
How to Design Classes Languages
Version 4.0.2

July 4, 2008

The languages documented in this manual are provided by DrScheme to be used with the
How to Design Classes book.

1

Contents

1 ProfessorJ Beginner 4

1.1 import . 5

1.2 class . 5

1.3 interface . 6

1.4 Field . 6

1.5 Method . 6

1.6 Constructor . 6

1.7 Statement . 7

1.8 Expression . 7

2 ProfessorJ Intermediate 9

2.1 import . 11

2.2 class . 11

2.3 interface . 12

2.4 Field . 13

2.5 Method . 13

2.6 Constructor . 13

2.7 Statement . 14

2.8 Expression . 15

3 ProfessorJ Intermediate + Access 17

3.1 import . 19

3.2 class . 19

3.3 interface . 20

3.4 Modifiers . 21

2

3.5 Field . 21

3.6 Method . 21

3.7 Constructor . 22

3.8 Statement . 22

3.9 Expression . 23

4 ProfessorJ Advanced 26

4.1 package . 29

4.2 import . 29

4.3 class . 30

4.4 interface . 30

4.5 Modifiers . 31

4.6 Field . 31

4.7 Method . 32

4.8 Constructor . 32

4.9 Statement . 33

4.10 ArrayInit . 34

4.11 Expression . 35

Index 38

3

1 ProfessorJ Beginner

Program = Import ... Def ...

Import = import Name ;
import Name.* ;

Def = class Id {Member Member ...}
class Id implements Id {Member Member ...}
interface Id {Signature ...}

Signature = Type Id (Type Id ,...) ;

Member = Field

Method

Constructor

Field = Type Id = Expression ;
Type Id ;

Method = Type Id (Type Id ,...) {Statement}

Constructor = Id (Type Id ,...) {Init ...}

Init = this.Id = Id ;

Statement = if (Expression) {Statement} else {Statement}
return Expression ;

Expression = Expression Op Expression

- Expression

! Expression

this
Expression.Id (Expression ,...)
Expression.Id

new Id (Expression ,...)
check Expression expect Expression

check Expression expect Expression within Expression

(Expression)
Id

Number

Character

String

true
false

Name = Id. ... Id

4

Op = +

-

*

/

<

<=

==

>

>=

&&

||

Type = Id

boolean
int
char
double
float
long
byte
short

An Id is a sequence of alphanumeric characters, , and $.

1.1 import

• import Name ;

Imports a specified class to use within the program.

• import Name.* ;

Imports a group of classes that can all be used within the program.

1.2 class

• class Id {Member Member ...}
Creates a class named Id. One member is required and must be a constructor.

• class Id implements Id {Member Member ...}
Creates a class named Id implements the interface named by (scheme implements).
One member must be a constructor. Any method defined by the interface must be a
member of this class.

5

1.3 interface

interface Id {Signature ...}

Creates an interface named Id that specifies a set of method signatures for classes to imple-
ment.

Type Id (Type Id ,...) ;

The signature specifies a method named Id, expecting the listed arguments. All classes
implementing the (scheme interface) must contain a method with the same name, return
type, and argument types.

1.4 Field

• Type Id ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and
must be initialized to its value using an Init in the constructor.

• Type Id = Expression ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and the
value of the evaluated Expression. Expression may not refer to other fields in the
current class.

1.5 Method

Type Id (Type Id ,...) {Statement}

Creates a method, bound to Id, that can be called on the current object, or instances of this
class. The body of the method, the statement, will be evaluated when the method is called.
The method name may not be the name of any classes defined in the same program or of any
fields or methods in the same class.

1.6 Constructor

Id (Type Id ,...) {Init ...}

Creates a constructor that is used in creating an instance of a class (called an object). The
arguments given when creating an instance must be of the same type, and in the same order,

6

as that specified by the constructor. All of the uninitialized fields of the class must be set in
the constructor by the Init sequence.

this.Id = Id ;

The initialization statements pass the value provided to the constructor to the specified field
for later use.

1.7 Statement

• if (Expression) {Statement} else {Statement}
In this statement the expression should have a boolean type. It is evaluated first. If
the expression evaluates to true, then the first statement (known as the then clause) is
evaluated. If the expression evaluates to false, the statement following else (the else
clause) is evaluated.

• return Expression ;

This form evaluates the expression, and then returns the value of the expression as the
result of the method in which it is contained.

1.8 Expression

• Expression Op Expression

Performs the mathematical or logical operation Op on the value of the two expressions.

• - Expression

• ! Expression

Performs logical negation on the value of the expression.

• this

Allows access to the current object. Within a class, fields and methods of the current
class must be accessed through this.

• Expression.Id (Expression ,...)

The first expression must evaluate to an object value. Id names a method of this object
to be called by the current expression. The expressions following Id are evaluated
from left to right and passed in to the method as its arguments. The number and
types of the arguments must match the method’s declaration. These values replace the
argument names in the body of the method, and the result of the body is the result of
this expression.

7

• Expression.Id

The first expression must evaluate to an object value. Id names a field of this object,
whose value is retrieved by this expression.

• new Id (Expression ,...)

Evaluates to a new instance (object) of the Id class. The class’s constructor will be
run with the given values (evaluated from left to right) as its arguments. These values
must be the correct number and type as specified by the constructor.

• check Expression expect Expression

Compares the resulting values of the two expressions through a deep comparison, in-
cluding the fields of objects. The resulting value will be a boolean. Neither expression
can have type float or double. When test reporting is enabled, results of checks appear
in the testing window.

• check Expression expect Expression within Expression

Compares the resulting values of the first two expressions through a deep comparison.
The third value must be numeric. If the resulting values of the compared expressions
are numeric, their values must be within the third value of each other. For example,
in check a expect b within c, the absolute value of a-b must be less than or
equal to c. If the compared expressions evaluate to objects, any numeric fields will
be compared with this formula. The resulting value will be a boolean. When test
reporting is enabled, results of checks appear in the testing window.

• (Expression)

• Id

• Number

• Character

Values of type char are ASCII characters enclosed by single quotes such as ’a’ is the
character a. They can be used as numbers as well as characters.

• String

Strings are created through placing text inside of double quotes. For example ”I am a
string” is a String. A String value is an instance of the class String, which descends
from Object, and can also be created with a constructor.

• true

• false

8

2 ProfessorJ Intermediate

Program = Import ... Def ...

Import = import Name ;
import Name.* ;

Def = Class

Interface

Class = class Id {Member ...}
class Id implements Id ,Id ... {Member ...}
class Id extends Id {Member ...}
class Id extends Id implements Id ,Id ... {Member ...}
abstract class Id {Member ...}
abstract class Id implements Id ,Id ... {Member ...}
abstract class Id extends Id {Member ...}
abstract class Id extends Id implements Id ,Id ... {Member ...}

Interface = interface Id {Signature ...}
interface Id extends Id ,Id ... {Signature ...}

Signature = MethodReturn Id (Type Id ,...) ;
abstract MethodReturn Id (Type Id ,...) ;

Member = Field

Method

Constructor

Field = Type Id = Expression ;
Type Id ;

Method = MethodReturn Id (Type Id ,...) {Statement ...}
abstract MethodReturn Id (Type Id ,...) ;

MethodReturn = void
Type

Constructor = Id (Type Id ,...) {Statement ...}

9

Statement = if (Expression) {Statement ...} else {Statement ...}
return Expression ;
return ;
{Statement ...}
super (Expression ,...) ;
Type Id ;
Type Id = Expression ;
StatementExpression ;

StatementExpression = Id (Expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)

Expression = Expression Op Expression

- Expression

! Expression

this
Id. (expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)
Expression.Id

new Id (Expression ,...)
(Type) Expression

Expression instanceof Type

check Expression expect Expression

check Expression expect Expression within Expression

(Expression)
Id

Number

Character

String

null

true
false

Name = Id. ... Id

10

Op = +

-

*

/

<

<=

==

>

>=

&&

||

Type = Id

boolean
int
char
double
float
long
byte
short

An Id is a sequence of alphanumeric characters, , and $.

2.1 import

• import Name ;

Imports a specified class to use within the program.

• import Name.* ;

Imports a group of classes that can all be used within the program.

2.2 class

• class Id {Member ...}
Creates a class named Id. If no constructor is present, one is generated that takes no
arguments.

• class Id implements Id ,Id ... {Member ...}
Creates a class named Id that implements the listed interfaces named by (scheme im-
plements). If no constructor is present, one is generated that takes no arguments. Any
method defined by the listed interface must be a member of this class.

11

• class Id extends Id {Member ...}
Creates a class named Id that inherits and expands the behavior of the extended class.
If no constructor is present, one is generated that takes no arguments. If the parent
class contains a constructor that requires arguments, then none can be generated and
the current class must contain a constructor that contains super.

• class Id extends Id implements Id ,Id ... {Member ...}
Creates a class named Id that inherits from the extended class and implements the
listed interfaces.

• abstract class Id {Member ...}
Creates a class named Id that cannot be instantiated. Members may contain abstract
methods. Non-abstract classes extending this class are required to implement all ab-
stract methods.

• abstract class Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id that implements the listed interfaces. Members can
include abstract methods. This class need not implement all methods in the interfaces,
but all non-abstract subclasses must.

• abstract class Id extends Id {Member ...}
Creates an abstract class named Id that inherits from the extended class. Members can
include abstract methods. If the parent is abstract, the current class does not need to
implement all inherited abstract methods, but all non-abstract subclasses must.

• abstract class Id extends Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id, that inherits from the extended class and imple-
ments the listed interfaces.

2.3 interface

• interface Id {Signature ...}
Creates an interface named Id that specifies a set of method signatures for classes to
implement.

• interface Id extends Id ,Id ... {Signature ...}
Creates an interface named Id that specifies a set of method signatures for classes to
implement, and inherits the method signatures of the interfaces specified in the extends
list.

MethodReturn Id (Type Id ,...) ;

The signature specifies a method named Id, expecting the listed arguments. All classes
implementing the (scheme interface) must contain a method with the same name, return

12

type, and argument types. A method that does not return a value uses the void designation
instead of a Type.

abstract MethodReturn Id (Type Id ,...) ;

A signature may be declared abstract. This does not impact the method behavior; all
signatures are by default abstract.

2.4 Field

• Type Id ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and will
contain a default value of this type if uninitialized.

• Type Id = Expression ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and the
value of the evaluated Expression.

2.5 Method

MethodReturn Id (Type Id ,...) {Statement ...}

Creates a method, bound to Id, that can be called on the current object, or instances of this
class. The body of the method, the statements, will be evaluated sequentially when the
method is called. The method name may not be the name of any classes defined in the same
program or of any fields or methods in the same class. A method that does not return a value
uses the void designation instead of a Type for MethodReturn.

abstract MethodReturn Id (Type Id ,...) ;

Creates a method, bount to Id, inside an abstract class. Like an interface signature, non-
abstract classes that inherit this method must provide an implementation.

2.6 Constructor

Id (Type Id ,...) {Statement ...}

Creates a constructor that is used in creating an instance of a class (called an object). The
arguments given when creating an instance must be of the same type, and in the same order,
as that specified by the constructor. The statements are executed in sequence in intializing

13

the object. If the parent of the current class contains a constructor, that expects parameters,
then the first statement in the constructor must be a super call.

2.7 Statement

• if (Expression) {Statement ...} else {Statement ...}
In this statement the expression should have a boolean type. It is evaluated first. If
the expression evaluates to true, then the first group of statements (known as the then
clause) are evaluated. If the expression evaluates to false, the group of statements
following else (the else clause) are evaluated.

• return Expression ;

This form evaluates the expression, and then returns the value of the expression as the
result of the method in which it is contained.

• return ;

This form causes the method to cease evaluation, without producing a value. Should
be used in conjunction with void for the MethodReturn.

• {Statement ...}
This statement groups the sequence of statements together, commonly called a block.
The statements evaluate sequentially.

• super (Expression ,...) ;

May only appear as the first statement of a constructor. Calls the constructor for the
parent class using the given expressions as arguments. Expressions are evaluated left
to right.

• Type Id ;

Creates a local variable Id within a method body or a block statement; it is not visible
outside the block or method, or to statements the preceed the declaration. The variable
must be initialized prior to use.

• Type Id = Expression ;

Creates a local variable Id within a method body or a block statement.

• StatementExpression ;

This set of expressions can be used in a statement position, provided they are followed
by ’;’.

}

14

2.8 Expression

• Expression Op Expression

Performs the mathematical or logical operation Op on the value of the two expressions.

• - Expression

• ! Expression

Performs logical negation on the value of the expression.

• this

Allows access to the current object. Within a class, fields and methods of the current
class can be accessed through this.

• Id (Expression ,...)

Id names a method of the current class to be called by the current expression. The
expressions following Id are evaluated from left to right and passed in to the method
as its arguments. The number and types of the arguments must match the method’s
declaration. These values replace the argument names in the body of the method, and
the result of the body is the result of this expression.

• Expression.Id (Expression ,...)

The first expression must evaluate to an object value. Id names a method of this object
to be called by the current expression. The expressions following Id are evaluated
from left to right and passed in to the method as its arguments. The number and
types of the arguments must match the method’s declaration. These values replace the
argument names in the body of the method, and the result of the body is the result of
this expression.

• super.Id (Expression ,...)

Evaluates the overridden method body using the provided expressions as its argu-
ments.

• Expression.Id

The first expression must evaluate to an object value. Id names a field of this object,
whose value is retrieved by this expression.

• new Id (Expression ,...)

Evaluates to a new instance (object) of the Id class. The class’s constructor will be
run with the given values (evaluated from left to right) as its arguments. These values
must be the correct number and type as specified by the constructor.

• (Type) Expression

Evaluates Expression and then confirms that the value matches the specified type. Dur-
ing compilation, the resulting expression has the specified type. If during evaluation,
this is not true, an error is raised; otherwise the result of this expression is the result of
Expression.

15

• Expression instanceof Type

Evaluates Expression and then confirms that the value matches the specified type.
Returns true when the type matches and false otherwise.

• check Expression expect Expression

Compares the resulting values of the two expressions through a deep comparison, in-
cluding the fields of objects. The resulting value will be a boolean. Neither expression
can have type float or double. When test reporting is enabled, results of checks appear
in the testing window.

• check Expression expect Expression within Expression

Compares the resulting values of the first two expressions through a deep comparison.
The third value must be numeric. If the resulting values of the compared expressions
are numeric, their values must be within the third value of each other. For example,
in check a expect b within c, the absolute value of a-b must be less than or
equal to c. If the compared expressions evaluate to objects, any numeric fields will
be compared with this formula. The resulting value will be a boolean. When test
reporting is enabled, results of checks appear in the testing window.

• (Expression)

• Id

May refer to either a local variable, method parameter, or field of the current class.

• Number

• Character

Values of type char are ASCII characters enclosed by single quotes such as ’a’ is the
character a. They can be used as numbers as well as characters.

• String

Strings are created through placing text inside of double quotes. For example ”I am a
string” is a String. A String value is an instance of the class String, which descends
from Object, and can also be created with a constructor.

• null

A value representing an object with no fields or methods. It should be used as a
placeholder for uninitialized fields.

• true

• false

16

3 ProfessorJ Intermediate + Access

Program = Import ... Def ...

Import = import Name ;
import Name.* ;

Def = Class

Interface

public Class

public Interface

Class = class Id {Member ...}
class Id implements Id ,Id ... {Member ...}
class Id extends Id {Member ...}
class Id extends Id implements Id ,Id ... {Member ...}
abstract class Id {Member ...}
abstract class Id implements Id ,Id ... {Member ...}
abstract class Id extends Id {Member ...}
abstract class Id extends Id implements Id ,Id ... {Member ...}

Interface = interface Id {Signature ...}
interface Id extends Id ,Id ... {Signature ...}

Signature = MethodReturn Id (Type Id ,...) ;
abstract MethodReturn Id (Type Id ,...) ;

Member = Field

Modifier Field

Method

Modifier Method

Constructor

Modifier Constructor

Modifier = public
private
protected

Field = Type Id = Expression ;
Type Id ;

Method = MethodReturn Id (Type Id ,...) {Statement ...}
abstract MethodReturn Id (Type Id ,...) ;

MethodReturn = void
Type

17

Constructor = Id (Type Id ,...) {Statement ...}

Statement = if (Expression) {Statement ...} else {Statement ...}
return Expression ;
return ;
{Statement ...}
super (Expression ,...) ;
this (Expression ,...) ;
Type Id ;
Type Id = Expression ;
StatementExpression ;

StatementExpression = Id (Expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)

Expression = Expression Op Expression

- Expression

! Expression

this
Id. (expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)
Expression.Id

new Id (Expression ,...)
(Type) Expression

Expression instanceof Type

check Expression expect Expression

check Expression expect Expression within Expression

(Expression)
Id

Number

Character

String

null

true
false

Name = Id. ... Id

18

Op = +

-

*

/

<

<=

==

>

>=

&&

||

Type = Id

boolean
int
char
double
float
long
byte
short

An Id is a sequence of alphanumeric characters, , and $.

3.1 import

• import Name ;

Imports a specified class to use within the program.

• import Name.* ;

Imports a group of classes that can all be used within the program.

3.2 class

• class Id {Member ...}
Creates a class named Id. If no constructor is present, one is generated that takes no
arguments.

• class Id implements Id ,Id ... {Member ...}
Creates a class named Id that implements the listed interfaces named by (scheme im-
plements). If no constructor is present, one is generated that takes no arguments. Any
method defined by the listed interface must be a member of this class.

19

• class Id extends Id {Member ...}
Creates a class named Id that inherits and expands the behavior of the extended class.
If no constructor is present, one is generated that takes no arguments. If the parent
class contains a constructor that requires arguments, then none can be generated and
the current class must contain a constructor that contains super.

• class Id extends Id implements Id ,Id ... {Member ...}
Creates a class named Id that inherits from the extended class and implements the
listed interfaces.

• abstract class Id {Member ...}
Creates a class named Id that cannot be instantiated. Members may contain abstract
methods. Non-abstract classes extending this class are required to implement all ab-
stract methods.

• abstract class Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id that implements the listed interfaces. Members can
include abstract methods. This class need not implement all methods in the interfaces,
but all non-abstract subclasses must.

• abstract class Id extends Id {Member ...}
Creates an abstract class named Id that inherits from the extended class. Members can
include abstract methods. If the parent is abstract, the current class does not need to
implement all inherited abstract methods, but all non-abstract subclasses must.

• abstract class Id extends Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id, that inherits from the extended class and imple-
ments the listed interfaces.

3.3 interface

• interface Id {Signature ...}
Creates an interface named Id that specifies a set of method signatures for classes to
implement.

• interface Id extends Id ,Id ... {Signature ...}
Creates an interface named Id that specifies a set of method signatures for classes to
implement, and inherits the method signatures of the interfaces specified in the extends
list.

MethodReturn Id (Type Id ,...) ;

The signature specifies a method named Id, expecting the listed arguments. All classes
implementing the (scheme interface) must contain a method with the same name, return

20

type, and argument types. A method that does not return a value uses the void designation
instead of a Type.

abstract MethodReturn Id (Type Id ,...) ;

A signature may be declared abstract. This does not impact the method behavior; all
signatures are by default abstract.

3.4 Modifiers

The modifiers public, private, and protected controll access to the modified member.
A public member can be accessed by any class. A private member can only be accessed
by the containing class. A protected member can be accessed by the containing class and
subclasses.

3.5 Field

• Type Id ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and will
contain a default value of this type if uninitialized.

• Type Id = Expression ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and the
value of the evaluated Expression.

3.6 Method

MethodReturn Id (Type Id ,...) {Statement ...}

Creates a method, bound to Id, that can be called on the current object, or instances of this
class. The body of the method, the statements, will be evaluated sequentially when the
method is called. The method name may not be the name of any classes defined in the same
program or of any fields or methods in the same class. A method that does not return a value
uses the void designation instead of a Type for MethodReturn.

abstract MethodReturn Id (Type Id ,...) ;

Creates a method, bount to Id, inside an abstract class. Like an interface signature, non-
abstract classes that inherit this method must provide an implementation.

21

3.7 Constructor

Id (Type Id ,...) {Statement ...}

Creates a constructor that is used in creating an instance of a class (called an object). The
arguments given when creating an instance must be of the same type, and in the same order,
as that specified by the constructor. The statements are executed in sequence in intializing
the object. If the parent of the current class contains a constructor, that expects parameters,
then the first statement in the constructor must be a super call.

Multiple constructors can appear in a class body, provided that for each constructor the type
of arguments or the number of arguments us unique. Each constructor may set its own
access. A constructor in the same class can be called using a this call. This must be the
first statement.

3.8 Statement

• if (Expression) {Statement ...} else {Statement ...}
In this statement the expression should have a boolean type. It is evaluated first. If
the expression evaluates to true, then the first group of statements (known as the then
clause) are evaluated. If the expression evaluates to false, the group of statements
following else (the else clause) are evaluated.

• return Expression ;

This form evaluates the expression, and then returns the value of the expression as the
result of the method in which it is contained.

• return ;

This form causes the method to cease evaluation, without producing a value. Should
be used in conjunction with void for the MethodReturn.

• {Statement ...}
This statement groups the sequence of statements together, commonly called a block.
The statements evaluate sequentially.

• super (Expression ,...) ;

May only appear as the first statement of a constructor. Calls the constructor for the
parent class using the given expressions as arguments. Expressions are evaluated left
to right.

• this (Expression ,...) ;

May only appear as the first statement of a constructor. Calls a different constructor
from the same class, chosen by analyzing the given expressions.

22

• Type Id ;

Creates a local variable Id within a method body or a block statement; it is not visible
outside the block or method, or to statements the preceed the declaration. The variable
must be initialized prior to use.

• Type Id = Expression ;

Creates a local variable Id within a method body or a block statement.

• StatementExpression ;

This set of expressions can be used in a statement position, provided they are followed
by ’;’.

3.9 Expression

• Expression Op Expression

Performs the mathematical or logical operation Op on the value of the two expressions.

• - Expression

• ! Expression

Performs logical negation on the value of the expression.

• this

Allows access to the current object. Within a class, fields and methods of the current
class can be accessed through this.

• Id (Expression ,...)

Id names a method of the current class to be called by the current expression. The
expressions following Id are evaluated from left to right and passed in to the method
as its arguments. The number and types of the arguments must match the method’s
declaration. These values replace the argument names in the body of the method, and
the result of the body is the result of this expression.

• Expression.Id (Expression ,...)

The first expression must evaluate to an object value. Id names a method of this object
to be called by the current expression. The expressions following Id are evaluated
from left to right and passed in to the method as its arguments. The number and
types of the arguments must match the method’s declaration. These values replace the
argument names in the body of the method, and the result of the body is the result of
this expression.

• super.Id (Expression ,...)

Evaluates the overridden method body using the provided expressions as its argu-
ments.

23

• Expression.Id

The first expression must evaluate to an object value. Id names a field of this object,
whose value is retrieved by this expression.

• new Id (Expression ,...)

Evaluates to a new instance (object) of the Id class. The class’s constructor will be run
with the given values (evaluated from left to right) as its arguments. The number and
types of these values select which constructor is used.

• (Type) Expression

Evaluates Expression and then confirms that the value matches the specified type. Dur-
ing compilation, the resulting expression has the specified type. If during evaluation,
this is not true, an error is raised; otherwise the result of this expression is the result of
Expression.

• Expression instanceof Type

Evaluates Expression and then confirms that the value matches the specified type.
Returns true when the type matches and false otherwise.

• check Expression expect Expression

Compares the resulting values of the two expressions through a deep comparison, in-
cluding the fields of objects. The resulting value will be a boolean. Neither expression
can have type float or double. When test reporting is enabled, results of checks appear
in the testing window.

• check Expression expect Expression within Expression

Compares the resulting values of the first two expressions through a deep comparison.
The third value must be numeric. If the resulting values of the compared expressions
are numeric, their values must be within the third value of each other. For example,
in check a expect b within c, the absolute value of a-b must be less than or
equal to c. If the compared expressions evaluate to objects, any numeric fields will
be compared with this formula. The resulting value will be a boolean. When test
reporting is enabled, results of checks appear in the testing window.

• (Expression)

• Id

May refer to either a local variable, method parameter, or field of the current class.

• Number

• Character

Values of type char are ASCII characters enclosed by single quotes such as ’a’ is the
character a. They can be used as numbers as well as characters.

24

• String

Strings are created through placing text inside of double quotes. For example ”I am a
string” is a String. A String value is an instance of the class String, which descends
from Object, and can also be created with a constructor.

• null

A value representing an object with no fields or methods. It should be used as a
placeholder for uninitialized fields.

• true

• false

25

4 ProfessorJ Advanced

Program = Import ... Def ...

PackageDec Import ... Def ...

PackageDec = package Name ;

Import = import Name ;
import Name.* ;

Def = Class

Interface

public Class

public Interface

Class = class Id {Member ...}
class Id implements Id ,Id ... {Member ...}
class Id extends Id {Member ...}
class Id extends Id implements Id ,Id ... {Member ...}
abstract class Id {Member ...}
abstract class Id implements Id ,Id ... {Member ...}
abstract class Id extends Id {Member ...}
abstract class Id extends Id implements Id ,Id ... {Member ...}

Interface = interface Id {Signature ...}
interface Id extends Id ,Id ... {Signature ...}

Signature = MethodReturn Id (Type Id ,...) ;
abstract MethodReturn Id (Type Id ,...) ;

Member = Field

Modifier Field

Method

Modifier Method

Constructor

Modifier Constructor

{Statement ...}

Modifier = public
private
protected

26

Field = Type Id = Expression ;
Type Id = ArrayInit ;
Type Id ;
static Type Id = Expression ;
static Type Id = ArrayInit ;
static Type Id ;

Method = MethodReturn Id (Type Id ,...) {Statement ...}
abstract MethodReturn Id (Type Id ,...) ;
final MethodReturn Id (Type Id ,...) {Statement ...}
static MethodReturn Id (Type Id ,...) {Statement ...}

MethodReturn = void
Type

Constructor = Id (Type Id ,...) {Statement ...}

Statement = Expression = Expression ;
if (Expression) Statement else Statement

if (Expression) Statement

return Expression ;
return ;
{Statement ...}
while (Expression) {Statement ...}
do {Statement ...} while (Expression)
for (ForInit ForExpression ForUpdate ...) {Statement ...}
break ;
continue ;
super (Expression ,...) ;
this (Expression ,...) ;
Type Id ;
Type Id = Expression ;
Type Id = ArrayInit ;
StatementExpression ;

StatementExpression = Id (Expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)
Expression ++
++ Expression

Expression --

-- Expression

ForInit = Type Id = Expression ;
Type Id = ArrayInit ;
StatementExpression ,StatementExpression ... ;
;

27

ForExpression = Expression ;
;

ForUpdate = StatementExpression

Expression = Expression

ArrayInit = {ArrayInit ,...}
{Expression ,...}

Expression = Expression Op Expression

- Expression

+ Expression

! Expression

++ Expression

-- Expression

Expression --
Expression ++
this
Id. (expression ,...)
Expression.Id (Expression ,...)
super.Id (Expression ,...)
Expression.Id

Expression [Expression] [Expression] ...

new Id (Expression ,...)
new Type [Expression] [Expression] ...

(Type) Expression

Expression instanceof Type

Expression ? Expression : Expression

check Expression expect Expression

check Expression expect Expression within Expression

(Expression)
Id

Number

Character

String

null

true
false

Name = Id. ... Id

28

Op = +

-

*

/

<

<=

==

>

>=

&&

||

Type = Id

boolean
int
char
double
float
long
byte
short
Type []

An Id is a sequence of alphanumeric characters, , and $.

4.1 package

package Name ;

This declaration asserts that all classes contained in the current file are members of the named
package.

4.2 import

• import Name ;

Imports a specified class to use within the program.

• import Name.* ;

Imports a group of classes that can all be used within the program.

29

4.3 class

• class Id {Member ...}
Creates a class named Id. If no constructor is present, one is generated that takes no
arguments.

• class Id implements Id ,Id ... {Member ...}
Creates a class named Id that implements the listed interfaces named by (scheme im-
plements). If no constructor is present, one is generated that takes no arguments. Any
method defined by the listed interface must be a member of this class.

• class Id extends Id {Member ...}
Creates a class named Id that inherits and expands the behavior of the extended class.
If no constructor is present, one is generated that takes no arguments. If the parent
class contains a constructor that requires arguments, then none can be generated and
the current class must contain a constructor that contains super.

• class Id extends Id implements Id ,Id ... {Member ...}
Creates a class named Id that inherits from the extended class and implements the
listed interfaces.

• abstract class Id {Member ...}
Creates a class named Id that cannot be instantiated. Members may contain abstract
methods. Non-abstract classes extending this class are required to implement all ab-
stract methods.

• abstract class Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id that implements the listed interfaces. Members can
include abstract methods. This class need not implement all methods in the interfaces,
but all non-abstract subclasses must.

• abstract class Id extends Id {Member ...}
Creates an abstract class named Id that inherits from the extended class. Members can
include abstract methods. If the parent is abstract, the current class does not need to
implement all inherited abstract methods, but all non-abstract subclasses must.

• abstract class Id extends Id implements Id ,Id ... {Member ...}
Creates an abstract class named Id, that inherits from the extended class and imple-
ments the listed interfaces.

4.4 interface

• interface Id {Signature ...}

30

Creates an interface named Id that specifies a set of method signatures for classes to
implement.

• interface Id extends Id ,Id ... {Signature ...}
Creates an interface named Id that specifies a set of method signatures for classes to
implement, and inherits the method signatures of the interfaces specified in the extends
list.

MethodReturn Id (Type Id ,...) ;

The signature specifies a method named Id, expecting the listed arguments. All classes
implementing the (scheme interface) must contain a method with the same name, return
type, and argument types. A method that does not return a value uses the void designation
instead of a Type.

abstract MethodReturn Id (Type Id ,...) ;

A signature may be declared abstract. This does not impact the method behavior; all
signatures are by default abstract.

4.5 Modifiers

The modifiers public, private, and protected controll access to the modified member.
A public member can be accessed by any class. A private member can only be accessed
by the containing class. A protected member can be accessed by the containing class and
subclasses and all classes that are members of the same package. A member without a
modifier can be accessed by all members of the same package.

4.6 Field

• Type Id ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and will
contain a default value of this type if uninitialized.

• Type Id = Expression ;

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field will have the declared type and the
value of the evaluated Expression.

• Type Id = ArrayInit ;

31

Creates a field, bound to Id, that can be used within the current class, or on instances
of the current class using an expression. This field must have an array type and the
value is that of the evaluated array initialization specification.

All fields with static preceeding their declaration are tied to the class and not tied to an
instance of the class. They can be accessed and initialized using the standard techniques for
non-static fields. They may also be accessed with the class name preceeding the field name:
Id.Id. An initializing expression cannot use the this expression.

4.7 Method

MethodReturn Id (Type Id ,...) {Statement ...}

Creates a method, bound to Id, that can be called on the current object, or instances of this
class. The body of the method, the statements, will be evaluated sequentially when the
method is called. The method name may not be the name of any classes defined in the same
program or of any fields or methods in the same class. A method that does not return a value
uses the void designation instead of a Type for MethodReturn.

abstract MethodReturn Id (Type Id ,...) ;

Creates a method, bount to Id, inside an abstract class. Like an interface signature, non-
abstract classes that inherit this method must provide an implementation.

final MethodReturn Id (Type Id ,...) {Statement ...}

Creates a method, bound to Id, that cannot be overridden by future classes.

static MethodReturn Id (Type Id ,...) {Statement ...} Creates a method,
bound to Id, that is tied to the class, not the instance of the class. This method cannot
use the this expression within the Statement body.

Multiple methods can appear in a class body with the same name, provided that for each
method with a given name the type of arguments or the number of arguments is unique.

4.8 Constructor

Id (Type Id ,...) {Statement ...}

Creates a constructor that is used in creating an instance of a class (called an object). The
arguments given when creating an instance must be of the same type, and in the same order,
as that specified by the constructor. The statements are executed in sequence in intializing
the object. If the parent of the current class contains a constructor, that expects parameters,
then the first statement in the constructor must be a super call.

32

Multiple constructors can appear in a class body, provided that for each constructor the
type of arguments or the number of arguments is unique. Each constructor may set its own
access. A constructor in the same class can be called using a this call. This must be the
first statement.

4.9 Statement

• Expression = Expression ;

The first expression must be a field reference, array position reference, or a variable.
The value of this variable, field, or array position will be changed to be the value of
the evalauated expression on the right-hand side of =.

• if (Expression) Statement else Statement

In this statement the expression should have a boolean type. It is evaluated first. If
the expression evaluates to true, then the first statement (known as the then clause) is
evaluated. If the expression evaluates to false, the statement following else (the else
clause) is evaluated. Both statements may be blocks, including { }.

• if (Expression) Statement

In this statement the expression should have a boolean type. It is evaluated first. If the
expression evaluates to true, then the statement is evaluated; otherwise the statement
has completed evaluation.

• return Expression ;

This form evaluates the expression, and then returns the value of the expression as the
result of the method in which it is contained.

• return ;

This form causes the method to cease evaluation, without producing a value. Should
be used in conjunction with void for the MethodReturn.

• {Statement ...}
This statement groups the sequence of statements together, commonly called a block.
The statements evaluate sequentially.

• while (Expression) {Statement ...}
Evaluates the expression, which must have type boolean. If the resulting value is true,
then the statements are evaluated. After evaluating the statements, the expression is
evaluated again. This repeats until the resulting value is false; once false, the state-
ments are not evaluated and the while statement has completed evaluation.

• do {Statement ...} while (expression)

The do statement evaluates the Statements, and then evaluates the expression, which
must have type boolean. If the expression is true the statements evaluate again. This

33

repeats until the expression is false, afterwhich the do statement has completed evalu-
ation.

• for (ForInit ForExpression ForUpdate ,...) {Statement ...}
The ForInit first initializes a variable, or evaluates a set of expressions. The variable
can only be seen within the ForExpression, ForUpdate, and within the Statements.
Then the ForExpression is evaluated, when true the Statements are evaluated. Subse-
quently, the ForUpdate evaluates a set of statement expressions or assignments before
evaluating the expression again. Other than the ForInit stage, this repeats until the
expression evaluates to false, afterwhich the for statement has completed evaluation.

• break ;

Can only appear within the statement group of a while loop, do loop, or for loop.
Causes the loop evaluation to complete without checking the expression again.

• continue ;

Can only appear within the statement group of a while loop, do loop, or for loop.
Causes the statement group evaluation to complete, repeating to the evaluation of the
conditional.

• super (Expression ,...) ;

May only appear as the first statement of a constructor. Calls the constructor for the
parent class using the given expressions as arguments. Expressions are evaluated left
to right.

• this (Expression ,...) ;

May only appear as the first statement of a constructor. Calls a different constructor
from the same class, chosen by analyzing the given expressions.

• Type Id ;

Creates a local variable Id within a method body or a block statement; it is not visible
outside the block or method, or to statements the preceed the declaration. The variable
must be initialized prior to use.

• Type Id = Expression ;

Creates a local variable Id within a method body or a block statement.

• StatementExpression ;

This set of expressions can be used in a statement position, provided they are followed
by ’;’.

4.10 ArrayInit

This syntax specifies an array to be created holding initial values as specified.

34

{Expression ,...}

This form creates a one dimensional array, where the values are the result of evaluating each
expression, left to right.

{ArrayInit ,...}

This form creates a multi-dimensional array, where the values for this array are arrays, with
their values specified by the ArrayInit.

4.11 Expression

• Expression Op Expression

Performs the mathematical or logical operation Op on the value of the two expressions.

• - Expression

• ! Expression

Performs logical negation on the value of the expression.

• ++ Expression

The expression must be a field access, variable, or array position access, where the
type must be a number. This form causes 1 to be added to the value of the field,
variable, or array position. Returns the augmented number.

• Expression ++

Like ++ Expression, except the returned value is the initial number held by Expres-
sion.

• -- Expression

The expression must be a field access, variable, or array position access, where the
type must be a number. This form causes 1 to be subtracted from the value of the
field, variable, or array position. Returns the decremented number.

• Expression --

Like -- Expression, except the returned value is the initial number held by Expres-
sion.

• this

Allows access to the current object. Within a class, fields and methods of the current
class can be accessed through this.

• Id (Expression ,...)

Id names a method of the current class to be called by the current expression. The
expressions following Id are evaluated from left to right and passed in to the method

35

as its arguments. The number and types of the arguments must match the method’s
declaration. These values replace the argument names in the body of the method, and
the result of the body is the result of this expression.

• Expression.Id (Expression ,...)

The first expression must evaluate to an object value. Id names a method of this object
to be called by the current expression. The expressions following Id are evaluated
from left to right and passed in to the method as its arguments. The number and
types of the arguments must match the method’s declaration. These values replace the
argument names in the body of the method, and the result of the body is the result of
this expression.

• super.Id (Expression ,...)

Evaluates the overridden method body using the provided expressions as its argu-
ments.

• Expression.Id

The first expression must evaluate to an object value. Id names a field of this object,
whose value is retrieved by this expression.

• Expression [Expression]

The first expression must evaluate into an array object, and the second expression must
evaluate into an integer. Evaluation of the full expression retrieves the value stored in
the corresponding position in the array. If the integer value is equal to or greater than
the size of the array a runtime error will occur. The indexing of the array begins at 0.

• new Id (Expression ,...)

Evaluates to a new instance (object) of the Id class. The class’s constructor will be run
with the given values (evaluated from left to right) as its arguments. The number and
types of these values select which constructor is used.

• new Type [Expression] [Expression] ...

The expressions must all evaluate to integers. Evaluates to a new array value, where
the base array holds values of the specified type, and the size is specified by the integer
values.

• (Type) Expression

Evaluates Expression and then confirms that the value matches the specified type. Dur-
ing compilation, the resulting expression has the specified type. If during evaluation,
this is not true, an error is raised; otherwise the result of this expression is the result of
Expression.

• Expression instanceof Type

Evaluates Expression and then confirms that the value matches the specified type.
Returns true when the type matches and false otherwise.

36

• Expression ? Expression : Expression

This form is an expression form of if. The first expression is evaluated (and must
have type boolean), if it is true then the second expression is evaluated and this is the
result of the ? expression. If the first expression is false, then the third expression is
evaluated and this is the result of the ? expression. The second and third expressions
must have types that are assignable to one another.

• check Expression expect Expression

Compares the resulting values of the two expressions through a deep comparison, in-
cluding the fields of objects. The resulting value will be a boolean. Neither expression
can have type float or double. When test reporting is enabled, results of checks appear
in the testing window.

• check Expression expect Expression within Expression

Compares the resulting values of the first two expressions through a deep comparison.
The third value must be numeric. If the resulting values of the compared expressions
are numeric, their values must be within the third value of each other. For example,
in check a expect b within c, the absolute value of a-b must be less than or
equal to c. If the compared expressions evaluate to objects, any numeric fields will
be compared with this formula. The resulting value will be a boolean. When test
reporting is enabled, results of checks appear in the testing window.

• (Expression)

• Id

May refer to either a local variable, method parameter, or field of the current class.

• Number

• Character

Values of type char are ASCII characters enclosed by single quotes such as ’a’ is the
character a. They can be used as numbers as well as characters.

• String

Strings are created through placing text inside of double quotes. For example ”I am a
string” is a String. A String value is an instance of the class String, which descends
from Object, and can also be created with a constructor.

• null

A value representing an object with no fields or methods. It should be used as a
placeholder for uninitialized fields.

• true

• false

37

Index
ArrayInit

class

class, 5
class, 11
class, 19
Constructor, 6
Constructor, 32
Constructor, 13
Constructor, 22
Expression

Expression, 35
Expression, 15
Expression, 23
Field

Field, 31
Field, 13
Field, 21
How to Design Classes Languages
import

import, 5
import, 11
import, 19
interface, 30
interface, 6
interface, 12
interface, 20
Method

Method, 32
Method, 13
Method, 21
Modifiers, 31
Modifiers, 21
package

ProfessorJ Advanced, 26
ProfessorJ Beginner, 4
ProfessorJ Intermediate, 9
ProfessorJ Intermediate + Access, 17
Statement

Statement, 33
Statement, 14

Statement, 22

38

	1 ProfessorJ Beginner
	1.1 IdentifierColorimport
	1.2 IdentifierColorclass
	1.3 IdentifierColorinterface
	1.4 IdentifierColorField
	1.5 IdentifierColorMethod
	1.6 IdentifierColorConstructor
	1.7 IdentifierColorStatement
	1.8 IdentifierColorExpression

	2 ProfessorJ Intermediate
	2.1 IdentifierColorimport
	2.2 IdentifierColorclass
	2.3 IdentifierColorinterface
	2.4 IdentifierColorField
	2.5 IdentifierColorMethod
	2.6 IdentifierColorConstructor
	2.7 IdentifierColorStatement
	2.8 IdentifierColorExpression

	3 ProfessorJ Intermediate + Access
	3.1 IdentifierColorimport
	3.2 IdentifierColorclass
	3.3 IdentifierColorinterface
	3.4 IdentifierColorModifiers
	3.5 IdentifierColorField
	3.6 IdentifierColorMethod
	3.7 IdentifierColorConstructor
	3.8 IdentifierColorStatement
	3.9 IdentifierColorExpression

	4 ProfessorJ Advanced
	4.1 IdentifierColorpackage
	4.2 IdentifierColorimport
	4.3 IdentifierColorclass
	4.4 IdentifierColorinterface
	4.5 IdentifierColorModifiers
	4.6 IdentifierColorField
	4.7 IdentifierColorMethod
	4.8 IdentifierColorConstructor
	4.9 IdentifierColorStatement
	4.10 IdentifierColorArrayInit
	4.11 IdentifierColorExpression

	Index

