
MzLib: Legacy PLT Libraries
Version 4.1.1

October 5, 2008

The "mzlib" collection contains wrappers and libraries for compatibility with older versions
of PLT Scheme. In many ways, the libraries of the "mzlib" collection go with the mzscheme
legacy language. Newer variants of many libraries reside in the "scheme" collection.

1

Contents

1 mzlib/a-signature 6

2 mzlib/a-unit 7

3 mzlib/async-channel 8

4 mzlib/awk 9

5 mzlib/class 11

6 mzlib/class100 12

7 mzlib/cm 15

8 mzlib/cm-accomplice 16

9 mzlib/cmdline 17

10 mzlib/cml 18

11 mzlib/compat 20

12 mzlib/compile 22

13 mzlib/contract 23

14 mzlib/control 24

15 mzlib/date 25

16 mzlib/deflate 26

2

17 mzlib/defmacro 27

18 mzlib/etc 29

19 mzlib/file 34

20 mzlib/for 36

21 mzlib/foreign 37

22 mzlib/include 38

23 mzlib/inflate 40

24 mzlib/integer-set 41

25 mzlib/kw 45

25.1 Required Arguments . 46

25.2 Optional Arguments . 46

25.3 Keyword Arguments . 47

25.4 Rest and Rest-like Arguments . 48

25.5 Body Argument . 49

25.6 Mode Keywords . 50

25.7 Property Lists . 51

26 mzlib/list 53

27 mzlib/match 55

28 mzlib/math 57

29 mzlib/md5 58

3

30 mzlib/os 59

31 mzlib/pconvert 60

32 mzlib/pconvert-prop 65

33 mzlib/plt-match 66

34 mzlib/port 67

35 mzlib/pregexp 68

36 mzlib/pretty 70

37 mzlib/process 71

38 mzlib/restart 72

39 mzlib/runtime-path 74

40 mzlib/sandbox 75

41 mzlib/sendevent 77

42 mzlib/serialize 78

43 mzlib/shared 79

44 mzlib/string 80

45 mzlib/struct 83

46 mzlib/stxparam 85

4

47 mzlib/surrogate 86

48 mzlib/tar 87

49 mzlib/thread 88

50 mzlib/trace 91

51 mzlib/traceld 93

52 mzlib/trait 94

53 mzlib/transcr 95

54 mzlib/unit 96

55 mzlib/unit-exptime 97

56 mzlib/unit200 98

57 mzlib/unitsig200 99

58 mzlib/zip 100

Index 102

5

1 mzlib/a-signature

(require mzlib/a-signature)

Like scheme/signature in #lang form for defining a single signature within a module,
but based on mzscheme instead of scheme/base.

6

2 mzlib/a-unit

(require mzlib/a-unit)

Like scheme/unit in #lang form for defining a single unit within a module, but based on
mzscheme instead of scheme/base.

7

3 mzlib/async-channel

(require mzlib/async-channel)

Re-exports scheme/async-channel.

8

4 mzlib/awk

(require mzlib/awk)

(awk next-record-expr

(record field-id ...)
maybe-counter

((state-variable init-expr) ...)
maybe-continue

clause ...)

maybe-counter =
| id

maybe-continue =
| id

clause = (test body ...+)
| (test => procedure-expr)
| (/ regexp-str / (id-or-false ...+) body ...+)
| (range excl-start-test excl-stop-test body ...+)
| (:range incl-start-test excl-stop-test body ...+)
| (range: excl-start-test incl-stop-test body ...+)
| (:range: incl-start-test incl-stop-test body ...+)
| (else body ...+)
| (after body ...+)

test = integer

| regexp-string

| expr

excl-start-test = test

excl-stop-test = test

incl-start-test = test

incl-stop-test = test

id-or-false = id

| #f

The awk macro from Scsh [Shivers06]. In addition to awk, the Scsh-compatible procedures
match:start, match:end, match:substring, and regexp-exec are defined. These

9

match: procedures must be used to extract match information in a regular expression clause
when using the => form.

(match:start rec [which]) → exact-nonnegative-integer?
rec :
which : exact-nonnegative-integer? = 0

(match:end rec [which]) → exact-nonnegative-integer?
rec :
which : exact-nonnegative-integer? = 0

(match:substring rec [which]) → string?
rec :
which : exact-nonnegative-integer? = 0

Extracts a start position, end position, or substring corresponding to a match. The first
argument is the value supplied to the procedure after => in a awk clause or the result of
regexp-exec.

(regexp-exec re s) → (or/c false/c)
re : (or/c string? regexp?)
s : string?

Matches a regexp to a string, returning a record compatible with match:start, etc.

10

5 mzlib/class

(require mzlib/class)

Re-exports scheme/class, except for the contract constructors.

11

6 mzlib/class100

(require mzlib/class100)

The class100 and class100* forms provide a syntax close to that of class and
class* in PLT Scheme versions 100 through 103, but with the semantics of the current
scheme/class-based class system. For a class defined with class100, keyword-based ini-
tialization arguments can be propagated to the superclass, but by-position arguments are not
(i.e., the expansion of class100 to class always includes an init-rest clause).

The class100 form uses keywords (e.g., public) that are defined by the mzlib/class
library, so typically scheme/class must be imported into any context that imports
mzlib/class100.

(class100* superclass-expr (interface-expr ...) init-ids

class100-clause

...)

12

init-ids = id

| (id ... id-with-default ...)
| (id ... id-with-default id)

id-with-default = (id default-expr)

class100-clause = (sequence expr ...)
| (public public-method-decl ...)
| (override public-method-decl ...)
| (augment public-method-decl ...)
| (pubment public-method-decl ...)
| (overment public-method-decl ...)
| (augride public-method-decl ...)
| (private private-method-decl ...)
| (private-field private-var-decl ...)
| (inherit inherit-method-decl ...)
| (rename rename-method-decl ...)

public-method-decl = ((internal-id external-id) method-procedure)
| (id method-procedure)

private-method-decl = (id method-procedure)

private-var-decl = (id initial-value-expr)
| (id)
| id

inherit-method-decl = id

| (internal-instance-id external-inherited-id)

rename-method-decl = (internal-id external-id)

(class100 superclass-expr init-ids

class100-clause

...)

Like class100*, but without interface-exprs.

(class100-asi superclass instance-id-clause ...)

Like class100, but all initialization arguments are automatically passed on to the superclass
initialization procedure by position.

(class100*-asi superclass interfaces instance-id-clause ...)

13

Like class100*, but all initialization arguments are automatically passed on to the super-
class initialization procedure by position.

(super-init init-arg-expr ...)

An alias for super-make-object.

14

7 mzlib/cm

(require mzlib/cm)

Re-exports compiler/cm.

15

8 mzlib/cm-accomplice

(require mzlib/cm-accomplice)

Re-exports compiler/cm-accomplice.

16

9 mzlib/cmdline

(require mzlib/cmdline)

Provides a command-line from that is similar to the one in scheme/cmdline, but with-
out using keywords. The parse-command-line procedure from scheme/cmdline is re-
exported directly.

(command-line program-name-expr argv-expr clause ...)

clause = (multi flag-spec ...)
| (once-each flag-spec ...)
| (once-any flag-spec ...)
| (final flag-spec ...)
| (help-labels string ...)
| (args arg-formals body-expr ...+)
| (=> finish-proc-expr arg-help-expr help-proc-expr

unknown-proc-expr)

flag-spec = (flags id ... help-str ...+ body-expr ...+)
| (flags => handler-expr help-expr)

flags = flag-string

| (flag-string ...+)

arg-formals = id

| (id ...)
| (id ...+ . id)

Like command-line from scheme/cmdline, but without keywords in the syntax.

17

10 mzlib/cml

(require mzlib/cml)

The mzlib/cml library defines a number of procedures that wrap PLT Scheme concurrency
procedures. The wrapper procedures have names and interfaces that more closely match
those of Concurrent ML [Reppy99].

(spawn thunk) → thread?
thunk : (-> any)

Equivalent to (thread/suspend-to-kill thunk).

(channel) → channel?

Equivalent to (make-channel).

(channel-recv-evt ch) → evt?
ch : channel?

Equivalent to ch .

(channel-send-evt ch v) → evt?
ch : channel?
v : any/c

Equivalent to (channel-put-evt ch v).

(thread-done-evt thd) → any
thd : thread?

Equivalent to (thread-dead-evt thread).

(current-time) → real?

Equivalent to (current-inexact-milliseconds).

(time-evt tm) → evt?
tm : real?

18

Equivalent to (alarm-evt tm).

19

11 mzlib/compat

(require mzlib/compat)

The mzlib/compat library defines a number of procedures and syntactic forms that are
commonly provided by other Scheme implementations. Most of the procedures are aliases
for mzscheme procedures.

(=? n ...+) → boolean?
n : number?

(<? n ...+) → boolean?
n : real?

(>? n ...+) → boolean?
n : real?

(<=? n ...+) → boolean?
n : real?

(>=? n ...+) → boolean?
n : real?

Same as =, <, etc.

(1+ n) → number?
n : number?

(1- n) → number?
n : number?

Same as add1 and sub1.

(gentmp [base]) → symbol?
base : (or/c string? symbol?) = "g"

Same as gensym.

(flush-output-port [o]) → void?
o : output-port? = (current-output-port)

Same as flush-output.

(real-time) → exact-integer?

Same as current-milliseconds.

20

(atom? v) → any
v : any/c

Same as (not (pair? v)) (which does not actually imply an atomic value).

(define-structure (name-id field-id ...))
(define-structure (name-id field-id ...)

((init-field-id init-expr) ...))

Like define-struct, except that the name-id is moved inside the parenthesis for fields.
In addition, init-field-ids can be specified with automatic initial-value expression.

The init-field-ids do not have corresponding arguments for the make-name-id con-
structor. Instead, each init-field-id ’s init-expr is evaluated to obtain the field’s value
when the constructor is called. The field-ids are bound in init-exprs, but not other
init-field-ids.

Examples:
> (define-structure (add left right) ([sum (+ left right)]))
> (add-sum (make-add 3 6))
9

(getprop sym property [default]) → any/c
sym : symbol?
property : symbol?
default : any/c = #f

(putprop sym property value) → void?
sym : symbol?
property : symbol?
value : any/c

The getprop function gets a property value associated with sym . The property argument
names the property to be found. If the property is not found, default is returned.

The properties obtained with getprop are the ones installed with putprop.

(new-cafe [eval-handler]) → any
eval-handler : (any/c . -> . any) = #f

Emulates Chez Scheme’s new-cafe by installing eval-handler into the current-eval
parameter while running read-eval-print. In addition, current-exit is set to escape
from the call to new-cafe.

21

12 mzlib/compile

(require mzlib/compile)

(compile-file src [dest filter]) → path?
src : path-string?
dest : path-string?

= (let-values ([(base name dir?) (split-path src)])
(build-path base "compiled"

(path-add-suffix name #".zo")))
filter : (any/c . -> . any/c) = values

Compiles the Scheme file src and saves the compiled code to dest . If dest is not provided
and the "compiled" subdirectory does not already exist, the subdirectory is created. The
result of compile-file is the destination file’s path.

If the filter procedure is provided, it is applied to each source expression, and the result
is compiled.

The compile-file procedure is designed for compiling modules files, in that each expres-
sion in src is compiled independently. If src does not contain a single module expression,
then earlier expressions can affect the compilation of later expressions when src is loaded
directly. An appropriate filter can make compilation behave like evaluation, but the prob-
lem is also solved (as much as possible) by the compile-zos procedure.

See also managed-compile-zo.

22

13 mzlib/contract

(require mzlib/contract)

This library is designed as a backwards compatible library for old uses of contracts. It should
not be used for new libraries; use scheme/contract instead.

The main differences: the function contract syntax is more regular and function contracts
now support keywords, and union is now or/c.

The mzlib/contract library re-exports many bindings from scheme/contract:

</c guilty-party
<=/c integer-in
=/c list/c
>/c listof
>=/c make-none/c
and/c make-proj-contract
any natural-number/c
any/c none/c
between/c not/c
box-immutable/c one-of/c
box/c or/c
build-compound-type-name parameter/c
coerce-contract printable/c
cons/c promise/c
contract provide/contract
contract-first-order-passes? raise-contract-error
contract-violation->string real-in
contract? recursive-contract
define-contract-struct string/len
define/contract struct/c
false/c symbols
flat-contract syntax/c
flat-contract-predicate vector-immutable/c
flat-contract? vector-immutableof
flat-murec-contract vector/c
flat-named-contract vectorof
flat-rec-contract

23

14 mzlib/control

(require mzlib/control)

Re-exports scheme/control.

24

15 mzlib/date

(require mzlib/date)

Re-exports scheme/date.

25

16 mzlib/deflate

(require mzlib/deflate)

Re-exports file/gzip.

26

17 mzlib/defmacro

(require mzlib/defmacro)

(define-macro id expr)
(define-macro (id . formals) body ...+)
(defmacro id formals body ...+)

formals = (id ...)
| id

| (id ...+ . id)

Defines a (non-hygienic) macro id through a procedure that manipulates S-expressions, as
opposed to syntax objects.

In the first form, expr must produce a procedure. In the second form, formals determines
the formal arguments of the procedure, as in lambda, and the exprs are the procedure
body. The last form, with defmacro, is like the second form, but with slightly different
parentheses.

In all cases, the procedure is generated in the transformer environment, not the normal envi-
ronment.

In a use of the macro,

(id datum ...)

syntax->datum is applied to the expression, and the transformer procedure is applied to the
cdr of the resulting list. If the number of datums does not match the procedure’s arity, or if
id is used in a context that does not match the above pattern, then a syntax error is reported.

After the macro procedure returns, the result is compared to the procedure’s arguments. For
each value that appears exactly once within the arguments (or, more precisely, within the S-
expression derived from the original source syntax), if the same value appears in the result, it
is replaced with a syntax object from the original expression. This heuristic substitution pre-
serves source location information in many cases, despite the macro procedure’s operation
on raw S-expressions.

After substituting syntax objects for preserved values, the entire macro result is converted
to syntax with datum->syntax. The original expression supplies the lexical context and
source location for converted elements.

Important: Although define-macro is non-hygienic, it is still restricted by PLT Scheme’s
phase separation rules. This means that a macro cannot access run-time bindings, because it
is executed in the syntax-expansion phase. Translating code that involves define-macro or
defmacro from an implementation without this restriction usually implies separating macro

27

related functionality into a begin-for-syntax or a module (that will be imported with
require-for-syntax) and properly distinguishing syntactic information from run-time
information.

28

18 mzlib/etc

(require mzlib/etc)

The mzlib/etc library re-exports the following scheme/base and other libraries:

boolean=?
true
false
build-list
build-string
build-vector
compose
local
symbol=?

(begin-lifted expr ...+)

Lifts the exprs so that they are evaluated once at the “top level” of the current context, and
the result of the last expr is used for every evaluation of the begin-lifted form.

When this form is used as a run-time expression within a module, the “top level” corresponds
to the module’s top level, so that each expr is evaluated once for each invocation of the
module. When it is used as a run-time expression outside of a module, the “top level”
corresponds to the true top level. When this form is used in a define-syntax, letrec-
syntax, etc. binding, the “top level” corresponds to the beginning of the binding’s right-
hand side. Other forms may redefine “top level” (using local-expand/capture-lifts)
for the expressions that they enclose.

(begin-with-definitions defn-or-expr ...)

Supports a mixture of expressions and mutually recursive definitions, much like a module
body. Unlike in a module, however, syntax definitions cannot be used to generate other
immediate definitions (though they can be used for expressions).

The result of the begin-with-definitions form is the result of the last defn-or-expr
if it is an expression, #<void> otherwise. If no defn-or-expr is provided (after flattening
begin forms), the result is #<void>.

(define-syntax-set (id ...) defn ...)

Similar to define-syntaxes, but instead of a single body expression, a sequence of defi-
nitions follows the sequence of defined identifiers. For each identifier, the defns should

29

include a definition for id/proc. The value for id/proc is used as the (expansion-time)
value for id .

The define-syntax-set form is useful for defining a set of syntax transformers that share
helper functions, though begin-for-syntax now serves essentially the same purposes.

Examples:
(define-syntax-set (let-current-continuation

let-current-escape-continuation)
(define (mk call-id)

(lambda (stx)
(syntax-case stx ()
[(id body1 body ...)
(with-syntax ([call call-id])
#’(call (lambda (id) body1 body ...)))])))

(define let-current-continuation/proc
(mk (quote-syntax call/cc)))

(define let-current-escape-continuation/proc
(mk (quote-syntax call/ec))))

(evcase key-expr (value-expr body-expr ...) ...+)
(evcase key-expr (value-expr body-expr ...) ... [else body-expr ...])

The evcase form is similar to case, except that expressions are provided in each clause
instead of a sequence of data. After key-expr is evaluated, each value-expr is evaluated
until a value is found that is eqv? to the key value; when a matching value is found, the
corresponding body-exprs are evaluated and the value(s) for the last is the result of the
entire evcase expression.

The else literal is recognized either as unbound (like in the mzscheme language) or bound
as else from scheme/base.

(identity v) → any/c
v : any/c

Returns v .

(let+ clause body-expr ...+)

30

clause = (val target expr)
| (rec target expr)
| (vals (target ...) expr)
| (recs (target expr) ...)
| (expr ...)

target = id

| (values id ...)

A binding construct that specifies scoping on a per-binding basis instead of a per-expression
basis. It helps eliminate rightward-drift in programs. It looks similar to let, except each
clause has an additional keyword tag before the binding variables.

Each clause has one of the following forms:

• (val target expr) : Binds target non-recursively to expr .

• (rec target expr) : Binds target recursively to expr .

• (vals (target expr) ...) : The targets are bound to the exprs. The environ-
ment of the exprs is the environment active before this clause.

• (recs (target expr) ...) : The targetss are bound to the exprs. The envi-
ronment of the exprs includes all of the targetss.

• (expr ...) : Evaluates the exprs without binding any variables.

The clauses bind left-to-right. When a target is (values id ...), multiple values re-
turned by the corresponding expression are bound to the multiple variables.

Examples:
> (let+ ([val (values x y) (values 1 2)])

(list x y))
(1 2)
> (let ([x 1])

(let+ ([val x 3]
[val y x])

y))
3

(loop-until start done? next f) → void?
start : any/c
done? : (any/c . -> . any)
next : (any/c . -> . any/c)
f : (any/c . -> . any)

31

Repeatedly invokes the f procedure until the done? procedure returns #t:

(define (loop-until start done? next f)
(let loop ([i start])
(unless (done? i)
(f i)
(loop (next i)))))

(namespace-defined? sym) → boolean?
sym : symbol?

Returns #t if namespace-variable-value would return a value for sym , #f otherwise.

(nand expr ...)

Same as (not (and expr ...)).

(nor expr ...)

Same as (not (or expr ...)).

(opt-lambda formals body ...+)

Supports optional (but not keyword) arguments like lambda from scheme/base.

(recur id bindings body ...+)

Equivalent to (let id bindings body ...+).

(rec id value-expr)
(rec (id arg-id ...) expr)
(rec (id arg-id rest-id) expr)

Equivalent, respectively, to

(letrec ([id value-expr]) id)
(letrec ([id (lambda (arg-id ...) value-expr)]) id)
(letrec ([id (lambda (arg-id rest-id) value-expr)]) id)

(this-expression-source-directory)
(this-expression-source-directory datum)

32

See
scheme/runtime-path

for a definition form
that works better
when creating
executables.

Expands to an expression that evaluates to the directory of the file containing the source da-
tum . If datum is not supplied, then the entire (this-expression-source-directory)
expression is used as datum .

If datum has a source module, then the expansion attempts to determine the module’s run-
time location. This location is determined by preserving the lexical context of datum in a
syntax object, extracting its source module path at run time, and then resolving the module
path.

Otherwise, datum ’s source file is determined through source location information associated
with datum , if it is present. As a last resort, current-load-relative-directory is used
if it is not #f, and current-directory is used if all else fails.

A directory path derived from source location is always stored in bytes in the expanded code,
unless the file is within the result of find-collects-dir, in which case the expansion
records the path relative to (find-collects-dir) and then reconstructs it using (find-
collects-dir) at run time.

(this-expression-file-name)
(this-expression-file-name datum)

Similar to this-expression-source-directory, except that only source information
associated with datum or (this-expression-file-name) is used to extract a filename.
If no filename is available, the result is #f.

(hash-table (quote flag) ... (key-expr val-expr) ...)

Creates a new hash-table providing the quoted flags (if any) to make-hash-table, and then
mapping each key to the corresponding values.

33

19 mzlib/file

(require mzlib/file)

The mzlib/file library mostly re-exports from scheme/file:

find-relative-path
explode-path
normalize-path
filename-extension
file-name-from-path
path-only
delete-directory/files
copy-directory/files
make-directory*
make-temporary-file
get-preference
put-preferences
fold-files
find-files
pathlist-closure

(call-with-input-file* file proc [mode]) → any
file : path-string?
proc : (input-port? -> any)
mode : (one-of/c ’text ’binary) = ’binary

(call-with-output-file* file

proc

[mode
exists]) → any

file : path-string?
proc : (output-port? -> any)
mode : (one-of/c ’text ’binary) = ’binary
exists : (one-of/c ’error ’append ’update

’replace ’truncate ’truncate/replace)
= ’error

Like call-with-input-fileand call-with-output-file, except that the opened port
is closed if control escapes from the body of proc .

(build-relative-path base sub ...) → (and/c path? relative-path?)
base : (or/c path-string?

(one-of/c ’up ’same))

34

sub : (or/c (and/c path-string?
relative-path?)

(one-of/c ’up ’same))
(build-absolute-path base sub ...) → (and/c path? absolute-path?)
base : (or/c (and/c path-string?

(not/c relative-path?))
(one-of/c ’up ’same))

sub : (or/c (and/c path-string?
(not/c complete-path?))

(one-of/c ’up ’same))

Like build-path, but with extra constraints to ensure a relative or absolute result.

35

20 mzlib/for

(require mzlib/for)

The mzlib/for library re-exports from scheme/base:

for/fold for*/fold
for for*
for/list for*/list
for/lists for*/lists
for/and for*/and
for/or for*/or
for/first for*/first
for/last for*/last

for/fold/derived for*/fold/derived

in-range
in-naturals
in-list
in-vector
in-string
in-bytes
in-input-port-bytes
in-input-port-chars
in-hash-table
in-hash-table-keys
in-hash-table-values
in-hash-table-pairs

in-parallel
stop-before
stop-after
in-indexed

sequence?
sequence-generate

define-sequence-syntax
make-do-sequence
:do-in

36

21 mzlib/foreign

(require mzlib/foreign)

Re-exports scheme/foreign.

37

22 mzlib/include

(require mzlib/include)

Similar to scheme/include, but with a different syntax for paths.

(include path-spec)

path-spec = string

| (build-path elem ...+)
| (lib file-string collection-string ...)

elem = string

| up
| same

Inlines the syntax in the designated file in place of the include expression. The path-spec
can be any of the following:

• A literal string that specifies a path to include, parsed according to the platform’s
conventions (which means that it is not portable).

• A path construction of the form (build-path elem ...+), where build-path is
module-identifier=? either to the build-path export from mzscheme or to the
top-level build-path, and where each elem is a path string, up (unquoted), or same
(unquoted). The elems are combined in the same way as for the build-path function
to obtain the path to include.

• A path construction of the form (lib file-string collection-string ...),
where lib is free or refers to a top-level lib variable. The collection-strings
are passed to collection-path to obtain a directory; if no collection-stringss
are supplied, "mzlib" is used. The file-string is then appended to the directory
using build-path to obtain the path to include.

If path-spec specifies a relative path to include, the path is resolved relative to the source
for the include expression, if that source is a complete path string. If the source is not
a complete path string, then path-spec is resolved relative to the current load relative
directory if one is available, or to the current directory otherwise.

The included syntax is given the lexical context of the include expression.

(include-at/relative-to context source path-spec)
(include-at/relative-to/reader context source path-spec reader-expr)
(include/reader path-spec reader-expr)

38

Variants of include analogous to the variants of scheme/include.

39

23 mzlib/inflate

(require mzlib/inflate)

Re-exports file/gunzip.

40

24 mzlib/integer-set

(require mzlib/integer-set)

The mzlib/integer-set library provides functions for working with finite sets of integers.
This module is designed for sets that are compactly represented as groups of intervals, even
when their cardinality is large. For example, the set of integers from -1000000 to 1000000
except for 0, can be represented as {[-1000000, -1], [1, 1000000]}. This data structure would
not be a good choice for the set of all odd integers between 0 and 1000000, which would be
{[1, 1], [3, 3], ... [999999, 999999]}.

In addition to the integer set abstract type, a well-formed set is a list of pairs of exact inte-
gers, where each pair represents a closed range of integers, and the entire set is the union
of the ranges. The ranges must be disjoint and increasing. Further, adjacent ranges must
have at least one integer between them. For example: ’((-1 . 2) (4 . 10)) is a well-
formed-set as is ’((1 . 1) (3 . 3)), but ’((1 . 5) (6 . 7)), ’((1 . 5) (-3 .
-1)), ’((5 . 1)), and ’((1 . 5) (3 . 6)) are not.

(make-integer-set wfs) → integer-set?
wfs : well-formed-set?

Creates an integer set from a well-formed set.

(integer-set-contents s) → well-formed-set?
s : integer-set?

Produces a well-formed set from an integer set.

(set-integer-set-contents! s wfs) → void?
s : integer-set?
wfs : well-formed-set?

Mutates an integer set.

(integer-set? v) → boolean?
v : any/c

Returns #t if v is an integer set, #f otherwise.

(well-formed-set? v) → boolean?
v : any/c

41

Returns #t if v is a well-formed set, #f otherwise.

(make-range) → integer-set?
(make-range elem) → integer-set?
elem : exact-integer?

(make-range start end) → integer-set?
start : exact-integer?
end : exact-integer?

Produces, respectively, an empty integer set, an integer set containing only elem , or an
integer set containing the integers from start to end inclusive, where (<= start end).

(intersect x y) → integer-set?
x : integer-set?
y : integer-set?

Returns the intersection of the given sets.

(difference x y) → integer-set?
x : integer-set?
y : integer-set?

Returns the difference of the given sets (i.e., elements in x that are not in y).

(union x y) → integer-set?
x : integer-set?
y : integer-set?

Returns the union of the given sets.

(split x y) → integer-set?
x : integer-set?
y : integer-set?

Produces three values: the first is the intersection of x and y , the second is the difference x
remove y , and the third is the difference y remove x .

(complement s start end) → any
s : integer-set?
start : exact-integer?
end : exact-integer?

42

Returns the a set containing the elements between start to end inclusive that are not in s,
where (<= start-k end-k).}

(xor x y) → integer-set?
x : integer-set?
y : integer-set?

Returns an integer set containing every member of x and y that is not in both sets.

(member? k s) → boolean?
k : exact-integer?
s : integer-set?

Returns #t if k is in s , #f otherwise.

(get-integer integer-set) → (or/c exact-integer? false/c)
integer-set : any/c

Returns a member of integer-set , or #f if integer-set is empty.

(foldr proc base-v s) → any/c
proc : (exact-integer? any/c . -> . any/c)
base-v : any/c
s : integer-set?

Applies proc to each member of s in ascending order, where the first argument to proc

is the set member, and the second argument is the fold result starting with base-v . For
example, (foldr cons null s) returns a list of all the integers in s , sorted in increasing
order.

(partition s) → (listof integer-set?)
s : integer-set-list?

Returns the coarsest refinement of the sets in s such that the sets in the result list are pairwise
disjoint. For example, partitioning the sets that represent ’((1 . 2) (5 . 10)) and ’((2
. 2) (6 . 6) (12 . 12)) produces the a list containing the sets for ’((1 . 1) (5 .
5) (7 . 10)) ’((2 . 2) (6 . 6)), and ’((12 . 12)).

(card s) → exact-nonnegative-integer?
s : integer-set?

43

Returns the number of integers in the given integer set.

(subset? x y) → boolean?
x : integer-set?
y : integer-set?

Returns true if every integer in x is also in y , otherwise #f.

44

25 mzlib/kw

(require mzlib/kw) The lambda

and procedure-
application forms
of scheme/base

support keyword
arguments, and it
is not compatible
with the mzlib/kw

library.

(lambda/kw kw-formals body ...+)
(define/kw (head args) body ...+)

kw-formals = id

| (id ... [#:optional optional-spec ...]
[#:key key-spec ...]
[rest/mode-spec ...])

| (id id)

optional-spec = id

| (id default-expr)

key-spec = id

| (id default-expr)
| (id keyword default-expr)

rest/mode-spec = #:rest id

| #:other-keys id

| #:other-keys+body id

| #:all-keys id

| #:body kw-formals

| #:allow-other-keys
| #:forbid-other-keys
| #:allow-duplicate-keys
| #:forbid-duplicate-keys
| #:allow-body
| #:forbid-body
| #:allow-anything
| #:forbid-anything

head = id

| (head . kw-formals)

Like lambda, but with optional and keyword-based argument processing. This form is sim-
ilar to an extended version of Common Lisp procedure arguments (but note the differences
below). When used with plain variable names, lambda/kw expands to a plain lambda, so
lambda/kw is suitable for a language module that will use it to replace lambda. Also, when
used with only optionals, the resulting procedure is similar to opt-lambda (but a bit faster).

In addition to lambda/kw, define/kw is similar to define, except that the formals are

45

as in lambda/kw. Like define, this form can be used with nested parenthesis for curried
functions (the MIT-style generalization of define).

The syntax of lambda/kw is the same as lambda, except for the list of formal argument
specifications. These specifications can hold (zero or more) plain argument names, then an
optionals (and defaults) section that begins after an #:optional marker, then a keyword
section that is marked by #:keyword, and finally a section holding rest and “rest”-like argu-
ments which are described below, together with argument processing flag directives. Each
section is optional, but the order of the sections must be as listed. Of course, all binding ids
must be unique.

The following sections describe each part of the kw-formals .

25.1 Required Arguments

Required arguments correspond to ids that appear before any keyword marker in the argu-
ment list. They determine the minimum arity of the resulting procedure.

25.2 Optional Arguments

The optional-arguments section follows an #:optional marker in the kw-formals . Each
optional argument can take the form of a parenthesized variable and a default expression;
the latter is used if a value is not given at the call site. The default expression can be omitted
(along with the parentheses), in which case #f is the default.

The default expression’s environment includes all previous arguments, both required and
optional names. With k optionals after n required arguments, and with no keyword argu-
ments or rest-like arguments, the resulting procedure accept between n and n+k arguments,
inclusive.

The treatment of optionals is efficient, with an important caveat: default expressions appear
multiple times in the resulting case-lambda. For example, the default expression for the
last optional argument appears k-1 times (but no expression is ever evaluated more than once
in a procedure call). This expansion risks exponential blow-up is if lambda/kw is used in a
default expression of a lambda/kw, etc. The bottom line, however, is that lambda/kw is a
sensible choice, due to its enhanced efficiency, even when you need only optional arguments.

Using both optional and keyword arguments is possible, but note that the resulting behavior
differs from traditional keyword facilities (including the one in Common Lisp). See the
following section for details.

46

25.3 Keyword Arguments

A keyword argument section is marked by a #:key. If it is used with optional arguments,
then the keyword specifications must follow the optional arguments (which mirrors the use
in call sites; where optionals are given before keywords).

When a procedure accepts both optional and keyword arguments, the argument-handling
convention is slightly different than in traditional keyword-argument facilities: a keyword
after required arguments marks the beginning of keyword arguments, no matter how many
optional arguments have been provided before the keyword. This convention restricts the
procedure’s non-keyword optional arguments to non-keyword values, but it also avoids con-
fusion when mixing optional arguments and keywords. For example, when a procedure that
takes two optional arguments and a keyword argument #:x is called with #:x 1, then the
optional arguments get their default values and the keyword argument is bound to 1. (The
traditional behavior would bind #:x and 1 to the two optional arguments.) When the same
procedure is called with 1 #:x 2, the first optional argument is bound to 1, the second
optional argument is bound to its default, and the keyword argument is bound to 2. (The
traditional behavior would report an error, because 2 is provided where #:x is expected.)

Like optional arguments, each keyword argument is specified as a parenthesized variable
name and a default expression. The default expression can be omitted (with the parentheses),
in which case #f is the default value. The keyword used at a call site for the corresponding
variable has the same name as the variable; a third form of keyword arguments has three
parts—a variable name, a keyword, and a default expression—to allow the name of the
locally bound variable to differ from the keyword used at call sites.

When calling a procedure with keyword arguments, the required argument (and all optional
arguments, if specified) must be followed by an even number of arguments, where the first
argument is a keyword that determines which variable should get the following value, etc.
If the same keyword appears multiple times (and if multiple instances of the keyword are
allowed; see §25.6 “Mode Keywords”), the value after the first occurrence is used for the
variable:

Examples:
> ((lambda/kw (#:key x [y 2] [z #:zz 3] #:allow-duplicate-keys)

(list x y z))
#:x ’x #:zz ’z #:x "foo")

(x 2 z)

Default expressions are evaluated only for keyword arguments that do not receive a value
for a particular call. Like optional arguments, each default expression is evaluated in an
environment that includes all previous bindings (required, optional, and keywords that were
specified on its left).

See §25.6 “Mode Keywords” for information on when duplicate or unknown keywords are
allowed at a call site.

47

25.4 Rest and Rest-like Arguments

The last kw-formals section—after the required, optional, and keyword arguments—may
contain specifications for rest-like arguments and/or mode keywords. Up to five rest-like
arguments can be declared, each with an id to bind:

• #:rest — The variable is bound to the list of “rest” arguments, which is the list of all
values after the required and the optional values. This list includes all keyword-value
pairs, exactly as they are specified at the call site.

Scheme’s usual dot-notation is accepted in kw-formals only if no other meta-
keywords are specified, since it is not clear whether it should specify the same binding
as a #:rest or as a #:body. The dot notation is allowed without meta-keywords to
make the lambda/kw syntax compatible with lambda.

• #:body — The variable is bound to all arguments after keyword–value pairs. (This is
different from Common Lisp’s &body, which is a synonym for &rest.) More gener-
ally, a #:body specification can be followed by another kw-formals , not just a single
id ; see §25.5 “Body Argument” for more information.

• #:all-keys — the variable is bound to the list of all keyword-values from the call
site, which is always a proper prefix of a #:rest argument. (If no #:body arguments
are declared, then #:all-keys binds the same as #:rest.) See also keyword-get.

• #:other-keys — The variable is bound like an #:all-keys variable, except that all
keywords specified in the kw-formals are removed from the list. When a keyword
is used multiple times at a call cite (and this is allowed), only the first instances is
removed for the #:other-keys binding.

• #:other-keys+body — the variable is bound like a #:rest variable, except that
all keywords specified in the kw-formals are removed from the list. When a key-
word is used multiple times at a call site (and this is allowed), only the first instance
us removed for the #:other-keys+body binding. (When no #:body variables are
specified, then #:other-keys+body is the same as #:other-keys.)

In the following example, all rest-like arguments are used and have different bindings:

Examples:
> ((lambda/kw (#:key x y

#:rest r
#:other-keys+body rk
#:all-keys ak
#:other-keys ok
#:body b)

(list r rk b ak ok))
#:z 1 #:x 2 2 3 4)

((#:z 1 #:x 2 2 3 4) (#:z 1 2 3 4) (2 3 4) (#:z 1 #:x 2) (#:z 1))

48

Note that the following invariants always hold:

• rest = (append all-keys body)

• other-keys+body = (append other-keys body)

To write a procedure that uses a few keyword argument values, and that also calls another
procedure with the same list of arguments (including all keywords), use #:other-keys (or
#:other-keys+body). The Common Lisp approach is to specify :allow-other-keys,
so that the second procedure call will not cause an error due to unknown keywords, but the
:allow-other-keys approach risks confusing the two layers of keywords.

25.5 Body Argument

The most notable divergence from Common Lisp in lambda/kw is the #:body argument,
and the fact that it is possible at a call site to pass plain values after the keyword-value pairs.
The #:body binding is useful for procedure calls that use keyword-value pairs as sort of an
attribute list before the actual arguments to the procedure. For example, consider a procedure
that accepts any number of numeric arguments and will apply a procedure to them, but the
procedure can be specified as an optional keyword argument. It is easily implemented with
a #:body argument:

Examples:
> (define/kw (mathop #:key [op +] #:body b)

(apply op b))
> (mathop 1 2 3)
6
> (mathop #:op max 1 2 3)
3

(Note that the first body value cannot itself be a keyword.)

A #:body declaration works as an arbitrary kw-formals, not just a single variable like b in
the above example. For example, to make the above mathop work only on three arguments
that follow the keyword, use (x y z) instead of b:

Examples:
> (define/kw (mathop #:key [op +] #:body (x y z))

(op x y z))

In general, #:body handling is compiled to a sub procedure using lambda/kw, so that a
procedure can use more then one level of keyword arguments. For example:

Examples:

49

> (define/kw (mathop #:key [op +]
#:body (x y z #:key [convert values]))

(op (convert x) (convert y) (convert z)))
> (mathop #:op * 2 4 6 #:convert exact->inexact)
48.0

Obviously, nested keyword arguments works only when non-keyword arguments separate
the sets.

Run-time errors during such calls report a mismatch for a procedure with a name that is
based on the original name plus a ∼body suffix:

Examples:
> (mathop #:op * 2 4)
procedure mathop∼body: expects at least 3 arguments, given
2: 2 4

25.6 Mode Keywords

Finally, the argument list of a lambda/kw can contain keywords that serve as mode flags to
control error reporting.

• #:allow-other-keys — The keyword-value sequence at the call site can include
keywords that are not listed in the keyword part of the lambda/kw form.

• #:forbid-other-keys — The keyword-value sequence at the call site cannot in-
clude keywords that are not listed in the keyword part of the lambda/kw form, other-
wise the exn:fail:contract exception is raised.

• #:allow-duplicate-keys — The keyword-value list at the call site can include
duplicate values associated with same keyword, the first one is used.

• #:forbid-duplicate-keys — The keyword-value list at the call site cannot in-
clude duplicate values for keywords, otherwise the exn:fail:contract exception
is raised. This restriction applies only to keywords that are listed in the keyword part
of the lambda/kw form — if other keys are allowed, this restriction does not apply to
them.

• #:allow-body — Body arguments can be specified at the call site after all keyword-
value pairs.

• #:forbid-body — Body arguments cannot be specified at the call site after all
keyword-value pairs.

• #:allow-anything — Allows all of the above, and treat a single keyword at the end
of an argument list as a #:body, a situation that is usually an error. When this is used

50

and no rest-like arguments are used except #:rest, an extra loop is saved and calling
the procedures is faster (around 20%).

• #:forbid-anything — Forbids all of the above, ensuring that calls are as restricted
as possible.

These above mode markers are rarely needed, because the default modes are determined by
the declared rest-like arguments:

• The default is to allow other keys if a #:rest, #:other-keys+body, #:all-keys,
or #:other-keys variable is declared (and an #:other-keys declaration requires
allowing other keys).

• The default is to allow duplicate keys if a #:rest or #:all-keys variable is declared.

• The default is to allow body arguments if a #:rest, #:body, or #:other-keys+body
variable is declared (and a #:body argument requires allowing them).

Here’s an alternate specification, which maps rest-like arguments to the behavior that they
imply:

• #:rest: Everything is allowed (a body, other keys, and duplicate keys);

• #:other-keys+body: Other keys and body are allowed, but duplicates are not;

• #:all-keys: Other keys and duplicate keys are allowed, but a body is not;

• #:other-keys: Other keys must be allowed (on by default, cannot use with
#:forbid-other-keys), and duplicate keys and body are not allowed;

• #:body: Body must be allowed (on by default, cannot use with #:forbid-body) and
other keys and duplicate keys and body are not allowed;

• Except for the previous two “must”s, defaults can be overridden by an explicit
#:allow-... or a #:forbid-... mode.

25.7 Property Lists

(keyword-get args kw not-found) → any
args : (listof (cons/c keyword? any/c))
kw : keyword?
not-found : (-> any)

51

Searches a list of keyword arguments (a “property list” or “plist” in Lisp jargon) for the
given keyword, and returns the associated value. It is the facility that is used by lambda/kw
to search for keyword values.

The args list is scanned from left to right, if the keyword is found, then the next value is
returned. If the kw was not found, then the not-found thunk is used to produce a value
by applying it. If the kw was not found, and not-found thunk is not given, #f is returned.
(No exception is raised if the args list is imbalanced, and the search stops at a non-keyword
value.)

52

26 mzlib/list

(require mzlib/list)

The mzlib/list library re-exports several functions from scheme/base and
scheme/list:

cons?
empty?
empty
foldl
foldr
remv
remq
remove
remv*
remq*
remove*
findf
memf
assf
filter
sort

(first v) → any/c
v : pair?

(second v) → any/c
v : (and/c pair?)

(third v) → any/c
v : (and/c pair?)

(fourth v) → any/c
v : (and/c pair?)

(fifth v) → any/c
v : (and/c pair?)

(sixth v) → any/c
v : (and/c pair?)

(seventh v) → any/c
v : (and/c pair?)

(eighth v) → any/c
v : (and/c pair?)

Accesses the first, second, etc. elment of “list” v . The argument need not actually be a list; it
is inspected only as far as necessary to obtain an element (unlike the same-named functions
from scheme/list, which do require the argument to be a list).

53

(rest v) → any/c
v : pair?

The same as cdr.

(last-pair v) → pair?
v : pair?

Returns the last pair in v , raising an error if v is not a pair (but v does not have to be a proper
list).

(merge-sorted-lists lst1 lst2 less-than?) → list?
lst1 : list?
lst2 : lst?
less-than? : (any/c any/c . -> . any/c)

Merges the two sorted input lists, creating a new sorted list. The merged result is stable:
equal items in both lists stay in the same order, and these in lst1 precede lst2 .

(mergesort lst less-than?) → list?
lst : list?
less-than? : (any/c any/c . -> . any/c)

The same as sort.

(quicksort lst less-than?) → list?
lst : list?
less-than? : (any/c any/c . -> . any/c)

The same as sort.

54

27 mzlib/match

(require mzlib/match)

The mzlib/match library provides a match form similar to that of scheme/match, but with
an different (older and less extensible) syntax of patterns.

(match val-expr clause ...)

clause = [pat expr ...+]
| [pat (=> id) expr ...+]

See match from scheme/match for a description of matching. The grammar of pat for this
match is as follows:

pat ::= id match anything, bind identifier
| match anything
| literal match literal
| ’datum match equal? datum
| (lvp ...) match sequence of lvps
| (lvp pat) match lvps consed onto a pat
| #(lvp ...) match vector of pats
| #&pat match boxed pat

| ($ struct-id pat ...) match struct-id instance
| (and pat ...) match when all pats match
| (or pat ...) match when any pat match
| (not pat ...) match when no pat match
| (= expr pat) match (expr value) to pat

| (? pred-expr pat ...) match if (expr value) and pats
| ‘qp match quasipattern

literal ::= #t match true
| #f match false
| string match equal? string
| number match equal? number
| character match equal? character
| bytes match equal? byte string
| keyword match equal? keyword
| regexp match equal? regexp literal
| pregexp match equal? pregexp literal

lvp ::= pat greedily match pat instances
| pat match pat

ooo ::= ... zero or more; ... is literal
| zero or more
| ..k k or more
| k k or more

55

qp ::= literal match literal
| id match equal? symbol
| (qp ...) match sequences of qps
| (qp qp) match sequence of qps consed onto a qp
| (qp ... qp ooo) match qps consed onto a repeated qp

| #(qp ...) match vector of qps
| #&qp match boxed qp

| ,pat match pat

| ,@pat match pat , spliced

(match-lambda clause ...)
(match-lambda* clause ...)
(match-let ([pat expr] ...) body ...+)
(match-let* ([pat expr] ...) body ...+)
(match-letrec ([pat expr] ...) body ...+)
(match-define pat expr)

Analogous to the combined forms from scheme/match.

(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)
(define-match-expander id proc-expr proc-expr proc-expr)
(match-equality-test) → (any/c any/c . -> . any)
(match-equality-test comp-proc) → void?
comp-proc : (any/c any/c . -> . any)

Analogous to the form and parameter from scheme/match. The define-match-expander
form, however, supports an extra proc-expr as the middle one: an expander for use with
match from mzlib/match.

56

28 mzlib/math

(require mzlib/math)

Re-exports scheme/math, and also exports e.

e : real?

An approximation to Euler’s constant: 2.718281828459045.

57

29 mzlib/md5

(require mzlib/md5)

Re-exports file/md5.

58

30 mzlib/os

(require mzlib/os)

(gethostname) → string?

Returns a string for the current machine’s hostname (including its domain).

(getpid) → exact-integer?

Returns an integer identifying the current process within the operating system.

(truncate-file file [n-bytes]) → void?
file : path-string?
n-bytes : exact-nonnegative-integer? = 0

Truncates or extends the given file so that it is n-bytes long. If the file does not exist, or
if the process does not have sufficient privilege to truncate the file, the exn:fail exception
is raised.

WARNING: under Unix, the implementation assumes that the system’s ftruncate func-
tion accepts a long long second argument.

59

31 mzlib/pconvert

(require mzlib/pconvert)

The mzlib/pconvert library defines routines for printing Scheme values as evaluable S-
expressions, rather than readable S-expressions.

The print-convert procedure does not print values; rather, it converts a Scheme value
into another Scheme value such that the new value pretty-prints as a Scheme expression
that evaluates to the original value. For example, (pretty-print (print-convert ‘(9
,(box 5) #(6 7)))) prints the literal expression (list 9 (box 5) (vector 6 7))
to the current output port.

To install print converting into the read-eval-print loop, require mzlib/pconvert and call
the procedure install-converting-printer.

In addition to print-convert, this library provides print-convert, build-share, get-
shared, and print-convert-expr. The last three are used to convert sub-expressions of
a larger expression (potentially with shared structure).

See also prop:print-convert-constructor-name.

(abbreviate-cons-as-list) → boolean?
(abbreviate-cons-as-list abbreviate?) → void?
abbreviate? : any/c

A parameter that controls how lists are represented with constructor-style conversion. If the
parameter’s value is #t, lists are represented using list. Otherwise, lists are represented
using cons. The initial value of the parameter is #t.

(booleans-as-true/false) → boolean?
(booleans-as-true/false use-name?) → void?
use-name? : any/c

A parameter that controls how #t and #f are represented. If the parameter’s value is #t, then
#t is represented as true and #f is represented as false. The initial value of the parameter
is #t.

(use-named/undefined-handler) → (any/c . -> . any/c)
(use-named/undefined-handler use-handler) → void?
use-handler : (any/c . -> . any/c)

A parameter that controls how values that have inferred names are represented. The pro-
cedure is passed a value. If the procedure returns true, the procedure associated with

60

named/undefined-handler is invoked to render that value. Only values that have inferred
names but are not defined at the top-level are used with this handler.

The initial value of the parameter is (lambda (x) #f).

(named/undefined-handler) → (any/c . -> . any/c)
(named/undefined-handler use-handler) → void?
use-handler : (any/c . -> . any/c)

Parameter for a procedure that controls how values that have inferred names are represented.
The procedure is called only if use-named/undefined-handler returns true for some
value. In that case, the procedure is passed that same value, and the result of the parameter
is used as the representation for the value.

The initial value of the parameter is (lambda (x) #f).

(build-share v) →
v : any/c

Takes a value and computes sharing information used for representing the value as an ex-
pression. The return value is an opaque structure that can be passed back into get-shared
or print-convert-expr.

(constructor-style-printing) → boolean?
(constructor-style-printing use-constructors?) → void?
use-constructors? : any/c

Parameter that controls how values are represented after conversion. If this parameter’s value
is #t, then constructors are used; e.g., pair containing 1 and 2 is represented as (cons 1 2).
Otherwise, quasiquote-style syntax is used; e.g., the pair containing 1 and 2 is represented
as ‘(1 . 2). The initial value of the parameter is #f.

The constructor used for mutable pairs is mcons, unless print-mpair-curly-braces is
set to #f, in which case cons and list are used. Similarly, when using quasiquote style
and print-mpair-curly-braces is set to #f, mutable pair constructions are represented
using quote, quasiquote, etc.

See also quasi-read-style-printing and prop:print-convert-constructor-
name.

(current-build-share-hook)
→ (any/c (any/c . -> . void?)

(any/c . -> . void?) . -> . any)
(current-build-share-hook hook) → void?

61

hook : (any/c (any/c . -> . void?)
(any/c . -> . void?) . -> . any)

Parameter that sets a procedure used by print-convert and build-share to assemble
sharing information. The procedure hook takes three arguments: a value v , a procedure
basic-share , and a procedure sub-share ; the return value is ignored. The basic-share
procedure takes v and performs the built-in sharing analysis, while the sub-share proce-
dure takes a component of v ands analyzes it. Sharing information is accumulated as values
are passed to basic-share and sub-share.

A current-build-share-hook procedure usually works together with a current-
print-convert-hook procedure.

(current-build-share-name-hook)
→ (any/c . -> . (or/c symbol? false/c))

(current-build-share-name-hook hook) → void?
hook : (any/c . -> . (or/c symbol? false/c))

Parameter that sets a procedure used by print-convert and build-share to generate a
new name for a shared value. The hook procedure takes a single value and returns a symbol
for the value’s name. If hook returns #f, a name is generated using the form “-n-, where n
is an integer.

(current-print-convert-hook) → (any/c/ (any/c . -> . any/c)
(any/c . -> . any/c))

(current-print-convert-hook hook) → void?
hook : (any/c/ (any/c . -> . any/c)

(any/c . -> . any/c))

Parameter that sets a procedure used by print-convert and print-convert-expr to
convert values. The procedure hook takes three arguments—a value v , a procedure basic-
convert , and a procedure sub-convert—and returns the converted representation of v .
The basic-convert procedure takes v and returns the default conversion, while the sub-
convert procedure takes a component of v and returns its conversion.

A current-print-convert-hook procedure usually works together with a current-
build-share-hook procedure.

(current-read-eval-convert-print-prompt) → string?
(current-read-eval-convert-print-prompt str) → void?
str : string?

Parameter that sets the prompt used by install-converting-printer. The initial value
is "|- ".

62

(get-shared share-info [cycles-only?])
→ (list-of (cons/c symbol? any/c))
share-info :
cycles-only? : any/c = #f

The shared-info value must be a result from build-share. The procedure returns a list
matching variables to shared values within the value passed to build-share.

The default value for cycles-only? is #f; if it is not #f, get-shared returns only infor-
mation about cycles.

For example,

(get-shared (build-share (shared ([a (cons 1 b)]
[b (cons 2 a)])

a)))

might return the list

’((-1- (cons 1 -2-)) (-2- (cons 2 -1-)))

(install-converting-printer) → void?

Sets the current print handler to print values using print-convert. The current read
handler is also set to use the prompt returned by current-read-eval-convert-print-
prompt.

(print-convert v [cycles-only?]) → any/c
v : any/c
cycles-only? : any/c = (show-sharing)

Converts the value v . If cycles-only? is not #f, then only circular objects are included in
the output.

(print-convert-expr share-info

v

unroll-once?) → any/c
share-info :
v : any/c
unroll-once? : any/c

Converts the value v using sharing information share-info , which was previously returned
by build-share for a value containing v . If the most recent call to get-shared with

63

share-info requested information only for cycles, then print-convert-expr will only
display sharing among values for cycles, rather than showing all value sharing.

The unroll-once? argument is used if v is a shared value in share-info . In this case, if
unroll-once? is #f, then the return value will be a shared-value identifier; otherwise, the
returned value shows the internal structure of v (using shared value identifiers within v ’s
immediate structure as appropriate).

(quasi-read-style-printing) → boolean?
(quasi-read-style-printing on?) → void?
on? : any/c

Parameter that controls how vectors and boxes are represented after conversion when the
value of constructor-style-printing is #f. If quasi-read-style-printing is set
to #f, then boxes and vectors are unquoted and represented using constructors. For example,
the list of a box containing the number 1 and a vector containing the number 1 is represented
as ‘(,(box 1) ,(vector 1)). If the parameter’s value is #t, then #&.... and #(....)
are used, e.g., ‘(#&1 #(1)). The initial value of the parameter is #t.

(show-sharing) → boolean?
(show-sharing show?) → void?
show? : any/c

Parameter that determines whether sub-value sharing is conserved (and shown) in the con-
verted output by default. The initial value of the parameter is #t.

(whole/fractional-exact-numbers) → boolean?
(whole/fractional-exact-numbers whole-frac?) → void?
whole-frac? : any/c

Parameter that controls how exact, non-integer numbers are converted when the numerator
is greater than the denominator. If the parameter’s value is #t, the number is converted to
the form (+ integer fraction) (i.e., a list containing ’+, an exact integer, and an exact
rational less than 1 and greater than -1). The initial value of the parameter is #f.

64

32 mzlib/pconvert-prop

(require mzlib/pconvert-prop)

prop:print-convert-constructor-name : property?
(print-convert-named-constructor? v) → any
v : any/c

(print-convert-constructor-name v) → any
v : any/c

The prop:print-convert-constructor-name property can be given a symbol value for
a structure type. In that case, for constructor-style print conversion via print-convert,
instances of the structure are shown using the symbol as the constructor name. Otherwise,
the constructor name is determined by prefixing make- onto the result of object-name.

The print-convert-named-constructor? predicate recognizes instances of structure
types that have the prop:print-convert-constructor-name property, and print-
convert-constructor-name extracts the property value.

65

33 mzlib/plt-match

(require mzlib/plt-match)

The mzlib/plt-match library mostly re-provides scheme/match.

(define-match-expander id proc-expr)
(define-match-expander id proc-expr proc-expr)
(define-match-expander id proc-expr proc-expr proc-expr)

The same as the form from mzlib/match.

66

34 mzlib/port

(require mzlib/port)

The mzlib/port library mostly re-provides scheme/port.

(strip-shell-command-start in) → void?
in : input-port?

Reads and discards a leading #! in in (plus continuing lines if the line ends with a back-
slash). Since #! followed by a forward slash or space is a comment, this procedure is not
needed before reading Scheme expressions.

67

35 mzlib/pregexp

(require mzlib/pregexp)

The mzlib/pregexp library provides wrappers around regexp-match, etc. that coerce
string and byte-string arguments to pregexp matchers instead of regexp matchers.

The library also re-exports: pregexp, and it re-exports regexp-quote as pregexp-quote.

(pregexp-match pattern

input

[start-pos
end-pos

output-port])
→ (or/c (listof (or/c (cons (or/c string? bytes?)

(or/c string? bytes?))
false/c))

false/c)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f
output-port : (or/c output-port? false/c) = #f

(pregexp-match-positions pattern

input

[start-pos
end-pos

output-port])
→ (or/c (listof (or/c (cons exact-nonnegative-integer?

exact-nonnegative-integer?)
false/c))

false/c)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f
output-port : (or/c output-port? false/c) = #f

(pregexp-split pattern

input

[start-pos
end-pos]) → (listof (or/c string? bytes?))

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? false/c) = #f

68

(pregexp-replace pattern input insert) → (or/c string? bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

(string? . -> . string?)
(bytes? . -> . bytes?))

(pregexp-replace* pattern input insert) → (or/c string? bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?

(string? . -> . string?)
(bytes? . -> . bytes?))

Like regexp-match, etc., but a string pattern argument is compiled via pregexp, and a
byte string pattern argument is compiled via byte-pregexp.

69

36 mzlib/pretty

(require mzlib/pretty)

Re-exports scheme/pretty.

70

37 mzlib/process

(require mzlib/process)

Re-exports scheme/system.

71

38 mzlib/restart

(require mzlib/restart) See
scheme/sandbox

for a more general
way to simulate
running a new PLT
Scheme process.

(restart-mzscheme init-argv

adjust-flag-table

argv

init-namespace) → boolean?
init-argv : (vectorof string?)
adjust-flag-table : (any/c . -> . any/c)
argv : (vectorof string?)
init-namespace : (-> any)

Simulates starting MzScheme with the vector of command-line strings argv . The init-

argv , adjust-flag-table , and init-namespace arguments are used to modify the de-
fault settings for command-line flags, adjust the parsing of command-line flags, and cus-
tomize the initial namespace, respectively.

The vector of strings init-argv is read first with the standard MzScheme command-line
parsing. Flags that load files or evaluate expressions (e.g., -f and -e) are ignored, but flags
that set MzScheme’s modes (e.g., -c or -j) effectively set the default mode before argv is
parsed.

Before argv is parsed, the procedure adjust-flag-table is called with a command-line
flag table as accepted by parse-command-line. The return value must also be a table of
command-line flags, and this table is used to parse argv . The intent is to allow adjust-

flag-table to add or remove flags from the standard set.

After argv is parsed, a new thread and a namespace are created for the “restarted”
MzScheme. (The new namespace is installed as the current namespace in the new thread.)
In the new thread, restarting performs the following actions:

• The init-namespace procedure is called with no arguments. The return value is
ignored.

• Expressions and files specified by argv are evaluated and loaded. If an error occurs,
the remaining expressions and files are ignored, and the return value for restart-
mzscheme is set to #f.

• The read-eval-print-loop procedure is called, unless a flag in init-argv or
argv disables it. When read-eval-print-loop returns, the return value for
restart-mzscheme is set to #t.

Before evaluating command-line arguments, an exit handler is installed that immediately
returns from restart-mzscheme with the value supplied to the handler. This exit handler

72

remains in effect when read-eval-print-loop is called (unless a command-line argu-
ment changes it). If restart-mzscheme returns normally, the return value is determined as
described above.

Note that an error in a command-line expression followed by read-eval-print-loop pro-
duces a #t result. This is consistent with MzScheme’s stand-alone behavior.

73

39 mzlib/runtime-path

(require mzlib/runtime-path)

Re-exports scheme/runtime-path.

74

40 mzlib/sandbox

(require mzlib/sandbox)

The mzlib/sandbox library mostly re-exports scheme/sandbox, but it provides a slightly
different make-evaluator function.

The library re-exports the following bindings:

sandbox-init-hook
sandbox-reader
sandbox-input
sandbox-output
sandbox-error-output
sandbox-propagate-breaks
sandbox-coverage-enabled
sandbox-namespace-specs
sandbox-override-collection-paths
sandbox-security-guard
sandbox-path-permissions
sandbox-network-guard
sandbox-make-inspector
sandbox-eval-limits
kill-evaluator
break-evaluator
set-eval-limits
put-input
get-output
get-error-output
get-uncovered-expressions
call-with-limits
with-limits
exn:fail:resource?
exn:fail:resource-resource

(make-evaluator language

requires

input-program ...) → (any/c . -> . any)
language : (or/c module-path?

(one-of/c ’r5rs ’beginner ’beginner-abbr
’intermediate ’intermediate-lambda ’advanced)

(list/c (one-of/c ’special) symbol?)
(list/c (one-of/c ’special) symbol?)
(cons/c (one-of/c ’begin) list?))

75

requires : (or/c (cons/c ’begin list?)
(listof (or/c module-path? path?)))

input-program : any/c
(make-evaluator module-decl) → (any/c . -> . any)
module-decl : (or/c syntax? pair?)

Like make-evaluator or make-module-evaluator, but with several differences:

• The language argument can be one of a fixed set of symbols: ’r5rs, etc. They are
converted by adding a (list ’special) wrapper.

• If requires starts with ’begin, then each element in the remainder of the list is
effectively evaluated as a prefix to the program. Otherwise, it corresponds to the
#:requires argument of make-evaluator.

• For each of language and requires that starts with ’begin, the expressions are in-
spected to find top-level require forms (using symbolic equality to detect require),
and the required modules are added to the #:allow list for make-evaluator.

76

41 mzlib/sendevent

(require mzlib/sendevent)

The mzlib/sendevent library provides a send-event function that works only on Mac
OS X, and only when running in MrEd (though the library can be loaded in MzScheme).

(send-event receiver-bytes

event-class-bytes

event-id-bytes

[direct-arg-v
argument-list]) → any/c

receiver-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

event-class-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

event-id-bytes : (lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))

direct-arg-v : any/c = (void)
argument-list : list? = null

Calls send-event scheme/gui/base, if available, otherwise raises
exn:fail:unsupported.

77

42 mzlib/serialize

(require mzlib/serialize)

The mzlib/serialize library provides the same bindings as scheme/serialize, except
that define-serializable-struct and define-serializable-struct/versions
are based on the syntax of define-struct from mzscheme.

(define-serializable-struct id-maybe-super (field-id ...) maybe-inspector-expr)
(define-serializable-struct/versions id-maybe-super vers-num (field-id ...)

(other-version-clause ...)
maybe-inspector-expr)

id-maybe-super = id

| (id super-id)

maybe-inspector-expr =
| inspector-expr

other-version-clause = (other-vers make-proc-expr

cycle-make-proc-expr)

Like define-serializable-struct and define-serializable-struct/versions,
but with the syntax of closer to define-struct of mzscheme.

78

43 mzlib/shared

(require mzlib/shared)

Re-exports scheme/shared.

79

44 mzlib/string

(require mzlib/string)

The mzlib/string library re-exports several functions from scheme/base:

real->decimal-string
regexp-quote
regexp-replace-quote
regexp-match*
regexp-match-positions*
regexp-match-peek-positions*
regexp-split
regexp-match-exact?

It also re-exports regexp-try-match as regexp-match/fail-without-reading.

(glob->regexp [str
hide-dots?

case-sensitive?

simple?]) → (or/c regexp? byte-regexp?)
str : (or/c string bytes?) = ?
hide-dots? : any/c = #t
case-sensitive? : any/c

= (eq? (system-path-convention-type)’unix)
simple? : any/c = #f

Produces a regexp for a an input “glob pattern” str . A glob pattern is one that matches *
with any string, ? with a single character, and character ranges are the same as in regexps
(unless simple? is true). In addition, the resulting regexp does not match strings that begin
with ., unless str begins with . or hide-dots? is #f. The resulting regexp can be used
with string file names to check the glob pattern. If the glob pattern is provided as a byte
string, the result is a byte regexp.

The case-sensitive? argument determines whether the resulting regexp is case-sensitive.

If simple? is true, then ranges with [...] in str are treated as literal character sequences.

(string-lowercase! str) → void?
str : (and/c string? (not/c immutable?))

Destructively changes str to contain only lowercase characters.

(string-uppercase! str) → void?

80

str : (and/c string? (not/c immutable?))

Destructively changes str to contain only uppercase characters.

(eval-string str [err-handler]) → list?
str : (or/c string? bytes?)
err-handler : (or/c false/c

(any/c . -> . any/c)
(-> any/c))

= #f

Reads and evaluates S-expressions from str , returning results for all of the expressions
in the string. If any expression produces multiple results, the results are spliced into the
resulting list. If str contains only whitespace and comments, an empty list is returned,
and if str contains multiple expressions, the result will be contain multiple values from all
subexpressions.

The err-handler argument can be:

• #f (the default) which means that errors are not caught;

• a one-argument procedure, which will be used with an exception (when an error oc-
curs) and its result will be returned

• a thunk, which will be used to produce a result.

(expr->string expr) → string?
expr : any/c

Prints expr into a string and returns the string.

(read-from-string str [err-handler]) → any/c
str : (or/c string? bytes?)
err-handler : (or/c false/c

(any/c . -> . any/c)
(-> any/c))

= #f

Reads the first S-expression from str and returns it. The err-handler is as in eval-
string.

(read-from-string-all str [err-handler]) → list?
str : (or/c string? bytes?)

81

err-handler : (or/c false/c
(any/c . -> . any/c)
(-> any/c))

= #f

Reads all S-expressions from the string (or byte string) str and returns them in a list. The
err-handler is as in eval-string.

82

45 mzlib/struct

(require mzlib/struct)

(copy-struct struct-id struct-expr

(accessor-id field-expr) ...)

“Functional update” for structure instances. The result of evaluating struct-expr must
be an instance of the structure type named by struct-id . The result of the copy-struct
expression is a fresh instance of struct-id with the same field values as the result of
struct-expr , except that the value for the field accessed by each accessor-id is replaced
by the result of field-expr .

The result of struct-expr might be an instance of a sub-type of struct-id , but the result
of the copy-struct expression is an immediate instance of struct-id . If struct-expr
does not produce an instance of struct-id , the exn:fail:contract exception is raised.

If any accessor-id is not bound to an accessor of struct-id (according to the expansion-
time information associated with struct-id), or if the same accessor-id is used twice,
then a syntax error is raised.

(define-struct/properties id (field-id ...)
((prop-expr val-expr) ...)
maybe-inspector-expr)

maybe-inspector-expr =
| expr

Like define-struct from mzscheme, but properties can be attached to the structure type.
Each prop-expr should produce a structure-type property value, and each val-expr pro-
duces the corresponding value for the property.

Examples:
> (define-struct/properties point (x y)

([prop:custom-write (lambda (p port write?)
(fprintf port "(∼a, ∼a)"

(point-x p)
(point-y p)))]))

> (display (make-point 1 2))
(1, 2)

(make->vector struct-id)

83

Builds a function that accepts a structure type instance (matching struct-id) and provides
a vector of the fields of the structure type instance.

84

46 mzlib/stxparam

(require mzlib/stxparam)

Re-exports scheme/stxparam and scheme/stxparam-exptime (both at phase level 0).

85

47 mzlib/surrogate

(require mzlib/surrogate)

Re-exports scheme/surrogate.

86

48 mzlib/tar

(require mzlib/tar)

Re-exports file/tar.

87

49 mzlib/thread

(require mzlib/thread)

(coroutine proc) → coroutine?
proc : ((any/c . -> . void?) . -> . any/c)

Returns a coroutine object to encapsulate a thread that runs only when allowed. The proc

procedure should accept one argument, and proc is run in the coroutine thread when
coroutine-run is called. If coroutine-run returns due to a timeout, then the corou-
tine thread is suspended until a future call to coroutine-run. Thus, proc only executes
during the dynamic extent of a coroutine-run call.

The argument to proc is a procedure that takes a boolean, and it can be used to disable
suspends (in case proc has critical regions where it should not be suspended). A true value
passed to the procedure enables suspends, and #f disables suspends. Initially, suspends are
allowed.

(coroutine? v) → any
v : any/c

Returns #t if v is a coroutine produced by coroutine, #f otherwise.

(coroutine-run until coroutine) → boolean?
until : (or/c evt? real?)
coroutine : coroutine?

Allows the thread associated with coroutine to execute for up as long as until millisec-
onds (of until is a real number) or until is ready (if until is an event). If coroutine ’s
procedure disables suspends, then the coroutine can run arbitrarily long until it re-enables
suspends.

The coroutine-run procedure returns #t if coroutine ’s procedure completes (or if it
completed earlier), and the result is available via coroutine-result. The coroutine-
run procedure returns #f if coroutine ’s procedure does not complete before it is sus-
pended after timeout-secs. If coroutine ’s procedure raises an exception, then it is re-
raised by coroutine-run.

(coroutine-result coroutine) → any
coroutine : coroutine

Returns the result for coroutine if it has completed with a value (as opposed to an excep-

88

tion), #f otherwise.

(coroutine-kill coroutine) → void?
coroutine : coroutine?

Forcibly terminates the thread associated with coroutine if it is still running, leaving the
coroutine result unchanged.

(consumer-thread f [init]) → thread? procedure?
f : procedure?
init : (-> any) = void

Returns two values: a thread descriptor for a new thread, and a procedure with the same arity
as f .

When the returned procedure is applied, its arguments are queued to be passed on to f ,
and #<void> is immediately returned. The thread created by consumer-thread dequeues
arguments and applies f to them, removing a new set of arguments from the queue only
when the previous application of f has completed; if f escapes from a normal return (via an
exception or a continuation), the f -applying thread terminates.

The init argument is a procedure of no arguments; if it is provided, init is called in the
new thread immediately after the thread is created.

(run-server port-no

conn-proc

conn-timeout

[handler
listen

close

accept

accept/break]) → void?
port-no : (integer-in 1 65535)
conn-proc : (input-port? output-port? . -> . any)
conn-timeout : (and/c real? (not/c negative?))
handler : (exn? . -> . any/c) = void
listen : ((integer-in 1 65535) (one-of/c 5) (one-of/c #t)

. -> . listener?)
= tcp-listen

close : (listener? . -> . any) = tcp-close
accept : (listener? . ->* . (input-port? output-port?))

= tcp-accept
accept/break : (listener? . ->* . (input-port? output-port?))

= tcp-accept/enable-break

89

Executes a TCP server on the port indicated by port-no . When a connection is made by a
client, conn is called with two values: an input port to receive from the client, and an output
port to send to the client.

Each client connection is managed by a new custodian, and each call to conn occurs in a new
thread (managed by the connection’s custodian). If the thread executing conn terminates for
any reason (e.g., conn returns), the connection’s custodian is shut down. Consequently,
conn need not close the ports provided to it. Breaks are enabled in the connection thread if
breaks are enabled when run-server is called.

To facilitate capturing a continuation in one connection thread and invoking it in another,
the parameterization of the run-server call is used for every call to handler . In this
parameterization and for the connection’s thread, the current-custodian parameter is
assigned to the connection’s custodian.

If conn-timeout is not #f, then it must be a non-negative number specifying the time in
seconds that a connection thread is allowed to run before it is sent a break signal. Then, if the
thread runs longer than (* conn-timeout 2) seconds, then the connection’s custodian is
shut down. If conn-timeout is #f, a connection thread can run indefinitely.

If handler is provided, it is passed exceptions related to connections (i.e., exceptions not
caught by conn-proc , or exceptions that occur when trying to accept a connection). The
default handler ignores the exception and returns #<void>.

The run-server function uses listen , close , accept and accept/break in the same
way as it might use tcp-listen, tcp-close, tcp-accept, and tcp-accept/enable-
break to accept connections. Provide alternate procedures to use an alternate communica-
tion protocol (such as SSL) or to supply optional arguments in the use of tcp-listen. The
listener? part of the contract indicates that the procedures must all work on the same kind
of listener value.

The run-server procedure loops to serve client connections, so it never returns. If a break
occurs, the loop will cleanly shut down the server, but it will not terminate active connec-
tions.

90

50 mzlib/trace

(require mzlib/trace)

The mzlib/trace library mimics the tracing facility available in Chez Scheme.

(trace id ...)

Each id must be bound to a procedure in the environment of the trace expression. Each
id is set!ed to a new procedure that traces procedure calls and returns by printing the argu-
ments and results of the call via current-trace-notify. If multiple values are returned,
each value is displayed starting on a separate line.

When traced procedures invoke each other, nested invocations are shown by printing a nest-
ing prefix. If the nesting depth grows to ten and beyond, a number is printed to show the
actual nesting depth.

The trace form can be used on an identifier that is already traced. In this case, assuming
that the variable’s value has not been changed, trace has no effect. If the variable has been
changed to a different procedure, then a new trace is installed.

Tracing respects tail calls to preserve loops, but its effect may be visible through continuation
marks. When a call to a traced procedure occurs in tail position with respect to a previous
traced call, then the tailness of the call is preserved (and the result of the call is not printed
for the tail call, because the same result will be printed for an enclosing call). Otherwise,
however, the body of a traced procedure is not evaluated in tail position with respect to a call
to the procedure.

The result of a trace expression is #<void>.

(untrace id ...)

Undoes the effects of the trace form for each id , set!ing each id back to the untraced
procedure, but only if the current value of id is a traced procedure. If the current value of a
id is not a procedure installed by trace, then the variable is not changed.

The result of an untrace expression is #<void>.

(current-trace-notify) → (string? . -> . any)
(current-trace-notify proc) → void?
proc : (string? . -> . any)

A parameter that determines the way that trace output is displayed. The string given to proc

is a trace; it does not end with a newline, but it may contain internal newlines. Each call or

91

result is converted into a string using pretty-print. The parameter’s default value prints
the given string followed by a newline to (current-output-port).

92

51 mzlib/traceld

(require mzlib/traceld)

The mzlib/traceld library does not provide any bindings. Instead, mzlib/traceld is
required for its side-effects.

The mzlib/traceld library installs a new load handler (see current-load) and load-
extension handler (see current-load-extension) to print information about the files that
are loaded. These handlers chain to the current handlers to perform the actual loads. Trace
output is printed to the port that is the current error port (see current-error-port) when
the library is instantiated.

Before a file is loaded, the tracer prints the file name and “time” (as reported by the procedure
current-process-milliseconds) when the load starts. Trace information for nested
loads is printed with indentation. After the file is loaded, the file name is printed with the
“time” that the load completed.

93

52 mzlib/trait

(require mzlib/trait)

Re-exports scheme/trait.

94

53 mzlib/transcr

(require mzlib/transcr)

The transcript-on and transcript-off procedures of mzscheme always raise
exn:fail:unsupported. The mzlib/transcr library provides working versions of
transcript-on and transcript-off.

(transcript-on filename) → any
filename : any/c

(transcript-off) → any

Starts/stops recording a transcript at filename .

95

54 mzlib/unit

(require mzlib/unit)

The mzlib/unit library mostly re-provides scheme/unit, except for struct from
scheme/unit.

(struct id (field-id ...) omit-decl ...)

omit-decl = -type

| -selectors

| -setters

| -constructor

A signature form like struct from scheme/unit, but with a different syntax for the options
that limit exports.

96

55 mzlib/unit-exptime

(require mzlib/unit-exptime)

Re-exports scheme/unit-exptime.

97

56 mzlib/unit200

(require mzlib/unit200)

The mzlib/unit200 library provides an old implementation of units. See archived version
360 documentation on the "unit.ss" library of the "mzlib" collection for information
about this library.

98

57 mzlib/unitsig200

(require mzlib/unitsig200)

The mzlib/unit200 library provides an old implementation of units. See archived version
360 documentation on the "unitsig.ss" library of the "mzlib" collection for information
about this library.

99

58 mzlib/zip

(require mzlib/zip)

Re-exports file/zip.

100

Bibliography

[Shivers06] Olin Shivers, Brian D. Carlstrom, Martin Gasbichler, and Mike Sperber, “Scsh Reference Manual.” 2006.
[Reppy99] John H. Reppy, “Concurrent Programming in ML.” 1999.

101

Index
#:all-keys, 48
#:allow-anything, 50
#:allow-body, 50
#:allow-duplicate-keys, 50
#:allow-other-keys, 50
#:body, 48
#:forbid-anything, 51
#:forbid-body, 50
#:forbid-duplicate-keys, 50
#:forbid-other-keys, 50
#:key, 47
#:optional, 46
#:rest, 48
1+, 20
1-, 20
<=?, 20
<?, 20
=?, 20
>=?, 20
>?, 20
abbreviate-cons-as-list

atom?, 21
awk, 9
begin-lifted

begin-with-definitions, 29
Body Argument, 49
booleans-as-true/false, 60
build-absolute-path, 35
build-relative-path, 34
build-share, 61
call-with-input-file*

call-with-output-file*, 34
card, 43
channel, 18
channel-recv-evt, 18
channel-send-evt, 18
class100, 13
class100*, 12
class100*-asi, 13
class100-asi, 13

command-line, 17
compile-file, 22
complement, 42
constructor-style-printing, 61
consumer-thread, 89
copy-struct, 83
coroutine, 88
coroutine-kill, 89
coroutine-result, 88
coroutine-run, 88
coroutine?, 88
current-build-share-hook, 61
current-build-share-name-hook, 62
current-print-convert-hook, 62
current-read-eval-convert-print-
prompt, 62

current-time, 18
current-trace-notify, 91
define-macro

define-match-expander, 66
define-match-expander, 56
define-serializable-struct, 78
define-serializable-
struct/versions, 78

define-struct/properties, 83
define-structure, 21
define-syntax-set, 29
define/kw, 45
defmacro, 27
difference, 42
e

eighth, 53
eval-string, 81
evcase, 30
expr->string, 81
fifth

first, 53
flush-output-port, 20
foldr, 43
fourth, 53
gentmp

get-integer, 43

102

get-shared, 63
gethostname, 59
getpid, 59
getprop, 21
glob->regexp, 80
hash-table

identity

include, 38
include-at/relative-to, 38
include-at/relative-to/reader, 38
include/reader, 38
install-converting-printer, 63
integer-set-contents, 41
integer-set?, 41
intersect, 42
Keyword Arguments
keyword-get, 51
lambda/kw

last-pair, 54
let+, 30
loop-until, 31
make->vector

make-evaluator, 75
make-integer-set, 41
make-range, 42
match, 55
match-define, 56
match-equality-test, 56
match-lambda, 56
match-lambda*, 56
match-let, 56
match-let*, 56
match-letrec, 56
match:end, 10
match:start, 10
match:substring, 10
member?, 43
merge-sorted-lists, 54
mergesort, 54
Mode Keywords, 50
mzlib/a-signature, 6
mzlib/a-unit, 7

mzlib/async-channel, 8
mzlib/awk, 9
mzlib/class, 11
mzlib/class100, 12
mzlib/cm, 15
mzlib/cm-accomplice, 16
mzlib/cmdline, 17
mzlib/cml, 18
mzlib/compat, 20
mzlib/compile, 22
mzlib/contract, 23
mzlib/control, 24
mzlib/date, 25
mzlib/deflate, 26
mzlib/defmacro, 27
mzlib/etc, 29
mzlib/file, 34
mzlib/for, 36
mzlib/foreign, 37
mzlib/include, 38
mzlib/inflate, 40
mzlib/integer-set, 41
mzlib/kw, 45
mzlib/list, 53
mzlib/match, 55
mzlib/math, 57
mzlib/md5, 58
mzlib/os, 59
mzlib/pconvert, 60
mzlib/pconvert-prop, 65
mzlib/plt-match, 66
mzlib/port, 67
mzlib/pregexp, 68
mzlib/pretty, 70
mzlib/process, 71
mzlib/restart, 72
mzlib/runtime-path, 74
mzlib/sandbox, 75
mzlib/sendevent, 77
mzlib/serialize, 78
mzlib/shared, 79
mzlib/string, 80

103

mzlib/struct, 83
mzlib/stxparam, 85
mzlib/surrogate, 86
mzlib/tar, 87
mzlib/thread, 88
mzlib/trace, 91
mzlib/traceld, 93
mzlib/trait, 94
mzlib/transcr, 95
mzlib/unit, 96
mzlib/unit-exptime, 97
mzlib/unit200, 98
mzlib/unitsig200, 99
mzlib/zip, 100
MzLib: Legacy PLT Libraries, 1
named/undefined-handler

namespace-defined?, 32
nand, 32
new-cafe, 21
nor, 32
opt-lambda

Optional Arguments, 46
partition

pregexp-match, 68
pregexp-match-positions, 68
pregexp-replace, 69
pregexp-replace*, 69
pregexp-split, 68
print-convert, 63
print-convert-constructor-name, 65
print-convert-expr, 63
print-convert-named-constructor?,

65
prop:print-convert-constructor-
name, 65

Property Lists, 51
putprop, 21
quasi-read-style-printing

quicksort, 54
read-from-string

read-from-string-all, 81
real-time, 20

rec, 32
recur, 32
regexp-exec, 10
Required Arguments, 46
rest, 54
Rest and Rest-like Arguments, 48
restart-mzscheme, 72
run-server, 89
second

send-event, 77
set-integer-set-contents!, 41
seventh, 53
show-sharing, 64
sixth, 53
spawn, 18
split, 42
string-lowercase!, 80
string-uppercase!, 80
strip-shell-command-start, 67
struct, 96
subset?, 44
super-init, 14
third

this-expression-file-name, 33
this-expression-source-directory,

32
thread-done-evt, 18
time-evt, 18
trace, 91
transcript-off, 95
transcript-on, 95
truncate-file, 59
union

untrace, 91
use-named/undefined-handler, 60
well-formed-set?

whole/fractional-exact-numbers, 64
xor

104

	1 IdentifierColormzlib/a-signature
	2 IdentifierColormzlib/a-unit
	3 IdentifierColormzlib/async-channel
	4 IdentifierColormzlib/awk
	5 IdentifierColormzlib/class
	6 IdentifierColormzlib/class100
	7 IdentifierColormzlib/cm
	8 IdentifierColormzlib/cm-accomplice
	9 IdentifierColormzlib/cmdline
	10 IdentifierColormzlib/cml
	11 IdentifierColormzlib/compat
	12 IdentifierColormzlib/compile
	13 IdentifierColormzlib/contract
	14 IdentifierColormzlib/control
	15 IdentifierColormzlib/date
	16 IdentifierColormzlib/deflate
	17 IdentifierColormzlib/defmacro
	18 IdentifierColormzlib/etc
	19 IdentifierColormzlib/file
	20 IdentifierColormzlib/for
	21 IdentifierColormzlib/foreign
	22 IdentifierColormzlib/include
	23 IdentifierColormzlib/inflate
	24 IdentifierColormzlib/integer-set
	25 IdentifierColormzlib/kw
	25.1 Required Arguments
	25.2 Optional Arguments
	25.3 Keyword Arguments
	25.4 Rest and Rest-like Arguments
	25.5 Body Argument
	25.6 Mode Keywords
	25.7 Property Lists

	26 IdentifierColormzlib/list
	27 IdentifierColormzlib/match
	28 IdentifierColormzlib/math
	29 IdentifierColormzlib/md5
	30 IdentifierColormzlib/os
	31 IdentifierColormzlib/pconvert
	32 IdentifierColormzlib/pconvert-prop
	33 IdentifierColormzlib/plt-match
	34 IdentifierColormzlib/port
	35 IdentifierColormzlib/pregexp
	36 IdentifierColormzlib/pretty
	37 IdentifierColormzlib/process
	38 IdentifierColormzlib/restart
	39 IdentifierColormzlib/runtime-path
	40 IdentifierColormzlib/sandbox
	41 IdentifierColormzlib/sendevent
	42 IdentifierColormzlib/serialize
	43 IdentifierColormzlib/shared
	44 IdentifierColormzlib/string
	45 IdentifierColormzlib/struct
	46 IdentifierColormzlib/stxparam
	47 IdentifierColormzlib/surrogate
	48 IdentifierColormzlib/tar
	49 IdentifierColormzlib/thread
	50 IdentifierColormzlib/trace
	51 IdentifierColormzlib/traceld
	52 IdentifierColormzlib/trait
	53 IdentifierColormzlib/transcr
	54 IdentifierColormzlib/unit
	55 IdentifierColormzlib/unit-exptime
	56 IdentifierColormzlib/unit200
	57 IdentifierColormzlib/unitsig200
	58 IdentifierColormzlib/zip
	Index

