
Web Server: PLT HTTP Server
Version 4.0.1

June 22, 2008

Jay McCarthy (jay@plt-scheme.org)

The Web Server collection provides libraries that can be used to develop Web applications
in Scheme.

1

Contents

1 Running the Web Server 6

1.1 Command-line Tools . 6

1.2 Functional . 6

2 Scheme Servlets 9

2.1 Definition . 9

2.2 Contracts . 9

2.3 HTTP Requests . 10

2.4 Request Bindings . 12

2.5 HTTP Responses . 13

2.6 Web . 14

2.7 Helpers . 16

2.8 Servlet URLs . 17

2.9 Basic Authentication . 18

2.10 Web Cells . 18

2.11 Environment . 19

3 Web Language Servlets 20

3.1 Definition . 20

3.2 Usage Considerations . 20

3.3 Reprovided API . 21

3.4 Web . 22

3.5 Stuff URL . 22

3.6 Web Extras . 23

3.7 File Boxes . 24

2

3.8 Web Parameters . 24

3.9 Web Cells . 25

4 Configuration 26

4.1 Configuration Table Structure . 26

4.2 Configuration Table . 28

4.3 Servlet Namespaces . 30

4.3.1 Why this is useful . 30

4.4 Standard Responders . 30

5 Dispatchers 33

5.1 General . 33

5.2 Mapping URLs to Paths . 34

5.3 Sequencing . 34

5.4 Timeouts . 35

5.5 Lifting Procedures . 35

5.6 Filtering Requests . 35

5.7 Procedure Invocation upon Request . 36

5.8 Logging . 36

5.9 Password Protection . 37

5.10 Virtual Hosts . 38

5.11 Serving Files . 39

5.12 Serving Scheme Servlets . 39

5.13 Serving Web Language Servlets . 40

5.14 Statistics . 41

6 Web Config Unit 42

3

6.1 Configuration Signature . 42

6.2 Configuration Units . 42

7 Web Server Unit 44

7.1 Signature . 44

7.2 Unit . 44

8 Continuation Managers 46

8.1 General . 46

8.2 No Continuations . 47

8.3 Timeouts . 47

8.4 LRU . 48

9 Internal 50

9.1 Timers . 50

9.2 Connection Manager . 51

9.3 Dispatching Server . 52

9.3.1 Dispatching Server Signatures . 52

9.3.2 Dispatching Server Unit . 53

9.4 Serializable Closures . 54

9.4.1 Define Closure . 54

9.5 Cache Table . 54

9.6 MIME Types . 55

9.7 Serialization Utilities . 56

9.8 URL Param . 56

9.9 Miscellaneous Utilities . 57

9.9.1 Contracts . 57

4

9.9.2 Lists . 57

9.9.3 URLs . 57

9.9.4 Paths . 58

9.9.5 Exceptions . 58

9.9.6 Strings . 59

10 Troubleshooting 60

10.1 General . 60

10.1.1 IE ignores my CSS or behaves strange in other ways 60

11 Acknowledgements 61

Index 62

5

1 Running the Web Server

There are a number of ways to run the Web Server. The two primary ways are through a
command-line tool or through a function call.

1.1 Command-line Tools

One command-line utility is provided with the Web Server:

plt-web-server [-f <file-name> -p <port> -a <ip-address>]

The optional file-name argument specifies the path to a configuration-table S-
expression (see §4.2 “Configuration Table”.) If this is not provided, the default configu-
ration shipped with the server is used. The optional port and ip-address arguments override
the corresponding portions of the configuration-table.

The configuration-table is given to configuration-table->web-config@ and used
to construct a web-config^ unit, and is linked with the web-server@ unit. The resulting
unit is invoked, and the server runs until the process is killed.

To run the web server with MrEd, use

mred -l- web-server/gui [-f <file-name> -p <port> -a <ip-address>]

1.2 Functional

(require web-server/web-server)

"web-server.ss" provides a number of functions for easing embedding of the Web Server
in other applications, or loading a custom dispatcher. See "run.ss" for an example of such
a script.

(serve
#:dispatch dispatch

[#:tcp@ tcp@

#:port port

#:listen-ip listen-ip

#:max-waiting max-waiting

#:initial-connection-timeout initial-connection-timeout])
→ (-> void)
dispatch : dispatcher?
tcp@ : tcp-unit^ = raw:tcp@

6

port : integer? = 80
listen-ip : (or/c string? false/c) = #f
max-waiting : integer? = 40
initial-connection-timeout : integer? = 60

Constructs an appropriate dispatch-config^, invokes the dispatch-server@, and calls
its serve function.

Here’s an example of a simple web server that serves files from a given path:

(define (start-file-server base)
(serve
#:dispatch
(files:make
#:url->path (make-url->path base)
#:path->mime-type
(lambda (path)
#"application/octet-stream"))

#:port 8080))

(serve/ports
#:dispatch dispatch

[#:tcp@ tcp@

#:ports ports

#:listen-ip listen-ip

#:max-waiting max-waiting

#:initial-connection-timeout initial-connection-timeout])
→ (-> void)
dispatch : dispatcher?
tcp@ : tcp-unit^ = raw:tcp@
ports : (listof integer?) = (list 80)
listen-ip : (or/c string? false/c) = #f
max-waiting : integer? = 40
initial-connection-timeout : integer? = 60

Calls serve multiple times, once for each port, and returns a function that shuts down all
of the server instances.

(serve/ips+ports
#:dispatch dispatch

[#:tcp@ tcp@

#:ips+ports ips+ports

#:max-waiting max-waiting

#:initial-connection-timeout initial-connection-timeout])
→ (-> void)

7

dispatch : dispatcher?
tcp@ : tcp-unit^ = raw:tcp@
ips+ports : (listof (cons/c (or/c string? false/c) (listof integer?)))

= (list (cons #f (list 80)))
max-waiting : integer? = 40
initial-connection-timeout : integer? = 60

Calls serve/ports multiple times, once for each ip, and returns a function that shuts down
all of the server instances.

(do-not-return) → void

This function does not return. If you are writing a script to load the Web Server you are
likely to want to call this functions at the end of your script.

8

2 Scheme Servlets

The Web Server allows servlets to be written in Scheme. It provides the supporting
API, described below, for the construction of these servlets. This API is provided by
"servlet.ss".

2.1 Definition

A servlet is a module that provides the following:

interface-version : (one-of/c ’v1 ’v2)

A symbol indicating the servlet interface the servlet conforms to. This influences the other
provided identifiers.

timeout : integer?

Only if interface-version is ’v1.

This number is used as the continuation-timeout argument to a timeout-based continu-
ation manager used for this servlet. (See §8.3 “Timeouts”.) (i.e., you do not have a choice
of the manager for this servlet and will be given a timeout-based manager.)

manager : manager?

Only if interface-version is ’v2.

The manager for the continuations of this servlet.

(start initial-request) → response?
initial-request : request?

This function is called when an instance of this servlet is started. The argument is the HTTP
request that initiated the instance.

2.2 Contracts

(require web-server/servlet/servlet-structs)

9

"servlet/servlet-structs.ss" provides a number of contracts for use in servlets.

k-url? : contract?

Equivalent to string?.

response-generator? : contract?

Equivalent to (-> k-url? response?).

url-transform? : contract?

Equivalent to (-> k-url? k-url?).

expiration-handler? : contract?

Equivalent to (or/c false/c (-> request? response?)).

embed/url? : contract?

Equivalent to (opt-> ((-> request? any/c)) (expiration-handler?) string?).

2.3 HTTP Requests

(require web-server/private/request-structs)

"private/request-structs.ss" provides a number of structures and functions related
to HTTP request data structures.

(struct header (field value))
field : bytes?
value : bytes?

Represents a header of field to value.

(headers-assq id heads) → (or/c false/c header?)
id : bytes?
heads : (listof header?)

10

Returns the header with a field equal to id from heads or #f.

(headers-assq* id heads) → (or/c false/c header?)
id : bytes?
heads : (listof header?)

Returns the header with a field case-insensitively equal to id from heads or #f.

(struct binding (id))
id : bytes?

Represents a binding of id.

(struct (binding:form binding) (value))
value : bytes?

Represents a form binding of id to value.

(struct (binding:file binding) (filename content))
filename : bytes?
content : bytes?

Represents the uploading of the file filename with the id id and the content content.

(bindings-assq binds) → (or/c false/c binding?)
binds : (listof binding?)

Returns the binding with an id equal to id from binds or #f.

(struct request (method
uri
headers/raw
bindings/raw
post-data/raw
host-ip
host-port
client-ip))

method : symbol?
uri : url?
headers/raw : (listof header?)
bindings/raw : (listof binding?)

11

post-data/raw : (or/c false/c bytes?)
host-ip : string?
host-port : number?
client-ip : string?

An HTTP method request to uri from client-ip to the server at host-ip:host-port
with headers/raw headers, bindings/raw GET and POST queries and post-data/raw
POST data.

2.4 Request Bindings

(require web-server/servlet/bindings)

"servlet/bindings.ss" provides a number of helper functions for accessing request
bindings.

(request-bindings req)
→ (listof (or/c (cons/c symbol? string?)

(cons/c symbol? bytes?)))
req : request?

Translates the request-bindings/raw of req by interpreting bytes? as string?s, ex-
cept in the case of binding:file bindings, which are left as is. Ids are then translated into
lowercase symbols.

(request-headers req) → (listof (cons/c symbol? string?))
req : request?

Translates the request-headers/raw of req by interpreting bytes? as string?s. Ids are
then translated into lowercase symbols.

(extract-binding/single id binds) → string?
id : symbol?
binds : (listof (cons/c symbol? string?))

Returns the single binding associated with id in the a-list binds if there is exactly one
binding. Otherwise raises exn:fail.

(extract-bindings id binds) → (listof string?)
id : symbol?
binds : (listof (cons/c symbol? string?))

12

Returns a list of all the bindings of id in the a-list binds .

(exists-binding? id binds) → boolean?
id : symbol?
binds : (listof (cons/c symbol? string))

Returns #t if binds contains a binding for id . Otherwise, #f.

These functions, while convenient, could introduce subtle bugs into your application. Ex-
amples: that they are case-insensitive could introduce a bug; if the data submitted is not in
UTF-8 format, then the conversion to a string will fail; if an attacked submits a form field as
if it were a file, when it is not, then the request-bindings will hold a bytes? object and
your program will error; and, for file uploads you lose the filename.

2.5 HTTP Responses

(require web-server/private/response-structs)

"private/response-structs.ss" provides structures and functions related to HTTP re-
sponses.

(struct response/basic (code message seconds mime headers))
code : number?
message : string?
seconds : number?
mime : bytes?
headers : (listof header?)

A basic HTTP response containing no body. code is the response code, message the mes-
sage, seconds the generation time, mime the MIME type of the file, and extras are the
extra headers, in addition to those produced by the server.

(struct (response/full response/basic) (body))
body : (listof (or/c string? bytes?))

As with response/basic, except with body as the response body.

(struct (response/incremental response/basic) (generator))
generator : ((() (listof (or/c bytes? string?)) . ->* . any) . -> . any)

As with response/basic, except with generator as a function that is called to generate

13

the response body, by being given an output-response function that outputs the content it
is called with.

(response? v) → boolean?
v : any/c

Checks if v is a valid response. A response is either:

• A response/basic structure.

• A value matching the contract (cons/c (or/c bytes? string?) (listof
(or/c bytes? string?))).

• A value matching xexpr?.

TEXT/HTML-MIME-TYPE : bytes?

Equivalent to #"text/html; charset=utf-8".

Warning:If you include a Content-Length header in a response that is inaccurate, there WILL
be an error in transmission that the server will not catch.

2.6 Web

(require web-server/servlet/web)

The web-server/servlet/web library provides the primary functions of interest for the
servlet developer.

(send/back response) → void?
response : response?

Sends response to the client.

current-servlet-continuation-expiration-handler : parameter?

Holds the expiration-handler? to be used when a continuation captured in this context
is expired, then looked up.

(send/suspend make-response [exp]) → request?

14

make-response : response-generator?
exp : expiration-handler?

= (current-servlet-continuation-expiration-handler)

Captures the current continuation, stores it with exp as the expiration handler, and binds it to
a URL. make-response is called with this URL and is expected to generate a response?,
which is sent to the client. If the continuation URL is invoked, the captured continuation is
invoked and the request is returned from this call to send/suspend.

(continuation-url? u)
→ (or/c false/c (list/c number? number? number?))
u : url?

Checks if u is a URL that refers to a continuation, if so returns the instance id, continuation
id, and nonce.

(adjust-timeout! t) → void?
t : number?

Calls the servlet’s manager’s adjust-timeout! function.

(clear-continuation-table!) → void?

Calls the servlet’s manager’s clear-continuation-table! function.

(send/forward make-response [exp]) → request?
make-response : response-generator?
exp : expiration-handler?

= (current-servlet-continuation-expiration-handler)

Calls clear-continuation-table!, then send/suspend.

(send/finish response) → void?
response : response?

Calls clear-continuation-table!, then send/back.

(send/suspend/dispatch make-response) → any/c
make-response : (embed/url? . -> . response?)

Calls make-response with a function that, when called with a procedure from request?

15

to any/c will generate a URL, that when invoked will call the function with the request?
object and return the result to the caller of send/suspend/dispatch.

(redirect/get) → request?

Calls send/suspend with redirect-to.

(redirect/get/forget) → request?

Calls send/forward with redirect-to.

(embed-ids ids u) → string?
ids : (list/c number? number? number?)
u : url?

Creates a continuation-url?.

current-url-transform : parameter?

Holds a url-transform? function that is called by send/suspend to transform the URLs
it generates.

2.7 Helpers

(require web-server/servlet/helpers)

"servlet/helpers.ss" provides functions built on "servlet/web.ss" that are useful
in many servlets.

(redirect-to uri

[perm/temp
#:headers headers]) → response?

uri : string?
perm/temp : redirection-status? = temporarily
headers : (listof header?) = (list)

Generates an HTTP response that redirects the browser to uri , while including the headers
in the response.

(redirection-status? v) → boolean?

16

v : any/c

Determines if v is one of the following values.

permanently : redirection-status?

A redirection-status? for permanent redirections.

temporarily : redirection-status?

A redirection-status? for temporary redirections.

see-other : redirection-status?

A redirection-status? for ”see-other” redirections.

(with-errors-to-browser send/finish-or-back

thunk) → any
send/finish-or-back : (response? . -> . void?)
thunk : (-> any)

Calls thunk with an exception handler that generates an HTML error page and calls
send/finish-or-back .

2.8 Servlet URLs

(require web-server/servlet/servlet-url)

"servlet/servlet-url.ss" provides functions that might be useful to you. They may
eventually provided by another module.

(request->servlet-url req) → servlet-url?
req : request?

Generates a value to be passed to the next function.

(servlet-url->url-string/no-continuation su) → string?
su : servlet-url?

Returns a URL string without the continuation information in the URL that went into su

17

2.9 Basic Authentication

(require web-server/servlet/basic-auth)

"servlet/basic-auth.ss" provides a function for helping with implementation of HTTP
Basic Authentication.

(extract-user-pass heads)
→ (or/c false/c (cons/c bytes? bytes?))
heads : (listof header?)

Returns a pair of the username and password from the authentication header in heads if
they are present, or #f

2.10 Web Cells

(require web-server/servlet/web-cells)

The web-server/servlet/web-cells library provides the interface to web cells.

A web cell is a kind of state defined relative to the frame tree. The frame-tree is a mirror of
the user’s browsing session. Every time a continuation is invoked, a new frame (called the
current frame) is created as a child of the current frame when the continuation was captured.

You should use web cells if you want an effect to be encapsulated in all interactions
linked from (in a transitive sense) the HTTP response being generated. For more in-
formation on their semantics, consult the paper ”Interaction-Safe State for the Web”
(http://www.cs.brown.edu/∼sk/Publications/Papers/Published/mk-int-safe-state-web/).

(web-cell? v) → boolean?
v : any/c

Determines if v is a web-cell.

(make-web-cell v) → web-cell?
v : any/c

Creates a web-cell with a default value of v .

(web-cell-ref wc) → any/c
wc : web-cell?

18

Looks up the value of wc found in the nearest frame.

(web-cell-shadow wc v) → void
wc : web-cell?
v : any/c

Binds wc to v in the current frame, shadowing any other bindings to wc in the current frame.

2.11 Environment

(require web-server/servlet-env)

The Web Server provides a means of running Scheme servlets from within DrScheme, or
any other REPL.

"servlet-env.ss" provides the servlet API from "servlet.ss" as well as the following:

send-url : (parameter/c ([url string?] [separate-window? boolean?] . -> . void))

Should open url. In another window if separate-window? is true. By default this is from
net/sendurl.

(on-web servlet-expr)
(on-web port servlet-expr)

The first form expands to (on-web 8000 servlet-expr).

Constructs a small servlet, where the body of the start procedure is servlet-expr , runs
the Web Server on port port , and calls send-url with a URL for the constructed servlet.
The call blocks until the servlet finishes its computation, i.e. servlet-expr is evaluated,
and returns its result. servlet-expr may use the entire Scheme servlet API.

19

3 Web Language Servlets

The Web Server allows servlets to be written in a special Web language that is nearly iden-
tical to Scheme. Herein we discuss how it is different and what API is provided.

3.1 Definition

(require web-server/lang)

A Web language servlet is a module written in the web-server/lang language. The servlet
module should provide the following function:

(start initial-request) → response?
initial-request : request?

Called when this servlet is invoked. The argument is the HTTP request that initiated the
servlet.

3.2 Usage Considerations

A servlet has the following process performed on it automatically:

• All uses of letrec are removed and replaced with equivalent uses of let and imper-
ative features. ("lang/elim-letrec.ss")

• The program is converted into ANF (Administrative Normal Form), making all con-
tinuations explicit. ("lang/anormal.ss")

• All continuations (and other continuations marks) are recorded in the continuation
marks of the expression they are the continuation of. ("lang/elim-callcc.ss")

• All calls to external modules are identified and marked. ("lang/elim-callcc.ss")

• All uses of call/cc are removed and replaced with equivalent gathering of the con-
tinuations through the continuation-marks. ("lang/elim-callcc.ss")

• The program is defunctionalized with a serializable data-structure for each anonymous
lambda. ("lang/defun.ss")

This process allows the continuations captured by your servlet to be serialized. This means
they may be stored on the client’s browser or the server’s disk. Thus, your servlet has no

20

cost to the server other than execution. This is very attractive if you’ve used Scheme servlets
and had memory problems.

This process IS defined on all of PLT Scheme and occurs AFTER macro-expansion, so you
are free to use all interesting features of PLT Scheme. However, there are some considera-
tions you must make.

First, this process drastically changes the structure of your program. It will create an im-
mense number of lambdas and structures your program did not normally contain. The per-
formance implication of this has not been studied with PLT Scheme. However, it is theoret-
ically a benefit. The main implications would be due to optimizations MzScheme attempts
to perform that will no longer apply. Ideally, your program should be optimized first.

Second, the defunctionalization process is sensitive to the syntactic structure of your pro-
gram. Therefore, if you change your program in a trivial way, for example, changing a
constant, then all serialized continuations will be obsolete and will error when deserializa-
tion is attempted. This is a feature, not a bug!

Third, the values in the lexical scope of your continuations must be serializable for the con-
tinuations itself to be serializable. This means that you must use define-serializable-
struct rather than define-struct, and take care to use modules that do the same. Simi-
larly, you may not use parameterize, because parameterizations are not serializable.

Fourth, and related, this process only runs on your code, not on the code you require. Thus,
your continuations—to be capturable—must not be in the context of another module. For
example, the following will not work:

(define requests
(map (lambda (rg) (send/suspend/url rg))

response-generators))

because map is not transformed by the process. However, if you defined your own map
function, there would be no problem.

Fifth, the store is NOT serialized. If you rely on the store you will be taking huge risks. You
will be assuming that the serialized continuation is invoked before the server is restarted or
the memory is garbage collected.

This process is derived from the paper ”Continuations from Generalized Stack Inspec-
tion” (http://www.cs.brown.edu/∼sk/Publications/Papers/Published/pcmkf-cont-from-gen-
stack-insp/). We thank Greg Pettyjohn for his initial implementation of this algorithm.

3.3 Reprovided API

The APIs from net/url, §2.3 “HTTP Requests”, §2.5 “HTTP Responses”, and §2.7
“Helpers” are reprovided by the Web language API.

21

3.4 Web

(require web-server/lang/web)

"lang/web.ss" provides the most basic Web functionality.

(send/suspend/url response-generator) → request?
response-generator : (url? . -> . response?)

Captures the current continuation. Serializes it and stuffs it into a URL. Calls response-
generator with this URL and delivers the response to the client. If the URL is invoked the
request is returned to this continuation.

(send/suspend/hidden response-generator) → request?
response-generator : (url? xexpr? . -> . response?)

Captures the current continuation. Serializes it and generates an INPUT form that includes
the serialization as a hidden form. Calls response-generator with this URL and form
field and delivers the response to the client. If the URL is invoked with form data containing
the hidden form, the request is returned to this continuation.

Note: The continuation is NOT stuffed.

(embed-proc/url k-url proc) → url?
k-url : url?
proc : (request? . -> . any/c)

Serializes and stuffs proc into k-url . For use with extract-proc/url.

(extract-proc/url req) → any/c
req : request?

Inspects the URL of req and attempts to extract the procedure embedded with embed-
proc/url. If successful, it is invoked with req as an argument.

3.5 Stuff URL

(require web-server/lang/stuff-url)

"lang/stuff-url.ss" provides an interface for ”stuffing” serializable values into URLs.
Currently there is a particular hard-coded behavior, but we hope to make it more flexible in

22

the future.

(stuff-url v u) → url?
v : serializable?
u : url?

Serializes v and computes the MD5 of the serialized representation. The serialization of v
is written to "$HOME/.urls/M" where ‘M’ is the MD5. ‘M’ is then placed in u as a URL
param.

(stuffed-url? u) → boolean?
u : url?

Checks if u appears to be produced by stuff-url.

(unstuff-url u) → serializable?
u : url?

Extracts the value previously serialized into u by stuff-url.

In the future, we will offer the facilities to:

• Optionally use the content-addressed storage.

• Use different hashing algorithms for the CAS.

• Encrypt the serialized value.

• Only use the CAS if the URL would be too long. (URLs may only be 1024 characters.)

3.6 Web Extras

(require web-server/lang/web-extras)

The web-server/lang/web-extras library provides send/suspend/dispatch and
redirect/get as web-server/servlet/web, except they use embed-proc/url plus
extract-proc/url and send/suspend/url, respectively.

(send/suspend/dispatch response-proc-expr)
(redirect/get) → request?

See web-server/servlet/web.

23

3.7 File Boxes

(require web-server/lang/file-box)

As mentioned earlier, it is dangerous to rely on the store in Web Language servlets, due to
the deployment scenarios available to them. "lang/file-box.ss" provides a simple API
to replace boxes in a safe way.

(file-box? v) → boolean?
v : any/c

Checks if v is a file-box.

(file-box p v) → file-box?
p : path?
v : serializable?

Creates a file-box that is stored at p , with the default contents of v .

(file-unbox fb) → serializable?
fb : file-box?

Returns the value inside fb

(file-box-set? fb) → boolean?
fb : file-box?

Returns #t if fb contains a value.

(file-box-set! fb v) → void
fb : file-box?
v : serializable?

Saves v in the file represented by fb .

Warning:If you plan on using a load-balancer, make sure your file-boxes are on a shared
medium.

3.8 Web Parameters

(require web-server/lang/web-param)

24

As mentioned earlier, it is not easy to use parameterize in the Web Language.
"lang/web-param.ss" provides (roughly) the same functionality in a way that is seri-
alizable. Like other serializable things in the Web Language, they are sensitive to source
code modification.

(make-web-parameter default)

Expands to the definition of a web-parameter with default as the default value. A web-
parameter is a procedure that, when called with zero arguments, returns default or the last
value web-parameterized in the dynamic context of the call.

(web-parameter? v) → boolean?
v : any/c

Checks if v appears to be a web-parameter.

(web-parameterize ([web-parameter-expr value-expr] ...) expr ...)

Runs (begin expr ...) such that the web-parameters that the web-parameter-exprs
evaluate to are bound to the value-exprs. From the perspective of the value-exprs, this
is like let.

3.9 Web Cells

(require web-server/lang/web-cells)

The web-server/lang/web-cells library provides the same API as web-
server/servlet/web-cells, but in a way compatible with the Web Language.
The one difference is that make-web-cell is syntax, rather than a function.

(web-cell? v) → boolean?
v : any/c

(make-web-cell default-expr)
(web-cell-ref wc) → any/c
wc : web-cell?

(web-cell-shadow wc v) → void
wc : web-cell?
v : any/c

See web-server/servlet/web-cells.

25

4 Configuration

There are a number of libraries and utilities useful for configuring the Web Server .

4.1 Configuration Table Structure

(require web-server/configuration/configuration-table-structs)

"configuration/configuration-table-structs.ss" provides the following struc-
tures that represent a standard configuration (see §7 “Web Server Unit”) of the Web Server .
The contracts on this structure influence the valid types of values in the configuration table
S-expression file format described in §4.2 “Configuration Table”.

(struct configuration-table (port
max-waiting
initial-connection-timeout
default-host
virtual-hosts))

port : port-number?
max-waiting : natural-number/c
initial-connection-timeout : natural-number/c
default-host : host-table?
virtual-hosts : (listof (cons/c string? host-table?))

(struct host-table (indices log-format messages timeouts paths))
indices : (listof string?)
log-format : symbol?
messages : messages?
timeouts : timeouts?
paths : paths?

(struct host (indices
log-format
log-path
passwords
responders
timeouts
paths))

indices : (listof string?)
log-format : symbol?
log-path : (or/c false/c path-string?)

26

passwords : (or/c false/c path-string?)
responders : responders?
timeouts : timeouts?
paths : paths?

(struct responders (servlet
servlet-loading
authentication
servlets-refreshed
passwords-refreshed
file-not-found
protocol
collect-garbage))

servlet : (url? any/c . -> . response?)
servlet-loading : (url? any/c . -> . response?)
authentication : (url? (cons/c symbol? string?) . -> . response?)
servlets-refreshed : (-> response?)
passwords-refreshed : (-> response?)
file-not-found : (request? . -> . response?)
protocol : (url? . -> . response?)
collect-garbage : (-> response?)

(struct messages (servlet
authentication
servlets-refreshed
passwords-refreshed
file-not-found
protocol
collect-garbage))

servlet : string?
authentication : string?
servlets-refreshed : string?
passwords-refreshed : string?
file-not-found : string?
protocol : string?
collect-garbage : string?

(struct timeouts (default-servlet
password
servlet-connection
file-per-byte
file-base))

default-servlet : number?

27

password : number?
servlet-connection : number?
file-per-byte : number?
file-base : number?

(struct paths (conf
host-base
log
htdocs
servlet
mime-types
passwords))

conf : (or/c false/c path-string?)
host-base : (or/c false/c path-string?)
log : (or/c false/c path-string?)
htdocs : (or/c false/c path-string?)
servlet : (or/c false/c path-string?)
mime-types : (or/c false/c path-string?)
passwords : (or/c false/c path-string?)

4.2 Configuration Table

(require web-server/configuration/configuration-table)

"configuration/configuration-table.ss" provides functions for reading, writing,
parsing, and printing configuration-table structures.

default-configuration-table-path : path?

The default configuration table S-expression file.

(sexpr->configuration-table sexpr) → configuration-table?
sexpr : list?

This function converts a configuration-table from an S-expression.

(configuration-table->sexpr ctable) → list?
ctable : configuration-table?

This function converts a configuration-table to an S-expression.

28

‘((port ,integer?)
(max-waiting ,integer?)
(initial-connection-timeout ,integer?)
(default-host-table
,host-table-sexpr?)

(virtual-host-table
(list ,symbol? ,host-table-sexpr?)
...))

where a host-table-sexpr is:

‘(host-table
(default-indices ,string? ...)
(log-format ,symbol?)
(messages
(servlet-message ,path-string?)
(authentication-message ,path-string?)
(servlets-refreshed ,path-string?)
(passwords-refreshed ,path-string?)
(file-not-found-message ,path-string?)
(protocol-message ,path-string?)
(collect-garbage ,path-string?))
(timeouts
(default-servlet-timeout ,integer?)
(password-connection-timeout ,integer?)
(servlet-connection-timeout ,integer?)
(file-per-byte-connection-timeout ,integer?)
(file-base-connection-timeout ,integer))
(paths
(configuration-root ,path-string?)
(host-root ,path-string?)
(log-file-path ,path-string?)
(file-root ,path-string?)
(servlet-root ,path-string?)
(mime-types ,path-string?)
(password-authentication ,path-string?)))

(read-configuration-table path) → configuration-table?
path : path-string?

This function reads a configuration-table from path .

(write-configuration-table ctable path) → void
ctable : configuration-table?
path : path-string?

29

This function writes a configuration-table to path .

4.3 Servlet Namespaces

(require web-server/configuration/namespace)

"configuration/namespace.ss" provides a function to help create the make-servlet-
namespace procedure needed by the make functions of "dispatchers/dispatch-
servlets.ss" and "dispatchers/dispatch-lang.ss".

(make-make-servlet-namespace #:to-be-copied-module-specs to-be-copied-module-specs)
→ (key-> ([additional-specs (listof module-spec?)])

namespace?)
to-be-copied-module-specs : (listof module-spec?)

This function creates a function that when called will construct a new namespace that has
all the modules from to-be-copied-module-specs and additional-specs, as well as
mzscheme and mred, provided they are already attached to the (current-namespace) of
the call-site.

Example:

(make-make-servlet-namespace
#:to-be-copied-module-specs ‘((lib "database.ss" "my-module")))

4.3.1 Why this is useful

A different namespace is needed for each servlet, so that if servlet A and servlet B both use
a stateful module C, they will be isolated from one another. We see the Web Server as an
operating system for servlets, so we inherit the isolation requirement on operating systems.

However, there are some modules which must be shared. If they were not, then structures
cannot be passed from the Web Server to the servlets, due to a subtlety in the way MzScheme
implements structures.

Since, on occasion, a user will actually wanted servlets A and B to interact through mod-
ule C. A custom make-servlet-namespace can be created, through this procedure, that
attaches module C to all servlet namespaces. Through other means (see §5 “Dispatchers”)
different sets of servlets can share different sets of modules.

4.4 Standard Responders

30

(require web-server/configuration/responders)

"configuration/responders.ss" provides some functions that help constructing HTTP
responders. These functions are used by the default dispatcher constructor (see §7 “Web
Server Unit”) to turn the paths given in the configuration-table into responders for the
associated circumstance.

(file-response http-code

short-version

text-file

header ...) → response?
http-code : natural-number/c
short-version : string?
text-file : string?
header : header?

Generates a response/full with the given http-code and short-version as the corre-
sponding fields; with the content of the text-file as the body; and, with the headers as,
you guessed it, headers.

(servlet-loading-responder url exn) → response?
url : url?
exn : any/c

Prints the exn to standard output and responds with a ”Servlet didn’t load.” message.

(gen-servlet-not-found file) → ((url url?) . -> . response?)
file : path-string?

Returns a function that generates a standard ”Servlet not found.” error with content from
file .

(gen-servlet-responder file)
→ ((url url?) (exn any/c) . -> . response?)
file : path-string?

Prints the exn to standard output and responds with a ”Servlet error.” message with content
from file .

(gen-servlets-refreshed file) → (-> response?)
file : path-string?

31

Returns a function that generates a standard ”Servlet cache refreshed.” message with content
from file .

(gen-passwords-refreshed file) → (-> response?)
file : path-string?

Returns a function that generates a standard ”Passwords refreshed.” message with content
from file .

(gen-authentication-responder file)
→ ((url url?) (header header?) . -> . response?)
file : path-string?

Returns a function that generates an authentication failure error with content from file and
header as the HTTP header.

(gen-protocol-responder file) → ((url url?) . -> . response?)
file : path-string?

Returns a function that generates a ”Malformed request” error with content from file .

(gen-file-not-found-responder file)
→ ((req request?) . -> . response?)
file : path-string?

Returns a function that generates a standard ”File not found” error with content from file .

(gen-collect-garbage-responder file) → (-> response?)
file : path-string?

Returns a function that generates a standard ”Garbage collection run” message with content
from file .

32

5 Dispatchers

The Web Server is really just a particular configuration of a dispatching server. There are a
number of dispatchers that are defined to support the Web Server . Other dispatching servers,
or variants of the Web Server , may find these useful. In particular, if you want a peculiar
processing pipeline for your Web Server installation, this documentation will be useful.

5.1 General

(require web-server/dispatchers/dispatch)

"dispatchers/dispatch.ss" provides a few functions for dispatchers in general.

dispatcher? : contract?

Equivalent to (-> connection? request? void).

(dispatcher-interface-version? any) → boolean?
any : any/c

Returns #t if any is ’v1. Returns #f otherwise.

(struct exn:dispatcher ())

An exception thrown to indicate that a dispatcher does not apply to a particular request.

(next-dispatcher) → void

Raises a exn:dispatcher

As the dispatcher? contract suggests, a dispatcher is a function that takes a connection
and request object and does something to them. Mostly likely it will generate some response
and output it on the connection, but it may do something different. For example, it may
apply some test to the request object, perhaps checking for a valid source IP address, and
error if the test is not passed, and call next-dispatcher otherwise.

Consider the following example dispatcher, that captures the essence of URL rewriting:

; (url? -> url?) dispatcher? -> dispatcher?
(lambda (rule inner)
(lambda (conn req)

33

; Call the inner dispatcher...
(inner conn

; with a new request object...
(copy-struct request req

; with a new URL!
[request-uri (rule (request-uri req))]))))

5.2 Mapping URLs to Paths

(require web-server/dispatchers/filesystem-map)

"dispatchers/filesystem-map.ss" provides a means of mapping URLs to paths on the
filesystem.

url-path? : contract?

This contract is equivalent to (->* (url?) (path? (listof path-element?))). The
returned path? is the path on disk. The list is the list of path elements that correspond to the
path of the URL.

(make-url->path base) → url-path?
base : path?

The url-path? returned by this procedure considers the root URL to be base . It ensures
that ".."s in the URL do not escape the base and removes them silently otherwise.

(make-url->valid-path url->path) → url->path?
url->path : url->path?

Runs the underlying url->path , but only returns if the path refers to a file that actually
exists. If it is does not, then the suffix elements of the URL are removed until a file is found.
If this never occurs, then an error is thrown.

This is primarily useful for dispatchers that allow path information after the name of a service
to be used for data, but where the service is represented by a file. The most prominent
example is obviously servlets.

5.3 Sequencing

(require web-server/dispatchers/dispatch-sequencer)

34

The web-server/dispatchers/dispatch-sequencer module defines a dispatcher con-
structor that invokes a sequence of dispatchers until one applies.

(make dispatcher ...) → dispatcher?
dispatcher : dispatcher?

Invokes each dispatcher , invoking the next if the first calls next-dispatcher. If no
dispatcher applies, then it calls next-dispatcher itself.

5.4 Timeouts

(require web-server/dispatchers/dispatch-timeout)

The web-server/dispatchers/dispatch-timeout module defines a dispatcher con-
structor that changes the timeout on the connection and calls the next dispatcher.

(make new-timeout) → dispatcher?
new-timeout : integer?

Changes the timeout on the connection with adjust-connection-timeout! called with
new-timeout .

5.5 Lifting Procedures

(require web-server/dispatchers/dispatch-lift)

The web-server/dispatchers/dispatch-lift module defines a dispatcher construc-
tor.

(make proc) → dispatcher?
proc : (request? . -> . response?)

Constructs a dispatcher that calls proc on the request object, and outputs the response to the
connection.

5.6 Filtering Requests

(require web-server/dispatchers/dispatch-filter)

35

The web-server/dispatchers/dispatch-filter module defines a dispatcher con-
structor that calls an underlying dispatcher with all requests that pass a predicate.

(make regex inner) → dispatcher?
regex : regexp?
inner : dispatcher?

Calls inner if the URL path of the request, converted to a string, matches regex . Other-
wise, calls next-dispatcher.

5.7 Procedure Invocation upon Request

(require web-server/dispatchers/dispatch-pathprocedure)

The web-server/dispatchers/dispatch-pathprocedure module defines a dispatcher
constructor for invoking a particular procedure when a request is given to a particular URL
path.

(make path proc) → dispatcher?
path : string?
proc : (request? . -> . response?)

Checks if the request URL path as a string is equal to path and if so, calls proc for a
response.

This is used in the standard Web Server pipeline to provide a URL that refreshes the pass-
word file, servlet cache, etc.

5.8 Logging

(require web-server/dispatchers/dispatch-log)

The web-server/dispatchers/dispatch-log module defines a dispatcher constructor
for transparent logging of requests.

format-req/c : contract?

Equivalent to (-> request? string?).

paren-format : format-req/c

36

Formats a request by:

(format "∼s∼n"
(list ’from (request-client-ip req)

’to (request-host-ip req)
’for (url->string (request-uri req)) ’at
(date->string (seconds->date (current-seconds)) #t)))

extended-format : format-req/c

Formats a request by:

(format "∼s∼n"
‘((client-ip ,(request-client-ip req))
(host-ip ,(request-host-ip req))
(referer ,(let ([R (headers-assq* #"Referer" (request-headers/raw req))])

(if R
(header-value R)
#f)))

(uri ,(url->string (request-uri req)))
(time ,(current-seconds))))

apache-default-format : format-req/c

Formats a request like Apache’s default.

(log-format->format id) → format-req/c
id : symbol?

Maps ’parenthesized-default to paren-format, ’extended to extended-format,
and ’apache-default to apache-default-format.

(make [#:format format #:log-path log-path]) → dispatcher?
format : format-req/c = paren-format
log-path : path-string? = "log"

Logs requests to log-path by using format to format the requests. Then invokes next-
dispatcher.

5.9 Password Protection

(require web-server/dispatchers/dispatch-passwords)

37

The web-server/dispatchers/dispatch-passwords module defines a dispatcher con-
structor that performs HTTP Basic authentication filtering.

(make [#:password-file password-file

#:authentication-responder authentication-responder])
→ (-> void) dispatcher?
password-file : path-string? = "passwords"
authentication-responder : ((url url?) (header header?) . -> . response?)

= (gen-authentication-responder "forbidden.html")

The first returned value is a procedure that refreshes the password file used by the dispatcher.

The dispatcher that is returned does the following: Checks if the request contains Basic
authentication credentials, and that they are included in password-file . If they are not,
authentication-responder is called with a header that requests credentials. If they
are, then next-dispatcher is invoked.

password-file is parsed as:

(list ([domain : string?]
[path : string-regexp?]
(list [user : symbol?]

[pass : string?])
...)

...)

For example:

’(("secret stuff" "/secret(/.*)?" (bubba "bbq") (Billy "BoB")))

5.10 Virtual Hosts

(require web-server/dispatchers/dispatch-host)

The web-server/dispatchers/dispatch-host module defines a dispatcher constructor
that calls a different dispatcher based upon the host requested.

(make lookup-dispatcher) → dispatcher?
lookup-dispatcher : (symbol? . -> . dispatcher?)

Extracts a host from the URL requested, or the Host HTTP header, calls lookup-

dispatcher with the host, and invokes the returned dispatcher. If no host can be extracted,
then ’none is used.

38

5.11 Serving Files

(require web-server/dispatchers/dispatch-files)

The web-server/dispatchers/dispatch-files module allows files to be served. It
defines a dispatcher construction procedure.

(make #:url->path url->path

[#:path->mime-type path->mime-type

#:indices indices]) → dispatcher?
url->path : url->path?
path->mime-type : (path? . -> . bytes?)

= (lambda (path) TEXT/HTML-MIME-TYPE)
indices : (listof string?) = (list "index.html" "index.htm")

Uses url->path to extract a path from the URL in the request object. If this path does not
exist, then the dispatcher does not apply and next-dispatcher is invoked. If the path is a
directory, then the indices are checked in order for an index file to serve. In that case, or in
the case of a path that is a file already, path->mime-type is consulted for the MIME Type
of the path. The file is then streamed out the connection object.

This dispatcher supports HTTP Range GET requests and HEAD requests.

5.12 Serving Scheme Servlets

(require web-server/dispatchers/dispatch-servlets)

The web-server/dispatchers/dispatch-servlets module defines a dispatcher con-
structor that runs servlets written in Scheme.

(make config:scripts

#:url->path url->path

[#:make-servlet-namespace make-servlet-namespace

#:responders-servlet-loading responders-servlet-loading

#:responders-servlet responders-servlet

#:timeouts-default-servlet timeouts-default-servlet])
→ (-> void) dispatcher?
config:scripts : (box/c cache-table?)
url->path : url->path?
make-servlet-namespace : make-servlet-namespace?

= (make-make-servlet-namespace)
responders-servlet-loading : ((url url?) (exn any/c) . -> . response?)

= servlet-loading-responder

39

responders-servlet : ((url url?) (exn any/c) . -> . response?)
= (gen-servlet-responder "servlet-error.html")

timeouts-default-servlet : integer? = 30

The first returned value is a procedure that refreshes the servlet code cache.

The dispatcher does the following: If the request URL contains a continuation reference,
then it is invoked with the request. Otherwise, url->path is used to resolve the URL to a
path. The path is evaluated as a module, in a namespace constructed by make-servlet-

namespace . If this fails then responders-servlet-loading is used to format a response
with the exception. If it succeeds, then start export of the module is invoked. If there is
an error when a servlet is invoked, then responders-servlet is used to format a response
with the exception.

Servlets that do not specify timeouts are given timeouts according to timeouts-default-

servlet .

5.13 Serving Web Language Servlets

(require web-server/dispatchers/dispatch-lang)

The web-server/dispatchers/dispatch-lang module defines a dispatcher constructor
that runs servlets written in the Web Language.

(make #:url->path url->path

[#:make-servlet-namespace make-servlet-namespace]
#:responders-servlet-loading responders-servlet-loading

#:responders-servlet responders-servlet)
→ dispatcher?
url->path : url->path?
make-servlet-namespace : make-servlet-namespace?

= (make-make-servlet-namespace)
responders-servlet-loading : servlet-loading-responder
responders-servlet : (gen-servlet-responder "servlet-error.html")

If the request URL contains a serialized continuation, then it is invoked with the request.
Otherwise, url->path is used to resolve the URL to a path. The path is evaluated as
a module, in a namespace constructed by make-servlet-namespace . If this fails then
responders-servlet-loading is used to format a response with the exception. If it
succeeds, then start export of the module is invoked. If there is an error when a servlet is
invoked, then responders-servlet is used to format a response with the exception.

40

5.14 Statistics

(require web-server/dispatchers/dispatch-stat)

The web-server/dispatchers/dispatch-stat module provides services related to per-
formance statistics.

(make-gc-thread time) → thread?
time : integer?

Starts a thread that calls (collect-garbage) every time seconds.

(make) → dispatcher?

Returns a dispatcher that prints memory usage on every request.

41

6 Web Config Unit

The Web Server offers a unit-based approach to configuring the server.

6.1 Configuration Signature

(require web-server/web-config-sig)

web-config^ : signature

Provides contains the following identifiers.

max-waiting : integer?

Passed to tcp-accept.

virtual-hosts : (listof (cons/c string? host-table?))

Contains the configuration of individual virtual hosts.

scripts : (box/c (cache-table? path? servlet?))

Contains initially loaded servlets.

initial-connection-timeout : integer?

Specifies the initial timeout given to a connection.

port : port-number?

Specifies the port to serve HTTP on.

listen-ip : string?

Passed to tcp-accept.

make-servlet-namespace : make-servlet-namespace?

Passed to servlets:make.

6.2 Configuration Units

42

(require web-server/web-config-unit)

(configuration-table->web-config@
path

[#:port port

#:listen-ip listen-ip

#:make-servlet-namespace make-servlet-namespace])
→ (unit? web-config^)
path : path?
port : (or/c false/c port-number?) = #f
listen-ip : (or/c false/c string?) = #f
make-servlet-namespace : make-servlet-namespace?

= (make-make-servlet-namespace)

Reads the S-expression at path and calls configuration-table-sexpr->web-config@
appropriately.

(configuration-table-sexpr->web-config@
sexpr

[#:web-server-root web-server-root

#:port port

#:listen-ip listen-ip

#:make-servlet-namespace make-servlet-namespace])
→ (unit? web-config^)
sexpr : list?
web-server-root : path?

= (directory-part default-configuration-table-path)
port : (or/c false/c port-number?) = #f
listen-ip : (or/c false/c string?) = #f
make-servlet-namespace : make-servlet-namespace?

= (make-make-servlet-namespace)

Parses sexpr as a configuration-table and constructs a web-config^ unit.

43

7 Web Server Unit

The Web Server offers a unit-based approach to running the server.

7.1 Signature

(require web-server/web-server-sig)

web-server^ : signature

(serve) → (-> void)

Runs the server and returns a procedure that shuts down the server.

(serve-ports ip op) → void
ip : input-port?
op : output-port?

Serves a single connection represented by the ports ip and op .

7.2 Unit

(require web-server/web-server-unit)

web-server@ : (unit/c (web-config^ tcp^)
(web-server^))

Uses the web-config^ to construct a dispatcher? function that sets up one virtual host
dispatcher, for each virtual host in the web-config^, that sequences the following opera-
tions:

• Logs the incoming request with the given format to the given file

• Performs HTTP Basic Authentication with the given password file

• Allows the "/conf/refresh-passwords" URL to refresh the password file.

• Allows the "/conf/collect-garbage" URL to call the garbage collector.

• Allows the "/conf/refresh-servlets" URL to refresh the servlets cache.

44

• Execute servlets under the "/servlets/" URL in the given servlet root directory.

• Serves files under the "/" URL in the given htdocs directory.

Using this dispatcher?, it loads a dispatching server that provides serve and serve-
ports functions that operate as expected.

45

8 Continuation Managers

Since Scheme servlets store their continuations on the server, they take up memory on the
server. Furthermore, garbage collection can not be used to free this memory, because there
are roots outside the system: users’ browsers, bookmarks, brains, and notebooks. Therefore,
some other strategy must be used if memory usage is to be controlled. This functionality is
pluggable through the manager interface.

8.1 General

(require web-server/managers/manager)

"managers/manager.ss" defines the manager interface. It is required by the users and
implementers of managers.

(struct manager (create-instance
adjust-timeout!
clear-continuations!
continuation-store!
continuation-lookup))

create-instance : ((-> void) . -> . number?)
adjust-timeout! : (number? number? . -> . void)
clear-continuations! : (number? . -> . void)
continuation-store! : (number? any/c expiration-handler? . -> . (list/c number? number?))
continuation-lookup : (number? number? number? . -> . any/c)

create-instance is called to initialize a instance, to hold the continuations of one servlet
session. It is passed a function to call when the instance is expired. It runs the id of the
instance.

adjust-timeout! is a to-be-deprecated function that takes an instance-id and a number. It
is specific to the timeout-based manager and will be removed.

clear-continuations! expires all the continuations of an instance.

continuation-store! is given an instance-id, a continuation value, and a function to
include in the exception thrown if the continuation is looked up and has been expired. The
two numbers returned are a continuation-id and a nonce.

continuation-lookup finds the continuation value associated with the instance-id,
continuation-id, and nonce triple it is given.

(struct (exn:fail:servlet-manager:no-instance exn:fail) (expiration-handler

46

expiration-handler : expiration-handler?

This exception should be thrown by a manager when an instance is looked up that does not
exist.

(struct (exn:fail:servlet-manager:no-continuation exn:fail) (expiration-handler
expiration-handler : expiration-handler?

This exception should be thrown by a manager when a continuation is looked up that does
not exist.

8.2 No Continuations

(require web-server/managers/none)

"managers/none.ss" defines a manager constructor:

(create-none-manager instance-expiration-handler) → manager?
instance-expiration-handler : expiration-handler?

This manager does not actually store any continuation or instance data. You could use it if
you know your servlet does not use the continuation capturing functions and want the server
to not allocate meta-data structures for each instance.

If you are considering using this manager, also consider using the Web Language. (See §3
“Web Language Servlets”.)

8.3 Timeouts

(require web-server/managers/timeouts)

"managers/timeouts.ss" defines a manager constructor:

(create-timeout-manager instance-exp-handler

instance-timeout

continuation-timeout) → manager?
instance-exp-handler : expiration-handler?
instance-timeout : number?
continuation-timeout : number?

Instances managed by this manager will be expired instance-timeout seconds after the

47

last time it is accessed. If an expired instance is looked up, the exn:fail:servlet-
manager:no-instance exception is thrown with instance-exp-handler as the expi-
ration handler.

Continuations managed by this manager will be expired continuation-timeout sec-
onds after the last time it is accessed. If an expired continuation is looked up, the
exn:fail:servlet-manager:no-continuation exception is thrown with instance-

exp-handler as the expiration handler, if no expiration-handler was passed to
continuation-store!.

adjust-timeout! corresponds to reset-timer! on the timer responsible for the servlet
instance.

This manager has been found to be... problematic... in large-scale deployments of the Web
Server .

8.4 LRU

(require web-server/managers/lru)

"managers/lru.ss" defines a manager constructor:

(create-LRU-manager instance-expiration-handler

check-interval

collect-interval

collect?

[#:initial-count initial-count

#:inform-p inform-p]) → manager?
instance-expiration-handler : expiration-handler?
check-interval : integer?
collect-interval : integer?
collect? : (-> boolean?)
initial-count : integer? = 1
inform-p : (integer? . -> . void) = (lambda (void))

Instances managed by this manager will be expired if there are no continuations associ-
ated with them, after the instance is unlocked. If an expired instance is looked up, the
exn:fail:servlet-manager:no-instance exception is thrown with instance-exp-
handler as the expiration handler.

Continuations managed by this manager are given a ”Life Count” of initial-count ini-
tially. If an expired continuation is looked up, the exn:fail:servlet-manager:no-
continuation exception is thrown with instance-exp-handler as the expiration han-
dler, if no expiration-handler was passed to continuation-store!.

48

Every check-interval seconds collect? is called to determine if the collection routine
should be run. Every collect-interval seconds the collection routine is run.

Every time the collection routine runs, the ”Life Count” of every continuation is decremented
by 1. If a continuation’s count reaches 0, it is expired. The inform-p function is called if
any continuations are expired, with the number of continuations expired.

The recommended use of this manager is to pass, as collect?, a function that checks the
memory usage of the system, through current-memory-use. Then, collect-interval
should be sufficiently large compared to check-interval. This way, if the load on the
server spikes—as indicated by memory usage—the server will quickly expire continuations,
until the memory is back under control. If the load stays low, it will still efficiently expire
old continuations.

With Continue (http://continue.cs.brown.edu/), we went from needing to restart the server a
few times a week and having many complaints under load, to not having these complaints
and not needing to restart the server for performance reasons.

49

9 Internal

The Web Server is a complicated piece of software and as a result, defines a number of
interesting and independently useful sub-components. Some of these are documented here.

9.1 Timers

(require web-server/private/timer)

"private/timer.ss" provides a functionality for running procedures after a given amount
of time, that may be extended.

(struct timer (evt expire-seconds action))
evt : evt?
expire-seconds : number?
action : (-> void)

evt is an alarm-evt that is ready at expire-seconds. action should be called when this
evt is ready.

(start-timer-manager cust) → void
cust : custodian?

Handles the execution and management of timers. Resources are charged to cust .

(start-timer s action) → timer?
s : number?
action : (-> void)

Registers a timer that runs action after s seconds.

(reset-timer! t s) → void
t : timer?
s : number?

Changes t so that it will fire after s seconds.

(increment-timer! t s) → void
t : timer?
s : number?

50

Changes t so that it will fire after s seconds from when it does now.

(cancel-timer! t) → void
t : timer?

Cancels the firing of t ever and frees resources used by t .

9.2 Connection Manager

(require web-server/private/connection-manager)

"private/connection-manager.ss" provides functionality for managing pairs of input
and output ports. We have plans to allow a number of different strategies for doing this.

(struct connection (timer i-port o-port custodian close?))
timer : timer?
i-port : input-port?
o-port : output-port?
custodian : custodian?
close? : boolean?

A connection is a pair of ports (i-port and o-port) that is ready to close after the current
job if close? is #t. Resources associated with the connection should be allocated under
custodian. The connection will last until timer triggers.

(start-connection-manager parent-cust) → void
parent-cust : custodian?

Runs the connection manager (now just the timer manager) will parent-cust as the custo-
dian.

(new-connection timeout

i-port

o-port

cust

close?) → connection?
timeout : number?
i-port : input-port?
o-port : output-port?
cust : custodian?
close? : boolean?

51

Constructs a connection with a timer with a trigger of timeout that calls kill-
connection!.

(kill-connection! c) → void
c : connection?

Closes the ports associated with c , kills the timer, and shuts down the custodian.

(adjust-connection-timeout! c t) → void
c : connection?
t : number?

Calls reset-timer! with the timer behind c with t .

9.3 Dispatching Server

The Web Server is just a configuration of a dispatching server. This dispatching server
component is useful on its own.

9.3.1 Dispatching Server Signatures

(require web-server/private/dispatch-server-sig)

The web-server/private/dispatch-server-sig library provides two signatures.

dispatch-server^ : signature

The dispatch-server^ signature is an alias for web-server^.

(serve) → (-> void)

Runs the server and returns a procedure that shuts down the server.

(serve-ports ip op) → void
ip : input-port?
op : output-port?

Serves a single connection represented by the ports ip and op .

52

dispatch-server-config^ : signature

port : port?

Specifies the port to serve on.

listen-ip : string?

Passed to tcp-accept.

max-waiting : integer?

Passed to tcp-accept.

initial-connection-timeout : integer?

Specifies the initial timeout given to a connection.

(read-request c p port-addresses) → any/c
c : connection?
p : port?
port-addresses : port-addresses?

Defines the way the server reads requests off connections to be passed to dis-
patch.

dispatch : dispatcher?

How to handle requests.

9.3.2 Dispatching Server Unit

(require web-server/private/dispatch-server-unit)

The web-server/private/dispatch-server-unit module provides the unit that actu-
ally implements a dispatching server.

dispatch-server@ : (unit/c (tcp^ dispatch-server-config^)
(dispatch-server^))

Runs the dispatching server config in a very basic way, except that it uses §9.2 “Connection
Manager” to manage connections.

53

9.4 Serializable Closures

(require web-server/private/closure)

The defunctionalization process of the Web Language (see §3 “Web Language Servlets”)
requires an explicit representation of closures that is serializable. "private/closure.ss"
is this representation. It provides:

(make-closure-definition-syntax tag

fvars

proc) → syntax?
tag : syntax?
fvars : (listof identifier?)
proc : syntax?

Outputs a syntax object that defines a serializable structure, with tag as the tag, that rep-
resents a closure over fvars , that acts a procedure and when invoked calls proc , which is
assumed to be syntax of lambda or case-lambda.

(closure->deserialize-name c) → symbol?
c : closure?

Extracts the unique tag of a closure c

These are difficult to use directly, so "private/define-closure.ss" defines a helper
form:

9.4.1 Define Closure

(require web-server/private/define-closure)

(define-closure tag formals (free-vars ...) body)

Defines a closure, constructed with make-tag that accepts freevars ..., that when in-
voked with formals executes body .

9.5 Cache Table

(require web-server/private/cache-table)

54

"private/cache-table.ss" provides a set of caching hash table functions.

(make-cache-table) → cache-table?

Constructs a cache-table.

(cache-table-lookup! ct id mk) → any/c
ct : cache-table?
id : symbol?
mk : (-> any/c)

Looks up id in ct . If it is not present, then mk is called to construct the value and add it to
ct .

(cache-table-clear! ct) → void?
ct : cache-table?

Clears all entries in ct .

(cache-table? v) → boolean?
v : any/c

Determines if v is a cache table.

9.6 MIME Types

(require web-server/private/mime-types)

"private/mime-types.ss" provides function for dealing with "mime.types" files.

(read-mime-types p) → (hash-table/c symbol? bytes?)
p : path?

Reads the "mime.types" file from p and constructs a hash table mapping extensions to
MIME types.

(make-path->mime-type p) → (path? . -> . bytes?)
p : path?

Uses a read-mime-types with p and constructs a function from paths to their MIME type.

55

9.7 Serialization Utilities

(require web-server/private/mod-map)

The scheme/serialize library provides the functionality of serializing values.
"private/mod-map.ss" compresses the serialized representation.

(compress-serial sv) → compressed-serialized-value?
sv : serialized-value?

Collapses multiple occurrences of the same module in the module map of the serialized
representation, sv .

(decompress-serial csv) → serialized-value?
csv : compressed-serialized-value?

Expands multiple occurrences of the same module in the module map of the compressed
serialized representation, csv .

9.8 URL Param

(require web-server/private/url-param)

The Web Server needs to encode information in URLs. If this data is stored in the query
string, than it will be overridden by browsers that make GET requests to those URLs with
more query data. So, it must be encoded in URL params. "private/url-param.ss"
provides functions for helping with this process.

(insert-param u k v) → url?
u : url?
k : string?
v : string?

Associates k with v in the final URL param of u , overwritting any current binding for k .

(extract-param u k) → (or/c string? false/c)
u : url?
k : string?

Extracts the string associated with k in the final URL param of u , if there is one, returning
#f otherwise.

56

9.9 Miscellaneous Utilities

(require web-server/private/util)

There are a number of other miscellaneous utilities the Web Server needs. They are provided
by "private/util.ss".

9.9.1 Contracts

port-number? : contract?

Equivalent to (between/c 1 65535).

path-element? : contract?

Equivalent to (or/c string? path? (symbols ’up ’same)).

9.9.2 Lists

(list-prefix? l r) → boolean?
l : list?
r : list?

True if l is a prefix of r .

9.9.3 URLs

(url-replace-path proc u) → url?
proc : ((listof path/param?) . -> . (listof path/param?))
u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) → string?
url-path : (listof path/param?)

Formats url-path as a string with "/" as a delimiter and no params.

57

9.9.4 Paths

(explode-path* p) → (listof path-element?)
p : path?

Like normalize-path, but does not resolve symlinks.

(path-without-base base p) → (listof path-element?)
base : path?
p : path?

Returns, as a list, the portion of p after base , assuming base is a prefix of p .

(directory-part p) → path?
p : path?

Returns the directory part of p , returning (current-directory) if it is relative.

(build-path-unless-absolute base p) → path?
base : path-string?
p : path-string?

Prepends base to p , unless p is absolute.

(strip-prefix-ups p) → (listof path-element?)
p : (listof path-element?)

Removes all the prefix ".."s from p .

9.9.5 Exceptions

(pretty-print-invalid-xexpr exn v) → void
exn : exn:invalid-xexpr?
v : any/c

Prints v as if it were almost an X-expression highlighting the error according to exn .

(network-error s fmt v ...) → void

58

s : symbol?
fmt : string?
v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) → string?
exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string.

9.9.6 Strings

(lowercase-symbol! sb) → symbol?
sb : (or/c string? bytes?)

Returns sb as a lowercase symbol.

(read/string s) → serializable?
s : string?

reads a value from s and returns it.

(write/string v) → string?
v : serializable?

writes v to a string and returns it.

59

10 Troubleshooting

10.1 General

10.1.1 IE ignores my CSS or behaves strange in other ways

In quirks mode, IE does not parse your page as XML, in particular it will not recognize
many instances of ”empty tag shorthand”, e.g. ””, whereas the Web
Server uses (lib "xml.ss" "xml") to format XML, which uses empty tag shorthand by
default. You can change the default with the empty-tag-shorthand parameter: (empty-
tag-shorthand ’never).

60

11 Acknowledgements

We thank Matthew Flatt for his superlative work on MzScheme. We thank the previous
maintainers of the Web Server : Paul T. Graunke, Mike Burns, and Greg Pettyjohn Numer-
ous people have provided invaluable feedback on the server, including Eli Barzilay, Ryan
Culpepper, Robby Findler, Dan Licata, Matt Jadud, Jacob Matthews, Matthias Radestock,
Andrey Skylar, Michael Sperber, Dave Tucker, Anton van Straaten, and Noel Welsh. We
also thank the many other PLT Scheme users who have exercised the server and offered
critiques.

61

Index
Acknowledgements
adjust-connection-timeout!, 52
adjust-timeout!, 15
apache-default-format, 37
Basic Authentication
binding, 11
binding-id, 11
binding:file, 11
binding:file-content, 11
binding:file-filename, 11
binding:file?, 11
binding:form, 11
binding:form-value, 11
binding:form?, 11
binding?, 11
bindings-assq, 11
build-path-unless-absolute, 58
Cache Table
cache-table-clear!, 55
cache-table-lookup!, 55
cache-table?, 55
cancel-timer!, 51
clear-continuation-table!, 15
closure->deserialize-name, 54
Command-line Tools, 6
compress-serial, 56
Configuration, 26
Configuration Signature, 42
Configuration Table, 28
Configuration Table Structure, 26
Configuration Units, 42
configuration-table, 26
configuration-table->sexpr, 28
configuration-table->web-config@,

43
configuration-table-default-host,

26
configuration-table-initial-
connection-timeout, 26

configuration-table-max-waiting, 26
configuration-table-port, 26

configuration-table-sexpr->web-
config@, 43

configuration-table-virtual-hosts,
26

configuration-table?, 26
connection, 51
Connection Manager, 51
connection-close?, 51
connection-custodian, 51
connection-i-port, 51
connection-o-port, 51
connection-timer, 51
connection?, 51
Continuation Managers, 46
continuation-url?, 15
Contracts, 57
Contracts, 9
create-LRU-manager, 48
create-none-manager, 47
create-timeout-manager, 47
current-servlet-continuation-
expiration-handler, 14

current-url-transform, 16
decompress-serial

default-configuration-table-path,
28

define-closure, 54
Definition, 20
Definition, 9
directory-part, 58
dispatch, 53
dispatch-server-config^, 53
dispatch-server@, 53
dispatch-server^, 52
dispatcher-interface-version?, 33
dispatcher?, 33
Dispatchers, 33
Dispatching Server, 52
Dispatching Server Signatures, 52
Dispatching Server Unit, 53
do-not-return, 8
embed-ids

62

embed-proc/url, 22
embed/url?, 10
Environment, 19
Exceptions, 58
exists-binding?, 13
exn->string, 59
exn:dispatcher, 33
exn:dispatcher?, 33
exn:fail:servlet-manager:no-
continuation, 47

exn:fail:servlet-manager:no-
continuation-expiration-handler,
47

exn:fail:servlet-manager:no-
continuation?, 47

exn:fail:servlet-manager:no-
instance, 46

exn:fail:servlet-manager:no-
instance-expiration-handler,
46

exn:fail:servlet-manager:no-
instance?, 46

expiration-handler?, 10
explode-path*, 58
extended-format, 37
extract-binding/single, 12
extract-bindings, 12
extract-param, 56
extract-proc/url, 22
extract-user-pass, 18
File Boxes
file-box, 24
file-box-set!, 24
file-box-set?, 24
file-box?, 24
file-response, 31
file-unbox, 24
Filtering Requests, 35
format-req/c, 36
Functional, 6
gen-authentication-responder

gen-collect-garbage-responder, 32
gen-file-not-found-responder, 32

gen-passwords-refreshed, 32
gen-protocol-responder, 32
gen-servlet-not-found, 31
gen-servlet-responder, 31
gen-servlets-refreshed, 31
General, 60
General, 33
General, 46
header

header-field, 10
header-value, 10
header?, 10
headers-assq, 10
headers-assq*, 11
Helpers, 16
host, 26
host-indices, 26
host-log-format, 26
host-log-path, 26
host-passwords, 26
host-paths, 26
host-responders, 26
host-table, 26
host-table-indices, 26
host-table-log-format, 26
host-table-messages, 26
host-table-paths, 26
host-table-timeouts, 26
host-table?, 26
host-timeouts, 26
host?, 26
HTTP Requests, 10
HTTP Responses, 13
IE ignores my CSS or behaves strange in

other ways
increment-timer!, 50
initial-connection-timeout, 42
initial-connection-timeout, 53
insert-param, 56
interface-version, 9
Internal, 50
k-url?

63

kill-connection!, 52
Lifting Procedures
list-prefix?, 57
listen-ip, 53
listen-ip, 42
Lists, 57
log-format->format, 37
Logging, 36
lowercase-symbol!, 59
LRU, 48
make

make, 35
make, 37
make, 35
make, 41
make, 38
make, 40
make, 36
make, 35
make, 39
make, 38
make, 39
make-binding, 11
make-binding:file, 11
make-binding:form, 11
make-cache-table, 55
make-closure-definition-syntax, 54
make-configuration-table, 26
make-connection, 51
make-exn:dispatcher, 33
make-exn:fail:servlet-manager:no-
continuation, 47

make-exn:fail:servlet-manager:no-
instance, 46

make-gc-thread, 41
make-header, 10
make-host, 26
make-host-table, 26
make-make-servlet-namespace, 30
make-manager, 46
make-messages, 27
make-path->mime-type, 55

make-paths, 28
make-request, 11
make-responders, 27
make-response/basic, 13
make-response/full, 13
make-response/incremental, 13
make-servlet-namespace, 42
make-timeouts, 27
make-timer, 50
make-url->path, 34
make-url->valid-path, 34
make-web-cell, 25
make-web-cell, 18
make-web-parameter, 25
manager, 9
manager, 46
manager-adjust-timeout!, 46
manager-clear-continuations!, 46
manager-continuation-lookup, 46
manager-continuation-store!, 46
manager-create-instance, 46
manager?, 46
Mapping URLs to Paths, 34
max-waiting, 53
max-waiting, 42
messages, 27
messages-authentication, 27
messages-collect-garbage, 27
messages-file-not-found, 27
messages-passwords-refreshed, 27
messages-protocol, 27
messages-servlet, 27
messages-servlets-refreshed, 27
messages?, 27
MIME Types, 55
Miscellaneous Utilities, 57
network-error

new-connection, 51
next-dispatcher, 33
No Continuations, 47
on-web

paren-format

64

Password Protection, 37
path-element?, 57
path-without-base, 58
Paths, 58
paths, 28
paths-conf, 28
paths-host-base, 28
paths-htdocs, 28
paths-log, 28
paths-mime-types, 28
paths-passwords, 28
paths-servlet, 28
paths?, 28
permanently, 17
port, 42
port, 53
port-number?, 57
pretty-print-invalid-xexpr, 58
Procedure Invocation upon Request, 36
read-configuration-table

read-mime-types, 55
read-request, 53
read/string, 59
redirect-to, 16
redirect/get, 23
redirect/get, 16
redirect/get/forget, 16
redirection-status?, 16
Reprovided API, 21
request, 11
Request Bindings, 12
request->servlet-url, 17
request-bindings, 12
request-bindings/raw, 11
request-client-ip, 11
request-headers, 12
request-headers/raw, 11
request-host-ip, 11
request-host-port, 11
request-method, 11
request-post-data/raw, 11
request-uri, 11

request?, 11
reset-timer!, 50
responders, 27
responders-authentication, 27
responders-collect-garbage, 27
responders-file-not-found, 27
responders-passwords-refreshed, 27
responders-protocol, 27
responders-servlet, 27
responders-servlet-loading, 27
responders-servlets-refreshed, 27
responders?, 27
response-generator?, 10
response/basic, 13
response/basic-code, 13
response/basic-headers, 13
response/basic-message, 13
response/basic-mime, 13
response/basic-seconds, 13
response/basic?, 13
response/full, 13
response/full-body, 13
response/full?, 13
response/incremental, 13
response/incremental-generator, 13
response/incremental?, 13
response?, 14
Running the Web Server, 6
Scheme Servlets
scripts, 42
see-other, 17
send-url, 19
send/back, 14
send/finish, 15
send/forward, 15
send/suspend, 14
send/suspend/dispatch, 15
send/suspend/dispatch, 23
send/suspend/hidden, 22
send/suspend/url, 22
Sequencing, 34
Serializable Closures, 54

65

Serialization Utilities, 56
serve, 6
serve, 52
serve, 44
serve-ports, 52
serve-ports, 44
serve/ips+ports, 7
serve/ports, 7
Serving Files, 39
Serving Scheme Servlets, 39
Serving Web Language Servlets, 40
Servlet Namespaces, 30
Servlet URLs, 17
servlet-loading-responder, 31
servlet-url->url-string/no-
continuation, 17

sexpr->configuration-table, 28
Signature, 44
Standard Responders, 30
start, 9
start, 20
start-connection-manager, 51
start-timer, 50
start-timer-manager, 50
Statistics, 41
Strings, 59
strip-prefix-ups, 58
struct:binding, 11
struct:binding:file, 11
struct:binding:form, 11
struct:configuration-table, 26
struct:connection, 51
struct:exn:dispatcher, 33
struct:exn:fail:servlet-
manager:no-continuation, 47

struct:exn:fail:servlet-
manager:no-instance, 46

struct:header, 10
struct:host, 26
struct:host-table, 26
struct:manager, 46
struct:messages, 27

struct:paths, 28
struct:request, 11
struct:responders, 27
struct:response/basic, 13
struct:response/full, 13
struct:response/incremental, 13
struct:timeouts, 27
struct:timer, 50
Stuff URL, 22
stuff-url, 23
stuffed-url?, 23
temporarily

TEXT/HTML-MIME-TYPE, 14
timeout, 9
Timeouts, 35
Timeouts, 47
timeouts, 27
timeouts-default-servlet, 27
timeouts-file-base, 27
timeouts-file-per-byte, 27
timeouts-password, 27
timeouts-servlet-connection, 27
timeouts?, 27
timer, 50
timer-action, 50
timer-evt, 50
timer-expire-seconds, 50
timer?, 50
Timers, 50
Troubleshooting, 60
Unit
unstuff-url, 23
URL Param, 56
url-path->string, 57
url-path?, 34
url-replace-path, 57
url-transform?, 10
URLs, 57
Usage Considerations, 20
Virtual Hosts
virtual-hosts, 42
Web

66

Web, 14
Web Cells, 25
Web Cells, 18
Web Config Unit, 42
Web Extras, 23
Web Language Servlets, 20
Web Parameters, 24
Web Server Unit, 44
Web Server: PLT HTTP Server, 1
web-cell-ref, 18
web-cell-ref, 25
web-cell-shadow, 19
web-cell-shadow, 25
web-cell?, 25
web-cell?, 18
web-config^, 42
web-parameter?, 25
web-parameterize, 25
web-server/configuration/configuration-
table, 28

web-server/configuration/configuration-
table-structs, 26

web-server/configuration/namespace,
30

web-server/configuration/responders,
30

web-server/dispatchers/dispatch, 33
web-server/dispatchers/dispatch-
files, 39

web-server/dispatchers/dispatch-
filter, 35

web-server/dispatchers/dispatch-
host, 38

web-server/dispatchers/dispatch-
lang, 40

web-server/dispatchers/dispatch-
lift, 35

web-server/dispatchers/dispatch-
log, 36

web-server/dispatchers/dispatch-
passwords, 37

web-server/dispatchers/dispatch-
pathprocedure, 36

web-server/dispatchers/dispatch-
sequencer, 34

web-server/dispatchers/dispatch-
servlets, 39

web-server/dispatchers/dispatch-
stat, 41

web-server/dispatchers/dispatch-
timeout, 35

web-server/dispatchers/filesystem-
map, 34

web-server/lang, 20
web-server/lang/file-box, 24
web-server/lang/stuff-url, 22
web-server/lang/web, 22
web-server/lang/web-cells, 25
web-server/lang/web-extras, 23
web-server/lang/web-param, 24
web-server/managers/lru, 48
web-server/managers/manager, 46
web-server/managers/none, 47
web-server/managers/timeouts, 47
web-server/private/cache-table, 54
web-server/private/closure, 54
web-server/private/connection-
manager, 51

web-server/private/define-closure,
54

web-server/private/dispatch-
server-sig, 52

web-server/private/dispatch-
server-unit, 53

web-server/private/mime-types, 55
web-server/private/mod-map, 56
web-server/private/request-
structs, 10

web-server/private/response-
structs, 13

web-server/private/timer, 50
web-server/private/url-param, 56
web-server/private/util, 57
web-server/servlet-env, 19
web-server/servlet/basic-auth, 18
web-server/servlet/bindings, 12

67

web-server/servlet/helpers, 16
web-server/servlet/servlet-
structs, 9

web-server/servlet/servlet-url, 17
web-server/servlet/web, 14
web-server/servlet/web-cells, 18
web-server/web-config-sig, 42
web-server/web-config-unit, 42
web-server/web-server, 6
web-server/web-server-sig, 44
web-server/web-server-unit, 44
web-server@, 44
web-server^, 44
Why this is useful, 30
with-errors-to-browser, 17
write-configuration-table, 29
write/string, 59

68

	1 Running the Web Server
	1.1 Command-line Tools
	1.2 Functional

	2 Scheme Servlets
	2.1 Definition
	2.2 Contracts
	2.3 HTTP Requests
	2.4 Request Bindings
	2.5 HTTP Responses
	2.6 Web
	2.7 Helpers
	2.8 Servlet URLs
	2.9 Basic Authentication
	2.10 Web Cells
	2.11 Environment

	3 Web Language Servlets
	3.1 Definition
	3.2 Usage Considerations
	3.3 Reprovided API
	3.4 Web
	3.5 Stuff URL
	3.6 Web Extras
	3.7 File Boxes
	3.8 Web Parameters
	3.9 Web Cells

	4 Configuration
	4.1 Configuration Table Structure
	4.2 Configuration Table
	4.3 Servlet Namespaces
	4.3.1 Why this is useful

	4.4 Standard Responders

	5 Dispatchers
	5.1 General
	5.2 Mapping URLs to Paths
	5.3 Sequencing
	5.4 Timeouts
	5.5 Lifting Procedures
	5.6 Filtering Requests
	5.7 Procedure Invocation upon Request
	5.8 Logging
	5.9 Password Protection
	5.10 Virtual Hosts
	5.11 Serving Files
	5.12 Serving Scheme Servlets
	5.13 Serving Web Language Servlets
	5.14 Statistics

	6 Web Config Unit
	6.1 Configuration Signature
	6.2 Configuration Units

	7 Web Server Unit
	7.1 Signature
	7.2 Unit

	8 Continuation Managers
	8.1 General
	8.2 No Continuations
	8.3 Timeouts
	8.4 LRU

	9 Internal
	9.1 Timers
	9.2 Connection Manager
	9.3 Dispatching Server
	9.3.1 Dispatching Server Signatures
	9.3.2 Dispatching Server Unit

	9.4 Serializable Closures
	9.4.1 Define Closure

	9.5 Cache Table
	9.6 MIME Types
	9.7 Serialization Utilities
	9.8 URL Param
	9.9 Miscellaneous Utilities
	9.9.1 Contracts
	9.9.2 Lists
	9.9.3 URLs
	9.9.4 Paths
	9.9.5 Exceptions
	9.9.6 Strings

	10 Troubleshooting
	10.1 General
	10.1.1 IE ignores my CSS or behaves strange in other ways

	11 Acknowledgements
	Index

