammar, these adjustments to a signature can be nested arbitrarily.

A unit’s declared imports are matched with actual supplied imports by signature. That is, the order in which imports
are suppplied to a unit when linking is irrelevant; all that matters is the signature implemented by each supplied import.
One actual import must be provided for each declared import. Similarly, when a unit implements multiple signatures,
the order of the export signatures does not matter.

To support multiple imports or exports for the same signature, an import or export can be tagged using the form (tag
identifier sig-expr). When an import declaration of a unit is tagged, then one actual import must be given
the same tag (with the same signature) when the unit is linked. Similarly, when an export declaration is tagged for a
unit, then references to that particular export must explicitly use the tag.

A unit is prohibited syntactically from importing two signatures that are not distinct, unless they have different tags;
two signatures are distinct only if when they share no ancestor through extends. The same syntactic constraint
applies to exported signatures. In addition, a unit is prohibited syntactically from importing the same identifier twice
(after renaming and other transformations on a sig-expr), exporting the same identifier twice (again, after renam-
ing), or exporting an identifier that is imported.

When units are linked, the bodies of the linked units are executed in an order that is specified at the linking site. An
optional (init-depend tagged-sig-identifier · · ·) declaration constrains the allowed orders of linking
by specifying that the current unit must be initialized after the unit that supplies the corresponding import. Each
tagged-sig-identifier in an init-depend declaration must have a corresponding import in the import
clause.

Examples

The unit defined below imports and exports no variables. Each time it is invoked, it prints and returns the current time
in seconds:1

(define f1@
(unit (import) (export)
(define x (current-seconds))
(display x)
(newline)
x))

The unit defined below is similar, except that it exports the variable x instead of returning the value:

(define-signature f2ˆ (x))

1The “@” in the variable name “f1@” indicates (by convention) that its value is a unit.

173

55.1. Creating Units 55. unit.ss: Units

(define f2@
(unit (import) (export f2ˆ)
(define x (current-seconds))
(display x)
(newline)))

The following units define two parts of an interactive phone book:

(define-signature interfaceˆ (show-message))
(define-signature databaseˆ (insert lookup))
(define-signature guiˆ (make-window make-button))

(define database@
(unit
(import interfaceˆ)
(export databaseˆ)

(define table (list))
(define insert
(lambda (name info)
(set! table (cons (cons name info) table))))

(define lookup
(lambda (name default)
(let ([data (assoc name table)])
(if data

(cdr data)
(or default

(show-message "info not found"))))))
insert))

(define interface@
(unit
(import databaseˆ guiˆ)
(export interfaceˆ)
(define show-message
(lambda (msg) ...))

(define main-window
...)))

In this example, the database@ unit implements the database-searching part of the program, and the interface@
unit implements the graphical user interface. The database@ unit exports insert and lookup procedures to be
used by the graphical interface, while the interface@ unit exports a show-message procedure to be used by the
database (to handle errors). The interface@ unit also imports variables that will be supplied by a platform-specific
graphics toolbox.

The following merger@ unit import two units that implement databaseˆ, and it also implements databaseˆ
itself. The unit implements lookup by checking both of the imported databases, and it implements insert by
inserting into both of the imported databases. Since the merger@ unit must import two instances of databaseˆ, it
gives each import a tag — a or b — that must be used at link time to specify the imports. Specifically, the link tagged
with a will designate the database implementation to be consulted first by the merged database’s lookup. Finally,
the unit uses a prefix form to distinguish each set of imported names internally.

(define merger@
(unit

174

55. unit.ss: Units 55.2. Invoking Units

(import (tag a (prefix a: databaseˆ))
(tag b (prefix b: databaseˆ)))

(export databaseˆ)
(define (insert name info)
(a:insert name info)
(b:insert name info))

(define (lookup name default)
(or (a:lookup name #f)

(b:lookup name default)))))

55.2 Invoking Units

A unit is invoked using the invoke-unit form:

(invoke-unit unit-expr)
(invoke-unit unit-expr (import tagged-sig-spec · · ·))

The value of unit-expr must be a unit. For each of the unit’s imports, the invoke-unit expression must contain
a tagged-sig-spec in the import clause. If the unit has no imports, the import clause can be omitted.

When no tagged-sig-specs are provided, unit-expr must produce a unit that expect no imports. To invoke
the unit, all bindings are first initialized to the undefined value. Next, the unit’s body definitions and expressions are
evaluated in order; in the case of a definition, evaluation sets the value of the corresponding variable(s). Finally, the
result of the last expression in the unit is the result of the invoke-unit expression.

Each supplied tagged-sig-spec takes bindings from the surrounding context and turns them into imports
for the invoked unit. The unit need not declare an imports for evey provided tagged-sig-spec, but one
tagged-sig-spec must be provided for each declared import of the unit. For each variable identifier in each
provided tagged-sig-spec, the value of the identifier’s binding in the surrounding context is used for the corre-
sponding import in the invoked unit.

The define-values/invoke-unit form is like invoke-unit, but the values of the unit’s exports are copied
to new bindings.

(define-values/invoke-unit unit-expr
(import tagged-sig-spec · · ·)
(export tagged-sig-spec · · ·))

The unit produced by unit-expr is linked and invoked as for invoke-unit. In addition, the export clause is
treated as a kind of import into the local definition context. That is, for every binding that would be available in a unit
that used the export clauses’s tagged-sig-spec as an import, a definition is generated for the context of the
define-values/invoke-unit form.

Examples

These examples use the definitions from the earlier unit examples in §55.1.

The f1@ unit can be invoked with no imports:

(invoke-unit f1@) ; ⇒ displays and returns the current time

The database@ unit also can be invoked directly:

(invoke-unit database@

175

55.3. Linking Units and Creating Compound Units 55. unit.ss: Units

(import (rename interfaceˆ [display show-message])))

This expression links the imported variable show-message in database@ to the standard Scheme display
procedure. Invocation of the linked unit then creates an empty database, and it internally defines the procedures
insert and lookup tied to this particular database. Since the last expression in the database@ unit is insert,
the invoke-unit expression returns the insert procedure (without binding any top-level variables). The lookup
procedure is not accessible.

Since the lookup procedure is not accessible, simply invoking database@ is useless. In contrast,

(define-values/invoke-unit database@
(import (rename interfaceˆ [display show-message]))
(export databaseˆ))

invokes database@ in the same way, but also defines insert and lookup, binding them to the exports of the
invoked unit.

To create two separate instances of the database in the current binding context, we can include a prefix in export
clause of of define-values/invoke-unit to create separate sets of bindings. The following pair of definitions
bind x:insert, x:lookup, y:insert, and y:lookup:

(define-values/invoke-unit database@
(import (rename interfaceˆ [display show-message]))
(export (prefix x: databaseˆ)))

(define-values/invoke-unit database@
(import (rename interfaceˆ [display show-message]))
(export (prefix y: databaseˆ)))

These sets of databaseˆ bindings can be supplied as imports for invoking the merger@ unit:

(define-values/invoke-unit merger@
(import (tag b (prefix y: databaseˆ))

(tag a (prefix x: databaseˆ)))
(export (prefix m: databaseˆ)))

The tag annotations indicate which given import is meant to supply each expected imoprt of merger@. The order
within import does not matter, and to illustrate this point, the imports they are supplied above in opposite order
to the declaration order. The prefix annotations construct names that are drawn from the surrounding context.
That is, y:insert and y:lookup are taken from the surrounding context and used for the b-tagged import, and
x:insert and x:lookup are used for the a-tagged import. Finally, the defined names are prefixed with m:.

55.3 Linking Units and Creating Compound Units

The compound-unit form links several units into one new compound unit without immediately invoking any of
the linked units.

(compound-unit
(import link-binding · · ·)
(export tagged-link-identifier · · ·)
(link linkage-decl · · ·))

link-binding is
(link-identifier : tagged-sig-identifier)

176

55. unit.ss: Units 55.3. Linking Units and Creating Compound Units

tagged-link-identifier is one of
(tag identifier link-identifier)
link-identifier

linkage-decl is
((link-binding · · ·) unit-expr tagged-link-identifier)

The unit-exprs in the link clause determine the units to be linked in creating the compound unit. The
unit-exprs are evaluated when the compound-unit form is evaluated.

The import clause determines the imports of the compound unit. Outside the compound unit, these imports behave
as for a plain unit; inside the compound unit, they are propagated to some of the linked units. The export clause
determines the exports of the compound unit. Again, outside the compound unit, these exports are trested the same as
for a plain unit; inside the compound unit, they are drawn from the exports of the linked units. Finally, the left-hand
and right-hand parts of each declaration in the link clause specify how the compound unit’s imports and exports are
propagated to the linked units.

Individual elements of an imported or exported signature are not available within the compound unit. Instead, imports
and exports are connected at the level of whole signatures. Each specific import or export (i.e., an instance of some
signature, possibly tagged) is given a link-identifier name. Specifically, a link-identifier is bound
by the import clause or the left-hand part of an declaration in the link clause. A bound link-identifier is
referenced in the right-hand part of a declaration in the link clause or by the export clause.

The left-hand side of a link declaration gives names to each expected export of the unit produced by the corre-
sponding unit-expr. The actual unit may export additional signatures, and it may export an extension of a specific
signature instead of just the specified one. If the unit does not export one of the specified signatures (with the specified
tag, if any), the exn:fail:contract exception is raised when the compound-unit form is evaluated.

The right-hand side of a link declaration specifies the imports to be supplied to the unit produced by the corre-
sponding unit-expr. The actual unit may import fewer signatures, and it may import a signature that is ex-
tended by the specified one. If the unit imports a signature (with a particular tag) that is not included in the sup-
plied imports, the exn:fail:contract exception is raised when the compound-unit form is evaluated. Each
link-identifier supplied as an import must be bound either in the import clause or in some declaration within
the link clause.

The order of declarations in the link clause determines the order of invocation of the linked units. When the com-
pound unit is invoked, the unit produced by the first unit-expr is invoked first, then the second, and so on. If
the order specified in the link clause is inconsistent with init-depend declarations of the actual units, then the
exn:fail:contract exception is raised when the compound-unit form is evaluated.

Examples

These examples use the definitions from the earlier unit examples in §55.1.

The following example shows how the database@ and interface@ units are linked together. The compound unit
still must be linked with a GUI unit before the interactive phone book works. In addition, the database@ exports
are propagated, in case the unit is useful in a larger program that manipulates the database directly.

(define phonebook@
(compound-unit
(import (GUI : guiˆ))
(export DATABASE)
(link [((DATABASE : databaseˆ)) database@ INTERFACE]

[((INTERFACE : interfaceˆ)) interface@ DATABASE GUI])))

177

55.4. Inferred Linking 55. unit.ss: Units

If gui@ is bound to a unit that exports guiˆ (at least) and imports nothing, then a complete phonebook program can
be linked as follows:

(define program@
(compound-unit
(import)
(export)
(link [((GUI : guiˆ)) gui@]

[((PHONEBOOK : databaseˆ)) phonebook@ GUI])))

This phone book program is executed with (invoke-unit program@). If (invoke-unit program@) is
evaluated a second time, then a new, independent database and window are created.

The following merge-databases function takes two database units and links them into a single database unit:

(define (merge-databases a@ b@)
(compound-unit
(import (INTERFACE : interfaceˆ))
(export DBM)
(link [((DBA : databaseˆ)) a@ INTERFACE]

[((DBB : databaseˆ)) b@ INTERFACE]
[((DBM : databaseˆ)) merger@ (tag a DBA) (tag b DBB)])))

The link clause for the merger@ unit matches each of the DBA and DBB units with a tag a or b, since merger@
requires a tag for each of its imports. The compound unit produced by merge-database re-exports the insert
and lookup functions of the merger@ unit, since DBM is used in the export clause.

55.4 Inferred Linking

The examples of the previous section include considerable information in the link clause that seems redundant to a
human reader. For example, when linking database@, we specify again that it must export a databaseˆ signature,
but the fact of this export is readily available from the preceding definition of database@. Of course, since units are
first-class values and Scheme is dynamically typed, the exports of the unit produced by a unit-expr are not always
so readily available. Nevertheless, units are frequently defined and used in an environment where the bindings can be
made apparent.

The define-unit helps avoid redundancy by combining binding the defined identifier to both a unit value and
static information about the unit’s imports and exports:

(define-unit unit-identifier
(import tagged-sig-expr · · ·)
(export tagged-sig-expr · · ·)
init-depends-decl
unit-body-expr-or-defn
· · ·)

Evaluating a reference to an unit-identifier bound by define-unit produces a unit, just like evaluating an
identifier bound by (define identifier (unit ...)). In addition, however, unit-identifier
can be used in compound-unit/infer:

(compound-unit/infer
(import tagged-infer-link-import · · ·)
(export tagged-infer-link-export · · ·)
(link infer-linkage-decl · · ·))

178

55. unit.ss: Units 55.4. Inferred Linking

tagged-infer-link-import is
tagged-sig-identifier
(link-identifier : tagged-sig-identifier)

tagged-infer-link-export is one of
(tag identifier infer-link-export)
infer-link-export

infer-link-export is one of
link-identifier
sig-identifier

infer-linkage-decl is one of
((link-binding · · ·) unit-identifier tagged-link-identifier)
unit-identifier

Syntactically, the difference between compound-unit and compound-unit/infer is that the unit-expr for
a linked unit is replaced with a unit-identifier, where a unit-identifier is bound by define-unit
(or one of the other unit-binding forms that we introduce later in this section). Furthermore, an import can name
just a sig-identifier without locally binding a link-identifier, and an export can be based on a
sig-identifier instead of a link-identifier, and a declaration in the link clause can be simply a
unit-identifier with no specified exports or imports.

The compound-unit/infer form expands to compound-unit by adding sig-identifiers as needed to
the import clause, by replacing sig-identifiers in the export clause by link-identifiers, and by
completing the declarations of the link clause. This completion is based on static information associated with each
unit-identifier. Links and exports can be inferred when all signatures exported by the linked units are distinct
from each other and from all imported signatures, and when all imported signatures are distinct. Two signatures are
distinct only if when they share no ancestor through extends.

The long form of a link declaration can be used to resolve ambiguity by giving names to some of a unit’s exports
and supplying specific bindings for some of a unit’s imports. The long form need not name all of a unit’s exports or
supply all of a unit’s imports if the remaining parts can be inferred.

Like compound-unit, the compound-unit/infer form produces a (compound) unit without statically
binding information about the result unit’s imports and exports. That is, compound-unit/infer con-
sumes static information, but it does not generate it. Two additional forms, define-compound-unit and
define-compound-unit/infer, generate static information (where the former does not consume static in-
formation).

(define-compound-unit identifier
(import link-binding · · ·)
(export tagged-link-identifier · · ·)
(link linkage-decl · · ·))

(define-compound-unit/infer identifier
(import link-binding · · ·)
(export tagged-infer-link-export · · ·)
(link infer-linkage-decl · · ·))

An existing unit value can be associated with static information via define-unit-binding:

(define-unit-binding unit-identifier
unit-expr
(import tagged-sig-expr · · ·1)

179

55.4. Inferred Linking 55. unit.ss: Units

(export tagged-sig-expr · · ·1)
init-depends-decl)

This form is like define-unit, except that the unit implementation is determined from an existing unit produced
by unit-expr. The imports and exports of the unit produced by unit-expr must be consistent with the declared
imports and exports, otherwise the exn:fail:contract exception is raised when the define-unit-binding
form is evaluated.

Like compound-unit/infer, the invoke-unit/infer and define-values/invoke-unit/infer
use static information to infer which imports must be assembled from the current context, and (in the case of the latter)
what exports should be bound by the definition:

(invoke-unit/infer unit-identifer)
(define-values/invoke-unit/infer unit-identifer)

Examples

To take advantage of link inference for the phone book example from previous sections, we must change the bindings
of units to use define-unit instead of define:

(define-unit database@
(import interfaceˆ)
(export databaseˆ)

(define table (list))
(define insert ...)
(define lookup ...)
insert)

(define-unit interface@
(import databaseˆ guiˆ)
(export interfaceˆ)
(define show-message ...)
(define main-window ...))

To invoke database@ directly, we can use the invoke-unit form as before. Alternately, we can now use
invoke-unit/infer in a context that binds show-message:

(let ([show-message display])
(invoke-unit/infer database@))

To gain access to the exports of database@, we can use define-values/invoke-unit/infer:

(define show-message display)
(define-values/invoke-unit/infer database@)
... insert ...
... lookup ...

The database@ and interface@ units can be linked succinctly by relaying on inference:

(define-compound-unit/infer phonebook@
(import guiˆ)
(export databaseˆ)
(link database@ interface@))

180

55. unit.ss: Units 55.5. Generating A Unit from Context

In this case, the import clause simply names guiˆ without a link-identifier, since all uses of the imported
interface can be inferred. Similarly, the export simply names databaseˆ, since the link clause includes only one
candidate implementation of the databaseˆ interface. Finally, the imports for database@ and interface@ are
unambiguous, so they can be inferred.

Even after we change merger@ to use define-unit, the links inside merge-databases cannot be fully in-
ferred:

(define (merge-databases a@ b@)
(compound-unit/infer
(import interfaceˆ)
(export databaseˆ)
(link a@ b@ merger@))) ; does not work

There are three problems with inference. First, the a@ and b@ units are supplied as first-class values to a procedure, so
no static information is available about their imports and exports. Second, the merger@ unit imports two instances of
the databaseˆ signature, and each could be supplied by a@, b@, or even merger@ itself. Finally, the databaseˆ
export of the overall compound-unit could be supplied by any of the three database units.

The first problem can be solved by using define-unit-binding to locally declare imports and exports for a@
and b@. The second problem can be solved by giving linked instances of a@ and b@ the link names DBA and DBB.
The third problem can be solved by giving the merger@ instance a name and using it in export:

(define (merge-databases some-a@ some-b@)
(define-unit-binding a@
some-a@ (import interfaceˆ) (export databaseˆ))

(define-unit-binding b@
some-b@ (import interfaceˆ) (export databaseˆ))

(compound-unit/infer
(import interfaceˆ)
(export DBM)
(link [((DBA : databaseˆ) a@]

[((DBB : databaseˆ) b@]
[((DBM : databaseˆ) merger@ (tag a DBA) (tag B DBB))])))

Although the interfaceˆ links to a@ and b@ are inferred, this definition of merge-database turns out to be
more verbose than the one that avoids inference altogether.

55.5 Generating A Unit from Context

The unit-from-context form creates a unit that implements an interface using bindings in the enclosing context.

(unit-from-context tagged-sig-expr)

The generated unit is essentially the same as

(unit
(import)
(export tagged-sig-expr)
(define identifier expr) · · ·)

for each identifier that must be defined to satisfy the exports, and each corresponding expr produces the value
of identifier in the context of the unit-from-context expression. (The unit cannot be written as above,
however, since each identifier definition within the unit shadows the binding outside the unit form.)

181

55.6. Structural Matching 55. unit.ss: Units

Like define-unit, define-unit-from-context binds static information to be used later with inference.

(define-unit-from-context identifier tagged-sig-expr)

Examples

The following declaration creates a unit that implements interfaceˆ by using display from the current definition
context as show-message.

(define-unit-from-context display-interface@
(rename interfaceˆ

[display show-message]))

The resulting unit can be linked with database@ to define simple-phonebook@:

(define-compound-unit/infer simple-phonebook@
(import guiˆ)
(export databaseˆ)
(link database@ display-interface@))

55.6 Structural Matching

Units are linked by name. That is, unit imports are matched with unit exports only when they name the same interface.
Sometimes, a unit imports or exports a set of identifier that match a particular signature, but the unit declares the
import or export using a different signature. In such cases, the unit can be wrapped with new imports and exports that
are matched by structure to the unit’s existing imports and exports; that is, only the contents of the signatures matter,
not the names, when matching the unit’s original imports exports with the new imports and exports.

The unit/new-import-export form converts a unit’s import and export signatures structrurally:

(unit/new-import-export
(import tagged-sig-expr · · ·)
(export tagged-sig-expr · · ·)
init-depends-decl
((tagged-sig-expr · · ·) unit-expr tagged-sig-expr))

The result is a unit that whose implementation is unit-expr, but whose imports, exports, and initialization depen-
dencies are as in the unit/new-import-export form (instead of as in the unit produced by unit-expr).

The final clause of the unit/new-import-export form determines the connection between the old and new
imports and exports. The connection is similar to the way that compound-unit propagates imports and exports;
the difference is that the connection between import and the right-hand side of the link clause is based on the names
of elements in signatures, rather than the names of the signatures. That is, a tagged-sig-spec on the right-hand
side of the link clause need not apppear as a tagged-sig-expr in the import clause, but each of the bindings
implied by the linking tagged-sig-spec must be implied by some tagged-sig-spec in the import clause.
Similarly, each of the bindings implied by an export tagged-sig-spec must be implied by some left-hand-side
tagged-sig-spec in the linking clause.

The define-unit/new-import-export is similar, but it binds import and export information statically to a
unit-identifier:

(define-unit/new-import-export unit-identifier
(import tagged-sig-expr · · ·)
(export tagged-sig-expr · · ·)
init-depends-decl

182

55. unit.ss: Units 55.7. Extending the Syntax of Signatures

((tagged-sig-expr · · ·) unit-expr tagged-sig-expr))

Examples

Suppose that we have an existing implementation of dictionaries that we would like to use as a database:

(define-signature dictionaryˆ (lookup insert get-count))

(define-unit dictionary@
(import)
(export dictionaryˆ)
(define (lookup name default) ...)
(define (insert name val) ...)
(define get-count ...))

The dictionary unit cannot be used directly as an implementation of databaseˆ, even though its export names
happen to match, because it does not declare databaseˆ as an export.

We can create a new unit that behaves exactly like dictionary@, except that it implements the databaseˆ
signature:

(define-signature dictionaryˆ (lookup insert get-count))

(define-unit/new-import-export dictionary-dc@
(import)
(export databaseˆ)
((dictionaryˆ) dictionary@))

55.7 Extending the Syntax of Signatures

The syntax of the define-signature form can be macro-extended using define-signature-form:

(define-signature-form sig-form-identifier expr)
(define-signature-form (sig-form-identifier identifier) body-expr · · ·1)

In the first form, the result of expr must be a transformer procedure. In the second form, sig-form-identifier
is bound to a transformer procedure whose argument is identifier and whose body is the body-exprs. The
result of the transformer must be a list of syntax objects, which are substituted for a use of sig-form-identifier
in a define-signature expansion. (The result is a list so that the transformer can produce multiple declarations;
define-signature has no splicing begin form.)

An example signature macro is struct, which expands in a way analogous to define-struct:

(struct identifier (field-identifier · · ·) omit-decl · · ·)

omit-decl is one of
-type
-selectors
-setters
-constructor

The expansion of a struct signature form includes all of the identifiers that would be bound by
(define-struct identifier (field-identifier · · ·)), except that a omit-decl can cause

183

55.8. Unit Utilities 55. unit.ss: Units

some of the bindings to be omitted. Specifically -type causes struct:identifier to be omit-
ted, -selectors causes all identifier-field-identifiers to be omitted, -setters causes all
set-identifier-field-identifier!s to be omitted, and -construct causes make-identifier to
be omitted. These omissions are reflected in the static information bound to identifier (which is used by, for
example, pattern matchers).

55.8 Unit Utilities

See also the unit-exptime.ss library (see §56) for procedures useful to macro transformers.

(unit? v) PROCEDURE

Returns #t if v is a unit, #f otherwise.

(provide-signature-elements sig-expr · · ·) SYNTAX

Expands to a provide of all identifiers implied by the sig-exprs. See §55.1 for the grammar of sig-expr.

184

56. unit-exptime.ss: Unit Utilities for Macro Transformers

To load: (require (lib "unit-exptime.ss"))

The procedures of this library are meant to be used from macro transformers. That is, the library is normally used via
(require-for-syntax (lib "unit-exptime.ss")).

(unit-static-signatures unit-identifier err-syntax) PROCEDURE

If unit-identifier is bound to static unit information via define-unit (or other such forms), the result is
two values. The first value is for the unit’s imports, and the second is for the unit’s exports. Each result value is a list,
where each list element pairs a symbol or #f with an identifier. The symbol or #f indicates the import’s or export’s
tag (where #f indicates no tag), and the identifier indicates the binding of the corresponding signature.

If unit-identifier is not bound to static unit information, then the exn:fail:syntax exception is raised.
In that case, the given err-syntax argument is used as the source of the error, where unit-identifer is used
as the detail source location.

(signature-members sig-identifier err-syntax) PROCEDURE

If sig-identifier is bound to static unit information via define-signature (or other such forms), the result
is four values:

• an identifier or #f indicating the signature (of any) that is extended by the sig-identifier binding;

• a list of identifiers representing the variables supplied/required by the signature;

• a list of identifiers for variable definitions in the signature (i.e., variable bindings that are provided on import,
but not defined by units that implement the signature); and

• a list of identifiers with syntax definitions in the signature.

If sig-identifier is not bound to a signature, then the exn:fail:syntax exception is raised. In that case,
the given err-syntax argument is used as the source of the error, where sig-identifer is used as the detail
source location.

185

57. unit200.ss: Old Units without Signatures

To load: (require (lib "unit200.ss"))

The unit200.ss library provides an older implementation of units. See unit.ss in archived version 360 documentation
for information about this library.

186

58. unitsig200.ss: Old Units with Signatures

To load: (require (lib "unitsig200.ss"))

The unitsig200.ss library provides an older implementation of units. See archived version 360 documentation for
information about this library.

187

59. zip.ss: Creating zip Files

To load: (require (lib "zip.ss"))

This library provides a facility for creating zip files, which are compatible with both Windows and Unix and Mac OS
X. The actual compression is implemented by deflate (see Chapter 17). The most useful entry point for this library
is zip.

(zip zip-file path · · ·) PROCEDURE

Creates zip-file, which holds the complete content of all paths. The given paths are all expected to be rel-
ative path names of existing directories and files (i.e., relative to the current directory). If a nested path is pro-
vided as a path, its ancestor directories are also added to the resulting zip file, up to the current directory (using
pathlist-closure; see §11.3.3 in PLT MzScheme: Language Manual). Files are packaged as usual for zip
files, including permission bits for both Windows and Unix and Mac OS X. The permission bits are determined by
file-or-directory-permissions (§11.3.3 in PLT MzScheme: Language Manual), so it does not preserve
the distinction between owner/group/other permissions; also, symbolic links are always followed.

(zip->output paths [output-port]) PROCEDURE

Zips each of the given paths, and packages it as a zip “file” that is written directly to the output-port or to the
current output port if output-port is not given. Also, the specified paths are included as-is; if a directory is
specified, its content is not automatically added, and nested directories are added without parent directories.

(zip-verbose [on?]) PROCEDURE

A parameter that controls output during a zip operation. Setting this parameter to a true value will cause zip to display
(on the current error port) the filename that is currently being compressed.

(See also §49.)

188

License

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

189

59. zip.ss: Creating zip Files

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,

other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

190

59. zip.ss: Creating zip Files

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.
If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.
However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.
When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.
For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.
It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

191

59. zip.ss: Creating zip Files

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

192

Index

->, 46
->∗, 46
->d, 46
->d∗, 46
->pp, 47, 48
->pp-rest, 48
->r, 47
</c, 41
¡=/c, 40
<=/c, 40
=/c, 40
>/c, 40
>=/c, 40
#:all-keys, 81
#:allow-anything, 83
#:allow-body, 83
#:allow-duplicate-keys, 83
#:allow-other-keys, 83
#:body, 81
#:forbid-anything, 83
#:forbid-body, 83
#:forbid-duplicate-keys, 83
#:forbid-other-keys, 83
#:key, 80
#:optional, 80
#:rest, 81
%, 55

a-signature.ss, 3
a-unit.ss, 4
abbreviate-cons-as-list, 103
’american, 59
and/c, 40
any/c, 39
assf, 85
async-channel-get, 5
async-channel-put, 5
async-channel-put-evt, 5
async-channel-try-get, 5
async-channel.ss, 5
atom?, 36
augment, 15
augment∗, 13
augment-final, 15
augment-final∗, 13
augride, 15
augride∗, 13
awk, 6
awk.ss, 6

begin-lifted, 62
begin-with-definitions, 62
between/c, 40
between/c, 40
boolean=?, 62
booleans-as-true/false, 103
box-immutable/c, 42
box/c, 42
build-absolute-path, 67
build-list, 62
build-path, 67
build-relative-path, 67
build-share, 104
build-string, 62
build-vector, 62

call-with-input-file*, 67
call-with-limits, 145
call-with-output-file*, 67
card, 77
case->, 48
channel, 35
channel-recv-evt, 35
channel-send-evt, 35
’chinese, 59
class, 13
class∗, 11
class->interface, 23
class-field-accessor, 21
class-field-mutator, 21
class-info, 24
class.ss, 7
class/derived, 24
class100, 27
class100∗, 26
class100∗-asi, 27
class100-asi, 27
class100.ss, 26
class?, 23
classes, 7

creating, 11
cm-accomplice.ss, 30
cm.ss, 28
cmdline.ss, 31
cml.ss, 35
command-line, 31
compat.ss, 36
compile-file, 38
compile.ss, 38

193

INDEX

complement, 77
compose, 63
compound-unit, 176
compound-unit/infer, 178
conjugate, 95
cons-immutable/c, 43
cons-unsafe/c, 43
cons/c, 43
cons?, 85
constructor-style-printing, 104
consumer-thread, 163
contract, 52
contract-first-order-passes?, 53
contract-violation->string, 53
contract.ss, 39
contract?, 53
Contracts on Values, 51
control, 55
control-at, 55
control.ss, 55
control0, 56
control0-at, 57
convert-stream, 109
copy-directory/files, 67
copy-port, 109
copy-struct, 158
coroutine, 163
coroutine-kill, 163
coroutine-result, 163
coroutine-run, 163
coroutine?, 163
cosh, 95
cupto, 57
current-build-share-hook, 104
current-build-share-name-hook, 104
current-print-convert-hook, 104
current-read-eval-convert-print-prompt,

104
current-time, 35

data structure contracts, 49
date, 59
date->julian/scalinger, 59
date->string, 59
date-display-format, 59
date.ss, 59
define∗, 101
define∗-dot, 101
define∗-syntax, 101
define∗-syntaxes, 101
define∗-values, 101
define-compound-unit, 179
define-compound-unit/infer, 179
define-dot, 101

define-local-member-name, 17
define-local-name, 17
define-macro, 61
define-match-expander, 92
define-opt/c, 54
define-runtime-path, 137
define-runtime-path-list, 138
define-runtime-paths, 138
define-serializable-class, 22
define-serializable-class∗, 22
define-serializable-struct, 148
define-serializable-struct/version, 148
define-signature, 172
define-signature-form, 183
define-struct/properties, 158
define-structure, 36
define-syntax-parameter, 159
define-syntax-set, 63
define-unit, 178
define-unit-binding, 179
define-unit-from-context, 182
define-values/invoke-unit, 175
define-values/invoke-unit/infer, 180
define/augment, 13
define/augment-final, 13
define/augride, 13
define/contract, 52
define/kw, 79
define/overment, 13
define/override, 13
define/override-final, 13
define/private, 13
define/public, 13
define/public-final, 13
define/pubment, 13
deflate, 60
deflate.ss, 60
defmacro, 61
defmacro.ss, 61
delete-directory/files, 67
derived class, 7
deserialize, 150
difference, 77
’dir, 69
’done-error, 134
’done-ok, 134
dot, 100

e, 95
eighth, 85
empty, 85
empty?, 85
eof-evt, 111
etc.ss, 62

194

INDEX

eval-string, 154
evcase, 63
exn:fail, 32, 33, 75, 97, 109, 112, 113, 146, 147, 155,

156
exn:fail:contract, 18, 20, 28, 62, 65, 83, 146,

149, 158, 168, 169, 177, 180
exn:fail:filesystem, 67
exn:fail:object, 10–12, 14–16, 18–21
exn:fail:resource, 145
exn:fail:resource-resource, 145
exn:fail:resource?, 145
exn:fail:syntax, 185
exn:fail:unsupported, 146, 170
exn:misc:match, 92
explode-path, 67
expr->string, 154
externalizable%, 23
externalize, 23

false, 63
false/c, 41
fcontrol, 55
field, 14
field-bound?, 21
field-names, 24
fields

accessing, 19
fifth, 85
’file, 69
file-name-from-path, 67
file.ss, 67
filename-extension, 68
filter, 85
’final, 33
final, 32
find-files, 68
find-library, 68
find-relative-path, 68
find-seconds, 59
findf, 85
first, 85
Flat Contracts, 39
flat-contract, 39
flat-contract-predicate, 53
flat-contract?, 53
flat-murec-contract, 44
flat-named-contract, 39
flat-rec-contract, 44
fold-files, 68
foldl, 85
foldr, 77, 86
foreign.ss, 72
fourth, 85
Function Contracts, 45

generate-member-key, 18
generic, 21
’german, 59
get-error-output, 144
get-field, 21
get-integer, 77
get-output, 144
get-preference, 69
get-shared, 104
get-uncovered-expressions, 144
gethostname, 97
getpid, 97
getprop, 37
glob->regexp, 156
guilty-party, 53
gunzip, 75
gunzip-through-ports, 75
gzip, 60
gzip-through-ports, 60

hash-table, 66
’help-labels, 33

identity, 63
implementation?, 23
implementation?/c, 41
include, 73
include-at/relative-to, 73
include-at/relative-to/reader, 73
include.ss, 73
include/reader, 73
’indian, 59
’infinity, 130
inflate, 75
inflate.ss, 75
inherit, 16
inherit-field, 15
inherit/inner, 16
inherit/super, 16
inheritance, 7
init, 13
init-field, 13
init-rest, 13
inner, 16
input-port-append, 109
inspect, 12
install-converting-printer, 105
instantiate, 19
integer-in, 41
integer-set-contents, 76
integer-set.ss, 76
integer-set?, 76
interface, 10
interface->method-names, 24

195

INDEX

interface-extension?, 24
interface?, 23
interfaces

creating, 10
internalize, 23
’interrupt, 134
intersect, 77
invoke-unit, 175
invoke-unit/infer, 180
’irish, 59
is-a?, 23
is-a?/c, 41
’iso-8601, 59

’julian, 59
julian/scalinger->string, 59

keyword-get, 84
’kill, 134
kill-evaluator, 143
kw.ss, 79

lambda/kw, 79
last-pair, 86
lazy contracts, 49
let+, 63
’link, 69
list-immutable/c, 44
list-immutableof, 43
list-unsafe/c, 44
list.ss, 85
list/c, 43
listof, 42
listof-unsafe, 43
local, 64
loop-until, 64

make-->vector, 158
make-async-channel, 5
make-caching-managed-compile-zo, 29
make-compilation-manager-load/use-compiled-handler,

28
make-deserialize-info, 151
make-directory*, 69
make-evaluator, 139, 140
make-generic, 21
make-input-port/read-to-peek, 109
make-integer-set, 76
make-limited-input-port, 110
make-mixin-contract, 51
make-none/c, 53
make-object, 14, 18
make-parameter-rename-transformer, 159
make-pipe-with-specials, 110

make-range, 76
make-serialize-info, 151
make-temporary-file, 69
make-tentative-pretty-print-output-port,

132
managed-compile-zo, 28
manager-compile-notify-handler, 29
manager-trace-handler, 29
match, 89
match-define, 89
match-equality-test, 92
match-lambda, 89
match-lambda∗, 89
match-let, 89
match-let∗, 89
match-letrec, 89
match.ss, 89
match:end, 6
match:start, 6
match:substring, 6
math.ss, 95
md5, 96
md5.ss, 96
member-name-key, 18
member-name-key-hash-code, 18
member-name-key=?, 18
member-name-key?, 18
member?, 77
memf, 86
merge-input, 110
merge-sorted-lists, 86
mergesort, 87
method-in-interface?, 24
methods

accessing, 19
applying, 20

(mixin (dom¡%¿ ...) (rng¡%¿ ...) class-clause ...), 22
mixin-contract, 51
mred?, 145
’multi, 33
multi, 31

named/undefined-handler, 103
namespace-defined?, 64
nand, 64
natural-number/c, 41
new, 18
new-cafe, 37
new-prompt, 57
none/c, 39
nor, 64
normalize-path, 70
not/c, 40

196

INDEX

Object Contracts, 50
object->vector, 23
object-contract, 50
object-info, 24
object-interface, 23
object-method-arity-includes?, 24
object=?, 23
object?, 23
object%, 11
objects, 7

creating, 18
’once-any, 33
once-any, 32
’once-each, 33
once-each, 32
one-of/c, 41
open, 98
open∗, 100
open∗/derived, 101
open-output-nowhere, 110
open/derived, 101
opt->, 48
opt->∗, 48
opt-lambda, 65
opt/c, 53
or/c, 39
os.ss, 97
overment, 15
overment∗, 13
override, 15
override∗, 13
override-final, 15
override-final∗, 13
overriding, 7

package, 98
package∗, 98
package.ss, 98
package/derived, 101
parse-command-line, 33
partition, 77
path-only, 70
pathlist-closure, 68
pattern matching, 89
pconvert-prop.ss, 106
pconvert.ss, 103
peek-bytes-avail!-evt, 112
peek-bytes-bytes!-evt, 112
peek-bytes-evt, 112
peek-string!-evt, 112
peek-string-evt, 112
peeking-input-port, 111
Perl, 115
pi, 95

plt-match.ss, 107
port.ss, 109
pregexp, 116
pregexp-match, 116
pregexp-match-positions, 116
pregexp-quote, 118
pregexp-replace, 117
pregexp-replace*, 118
pregexp-split, 117
pregexp.ss, 115
pretty-display, 129
pretty-format, 129
pretty-print, 129
pretty-print-.-symbol-without-bars, 132
pretty-print-abbreviate-read-macros, 132
pretty-print-columns, 129
pretty-print-current-style-table, 129
pretty-print-depth, 130
pretty-print-exact-as-decimal, 130
pretty-print-extend-style-table, 130
pretty-print-handler, 131
pretty-print-newline, 131
pretty-print-post-print-hook, 132
pretty-print-pre-print-hook, 132
pretty-print-print-hook, 131
pretty-print-print-line, 131
pretty-print-remap-stylable, 130
pretty-print-show-inexactness, 131
pretty-print-size-hook, 132
pretty-print-style-table?, 132
pretty-printing, 132
pretty.ss, 129
print-convert, 105
print-convert-constructor-name, 106
print-convert-expr, 105
print-convert-named-constructor?, 106
printable/c, 41
private, 15
private∗, 13
process, 134
process*, 134
process*/ports, 135
process.ss, 134
process/ports, 135
processes, 134
promise/c, 49
prompt, 55
prompt-at, 55
prompt0, 56
prompt0-at, 57
prop:print-convert-constructor-name, 106
prop:serializeable, 151
provide-signature-elements, 184

197

INDEX

provide/contract, 51
public, 15
public∗, 13
public-final, 15
public-final∗, 13
pubment, 15
pubment∗, 13
put-input, 144
put-preferences, 70
putprop, 37

quasi-read-style-printing, 105
quicksort, 87

read-bytes!-evt, 111
read-bytes-avail!-evt, 111
read-bytes-evt, 111
read-bytes-line-evt, 112
read-from-string, 154
read-from-string-all, 154
read-line-evt, 112
read-string!-evt, 112
read-string-evt, 111
real->decimal-string, 154
real-in, 41
rec, 65
recur, 65
recursive-contract, 53
reencode-input-port, 112
reencode-output-port, 112
regexp-exec, 6
regexp-match*, 155
regexp-match-evt, 113
regexp-match-exact?, 155
regexp-match-peek-positions*, 155
regexp-match-positions*, 155
regexp-match/fail-without-reading, 155
regexp-quote, 156
regexp-replace-quote, 156
regexp-split, 156
register-external-file, 30
relocate-input-port, 113
relocate-output-port, 114
remove, 87
remove*, 87
remq, 87
remq*, 87
remv, 87
remv*, 87
rename∗-potential-package, 101
rename-inner, 16
rename-potential-package, 101
rename-super, 16
reset, 56

reset-at, 56
reset0, 56
reset0-at, 57
rest, 87
restart-mzscheme, 136
restart.ss, 136
’rfc2822, 59
run-server, 164
’running, 134
runtime-path, 138
runtime-path.ss, 137

sandbox-coverage-enabled, 142
sandbox-error-output, 142
sandbox-eval-limits, 143
sandbox-init-hook, 141
sandbox-input, 141
sandbox-namespace-specs, 142
sandbox-network-guard, 143
sandbox-output, 141
sandbox-override-collection-paths, 142
sandbox-path-permissions, 143
sandbox-reader, 141
sandbox-security-guard, 143
sandbox.ss, 139
second, 85
seconds->date, 59
self (for objects), see this
send, 20
send∗, 20
send-event, 146
send-generic, 22
send/apply, 20
sendevent.ss, 146
serializable?, 152
serialization, 149
serialize, 149
serialize.ss, 148
set, 57
set!, 19
set-eval-limits, 143
set-first!, 87
set-integer-set-contents!, 76
set-rest!, 88
seventh, 85
sgn, 95
shared, 153
shared.ss, 153
shift, 56
shift-at, 56
shift0, 56
shift0-at, 57
show-sharing, 105
signature-members, 185

198

INDEX

sinh, 95
sixth, 85
sort, 86
spawn, 35, 57
split, 77
splitter, 57
sqr, 95
’status, 134
string-lowercase!, 157
string-uppercase!, 157
string.ss, 154
string/len, 41
strip-shell-command-start, 114
struct, 183
struct.ss, 158
struct/c, 44
stxparam.ss, 159
subclass?, 23
subclass?/c, 42
subprocesses, 134
subset?, 78
super, 16
super-init, 27
super-instantiate, 19
super-make-object, 19
super-new, 19
superclass, 7
superclass initialization, see super-init
surrogate, 160
surrogate.ss, 160
symbol=?, 65
symbols, 41
syntax-parameter-value, 159
syntax-parameterize, 159
syntax/c, 44
system, 134
system*, 134
system*/exit-code, 134
system/exit-code, 134

tar, 162
tar->output, 162
tar.ss, 162
tentative-pretty-print-port-cancel, 133
tentative-pretty-print-port-transfer, 133
third, 85
this-expression-file-name, 66
this-expression-source-directory, 65
thread-done-evt, 35
thread.ss, 163
time-evt, 35
trace, 165
trace.ss, 165
traceld.ss, 166

trait, 167
trait->mixin, 167
trait-sum, 168
trait.ss, 167
traits

creating, 167
transcr.ss, 170
transcript-off, 170
transcript-on, 170
transplant-input-port, 114
transplant-output-port, 114
true, 66
’truncate, 70
truncate-file, 97
trust-existing-zos, 29

unconstrained-domain->, 48
union, 77
unit, 171
unit-exptime.ss, 185
unit-from-context, 181
unit-static-signatures, 185
unit.ss, 171
unit/new-import-export, 182
unit200.ss, 186
unit?, 184
units, 171

compound, 176
creating, 171
invoking, 175

unitsig200.ss, 187
untrace, 165
use-named/undefined-handler, 103

vector-immutable/c, 42
vector-immutableof, 42
vector/c, 42
vectorof, 42

’wait, 134
whole/fractional-exact-numbers, 105
with-limits, 145
with-method, 20

xor, 77

zip, 188
zip->output, 188
zip-verbose, 188
zip.ss, 188

199

	1 MzLib
	2 a-signature.ss: Whole-module Unit Signatures
	3 a-unit.ss: Whole-module Units
	4 async-channel.ss: Buffered Asynchronous Channels
	5 awk.ss: Awk-like Syntax
	6 class.ss: Classes and Objects
	6.1 Object Example
	6.2 Creating Interfaces
	6.3 Creating Classes
	6.3.1 Initialization Variables
	6.3.2 Fields
	6.3.3 Methods

	6.4 Creating Objects
	6.5 Field and Method Access
	6.5.1 Methods
	6.5.2 Fields
	6.5.3 Generics

	6.6 Mixins
	6.7 Object Serialization
	6.8 Object, Class, and Interface Utilities
	6.9 Expanding to a Class Declaration

	7 class100.ss: Version-100-Style Classes
	8 cm.ss: Compilation Manager
	9 cm-accomplice.ss: Compilation Manager Hook for Syntax Transformers
	10 cmdline.ss: Command-line Parsing
	11 cml.ss: Concurrent ML Compatibility
	12 compat.ss: Compatibility
	13 compile.ss: Compiling Files
	14 contract.ss: Contracts
	14.1 Flat Contracts
	14.2 Function Contracts
	14.3 Lazy Data-structure Contracts
	14.4 Object and Class Contracts
	14.5 Attaching Contracts to Values
	14.6 Contract Utility

	15 control.ss: Control Operators
	16 date.ss: Dates
	17 deflate.ss: Deflating (Compressing) Data
	18 defmacro.ss: Non-Hygienic Macros
	19 etc.ss: Useful Procedures and Syntax
	20 file.ss: Filesystem Utilities
	21 foreign.ss: Foreign Interface
	22 include.ss: Textually Including Source
	23 inflate.ss: Inflating Compressed Data
	24 integer-set.ss: Integer Sets
	25 kw.ss: Keyword Arguments
	25.1 Required Arguments
	25.2 Optional Arguments
	25.3 Keyword Arguments
	25.4 Rest and Rest-like Arguments
	25.5 Body Argument
	25.6 Mode Keywords
	25.7 Property Lists

	26 list.ss: List Utilities
	27 match.ss: Pattern Matching
	27.1 Patterns
	27.2 Extending Match
	27.3 Examples

	28 math.ss: Math
	29 md5.ss: MD5 Message Digest
	30 os.ss: System Utilities
	31 package.ss: Local-Definition Scope Control
	32 pconvert.ss: Converted Printing
	33 pconvert-prop.ss: Converted Printing Property
	34 plt-match.ss: Pattern Matching
	35 port.ss: Port Utilities
	36 pregexp.ss: Perl-Style Regular Expressions
	36.1 Introduction
	36.2 Regexp procedures
	36.2.1 pregexp
	36.2.2 pregexp-match-positions
	36.2.3 pregexp-match
	36.2.4 pregexp-split
	36.2.5 pregexp-replace
	36.2.6 pregexp-replace*
	36.2.7 pregexp-quote

	36.3 The regexp pattern language
	36.3.1 Basic assertions
	36.3.2 Characters and character classes
	36.3.3 Quantifiers
	36.3.4 Clusters
	36.3.5 Alternation
	36.3.6 Backtracking
	36.3.7 Looking ahead and behind

	36.4 An extended example

	37 pretty.ss: Pretty Printing
	38 process.ss: Process and Shell-Command Execution
	39 restart.ss: Simulating Stand-alone MzScheme
	40 runtime-path.ss: Declaring Paths Needed at Run Time
	41 sandbox.ss: Sandboxed Evaluation
	41.1 Customizing Evaluators
	41.2 Interacting with Evaluators
	41.3 Miscellaneous

	42 sendevent.ss: AppleEvents
	42.1 AppleEvents

	43 serialize.ss: Serializing Data
	44 shared.ss: Graph Constructor Syntax
	45 string.ss: String Utilities
	46 struct.ss: Structure Utilities
	47 stxparam.ss: Syntax Parameters
	48 surrogate.ss: Proxy-like Design Pattern
	49 tar.ss: Creating tar Files
	50 thread.ss: Thread Utilities
	51 trace.ss: Tracing Top-level Procedure Calls
	52 traceld.ss: Tracing File Loads
	53 trait.ss: Object-Oriented Traits
	54 transcr.ss: Transcripts
	55 unit.ss: Units
	55.1 Creating Units
	55.2 Invoking Units
	55.3 Linking Units and Creating Compound Units
	55.4 Inferred Linking
	55.5 Generating A Unit from Context
	55.6 Structural Matching
	55.7 Extending the Syntax of Signatures
	55.8 Unit Utilities

	56 unit-exptime.ss: Unit Utilities for Macro Transformers
	57 unit200.ss: Old Units without Signatures
	58 unitsig200.ss: Old Units with Signatures
	59 zip.ss: Creating zip Files
	License
	Index

