
MrLib: Extra GUI Libraries
Version 4.0.2

July 4, 2008

1

Contents

1 Aligned Pasteboard 4

1.1 aligned-pasteboard<%> . 4

1.2 horizontal-pasteboard% . 4

1.3 vertical-pasteboard% . 6

1.4 aligned-editor-snip% . 7

1.5 aligned-editor-canvas% . 7

1.6 aligned-pasteboard-parent<%> . 7

1.7 stretchable-snip<%> . 7

2 Bitmap Label 9

3 Cache-image Snip 10

4 GIF and Animated GFI Writing 13

5 Graphs 14

5.1 graph-pasteboard<%> . 14

5.2 graph-pasteboard-mixin . 15

5.3 graph-snip<%> . 15

5.4 graph-snip-mixin . 17

5.5 Graph Functions . 17

6 Hierarchical List Control 19

6.1 hierarchical-list% . 19

6.2 hierarchical-list-item<%> . 23

6.3 hierarchical-list-compound-item<%> 24

2

6.4 Snips in a hierarchical-list% Instance 26

7 Include Bitmap 27

8 Interactive Value Port 28

9 Name Message 29

10 Path Dialog 32

11 Plot 36

12 Switchable Button 38

13 Acknowledgments 39

Index 40

3

1 Aligned Pasteboard

The aligned-pasteboard library provides classes derived from pasteboard% with geometry
management that mirrors that of vertical-panel% and horizontal-panel%.

(require mrlib/aligned-pasteboard)

1.1 aligned-pasteboard<%>

aligned-pasteboard<%> : interface?

(send an-aligned-pasteboard get-aligned-min-height) → real?

The minimum height an aligned-pasteboard can be and still fit the heights of all of its chil-
dren.

(send an-aligned-pasteboard get-aligned-min-width) → real?

The minimum width an aligned-pasteboard can be and still fit the widths of all of its children.

(send an-aligned-pasteboard realign width

height) → void?
width : exact-nonnegative-integer?
height : exact-nonnegative-integer?

(send an-aligned-pasteboard realign) → void?

Realigns the children inside the aligned-pasteboard<%> to either a given width and
height or the previously alloted width and height.

(send an-aligned-pasteboard set-aligned-min-sizes) → void?

Calculates the minimum width and height of the of the pasteboard based on children’s min-
sizes and stores it for later retrieval via the getters.

1.2 horizontal-pasteboard%

horizontal-pasteboard% : class?

4

superclass: pasteboard%
extends: aligned-pasteboard<%>

(new horizontal-pasteboard% ...superclass-args...)
→ (is-a?/c horizontal-pasteboard%)

Passes all arguments to super-init.

(send a-horizontal-pasteboard after-delete snip) → void?
snip : (is-a?/c snip%)

Overrides after-delete in pasteboard%.

(send a-horizontal-pasteboard after-insert snip

before

x

y) → void?
snip : (is-a?/c snip%)
before : (or/c (is-a?/c snip%) false/c)
x : real?
y : real?

Overrides after-insert in pasteboard%.

(send a-horizontal-pasteboard after-reorder snip

to-snip

before?) → boolean?
snip : (is-a?/c snip%)
to-snip : (is-a?/c snip%)
before? : any/c

Overrides after-reorder in pasteboard%.

(send a-horizontal-pasteboard resized snip

redraw-now?) → void?
snip : (is-a?/c snip%)
redraw-now? : any/c

Overrides resized in editor<%>.

5

1.3 vertical-pasteboard%

vertical-pasteboard% : class?
superclass: pasteboard%
extends: aligned-pasteboard<%>

(new vertical-pasteboard% ...superclass-args...)
→ (is-a?/c vertical-pasteboard%)

Passes all arguments to super-init.

(send a-vertical-pasteboard after-delete snip) → void?
snip : (is-a?/c snip%)

Overrides after-delete in pasteboard%.

(send a-vertical-pasteboard after-insert snip

before

x

y) → void?
snip : (is-a?/c snip%)
before : (or/c (is-a?/c snip%) false/c)
x : real?
y : real?

Overrides after-insert in pasteboard%.

(send a-vertical-pasteboard after-reorder snip

to-snip

before?) → boolean?
snip : (is-a?/c snip%)
to-snip : (is-a?/c snip%)
before? : any/c

Overrides after-reorder in pasteboard%.

(send a-vertical-pasteboard resized snip

redraw-now?) → void?
snip : (is-a?/c snip%)
redraw-now? : any/c

6

Overrides resized in editor<%>.

1.4 aligned-editor-snip%

aligned-editor-snip% : class?
superclass: editor-snip%

Calls the realign method when resized.

1.5 aligned-editor-canvas%

aligned-editor-canvas% : class?
superclass: editor-canvas%

Calls the realign method when resized.

1.6 aligned-pasteboard-parent<%>

aligned-pasteboard-parent<%> : interface?

This interface must be implemented by any class who’s editor is an aligned-
pasteboard<%>.

(send an-aligned-pasteboard-parent set-aligned-min-sizes)
→ void?

1.7 stretchable-snip<%>

stretchable-snip<%> : interface?

This interface must be implemented by any snip class who’s objects will be stretchable when
inserted into an aligned-pasteboard<%>.

(send a-stretchable-snip get-aligned-min-height) → real?

7

The minimum height that the snip can be resized to

(send a-stretchable-snip get-aligned-min-width) → real?

The minimum width that the snip can be resized to.

(send a-stretchable-snip stretchable-height) → boolean?

Whether or not the snip can be stretched in the Y dimension

(send a-stretchable-snip stretchable-width) → boolean?

Whether or not the snip can be stretched in the X dimension

8

2 Bitmap Label

(require mrlib/bitmap-label)

(make-bitmap-label str img [font]) → (is-a?/c bitmap%)
str : string?
img : (or/c (is-a?/c bitmap%) path-string?)
font : (is-a?/c font%) = normal-control-font

Constructs a bitmap label suitable for use a button that contains the image specified by img

followed by the text in str .

((bitmap-label-maker str img) future-parent) → (is-a?/c bitmap%)
str : string?
img : (or/c (is-a?/c bitmap%) path-string?)
future-parent : (is-a?/c area-container<%>)

And older variant of make-bitmap-label that obtains a font to use from a container
future-parent .

9

3 Cache-image Snip

(require mrlib/cache-image-snip)

The mrlib/cache-image-snip library provides the core data structure for DrScheme’s
"image.ss" teachpack. Images in the "image.ss" teachpack are instances of the cache-
image-snip% class.

The library also defines a new type, argb, that represents a bitmap, but with alpha values. It
has a maker, two selectors, and a predicate.

cache-image-snip% : class?
superclass: snip%

(send a-cache-image-snip get-argb) → argb?

Returns a pixel array for this image, forcing it to be computed.

(send a-cache-image-snip get-argb-proc)
→ (argb? exact-integer? exact-integer? . -> . void?)

Returns a procedure that fills in an argb with the contents of this image at the
given offset

(send a-cache-image-snip get-argb/no-compute)
→ (or/c false/c argb?)

Returns a pixel array for this image or #f if it has not been computed yet.

(send a-cache-image-snip get-bitmap) → (is-a?/c bitmap%)

Builds (if not yet built) a bitmap corresponding to this snip and returns it.

(send a-cache-image-snip get-dc-proc)
→ (or/c false/c ((is-a?/c dc<%>) real? real? -> void?))

Either returns false, or a procedure that draws the contents of this snip into a dc.

(send a-cache-image-snip get-pinhole) → real? real?

Returns the pinhole coordinates for this image, counting from the top-left of the
image.

10

(send a-cache-image-snip get-size)
→ exact-nonnegative-integer?

exact-nonnegative-integer?

Returns the width and height for the image.

snip-class : (is-a?/c snip-class%)

This snipclass is used for saved cache image snips.

(make-argb vectorof width) → argb?
vectorof : (integer-in 0 255)
width : exact-nonnegative-integer?

Constructs a new argb value. The vector has four entries for each pixel, an alpha, red, green,
and blue value. The int specifies the width of the image; the height is the size of the vector,
divided by 4, divided by the width.

(argb-vector argb) → (vectorof (integer-in 0 255))
argb : argb?

Extracts the vector from argb .

(argb-width argb) → exact-nonnegative-integer?
argb : argb?

Extracts the width from argb .

(argb? v) → boolean?
v : any/c

Returns #t if v is an argb, #f otherwise.

(overlay-bitmap dest dx dy img mask) → void?
dest : argb?
dx : exact-integer?
dy : exact-integer?
img : (is-a?/c bitmap%)
mask : (is-a?/c bitmap%)

11

Changes argb, overlaying img with masking based on mask at (dx , dy) from the top-left.

(build-bitmap draw width height) → (is-a?/c bitmap%)
draw : ((is-a?/c dc<%>) . -> . any)
width : (integer-in 1 10000)
height : (integer-in 1 10000)

Builds a bitmap of size width by height , using the procedure draw to render the bitmap
content into the given dc<%>.

(flatten-bitmap bitmap) → (is-a?/c bitmap%)
bitmap : (is-a?/c bitmap%)

Builds a new bitmap that flattens the original bitmap with its mask (as determined by get-
loaded-mask in bitmap%), producing a bitmap that has no mask, and looks the way that
bitmap would draw (when drawn with the mask) onto a white background.

(argb->cache-image-snip argb dx dy) → (is-a?/c cache-image-snip%)
argb : argb?
dx : real?
dy : real?

Builds a new cache-image-snip% based on the contents of argb , using dx and dy as the
pinhole.

(argb->bitmap argb) → (is-a?/c bitmap%)
argb : argb?

Builds a bitmap that draws the same way as argb ; the alpha pixels are put into the bitmap’s
get-loaded-mask bitmap.

12

4 GIF and Animated GFI Writing

(require mrlib/gif)

(write-gif bitmap filename) → void?
bitmap : (or/c (is-a?/c bitmap%)

(-> (is-a?/c bitmap%)))
filename : path-string

Writes the given bitmap to filename as a GIF image, where bitmap is either an in-
stance of bitmap% or a thunk (to be called just once) that generates such an object. If the
bitmap uses more than 256 colors, it is automatically quantized using a simple algorithm; see
quantize. If the bitmap has a mask bitmap via get-loaded-mask, it is used to determine
transparent pixels in the generated GIF image.

(write-animated-gif bitmaps

delay-csec

filename

[#:one-at-a-time? one-at-a-time?]) → void?
bitmaps : (listof (or/c (is-a?/c bitmap%)

(-> (is-a?/c bitmap%))))
delay-csec : (integer-in 0 4294967295)
filename : path-string
one-at-a-time? : any/c = #f

Writes the bitmaps in bitmap-list to filename as an animated GIF. The bitmap-list
list can contain a mixture of bitmap% objects and thunks (each called just once) that produce
bitmap% objects. The delay-csec argument is the amount of time in 1/100s of a second
to wait between transitions.

If one-at-a-time? is #f, then the content of all images is collected and quantized at once,
to produce a single colortable; a drawback to this approach is that it uses more memory, and
it allows less color variation among animation frames. Even when one-at-a-time? is #f,
the result of each thunk in bitmap-list is converted to a byte-string one at a time (which
helps avoid bitmap-count limits under Windows).

If one-at-a-time? is true, then the bitmaps are quantized and written to the file one at
a time; that is, for each thunk in bitmap-list, its result is written and discarded before
another thunk is called. A drawback to this approach is that a separate colortable is written
for each frame in the animation, which can make the resulting file large.

13

5 Graphs

(require mrlib/graph)

The mrlib/graph library provides a graph drawing toolkit built out of pasteboard%s.

5.1 graph-pasteboard<%>

graph-pasteboard<%> : interface?

(send a-graph-pasteboard get-arrowhead-params)
→ number number number

Returns the current settings for the arrowhead’s drawing.

(send a-graph-pasteboard on-mouse-over-snips lst) → void?
lst : (listof (is-a?/c snip%))

This method is called when the mouse passes over any snips in the editor. It is only called
when the list of snips under the editor changes (ie, if the mouse moves, but remains over the
same list of snips, the method is not called). Also, this method is called with the empty list
if the mouse leaves the pasteboard.

(send a-graph-pasteboard set-arrowhead-params angle-width

short-side

long-size)
→ void?
angle-width : real?
short-side : real?
long-size : real?

Sets drawing parameters for the arrowhead. The first is the angle of the arrowhead’s point,
in radians. The second is the length of the outside line of the arrowhead and the last is the
distance from the arrowhead’s point to the place where the arrowhead comes together.

(send a-graph-pasteboard set-draw-arrow-heads? draw-arrow-heads?)
→ void?
draw-arrow-heads? : any/c

14

Sets a boolean controlling whether or not arrow heads are drawn on the edges between nodes.

This setting does not affect self-links—only links between two different nodes.

(send a-graph-pasteboard draw-edges dc

left

top

right

bottom

dx

dy) → void?
dc : (is-a?/c dc<%>)
left : real?
top : real?
right : real?
bottom : real?
dx : real?
dy : real?

This is called by the on-paint callback of a graph pasteboard, and is expected to draw the
edges between the snips. The argments are a subset of those passed to on-paint and it is
only called when the before? argument to on-paint is #t.

5.2 graph-pasteboard-mixin

graph-pasteboard-mixin : (class? . -> . class?)
argument extends/implements: pasteboard%
result implements: graph-pasteboard<%>

This mixin overrides many methods to draw lines between graph-snip<%> that it contains.

5.3 graph-snip<%>

graph-snip<%> : interface?

(send a-graph-snip add-child child) → void?
child : (is-a?/c graph-snip<%>)

Adds a child of this snip. Instead of calling this method, consider using the add-links

15

function.

(send a-graph-snip add-parent parent) → void?
parent : (is-a?/c graph-snip<%>)

(send a-graph-snip add-parent parent

mouse-over-pen

mouse-off-pen

mouse-over-brush

mouse-off-brush) → void?
parent : (is-a?/c graph-snip<%>)
mouse-over-pen : (or/c false/c (is-a?/c pen%))
mouse-off-pen : (or/c false/c (is-a?/c pen%))
mouse-over-brush : (or/c false/c (is-a?/c brush%))
mouse-off-brush : (or/c false/c (is-a?/c brush%))

Adds a parent of this snip. Instead of calling this method, consider using the add-links
function.

(send a-graph-snip get-children) → (listof snip%)

returns a list of snips that implement graph-snip<%>. Each of these snips will have a line
drawn from it, pointing at this snip.

(send a-graph-snip get-parents) → (listof graph-snip<%>)

Returns a list of snips that implement graph-snip<%>. Each of these snips will have a line
drawn to it, starting from this snip.

(send a-graph-snip remove-child child) → void?
child : (is-a?/c graph-snip<%>)

Removes a child snip from this snip. Be sure to remove this snip as a parent from the
argument, too.

(send a-graph-snip remove-parent parent) → void?
parent : (is-a?/c graph-snip<%>)

Removes a parent snip from this snip. Be sure to remove this snip as a child from the
argument, too.

16

5.4 graph-snip-mixin

graph-snip-mixin : (class? . -> . class?)
argument extends/implements: snip%
result implements: graph-snip<%>

5.5 Graph Functions

(add-links parent child) → void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)

(add-links parent child) → void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)

(add-links parent

child

dark-pen

light-pen

dark-brush

light-brush

[label]) → void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen) false/c)
light-pen : (or/c (is-a?/c pen) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)
light-brush : (or/c (is-a?/c brush%) false/c)
label : (or/c string? false/c) = #f

(add-links parent

child

dark-pen

light-pen

dark-brush

light-brush

dx

dy

[label]) → void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen) false/c)
light-pen : (or/c (is-a?/c pen) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)

17

light-brush : (or/c (is-a?/c brush%) false/c)
dx : real?
dy : real?
label : (or/c string? false/c) = #f

Connects a parent snip to a child snip within a pasteboard.

The default dark-pen /dark-brush and light-pen /light-brush are blue and purple,
respectively. The dark-pen and dark-brush are used when the mouse cursor is over the
snip (or a child or parent), and the light-pen and light-brush are used when the mouse
cursor is not over the snip. The brush is used to draw inside the arrow head and the pen is
used to draw the border of the arrowhead and the line connecting the two snips.

if label is provided and not #f, it is used as a label on the edge.

When dx and dy are provided, the are offsets for the head and the tail of the arrow. Other-
wise, 0 offsets are used.

(add-links/text-colors parent

child

dark-pen

light-pen

dark-brush

light-brush

dark-text

light-text

dx

dy

label) → void?
parent : (is-a?/c graph-snip<%>)
child : (is-a?/c graph-snip<%>)
dark-pen : (or/c (is-a?/c pen) false/c)
light-pen : (or/c (is-a?/c pen) false/c)
dark-brush : (or/c (is-a?/c brush%) false/c)
light-brush : (or/c (is-a?/c brush%) false/c)
dark-text : (or/c (is-a?/c color%) false/c)
light-text : (or/c (is-a?/c color) false/c)
dx : real?
dy : real?
label : (or/c string? false/c)

Like add-links, but with extra dark-text and light-text arguments to set the colors
of the label.

18

6 Hierarchical List Control

(require mrlib/hierlist)

A hierarchical-list% control is a list of items, some of which can themselves be hier-
archical lists. Each such sub-list has an arrow that the user can click to hide or show the
sub-list’s items.

The list control supports the following default keystrokes:

• Down: move to the next entry at the current level (skipping lower levels).

• Up: move to the previous entry at the current level (skipping lower levels).

• Left: move to the enclosing level (only valid at embedded levels).

• Right: move down in one level (only valid for lists).

• Return: open/close the current selected level (only valid for lists).

6.1 hierarchical-list%

hierarchical-list% : class?
superclass: editor-canvas%

Creates a hierarchical-list control.

(new hierarchical-list% [parent parent]
[[style style]])

→ (is-a?/c hierarchical-list%)
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))
style : (listof (one-of/c ’no-border ’control-border ’combo

’no-hscroll ’no-vscroll
’hide-hscroll ’hide-vscroll
’auto-vscroll ’auto-hscroll
’resize-corner ’deleted ’transparent))

= ’(no-hscroll)

Creates the control.

(send a-hierarchical-list selected)

19

→ (or/c (is-a?/c hierarchical-list-item<%>)
false/c)

Returns the currently selected item, if any.

(send a-hierarchical-list new-item [mixin])
→ (is-a?/c hierarchical-list-item<%>)
mixin : ((implementation?/c hierarchical-list-item<%>)

. -> .
(implementation?/c hierarchical-list-item<%>))

= (lambda (%) %)

Creates and returns a new (empty) item in the list. See hierarchical-list-item<%> for
methods to fill in the item’s label.

The mixin argument is applied to a class implementing hierarchical-list-item<%>,
and the resulting class is instantiated as the list item.

(send a-hierarchical-list set-no-sublists no-sublists?) → void?
no-sublists? : any/c

Enables/disables sublist mode. When sublists are disabled, space to the left of the list items
(that would normally align non-list items with list items) is omitted. This method can be
called only when the list is empty.

(send a-hierarchical-list new-list [mixin])
→ (is-a?/c hierarchical-list-compound-item<%>)
mixin : ((implementation?/c hierarchical-list-compound-item<%>)

. -> .
(implementation?/c hierarchical-list-compound-item<%>))

= (lambda (%) %)

Creates and returns a new (empty) sub-list in the list. See hierarchical-list-
compound-item<%> for methods to fill in the item’s label and content.

The mixin argument is applied to a class implementing hierarchical-list-compound-
item<%>, and the resulting class is instantiated as the sub-list.

(send a-hierarchical-list delete-item i) → void?
i : (is-a?/c hierarchical-list-item<%>)

Deletes immediate item or sub-list i from the list.

20

(send a-hierarchical-list get-items)
→ (listof (is-a?/c hierarchical-list-item<%>))

Returns a list of all immediate items in the list control.

(send a-hierarchical-list selectable) → boolean?
(send a-hierarchical-list selectable on?) → void?
on? : any/c

Reports whether items are selectable, or enables/disables item selection.

(send a-hierarchical-list on-select i) → any
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Called for new select of i , where i is #f if no item is now selected.

(send a-hierarchical-list on-click i) → any
i : (is-a?/c hierarchical-list-item<%>)

Called when an item is clicked on, but selection for that item is not allowed. Selection can be
disallowed by selectable or set-allow-selection in hierarchical-list-item<%>.

(send a-hierarchical-list on-double-select i) → any
i : (is-a?/c hierarchical-list-item<%>)

Called for a double-click on i .

(send a-hierarchical-list on-item-opened i) → any
i : (is-a?/c hierarchical-list-compound-item<%>)

Called when the arrow for i is turned down.

(send a-hierarchical-list on-item-closed i) → any
i : (is-a?/c hierarchical-list-compound-item<%>)

Called when the arrow for i is turned up.

(send a-hierarchical-list sort less-than-proc

[recur?]) → void?

21

less-than-proc : ((is-a?/c hierarchical-list-item<%>)
(is-a?/c hierarchical-list-item<%>)
. -> . any/c)

recur? : any/c = #t

Sorts items in the list by calling less-than-proc on pairs of items. If recur? is true,
items in sub-lists are sorted recursively.

(send a-hierarchical-list can-do-edit-operation? op

[recursive?])
→ boolean?
op : symbol?
recursive? : any/c = #t

Like can-do-edit-operation? in editor<%>. The default implementation always re-
turns #f.

(send a-hierarchical-list do-edit-operation op

[recursive?]) → void?
op : symbol?
recursive? : any/c = #t

Like do-edit-operation in editor<%>. The default implementation does nothing.

(send a-hierarchical-list select-prev) → void?
(send a-hierarchical-list select-next) → void?
(send a-hierarchical-list select-first) → void?
(send a-hierarchical-list select-last) → void?
(send a-hierarchical-list select-in) → void?
(send a-hierarchical-list select-out) → void?
(send a-hierarchical-list page-up) → void?
(send a-hierarchical-list page-down) → void?

Move the selection, scroll, and call on-select.

(send a-hierarchical-list select i) → void?
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Moves the selection, scrolls as necessary to show it, and calls on-select unless disabled
via on-select-always.

The allow-deselect method controls whether i is allowed to be #f to deselect the cur-
rently selected item.

22

(send a-hierarchical-list click-select i) → void?
i : (or/c (is-a?/c hierarchical-list-item<%>) false/c)

Like select, but always calls on-select.

(send a-hierarchical-list on-select-always) → boolean?
(send a-hierarchical-list on-select-always always?) → void?
always? : any/c

Gets/sets whether the on-select method is called in response to select (as opposed to
click-select).

The initial mode enables on-select calls always.

(send a-hierarchical-list allow-deselect) → boolean?
(send a-hierarchical-list allow-deselect allow?) → void?
allow? : any/c

Gets/sets whether the on-select can be called with a #f argument to deselect the current
item (leaving none selected).

The initial mode does not allow deselection.

6.2 hierarchical-list-item<%>

hierarchical-list-item<%> : interface?

Instantiate this interface via new-item.

(send a-hierarchical-list-item get-editor) → (is-a?/c text%)

Returns a text-editor buffer whose content is the display representation of the item. In other
words, fill in this text editor to set the item’s label.

(send a-hierarchical-list-item is-selected?) → boolean?

Reports whether the item is selected.

(send a-hierarchical-list-item select on?) → void?

23

on? : any/c
(send a-hierarchical-list-item click-select on?) → void?
on? : any/c

Calls select or click-select. The on? argument can be #f only if allow-deselect in
hierarchical-list% allows it.

(send a-hierarchical-list-item user-data) → any/c
(send a-hierarchical-list-item user-data data) → void?
data : any/c

Gets/sets arbitrary data associated with the item.

(send a-hierarchical-list-item get-clickable-snip)
→ (is-a?/c snip%)

Returns the snip that (when clicked) selects this element the list. This method is intended for
use with an automatic test suite.

(send a-hierarchical-list-item get-allow-selection?)
→ boolean?

(send a-hierarchical-list-item set-allow-selection allow?)
→ void?
allow? : any/c

Gets/sets whether this item is allowed to be selected.

6.3 hierarchical-list-compound-item<%>

hierarchical-list-compound-item<%> : interface?
implements: hierarchical-list-item<%>

Instantiate this interface via new-list.

(send a-hierarchical-list-compound-item new-item [mixin])
→ (is-a?/c hierarchical-list-item<%>)
mixin : ((implementation?/c hierarchical-list-item<%>)

. -> .
(implementation?/c hierarchical-list-item<%>))

= (lambda (%) %)

24

Like new-item in hierarchical-list%.

(send a-hierarchical-list-compound-item set-no-sublists no-sublists?)
→ void?
no-sublists? : any/c

Like set-no-sublists in hierarchical-list%.

(send a-hierarchical-list-compound-item new-list [mixin])
→ (is-a?/c hierarchical-list-compound-item<%>)
mixin : ((implementation?/c hierarchical-list-compound-item<%>)

. -> .
(implementation?/c hierarchical-list-compound-item<%>))

= (lambda (%) %)

Like new-list in hierarchical-list%.

(send a-hierarchical-list-compound-item delete-item i) → void?
i : (is-a?/c hierarchical-list-item<%>)

Deletes immediate item or sub-list i from the sub-list.

(send a-hierarchical-list-compound-item get-items)
→ (listof (is-a?/c hierarchical-list-item<%>))

Returns a list of all immediate items in the sub-list.

(send a-hierarchical-list-compound-item open) → void?
(send a-hierarchical-list-compound-item close) → void?
(send a-hierarchical-list-compound-item toggle-open/closed)
→ void?

Shows or hides the items of this sub-list.

(send a-hierarchical-list-compound-item is-open) → boolean?

Reports whether the items of this sub-list are visible.

(send a-hierarchical-list-compound-item get-arrow-snip)
→ (is-a?/c snip%)

25

Returns a snip that corresponds to the arrow to hide/show items of the sub-list. The result is
intended for use by automatic test suites.

6.4 Snips in a hierarchical-list% Instance

The find-snip in text% method of the editor in a hierarchical-list% return instances
of hierarchical-item-snip% and hierarchical-list-snip%.

hierarchical-item-snip% : class?
superclass: editor-snip%

(send a-hierarchical-item-snip get-item)
→ (is-a?/c hierarchical-list-item<%>)

Returns the hierarchical-list-item<%> corresponding to the snip.

hierarchical-list-snip% : class?
superclass: editor-snip%

(send a-hierarchical-list-snip get-item)
→ (is-a?/c hierarchical-list-compound-item<%>)

Returns the hierarchical-list-compound-item<%> corresponding to the
snip.

(send a-hierarchical-list-snip get-content-buffer)
→ (is-a?/c text%)

Returns the text% that contains the sub-item snips.

26

7 Include Bitmap

(require mrlib/include-bitmap)

The include-bitmap form takes a filename containing a bitmap and “inlines” the bitmap
into the program.

Historically, the advantage of inlining the bitmap is that a stand-alone executable can be
created that contains the bitmap and does not refer to the original image file. The define-
runtime-path form, however, now provides a better alternative.

(include-bitmap path-spec)
(include-bitmap path-spec type-expr)

The path-spec is the same as for include form. The type-expr should produce ’un-
known, ’unknown/mask, etc., as for bitmap%, and the default is ’unknown/mask.

(include-bitmap/relative-to source path-spec)
(include-bitmap/relative-to source path-spec [type-expr])

Analogous to include-at/relative-to, though only a source is needed (no context).

27

8 Interactive Value Port

(require mrlib/interactive-value-port)

(set-interactive-display-handler port) → void?
port : output-port?

Sets port ’s display handler (via port-display-handler) so that when it encounters these
values:

• exact, real, non-integral numbers

• syntax objects

it uses write-special to send snips to the port, instead of those values. Otherwise, it
behaves like the default handler.

To show values embedded in lists and other compound object, it uses pretty-print.

(set-interactive-write-handler port) → void?
port : output-port?

Like set-interactive-display-handler, but sets the port-write-handler.

(set-interactive-print-handler port) → void?
port : output-port?

Like set-interactive-display-handler, but sets the port-print-handler.

28

9 Name Message

(require mrlib/name-message)

name-message% : class?
superclass: canvas%

A name-message% control displays a filename that the user can click to show
the filename’s path and select one of the enclosing directories. Override the
on-choose-directory method to handle the user’s selection.

(new name-message% ...superclass-args...)
→ (is-a?/c name-message%)

Passes all arguments to super-init.

(send a-name-message on-choose-directory dir) → void?
dir : path-string?

Called when one of the popup menu items is chosen. The argument is a repre-
sents the selected directory.

(send a-name-message on-event event) → void?
event : (is-a?/c mouse-event%)

Overrides on-event in canvas<%>.

Handles the click by popping up a menu or message.

(send a-name-message on-paint) → void?

Overrides on-paint in canvas%.

Draws the control’s current message.

(send a-name-message set-hidden? hidden?) → void?
hidden? : any/c

Calling this method with #f causes the name message to become invisible and
to stop responding to mouse movements.

Calling it with a true value restores its visibility and makes it respond to mouse
movements again.

29

(send a-name-message set-message file-name?

msg) → void?
file-name? : any/c
msg : path-string?

Sets the label for the control.

If file-name? is #t, msg is treated like a pathname, and a click on the name-
message control creates a popup menu to open a get-file dialog.

If file-name? is #f, msg is treated as a label string. Clicking on the name-
message control pops up a dialog saying that there is no file name until the file
is saved.

(calc-button-min-sizes dc str) → real? real?
dc : (is-a?/c dc<%>)
str : string?

Calculates the minimum width and height of a button label (when drawn with draw-
button-label). Returns two values: the width and height. The dc argument is used for
sizing.

(draw-button-label dc

str

dx

dy

width

height

mouse-over?

grabbed?

font

background) → void?
dc : (is-a?/c dc<%>)
str : string?
dx : real?
dy : real?
width : real?
height : real?
mouse-over? : boolean?
grabbed? : boolean?
font : (is-a?/c font%)
background : (or/c (is-a?/c color%) string? false/c)

Draws a button label like the one for the (define ...) and filename buttons in the top-left

30

corner of the DrScheme frame. Use this function to draw similar buttons.

The basic idea is to create a canvas object whose on-paint method is overridden to call this
function. The dc argument should be canvas’s drawing context, and str should be the
string to display on the button. The width and height arguments should be the width
and height of the button, and the dx and dy arguments specify an offset into dc for the
button. The mouse-over? argument should be true when the mouse is over the button,
and the grabbed? argument should be true when the button has been pressed. The font

and background arguments supply the font to use in drawing (possibly normal-control-
font) and the background color to paint (if any).

See calc-button-min-sizes for help calculating the min sizes of the button.

31

10 Path Dialog

(require mrlib/path-dialog)

path-dialog% : class?
superclass: dialog%

The path-dialog% class implements a platform-independent file/directory di-
alog. The dialog is the same as the dialog under X for the get-file, put-
file, get-directory, and get-file-list procedures, but considerable ex-
tra functionality is available through the path-dialog% class.

32

(new path-dialog% [[label label]
[message message]
[parent parent]
[directory directory]
[filename filename]
[put? put?]
[dir? dir?]
[existing? existing?]
[new? new?]
[multi? multi?]
[can-mkdir? can-mkdir?]
[filters filters]
[show-file? show-file?]
[show-dir? show-dir?]
[ok? ok?]
[guard guard]])

→ (is-a?/c path-dialog%)
label : (or/c label-string? false/c) = #f
message : (or/c label-string? false/c) = #f
parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

= #f
directory : (or/c path-string? false/c) = #f
filename : (or/c path-string? false/c) = #f
put? : any/c = #f
dir? : any/c = #f
existing? : any/c = (not put?)
new? : any/c = #f
multi? : any/c = #f
can-mkdir? : any/c = put?

filters : (or/c (listof (list string? string?))
(one-of/c #f #t))

= #t

show-file? : (or/c (path? . -> . any) false/c) = #f
show-dir? : (or/c (path? . -> . any) false/c) = #f
ok? : (or/c (path? . -> . any) false/c) = #f
guard : (or/c (path? . -> . any) false/c) = #f

The label argument is the dialog’s title string. If label is #f, the default is
based on other field values.

The message argument is a prompt message to show at the top of the dialog. If
it is #f, no prompt line.

The parent argument is the parent frame or dialog, if any, for this dialog.

The directory argument specifies the dialog’s initial directory. If it is #f, the
initial directory is the last directory that was used by the user (or the current
directory on first use).

33

The filename argument provides an initial filename text, if any.

If put? is true, the dialog operates in choose-file-to-write mode (and warn the
user if choosing an existing name).

If dir? is true, the dialog operates in directory-choice mode.

If existing? is true, the use must choose an existing file.

If new? is true, the user must choose a non-existant path. Providing both new?

and existing? as true triggers an exception.

If multi? is true, the dialog allows selection of multiple paths.

If can-mkdir? is true, the dialog includes a button for the user to create a new
directory.

The filters argument is one of:

• (list (list filter-name filter-glob) ...) — a list of pattern
names (e.g., "Scheme Files") and glob patterns (e.g., "*.scm;*.ss").
Any list, including an empty list, enables a filter box for the user to en-
ter glob patterns, and the given list of choices is available in a combo-
box drop-down menu. Glob patterns are the usual Unix ones (see glob-
>regexp), and a semicolon can be used to allow multiple patterns.

• #f — no patterns and no filter input box.

• #t — use a generic "All" filter, which is "*.*" under Windows and "*"
on other platforms.

The show-file? predicate is used to filter file paths that are shown in the di-
alog. The predicate is applied to the file name as a string while the current-
directory parameter is set. This predicate is intended to be a lightweight filter
for choosing which names to display.

The show-dir? predicate is similar, but for directories instead of files.

The ok? predicate is used in a similar fashion to the show-file? and show-

dir? predicate, but it is used to determine whether the OK button should be
enabled when a file or directory is selected (so it need not be as lightweight as
the other predicates).

The guard procedure is a generic verifier for the dialog’s final result, as pro-
duced by the run method. It receives the result that is about to be returned
(which can be a list in a multi-selection dialog), and can return a different value
(any value) instead. If it throws an exception, an error dialog is shown, and the
dialog interaction continues (so it can be used to verify results without dismiss-
ing the dialog). This procedure can also raise #<void>, in which case the dialog
remains without an error message.

(send a-path-dialog run) → any/c

Shows the dialog and returns the selected result. If a guard procedure is not
supplied when the dialog is created, then the result is either a path or a list of

34

paths (and the latter only when multi? is true when the dialog is created). If a
guard procedure is supplied, its result determines the result of this method.

35

11 Plot

(require mrlib/plot)

The mrlib/plot library provides a simple tool for plotting data values to a device context.

(struct data-set (points connected? pen min-x max-x min-y max-y))
points : (listof (is-a?/c point%))
connected? : any/c
pen : (is-a?/c pen%)
min-x : real?
max-x : real?
min-y : real?
max-y : real?

The points field contains the data values to plot, and connected? indicates whether the
points are connected by a line. The pen field provides a pen for plotting points/lines. The
remaining fields determine the plotting area within a drawing context.

(struct plot-setup (axis-label-font
axis-number-font
axis-pen
grid?
grid-pen
x-axis-marking
y-axis-marking
x-axis-label
y-axis-label))

axis-label-font : (is-a?/c font%)
axis-number-font : (is-a?/c font%)
axis-pen : (is-a?/c pen)
grid? : any/c
grid-pen : (is-a?/c pen)
x-axis-marking : (listof real?)
y-axis-marking : (listof real?)
x-axis-label : string?
y-axis-label : string?

Configures a plot. The grid? field determines whether to draw a grid at axis markings, and
the x-axis-marking and y-axis-marking lists supply locations for marks on each axis.
The other fields are self-explanatory.

(plot dc data setup) → void?

36

dc : (is-a?/c dc<%>)
data : (listof data-set?)
setup : plot-setup?

Draws the data-sets in data into the given dc . Uses drawing-context coordinates in
data-sets that will accommodate all of the data sets.

37

12 Switchable Button

(require mrlib/switchable-button)

switchable-button% : class?
superclass: canvas%

A switchable-button% control displays and icon and a string label. It toggles
between display of just the icon and a display with the label and the icon side-
by-side.

(new switchable-button% [label label]
[callback callback]
[bitmap bitmap]

[[alternate-bitmap alternate-bitmap]]
...superclass-args...)

→ (is-a?/c switchable-button%)
label : string?
callback : (-> (is-a?/c switchable-button%) any/c)
bitmap : (is-a?/c bitmap%)
alternate-bitmap : (is-a?/c bitmap%) = bitmap

The callback is called when the button is pressed. The string and bitmap

are used as discussed above.

If alternate-bitmap is supplied, then it is used when the button is switched
to the view that just shows the bitmap. If it is not supplied, both modes show
the same bitmap.

(send a-switchable-button set-label-visible visible?) → void?
visible? : boolean?

Sets the visibility of the string part of the label.

(send a-switchable-button command) → void?

Calls the button’s callback function.

38

13 Acknowledgments

Contributors to this set of libraries include Mike MacHenry.

39

Index
Acknowledgments
add-child, 15
add-links, 17
add-links/text-colors, 18
add-parent, 16
after-delete, 5
after-delete, 6
after-insert, 5
after-insert, 6
after-reorder, 5
after-reorder, 6
Aligned Pasteboard, 4
aligned-editor-canvas%, 7
aligned-editor-snip%, 7
aligned-pasteboard-parent<%>, 7
aligned-pasteboard<%>, 4
allow-deselect, 23
argb->bitmap, 12
argb->cache-image-snip, 12
argb-vector, 11
argb-width, 11
argb?, 11
Bitmap Label
bitmap-label-maker, 9
build-bitmap, 12
Cache-image Snip
cache-image-snip%, 10
calc-button-min-sizes, 30
can-do-edit-operation?, 22
click-select, 24
click-select, 23
close, 25
command, 38
data-set

data-set-connected?, 36
data-set-max-x, 36
data-set-max-y, 36
data-set-min-x, 36
data-set-min-y, 36
data-set-pen, 36

data-set-points, 36
data-set?, 36
delete-item, 20
delete-item, 25
do-edit-operation, 22
draw-button-label, 30
draw-edges, 15
flatten-bitmap

get-aligned-min-height

get-aligned-min-height, 7
get-aligned-min-width, 4
get-aligned-min-width, 8
get-allow-selection?, 24
get-argb, 10
get-argb-proc, 10
get-argb/no-compute, 10
get-arrow-snip, 25
get-arrowhead-params, 14
get-bitmap, 10
get-children, 16
get-clickable-snip, 24
get-content-buffer, 26
get-dc-proc, 10
get-editor, 23
get-item, 26
get-item, 26
get-items, 25
get-items, 21
get-parents, 16
get-pinhole, 10
get-size, 11
GIF and Animated GFI Writing, 13
Graph Functions, 17
graph-pasteboard-mixin, 15
graph-pasteboard<%>, 14
graph-snip-mixin, 17
graph-snip<%>, 15
Graphs, 14
Hierarchical List Control
hierarchical-item-snip%, 26
hierarchical-list%, 19

40

hierarchical-list-compound-
item<%>, 24

hierarchical-list-item<%>, 23
hierarchical-list-snip%, 26
horizontal-pasteboard%, 4
Include Bitmap
include-bitmap, 27
include-bitmap/relative-to, 27
Interactive Value Port, 28
is-open, 25
is-selected?, 23
make-argb

make-bitmap-label, 9
make-data-set, 36
make-plot-setup, 36
mrlib/aligned-pasteboard, 4
mrlib/bitmap-label, 9
mrlib/cache-image-snip, 10
mrlib/gif, 13
mrlib/graph, 14
mrlib/hierlist, 19
mrlib/include-bitmap, 27
mrlib/interactive-value-port, 28
mrlib/name-message, 29
mrlib/path-dialog, 32
mrlib/plot, 36
mrlib/switchable-button, 38
MrLib: Extra GUI Libraries, 1
Name Message
name-message%, 29
new-item, 24
new-item, 20
new-list, 25
new-list, 20
on-choose-directory

on-click, 21
on-double-select, 21
on-event, 29
on-item-closed, 21
on-item-opened, 21
on-mouse-over-snips, 14
on-paint, 29

on-select, 21
on-select-always, 23
open, 25
overlay-bitmap, 11
page-down

page-up, 22
Path Dialog, 32
path-dialog%, 32
Plot, 36
plot, 36
plot-setup, 36
plot-setup-axis-label-font, 36
plot-setup-axis-number-font, 36
plot-setup-axis-pen, 36
plot-setup-grid-pen, 36
plot-setup-grid?, 36
plot-setup-x-axis-label, 36
plot-setup-x-axis-marking, 36
plot-setup-y-axis-label, 36
plot-setup-y-axis-marking, 36
plot-setup?, 36
realign

remove-child, 16
remove-parent, 16
resized, 5
resized, 6
run, 34
select

select, 23
select-first, 22
select-in, 22
select-last, 22
select-next, 22
select-out, 22
select-prev, 22
selectable, 21
selected, 19
set-aligned-min-sizes, 4
set-aligned-min-sizes, 7
set-allow-selection, 24
set-arrowhead-params, 14
set-draw-arrow-heads?, 14

41

set-hidden?, 29
set-interactive-display-handler, 28
set-interactive-print-handler, 28
set-interactive-write-handler, 28
set-label-visible, 38
set-message, 30
set-no-sublists, 20
set-no-sublists, 25
snip-class, 11
Snips in a hierarchical-list% Instance,

26
sort, 21
stretchable-height, 8
stretchable-snip<%>, 7
stretchable-width, 8
struct:data-set, 36
struct:plot-setup, 36
Switchable Button, 38
switchable-button%, 38
toggle-open/closed

user-data

vertical-pasteboard%

write-animated-gif

write-gif, 13

42

	1 Aligned Pasteboard
	1.1 IdentifierColorbluealigned-pasteboard<%>
	1.2 IdentifierColorbluehorizontal-pasteboard%
	1.3 IdentifierColorbluevertical-pasteboard%
	1.4 IdentifierColorbluealigned-editor-snip%
	1.5 IdentifierColorbluealigned-editor-canvas%
	1.6 IdentifierColorbluealigned-pasteboard-parent<%>
	1.7 IdentifierColorbluestretchable-snip<%>

	2 Bitmap Label
	3 Cache-image Snip
	4 GIF and Animated GFI Writing
	5 Graphs
	5.1 IdentifierColorbluegraph-pasteboard<%>
	5.2 IdentifierColorbluegraph-pasteboard-mixin
	5.3 IdentifierColorbluegraph-snip<%>
	5.4 IdentifierColorbluegraph-snip-mixin
	5.5 Graph Functions

	6 Hierarchical List Control
	6.1 IdentifierColorbluehierarchical-list%
	6.2 IdentifierColorbluehierarchical-list-item<%>
	6.3 IdentifierColorbluehierarchical-list-compound-item<%>
	6.4 Snips in a IdentifierColorbluehierarchical-list% Instance

	7 Include Bitmap
	8 Interactive Value Port
	9 Name Message
	10 Path Dialog
	11 Plot
	12 Switchable Button
	13 Acknowledgments
	Index

