
Syntax: Meta-Programming Helpers
Version 4.1.1

October 5, 2008

1

Contents

1 Syntax Object Helpers 4

1.1 Deconstructing Syntax Objects . 4

1.2 Matching Fully-Expanded Expressions . 5

1.3 Hashing on bound-identifier=? and free-identifier=? 6

1.4 Rendering Syntax Objects with Formatting 8

1.5 Computing the Free Variables of an Expression 9

1.6 Legacy Zodiac Interface . 9

2 Module-Processing Helpers 10

2.1 Reading Module Source Code . 10

2.2 Getting Module Compiled Code . 10

2.3 Resolving Module Paths to File Paths . 12

2.4 Simplifying Module Paths . 13

2.5 Inspecting Modules and Module Dependencies 13

3 Macro Transformer Helpers 15

3.1 Extracting Inferred Names . 15

3.2 Support for local-expand . 15

3.3 Parsing define-like Forms . 15

3.4 Expanding define-struct-like Forms 16

3.5 Resolving include-like Paths . 20

4 Reader Helpers 21

4.1 Raising exn:fail:read . 21

4.2 Module Reader . 22

2

5 Non-Module Compilation And Expansion 26

6 Trusting Standard Recertifying Transformers 28

7 Attaching Documentation to Exports 29

Index 31

3

1 Syntax Object Helpers

1.1 Deconstructing Syntax Objects

(require syntax/stx)

(stx-null? v) → boolean?
v : any/c

Returns #t if v is either the empty list or a syntax object representing the empty list (i.e.,
syntax-e on the syntax object returns the empty list).

(stx-pair? v) → boolean?
v : any/c

Returns #t if v is either a pair or a syntax object representing a pair (see syntax pair).

(stx-list? v) → boolean?
v : any/c

Returns #t if v is a list, or if it is a sequence of pairs leading to a syntax object such that
syntax->list would produce a list.

(stx->list stx-list) → list?
stx-list : stx-list?

Produces a list by flatting out a trailing syntax object using syntax->list.

(stx-car v) → any
v : stx-pair?

Takes the car of a syntax pair.

(stx-cdr v) → any
v : stx-pair?

Takes the cdr of a syntax pair.

(module-or-top-identifier=? a-id b-id) → boolean?

4

a-id : identifier?
b-id : identifier?

Returns #t if a-id and b-id are free-identifier=?, or if a-id and b-id have the same
name (as extracted by syntax-e) and a-id has no binding other than at the top level.

This procedure is useful in conjunction with syntax-case* to match procedure names
that are normally bound by MzScheme. For example, the include macro uses this pro-
cedure to recognize build-path; using free-identifier=? would not work well outside
of module, since the top-level build-path is a distinct variable from the MzScheme export
(though it’s bound to the same procedure, initially).

1.2 Matching Fully-Expanded Expressions

(require syntax/kerncase)

(kernel-syntax-case stx-expr trans?-expr clause ...)

A syntactic form like syntax-case*, except that the literals are built-in as the names of the
primitive PLT Scheme forms as exported by scheme/base; see §1.2.3.1 “Fully Expanded
Programs”.

The trans?-expr boolean expression replaces the comparison procedure, and instead se-
lects simply between normal-phase comparisons or transformer-phase comparisons. The
clauses are the same as in syntax-case*.

The primitive syntactic forms must have their normal bindings in the context of the kernel-
syntax-case expression. Beware that kernel-syntax-case does not work in a module
whose language is mzscheme, since the binding of if from mzscheme is different than the
primitive if.

(kernel-syntax-case* stx-expr trans?-expr (extras ...) clause ...)

A syntactic form like kernel-syntax-case, except that it takes an additional list of extra
literals that are in addition to the primitive PLT Scheme forms.

(kernel-form-identifier-list) → (listof indentifier?)

Returns a list of identifiers that are bound normally, for-syntax, and for-template to
the primitive PLT Scheme forms for expressions. This function is useful for generating a list
of stopping points to provide to local-expand.

5

1.3 Hashing on bound-identifier=? and free-identifier=?

(require syntax/boundmap)

(make-bound-identifier-mapping) → bound-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses bound-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e.,
where non-equivalent identifiers are derived from different symbolic names).

(bound-identifier-mapping? v) → boolean?
v : any/c

Returns #t if v was produced by make-bound-identifier-mapping, #f otherwise.

(bound-identifier-mapping-get bound-map

id

[failure-thunk]) → any
bound-map : bound-identifier-mapping?
id : identifier?
failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

Like hash-table-get for bound-identifier mappings.

(bound-identifier-mapping-put! bound-map

id

v) → void?
bound-map : bound-identifier-mapping?
id : identifier?
v : any/c

Like hash-table-put! for bound-identifier mappings.

(bound-identifier-mapping-for-each bound-map

proc) → void?
bound-map : boud-identifier-mapping?
proc : (identifier? any/c . -> . any)

6

Like hash-table-for-each.

(bound-identifier-mapping-map bound-map

proc) → (listof any?)
bound-map : bound-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-free-identifier-mapping) → free-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses free-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e., where
non-equivalent identifiers are derived from different symbolic names at their definition sites).

(free-identifier-mapping? v) → boolean?
v : any/c

Returns #t if v was produced by make-free-identifier-mapping, #f otherwise.

(free-identifier-mapping-get free-map

id

[failure-thunk]) → any
free-map : free-identifier-mapping?
id : identifier?
failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

Like hash-table-get for free-identifier mappings.

(free-identifier-mapping-put! free-map id v) → void?
free-map : free-identifier-mapping?
id : identifier?
v : any/c

Like hash-table-put! for free-identifier mappings.

(free-identifier-mapping-for-each free-map

proc) → void?

7

free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(free-identifier-mapping-map free-map proc) → (listof any?)
free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-module-identifier-mapping) → module-identifier-mapping?
(module-identifier-mapping? v) → boolean?
v : any/c

(module-identifier-mapping-get module-map

id

[failure-thunk]) → any
module-map : module-identifier-mapping?
id : identifier?
failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))
(module-identifier-mapping-put! module-map

id

v) → void?
module-map : module-identifier-mapping?
id : identifier?
v : any/c

(module-identifier-mapping-for-each module-map

proc) → void?
module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)

(module-identifier-mapping-map module-map

proc) → (listof any?)
module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)

The same as make-module-identifier-mapping, etc.

1.4 Rendering Syntax Objects with Formatting

(require syntax/to-string)

8

(syntax->string stx-list) → string?
stx-list : stx-list?

Builds a string with newlines and indenting according to the source locations in stx-list ;
the outer pair of parens are not rendered from stx-list .

1.5 Computing the Free Variables of an Expression

(require syntax/free-vars)

(free-vars expr-stx) → (listof identifier?)
expr-stx : syntax?

Returns a list of free lambda- and let-bound identifiers in expr-stx . The expression must
be fully expanded (§1.2.3.1 “Fully Expanded Programs”).

1.6 Legacy Zodiac Interface

(require syntax/zodiac)
(require syntax/zodiac-unit)
(require syntax/zodiac-sig)

The interface is similar to Zodiac—enough to be useful for porting—but different in many
ways. See the source "zodiac-sig.ss" for details. New software should not use this
compatibility layer.

9

2 Module-Processing Helpers

2.1 Reading Module Source Code

(require syntax/modread)

(with-module-reading-parameterization thunk) → any
thunk : (-> any)

Calls thunk with all reader parameters reset to their default values.

(check-module-form stx

expected-module-sym

source-v)
→ (or/c syntax? false/c)
stx : (or/c syntax? eof-object?)
expected-module-sym : symbol?
source-v : (or/c string? false/c)

Inspects stx to check whether evaluating it will declare a module named expected-

module-sym—at least if module is bound in the top-level to MzScheme’s module. The
syntax object stx can contain a compiled expression. Also, stx can be an end-of-file, on
the grounds that read-syntax can produce an end-of-file.

If stx can declare a module in an appropriate top-level, then the check-module-form
procedure returns a syntax object that certainly will declare a module (adding explicit context
to the leading module if necessary) in any top-level. Otherwise, if source-v is not #f, a
suitable exception is raised using the write form of the source in the message; if source-v
is #f, #f is returned.

If stx is eof or eof wrapped as a syntax object, then an error is raised or #f is returned.

2.2 Getting Module Compiled Code

(require syntax/modcode)

10

(get-module-code module-path-v

[compiled-subdir
compile-proc

ext-proc

#:choose choose-proc

#:notify notify-proc

#:src-reader read-syntax-proc]) → any
module-path-v : module-path?
compiled-subdir : (and/c path-string? relative-path?)

= "compiled"
compile-proc : (any/c . -> . any) = compile
ext-proc : (or/c false/c (path? boolean? . -> . any)) = #f
choose-proc : (path? path? path?

. -> .
(or/c (symbols ’src ’zo ’so) false/c))

= (lambda (src zo so) #f)
notify-proc : (any/c . -> . any) = void
read-syntax-proc : (any/c input-port? . -> . syntax?)

= read-syntax

Returns a compiled expression for the declaration of the module specified by module-path-
v .

The compiled-subdir argument defaults to "compiled"; it specifies the sub-directory to
search for a compiled version of the module.

The compile-proc argument defaults to compile. This procedure is used to compile mod-
ule source if an already-compiled version is not available.

The ext-proc argument defaults to #f. If it is not #f, it must be a procedure of two
arguments that is called when a native-code version of path is should be used. In that case,
the arguments to ext-proc are the path for the extension, and a boolean indicating whether
the extension is a loader file (#t) or not (#f).

The choose-proc argument is a procedure that takes three paths: a source path, a ".zo"
file path, and an extension path (for a non- loader extension). Some of the paths may not
exist. The result should be either ’src, ’zo, ’so, or #f, indicating which variant should be
used or (in the case of #f) that the default choice should be used.

The default choice is computed as follows: if a ".zo" version of path is available and
newer than path itself (in one of the directories specified by compiled-subdir), then it is
used instead of the source. Native-code versions of path are ignored, unless only a native-
code non- loader version exists (i.e., path itself does not exist). A loader extension is
selected a last resort.

If an extension is prefered or is the only file that exists, it is supplied to ext-proc when
ext-proc is #f, or an exception is raised (to report that an extension file cannot be used)

11

when ext-proc is #f.

If notify-proc is supplied, it is called for the file (source, ".zo" or extension) that is
chosen.

If read-syntax-proc is provided, it is used to read the module from a source file (but not
from a bytecode file).

(moddep-current-open-input-file)
→ (path-string? . -> . input-port?)

(moddep-current-open-input-file proc) → void?
proc : (path-string? . -> . input-port?)

A parameter whose value is used like open-input-file to read a module source or ".zo"
file.

(struct (exn:get-module-code exn) (path))
path : path?

An exception structure type for exceptions raised by get-module-code.

2.3 Resolving Module Paths to File Paths

(require syntax/modresolve)

(resolve-module-path module-path-v

rel-to-path-v) → path?
module-path-v : module-path?
rel-to-path-v : (or/c path-string? (-> any) false/c)

Resolves a module path to filename path. The module path is resolved relative to rel-to-

path-v if it is a path string (assumed to be for a file), to the directory result of calling the
thunk if it is a thunk, or to the current directory otherwise.

(resolve-module-path-index module-path-index

rel-to-path-v) → path?
module-path-index : module-path-index?
rel-to-path-v : (or/c path-string? (-> any) false/c)

Like resolve-module-path but the input is a module path index; in this case, the rel-

to-path-v base is used where the module path index contains the “self” index. If module-

12

path-index depends on the “self” module path index, then an exception is raised unless
rel-to-path-v is a path string.

2.4 Simplifying Module Paths

(require syntax/modcollapse)

(collapse-module-path module-path-v

rel-to-module-path-v)
→ (or/c path? module-path?)
module-path-v : module-path?
rel-to-module-path-v : any/c

Returns a “simplified” module path by combining module-path-v with rel-to-module-

path-v , where the latter must have the form ’(lib) or a symbol, ’(file
<string>), ’(planet), a path, or a thunk to generate one of those.

The result can be a path if module-path-v contains a path element that is needed for the
result, or if rel-to-module-path-v is a non-string path that is needed for the result; oth-
erwise, the result is a module path in the sense of module-path?.

When the result is a ’lib or ’planet module path, it is normalized so that equivalent
module paths are represented by equal? results.

(collapse-module-path-index module-path-index

rel-to-module-path-v)
→ (or/c path? module-path?)
module-path-index : module-path-index?
rel-to-module-path-v : any/c

Like collapse-module-path, but the input is a module path index; in this case, the rel-
to-module-path-v base is used where the module path index contains the “self” index.

2.5 Inspecting Modules and Module Dependencies

(require syntax/moddep)

Re-exports syntax/modread, syntax/modcode, syntax/modcollapse, and syn-
tax/modresolve, in addition to the following:

(show-import-tree module-path-v) → void?

13

module-path-v : module-path?

A debugging aid that prints the import hierarchy starting from a given module path.

14

3 Macro Transformer Helpers

3.1 Extracting Inferred Names

(require syntax/name)

(syntax-local-infer-name stx) → (or/c symbol? false/c)
stx : syntax?

Similar to syntax-local-name except that stx is checked for an ’inferred-name prop-
erty (which overrides any inferred name). If neither syntax-local-name nor ’inferred-
name produce a name, then a name is constructed from the source-location information in
stx , if any. If no name can be constructed, the result is #f.

3.2 Support for local-expand

(require syntax/context)

(build-expand-context v) → list?
v : (or/c symbol? list?)

Returns a list suitable for use as a context argument to local-expand for an internal-
definition context. The v argument represents the immediate context for expansion. The
context list builds on (syntax-local-context) if it is a list.

(generate-expand-context) → list?

Calls build-expand-context with a generated symbol.

3.3 Parsing define-like Forms

(require syntax/define)

(normalize-definition defn-stx

lambda-id-stx

[check-context?
opt+kws?]) → identifier? syntax?

defn-stx : syntax?

15

lambda-id-stx : identifier?
check-context? : boolean? = #t
opt+kws? : boolean? = #t

Takes a definition form whose shape is like define (though possibly with a different name)
and returns two values: the defined identifier and the right-hand side expression.

To generate the right-hand side, this function may need to insert uses of lambda. The
lambda-id-stx argument provides a suitable lambda identifier.

If the definition is ill-formed, a syntax error is raised. If check-context? is true, then a
syntax error is raised if (syntax-local-context) indicates that the current context is an
expression context. The default value of check-context? is #t.

If opt-kws? is #t, then arguments of the form [id expr], keyword id, and keyword
[id expr] are allowed, and they are preserved in the expansion.

3.4 Expanding define-struct-like Forms

(require syntax/struct)

(parse-define-struct stx orig-stx) → identifier?
(or/c identifier? false/c)
(listof identifier?)
syntax?

stx : syntax?
orig-stx : syntax?

Parses stx as a define-struct form, but uses orig-stx to report syntax errors (under
the assumption that orig-stx is the same as stx , or that they at least share sub-forms).
The result is four values: an identifier for the struct type name, a identifier or #f for the
super-name, a list of identifiers for fields, and a syntax object for the inspector expression.

(build-struct-names name-id

field-ids

omit-sel?

omit-set?

[src-stx]) → (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
src-stx : (or/c syntax? false/c) = #f

16

Generates the names bound by define-struct given an identifier for the struct type name
and a list of identifiers for the field names. The result is a list of identifiers:

• struct:name-id

• make-name-id

• name-id?

• name-id-field , for each field in field-ids .

• set-name-id-field! (getter and setter names alternate).

•

If omit-sel? is true, then the selector names are omitted from the result list. If omit-set?
is true, then the setter names are omitted from the result list.

The default src-stx is #f; it is used to provide a source location to the generated identifiers.

(build-struct-generation name-id

field-ids

omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
super-type : any/c = #f
prop-value-list : list? = empty
immutable-k-list : list? = empty

Takes the same arguments as build-struct-names and generates an S-expression for code
using make-struct-type to generate the structure type and return values for the identifiers
created by build-struct-names. The optional super-type , prop-value-list , and
immutable-k-list parameters take S-expression values that are used as the corresponding
arguments to make-struct-type.

17

(build-struct-generation* all-name-ids

name-id

field-ids

omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)
all-name-ids : (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
super-type : any/c = #f
prop-value-list : list? = empty
immutable-k-list : list? = empty

Like build-struct-generation, but given the names produced by build-struct-
names, instead of re-generating them.

(build-struct-expand-info name-id

field-ids

omit-sel?

omit-set?

base-name

base-getters

base-setters) → any
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
base-name : (or/c identifier? boolean?)
base-getters : (listof (or/c identifier? false/c))
base-setters : (listof (or/c identifier? false/c))

Takes the same arguments as build-struct-names, plus a parent identifier/#t/#f and a list
of accessor and mutator identifiers (possibly ending in #f) for a parent type, and generates an
S-expression for expansion-time code to be used in the binding for the structure name. A #t
for the base-name means no super-type, #f means that the super-type (if any) is unknown,
and an identifier indicates the super-type identifier.

(struct-declaration-info? v) → boolean?
v : any/c

18

Returns #t if x has the shape of expansion-time information for structure type declarations,
#f otherwise. See §4.6 “Structure Type Transformer Binding”.

(generate-struct-declaration orig-stx

name-id

super-id-or-false

field-id-list

current-context

make-make-struct-type

[omit-sel?
omit-set?]) → syntax?

orig-stx : syntax?
name-id : identifier?
super-id-or-false : (or/c identifier? false/c)
field-id-list : (listof identifier?)
current-context : any/c
make-make-struct-type : procedure?
omit-sel? : boolean? = #f
omit-set? : boolean? = #f

This procedure implements the core of a define-struct expansion.

The generate-struct-declaration procedure is called by a macro expander to generate
the expansion, where the name-id , super-id-or-false , and field-id-list arguments
provide the main parameters. The current-context argument is normally the result of
syntax-local-context. The orig-stx argument is used for syntax errors. The optional
omit-sel? and omit-set? arguments default to #f; a #t value suppresses definitions of
field selectors or mutators, respectively.

The make-struct-type procedure is called to generate the expression to actually create
the struct type. Its arguments are orig-stx , name-id-stx, defined-name-stxes, and
super-info. The first two are as provided originally to generate-struct-declaration,
the third is the set of names generated by build-struct-names, and the last is super-struct
info obtained by resolving super-id-or-false when it is not #f, #f otherwise.

The result should be an expression whose values are the same as the result of make-struct-
type. Thus, the following is a basic make-make-struct-type :

(lambda (orig-stx name-stx defined-name-stxes super-info)
#‘(make-struct-type ’#,name-stx

#,(and super-info (list-ref super-info 0))
#,(/ (- (length defined-name-stxes) 3) 2)
0 #f))

but an actual make-make-struct-type will likely do more.

19

3.5 Resolving include-like Paths

(require syntax/path-spec)

(resolve-path-spec path-spec-stx

source-stx

expr-stx

build-path-stx) → complete-path?
path-spec-stx : syntax?
source-stx : syntax?
expr-stx : syntax?
build-path-stx : syntax?

Resolves the syntactic path specification path-spec-stx as for include.

The source-stx specifies a syntax object whose source-location information determines
relative-path resolution. The expr-stx is used for reporting syntax errors. The build-

path-stx is usually #’build-path; it provides an identifier to compare to parts of path-
spec-stx to recognize the build-path keyword.

20

4 Reader Helpers

4.1 Raising exn:fail:read

(require syntax/readerr)

(raise-read-error msg-string

source

line

col

pos

span) → any
msg-string : string?
source : any/c
line : (or/c number? false/c)
col : (or/c number? false/c)
pos : (or/c number? false/c)
span : (or/c number? false/c)

Creates and raises an exn:fail:read exception, using msg-string as the base error mes-
sage.

Source-location information is added to the error message using the last five arguments (if
the error-print-source-location parameter is set to #t). The source argument is an
arbitrary value naming the source location—usually a file path string. Each of the line , pos
arguments is #f or a positive exact integer representing the location within source-name
(as much as known), col is a non-negative exact integer for the source column (if known),
and span is #f or a non-negative exact integer for an item range starting from the indicated
position.

The usual location values should point at the beginning of whatever it is you were reading,
and the span usually goes to the point the error was discovered.

(raise-read-eof-error msg-string

source

line

col

pos

span) → any
msg-string : string?
source : any/c
line : (or/c number? false/c)
col : (or/c number? false/c)

21

pos : (or/c number? false/c)
span : (or/c number? false/c)

Like raise-read-error, but raises exn:fail:read:eof instead of exn:fail:read.

4.2 Module Reader

(require syntax/module-reader)

The syntax/module-reader language provides support for defining #lang readers. In its
simplest form, the only thing that is needed in the body of a syntax/module-reader is
the name of the module that will be used in the language position of read modules; using
keywords, the resulting readers can be customized in a number of ways.

(#%module-begin module-path)
(#%module-begin module-path reader-option ... body)

reader-option = #:read read-expr

| #:read-syntax read-syntax-expr

| #:wrapper1 wrapper1-expr

| #:wrapper2 wrapper2-expr

| #:whole-body-readers? whole?-expr

Causes a module written in the syntax/module-reader language to define and provide
read and read-syntax functions, making the module an implementation of a reader. In
particular, the exported reader functions read all S-expressions until an end-of-file, and pack-
age them into a new module in the module-path language.

That is, a module something/lang/reader implemented as

(module reader syntax/module-reader
module-path)

creates a reader that converts #lang something into

(module name-id module-path

....)

where name-id is derived from the name of the port used by the reader.

For example, scheme/base/lang/reader is implemented as

(module reader syntax/module-reader
scheme/base)

22

The reader functions can be customized in a number of ways, using keyword markers in
the syntax of the reader module. A #:read and #:read-syntax keywords can be used to
specify functions other than read and read-syntax to perform the reading. For example,
you can implement a §“Honu” reader using:

(module reader syntax/module-reader
honu
#:read read-honu
#:read-syntax read-honu-syntax)

You can also use the (optional) module body to provide more definitions that might be needed
to implement your reader functions. For example, here is a case-insensitive reader for the
scheme/base language:

(module insensitive syntax/module-reader
scheme/base
#:read (wrap read) #:read-syntax (wrap read-syntax)
(define ((wrap reader) . args)
(parameterize ([read-case-sensitive #f]) (apply reader args))))

In many cases, however, the standard read and read-syntax are fine, as long as you can
customize the dynamic context they’re invoked at. For this, #:wrapper1 can specify a
function that can control the dynamic context in which the reader functions are called. It
should evaluate to a function that consumes a thunk and invokes it in the right context. Here
is an alternative definition of the case-insensitive language using #:wrapper1:

(module insensitive syntax/module-reader
scheme/base
#:wrapper1 (lambda (t)

(parameterize ([read-case-sensitive #f])
(t))))

Note that using a readtable, you can implement languages that go beyond plain S-
expressions.

In addition to this wrapper, there is also #:wrapper2 that has more control over the resulting
reader functions. If specified, this wrapper is handed the input port and a (one-argumet)
reader function that expects the input port as an argument. This allows this wrapper to hand
a different port value to the reader function, for example, it can divert the read to use different
file (if given a port that corresponds to a file). Here is the case-insensitive implemented using
this option:

(module insensitive syntax/module-reader
scheme/base
#:wrapper2 (lambda (in r)

(parameterize ([read-case-sensitive #f])
(r in))))

23

In some cases, the reader functions read the whole file, so there is no need to iterate them
(e.g., read-inside and read-syntax-inside). In these cases you can specify #:whole-
body-readers? as #t — the readers are expected to return a list of expressions in this
case.

Finally, note that the two wrappers can return a different value than the wrapped function.
This introduces two more customization points for the resulting readers:

• The thunk that is passed to a #:wrapper1 function reads the file contents and returns
a list of read expressions (either syntax values or S-expressions). For example, the
following reader defines a “language” that ignores the contents of the file, and simply
reads files as if they were empty:

(module ignored syntax/module-reader
scheme/base
#:wrapper1 (lambda (t) (t) ’()))

Note that it is still performing the read, otherwise the module loader will complain
about extra expressions.

• The reader function that is passed to a #:wrapper2 function returns the final reault
of the reader (a module expression). You can return a different value, for example,
making it use a different language module.

In some rare cases, it is more convenient to know whether a reader is invoked for a read or
for a read-syntax. To accommodate these cases, both wrappers can accept an additional
argument, and in this case, they will be handed a boolean value that indicates whether the
reader is expected to read syntax (#t) or not (#f). For example, here is a reader that uses the
scribble syntax, and the first datum in the file determines the actual language (which means
that the library specification is effectively ignored):

(module scribbled syntax/module-reader
-ignored-
#:wrapper2
(lambda (in rd stx?)
(let* ([lang (read in)]

[mod (parameterize ([current-readtable (make-at-readtable)])
(rd in))]

[mod (if stx? mod (datum->syntax #f mod))]
[r (syntax-case mod ()

[(module name lang* . body)
(with-syntax ([lang (datum->syntax

#’lang* lang #’lang*)])
(syntax/loc mod (module name lang . body)))])])

(if stx? r (syntax->datum r))))
(require scribble/reader))

24

(wrap-read-all mod-path

in

read

mod-path-stx

src

line

col

pos) → any/c
mod-path : module-path?
in : input-port?
read : (input-port . -> . any/c)
mod-path-stx : syntax?
src : (or/c syntax? #f)
line : number?
col : number?
pos : number?

[Note: this function is deprecated; syntax/module-reader can be adapted using the vari-
ous keywords to arbitrary readers, please use it instead.]

Repeatedly calls read on in until an end of file, collecting the results in order into lst , and
derives a name-id from (object-name in). The last five arguments are used to construct
the syntax object for the language position of the module. The result is roughly

‘(module ,name-id ,mod-path ,@lst)

25

5 Non-Module Compilation And Expansion

(require syntax/toplevel)

(expand-syntax-top-level-with-compile-time-evals stx) → syntax?
stx : syntax?

Expands stx as a top-level expression, and evaluates its compile-time portion for the benefit
of later expansions.

The expander recognizes top-level begin expressions, and interleaves the evaluation and
expansion of of the begin body, so that compile-time expressions within the begin body
affect later expansions within the body. (In other words, it ensures that expanding a begin
is the same as expanding separate top-level expressions.)

The stx should have a context already, possibly introduced with namespace-syntax-
introduce.

(expand-top-level-with-compile-time-evals stx) → syntax?
stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, but stx is first given
context by applying namespace-syntax-introduce to it.

(expand-syntax-top-level-with-compile-time-evals/flatten stx)
→ (listof syntax?)
stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, except that it returns a
list of syntax objects, none of which have a begin. These syntax objects are the flattened
out contents of any begins in the expansion of stx .

(eval-compile-time-part-of-top-level stx) → void?
stx : syntax?

Evaluates expansion-time code in the fully expanded top-level expression represented by
stx (or a part of it, in the case of begin expressions). The expansion-time code might affect
the compilation of later top-level expressions. For example, if stx is a require expression,
then namespace-require/expansion-time is used on each require specification in the
form. Normally, this function is used only by expand-top-level-with-compile-time-
evals.

26

(eval-compile-time-part-of-top-level/compile stx)
→ (listof compiled-expression?)
stx : syntax?

Like eval-compile-time-part-of-top-level, but the result is compiled code.

27

6 Trusting Standard Recertifying Transformers

(require syntax/trusted-xforms)

The syntax/trusted-xforms library has no exports. It exists only to require other mod-
ules that perform syntax transformations, where the other transformations must use syntax-
recertify. An application that wishes to provide a less powerful code inspector to a sub-
program should generally attach syntax/trusted-xforms to the sub-program’s names-
pace so that things like the class system from scheme/class work properly.

28

7 Attaching Documentation to Exports

(require syntax/docprovide)

(provide-and-document doc-label-id doc-row ...)

doc-row = (section-string (name type-datum doc-string ...) ...)
| (all-from prefix-id module-path doc-label-id)
| (all-from-except prefix-id module-path doc-label-id id ...)

name = id

| (local-name-id external-name-id)

A form that exports names and records documentation information.

The doc-label-id identifier is used as a key for accessing the documentation through
lookup-documentation. The actual documentation is organized into “rows”, each with a
section title.

A row has one of the following forms:

• (section-string (name type-datum doc-string ...) ...)

Creates a documentation section whose title is section-string , and pro-
vides/documents each name . The type-datum is arbitrary, for use by clients that
call lookup-documentation. The doc-strings are also arbitrary documentation
information, usually concatenated by clients.

A name is either an identifier or a renaming sequence (local-name-id extenal-
name-id).

Multiple rows with the same section name will be merged in the documentation output.
The final order of sections matches the order of the first mention of each section.

• (all-from prefix-id module-path doc-label-id)

• (all-from-except prefix-id module-path doc-label-id id ...)

Merges documentation and provisions from the specified module into the current one;
the prefix-id is used to prefix the imports into the current module (so they can
be re-exported). If ids are provided, the specified ids are not re-exported and their
documentation is not merged.

(lookup-documentation module-path-v

label-sym) → any
module-path-v : module-path?
label-sym : symbol?

29

Returns documentation for the specified module and label. The module-path-v argument
is a quoted module path, like the argument to dynamic-require. The label-sym identifies
a set of documentation using the symbol as a label identifier in provide-and-document.

30

Index
#%module-begin, 22
Attaching Documentation to Exports
bound-identifier-mapping-for-each

bound-identifier-mapping-get, 6
bound-identifier-mapping-map, 7
bound-identifier-mapping-put!, 6
bound-identifier-mapping?, 6
build-expand-context, 15
build-struct-expand-info, 18
build-struct-generation, 17
build-struct-generation*, 18
build-struct-names, 16
check-module-form

collapse-module-path, 13
collapse-module-path-index, 13
Computing the Free Variables of an Expres-

sion, 9
Deconstructing Syntax Objects
eval-compile-time-part-of-top-
level

eval-compile-time-part-of-top-
level/compile, 27

exn:get-module-code, 12
exn:get-module-code-path, 12
exn:get-module-code?, 12
expand-syntax-top-level-with-
compile-time-evals, 26

expand-syntax-top-level-with-
compile-time-evals/flatten, 26

expand-top-level-with-compile-
time-evals, 26

Expanding define-struct-like Forms, 16
Extracting Inferred Names, 15
free-identifier-mapping-for-each

free-identifier-mapping-get, 7
free-identifier-mapping-map, 8
free-identifier-mapping-put!, 7
free-identifier-mapping?, 7
free-vars, 9
generate-expand-context

generate-struct-declaration, 19

get-module-code, 11
Getting Module Compiled Code, 10
Hashing on bound-identifier=? and
free-identifier=?

Inspecting Modules and Module Dependen-
cies

kernel-form-identifier-list

kernel-syntax-case, 5
kernel-syntax-case*, 5
Legacy Zodiac Interface
lookup-documentation, 29
Macro Transformer Helpers
make-bound-identifier-mapping, 6
make-exn:get-module-code, 12
make-free-identifier-mapping, 7
make-module-identifier-mapping, 8
Matching Fully-Expanded Expressions, 5
moddep-current-open-input-file, 12
Module Reader, 22
module-identifier-mapping-for-
each, 8

module-identifier-mapping-get, 8
module-identifier-mapping-map, 8
module-identifier-mapping-put!, 8
module-identifier-mapping?, 8
module-or-top-identifier=?, 4
Module-Processing Helpers, 10
Non-Module Compilation And Expansion
normalize-definition, 15
parse-define-struct

Parsing define-like Forms, 15
provide-and-document, 29
raise-read-eof-error

raise-read-error, 21
Raising exn:fail:read, 21
Reader Helpers, 21
Reading Module Source Code, 10
Rendering Syntax Objects with Formatting,

8
resolve-module-path, 12
resolve-module-path-index, 12
resolve-path-spec, 20

31

Resolving include-like Paths, 20
Resolving Module Paths to File Paths, 12
show-import-tree

Simplifying Module Paths, 13
struct-declaration-info?, 18
struct:exn:get-module-code, 12
stx->list, 4
stx-car, 4
stx-cdr, 4
stx-list?, 4
stx-null?, 4
stx-pair?, 4
Support for local-expand, 15
Syntax Object Helpers, 4
syntax->string, 9
syntax-local-infer-name, 15
syntax/boundmap, 6
syntax/context, 15
syntax/define, 15
syntax/docprovide, 29
syntax/free-vars, 9
syntax/kerncase, 5
syntax/modcode, 10
syntax/modcollapse, 13
syntax/moddep, 13
syntax/modread, 10
syntax/modresolve, 12
syntax/module-reader, 22
syntax/name, 15
syntax/path-spec, 20
syntax/readerr, 21
syntax/struct, 16
syntax/stx, 4
syntax/to-string, 8
syntax/toplevel, 26
syntax/trusted-xforms, 28
syntax/zodiac, 9
syntax/zodiac-sig, 9
syntax/zodiac-unit, 9
Syntax: Meta-Programming Helpers, 1
Trusting Standard Recertifying Transformers
with-module-reading-

parameterization

wrap-read-all, 25

32

	1 Syntax Object Helpers
	1.1 Deconstructing Syntax Objects
	1.2 Matching Fully-Expanded Expressions
	1.3 Hashing on IdentifierColorbluebound-identifier=? and IdentifierColorbluefree-identifier=?
	1.4 Rendering Syntax Objects with Formatting
	1.5 Computing the Free Variables of an Expression
	1.6 Legacy Zodiac Interface

	2 Module-Processing Helpers
	2.1 Reading Module Source Code
	2.2 Getting Module Compiled Code
	2.3 Resolving Module Paths to File Paths
	2.4 Simplifying Module Paths
	2.5 Inspecting Modules and Module Dependencies

	3 Macro Transformer Helpers
	3.1 Extracting Inferred Names
	3.2 Support for IdentifierColorbluelocal-expand
	3.3 Parsing IdentifierColorblackdefine-like Forms
	3.4 Expanding IdentifierColorblackdefine-struct-like Forms
	3.5 Resolving IdentifierColorinclude-like Paths

	4 Reader Helpers
	4.1 Raising IdentifierColorblueexn:fail:read
	4.2 Module Reader

	5 Non-Module Compilation And Expansion
	6 Trusting Standard Recertifying Transformers
	7 Attaching Documentation to Exports
	Index

