OpenSSL

Version 4.0.1

June 22, 2008

(require openssl)

The openssl library provides glue for the OpenSSL library with the Scheme port system.
It provides functions nearly identically to the standard TCP subsystem in PLT Scheme, plus
a generic ports->ssl-ports interface.

To use this library, you will need OpenSSL installed on your machine, but

o for Windows, the PLT Scheme distribution for Windows includes the necessary DLLs.
o for Mac OS X, version 10.2 and later provides the necessary OpenSSL libraries.

o for Unix, "libssl.so" and "libcrypto.so" are likely to be installed on your ma-
chine, already.

ssl-available? : boolean?

A boolean value which says whether the system openssl library was successfully loaded.
Calling ss1-connect, etc. when this value is #£ (library not loaded) will raise an exception.

ssl-load-fail-reason : (or/c false/c string?)

Either #f (when ssl-available? is #t) or an error string (when ssl-available? is #f).



1 TCP-like Client Procedures

(ssl-connect hostname
port-no
[client-protocol]) — input-port? output-port?
hostname : string?
port-no : (integer-in 1 65535)
client-protocol : (or/c ssl-client-context? symbol?)
= ’sslv2-or-v3

Connect to the host given by hostname, on the port given by port-no. This connection
will be encrypted using SSL. The return values are as for tcp-connect: an input port and
an output port.

The optional client-protocol argument determines which encryption protocol is used,
whether the server’s certificate is checked, etc. The argument can be either a client context
created by ssl-make-client-context, or one of the following symbols: ’sslv2-or-
v3 (the default), >sslv2, ’sslv3, or ’tls; see ssl-make-client-context for further
details (including the meanings of the protocol symbols).

Closing the resulting output port does not send a shutdown message to the server. See also
ports->ssl-ports.

Beware that the SSL protocol allows reading or writing in only one direction at a time. If
you request data from the input port, then data cannot be written to the output port (i.e.,
attempting to write will block) until the other end of the connection responds to the read.
Even merely checking for input data — using byte-ready?, for example — commits the
connection to reading, and the other end must respond with a (possibly zero-length) answer.
Protocols that work with SSL, such as IMAP, have a well-defined communication pattern,
where theres no question of whether the other end is supposed to be sending or reading data.

(ssl-connect/enable-break hostname
port-no
[client-protocol])
— input-port? output-port?
hostname : string?
port-no : (integer-in 1 65535)
client-protocol : (or/c ssl-client-context? symbol?)
= ’sslv2-or-v3

N

Like ss1-connect, but breaking is enabled while trying to connect. }



(ssl-make-client-context [protocol]) — ssl-client-context?
protocol : symbol? = ’sslv2-or-v3

Creates a context to be supplied to ss1-connect. The context identifies a communication
protocol (as selected by protocol), and also holds certificate information (i.e., the client’s
identity, its trusted certificate authorities, etc.). See the section §4 “Context Procedures”
below for more information on certificates.

The protocol must be one of the following:

e ’sslv2-or-v3: SSL protocol versions 2 or 3, as appropriate (this is the default)
e ’sslv2: SSL protocol version 2
e ’sslv3: SSL protocol version 3

e ’tls: the TLS protocol version 1

By default, the context returned by ssl-make-client-context does not request verifica-
tion of a server’s certificate. Use ssl-set-verify! to enable such verification.

(ssl-client-context? v) — boolean?
v : any/c

Returns #t if v is a value produced by ssl-make-client-context, #f otherwise.



2 TCP-like Server Procedures

(ssl-listen port-no
queue-k
[reuse?
hostname-or-#f
server-protocol]) — ssl-listener?
port-no : (integer-in 1 65535)
queue-k : nonnegative-exact-integer?
reuse? : any/c = #f
hostname-or-#f : (or/c string? false/c) = #f
server-protocol : (or/c ssl-server-context? symbol?)
= ’sslv2-or-v3

Like tcp-listen, but the result is an SSL listener (which is a synchronizable value; see
sync). The extra optional server-protocol is as for ssl-connect, except that a context
must be a server context instead of a client context.

Call ssl-load-certificate-chain! and ssl-load-private-key! to avoid a no
shared cipher error on accepting connections. The file "test.pem" in the "openssl" col-
lection is a suitable argument for both calls when testing. Since "test.pem" is public,
however, such a test configuration obviously provides no security.

(ssl-close listener) — void?
listener : ssl-listener?

(ssl-listener? v) — boolean?
v : any/c

Analogous to tcp-close and tcp-listener?.

(ssl-accept listener) — input-port? output-port?
listener : ssl-listener?

(ssl-accept/enable-break listener) — input-port? output-port?
listener : ssl-listener?

Analogous to tcp-accept.

Closing the resulting output port does not send a shutdown message to the client. See also
ports->ssl-ports

See also ssl-connect about the limitations of reading and writing to an SSL connection
(i.e., one direction at a time).



The ssl-accept/enable-break procedure is analogous to tcp-accept/enable-break.

(ssl-make-server-context protocol) — ssl-server-context?
protocol : symbol?

Like ss1-make-client-context, but creates a server context.

(ssl-server—-context? v) — boolean?
v : any/c

Returns #t if v is a value produced by ssl-make-server-context, #f otherwise.



3 SSL-wrapper Interface

(ports->ssl-ports input-port
output-port
[#:mode mode
:context context
:encrypt protocol
:close-original? close-original?
:shutdown-on-close? shutdown-on-close?
#:error/ssl error])
— input-port? output-port?
input-port : input-port?
output-port : output-port?
mode : symbol? = ’accept
context : (or/c ssl-client-context? ssl-server-context?)
= ((if (eq? mode ’accept)
ssl-make-server-context
ssl-make-client-context)
protocol)
protocol : symbol? = ’sslv2-or-v3
close-original? : boolean? = #f
shutdown-on-close? : boolean? = #f
error : procedure? = error

H B H H

Returns two values—an input port and an output port—that implement the SSL protocol over
the given input and output port. (The given ports should be connected to another process that
runs the SSL protocol.)

The mode argument can be ’connect or ’accept. The mode determines how the SSL
protocol is initialized over the ports, either as a client or as a server. As with ssl-1listen, in
>accept mode, supply a context that has been initialized with ss1-load-certificate-
chain! and ssl-load-private-key! to avoid a no shared cipher error.

The context argument should be a client context for ’connect mode or a server context
for >accept mode. If it is not supplied, a context is created using the protocol specified by
a protocol argument.

If the protocol argument is not supplied, it defaults to ’sslv2-or-v3. See ssl-make-
client-context for further details (including all options and the meanings of the protocol
symbols). This argument is ignored if a context argument is supplied.

If close-original? is true, then when both SSL ports are closed, the given input and
output ports are automatically closed. The default is #f.

If shutdown-on-close? is true, then when the output SSL port is closed, it sends a shut-



down message to the other end of the SSL connection. The default is #f. When shutdown
is enabled, closing the output port can fail if the given output port becomes unwritable (e.g.,
because the other end of the given port has been closed by another process).

The error argument is an error procedure to use for raising communication errors. The
default is error, which raises exn:fail; in contrast, ssl-accept and ssl-connect use
an error function that raises exn:fail :network.

See also ssl-connect about the limitations of reading and writing to an SSL connection
(i.e., one direction at a time).



4 Context Procedures

(ssl-load-certificate-chain! context-or-listener
pathname) — void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
pathname : path-string?

Loads a PEM-format certification chain file for connections to made with the given con-
text (created by ssl-make-client-context or ssl-make-server-context) or listener
(created by ss1-1listen).

This chain is used to identify the client or server when it connects or accepts connections.
Loading a chain overwrites the old chain. Also call ssl1-load-private-key! to load the
certificate’s corresponding key.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

(ssl-load-private-key! context-or-listener
pathname
[rsa?
asnl1?]) — void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
pathname : path-string?
rsa? : boolean? = #t
asnl? : boolean? = #f

Loads the first private key from pathname for the given context or listener. The key goes
with the certificate that identifies the client or server.

If rsa? is #t (the default), the first RSA key is read (i.e., non-RSA keys are skipped). If
asnl1?is #t (the default is #£), the file is parsed as ASN1 format instead of PEM.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

(ssl-set-verify! context-or-listener
verify?) — void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
verify? : boolean?



Enables or disables verification of a connection peer’s certificates. By default, verification is
disabled.

Enabling verification also requires, at a minimum, designating trusted certificate authorities
with ssl-load-verify-root-certificates!.

(ssl-load-verify-root-certificates! context-or-listener
pathname )
— void?
context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)
pathname : path-string?

Loads a PEM-format file containing trusted certificates that are used to verify the certificates
of a connection peer. Call this procedure multiple times to load multiple sets of trusted
certificates.

You can use the file "test.pem" of the "openssl" collection for testing purposes. Since
"test.pem" is public, such a test configuration obviously provides no security.

(ssl-load-suggested-certificate-authorities!

context-or-listener

pathname)

— void?

context-or-listener : (or/c ssl-client-context? ssl-server-context?
ssl-listener?)

pathname : path-string?

Loads a PEM-format file containing certificates that are used by a server. The certificate list
is sent to a client when the server requests a certificate as an indication of which certificates
the server trusts.

Loading the suggested certificates does not imply trust, however; any certificate presented
by the client will be checked using the trusted roots loaded by ssl-load-verify-root-
certificates!.

You can use the file "test.pem" of the "openssl" collection for testing purposes where
the peer identifies itself using "test.pem".



5 Implementation Notes

For Windows, openss1 relies on "1ibeay32.d11" and "ssleay32.d11", where the DLLs
are located in the same place as "libmzsch(vers).d11" (where (vers) is either xxxxxxx
or a mangling of PLT Scheme’s version number). The DLLs are distributed as part of PLT
Scheme.

For Unix variants, openssl relies on "libcryto.so" and "libssl.so", which must be
installed in a standard library location, or in a directory listed by LD_LIBRARY_PATH.

For Mac OS X, openssl relies on "1ibssl.dylib" and "libcryto.dylib", which are
part of the OS distribution for Mac OS X 10.2 and later.

10



	1 TCP-like Client Procedures
	2 TCP-like Server Procedures
	3 SSL-wrapper Interface
	4 Context Procedures
	5 Implementation Notes

