Errortrace: Debugging and Profiling

Version 4.1.2

October 28, 2008

Errortrace is a stack-trace-on-exceptions, profiler, and coverage tool for MzScheme. It is
not a complete debugger; DrScheme provides more. Meanwhile, using Errortrace might be
better than MzScheme’s limited stack-trace reporting.

Contents

11 Quick Instructions|

2 Installing Errortrace|

|3__Using Errortrace|

3.1 Instrumentation and Profiling{

. COVEIage| e

3.3 Other Errortrace Bindings|.

4 Errortrace Library|

[Re-using Errortrace Stack Tracing|

11

1 Quick Instructions

e Throw away " .zo" versions of your source.

e Prefix your program with
(require errortrace)
or start MzScheme with the -1 option before the arguments to load your program:
mzscheme -1 errortrace
If you want to use MzScheme interactively, include the -1 flag first:
mzscheme -i -1 errortrace

e When an exception occurs, the exception handler prints something like a stack trace,
most recent contexts first.

The errortrace module is strange; don’t import it into another module. Instead, the er-
rortrace module is meant to be invoked from the top-level, so that it can install an evalua-
tion handler, exception handler, etc.

To reuse parts of the code of errortrace, import errortrace/errortrace-1ib. It con-
tains all of the bindings described here, but does not set the compilation handler or the error
display handler.

2 Installing Errortrace

Invoking the errortrace module sets the compilation handler to instrument Scheme source
code. It also sets the error display handler to report source information for an exception, and
it sets the use-compiled-file-paths parameter to trigger the use of Errortrace-specific
".zo" files.

NOTE: errortrace has no effect on code loaded as compiled byte code (i.e., froma " .zo"
file) or native code (i.e., froma ".d11", ".so" or ".dylib" file). You can use the ~—mode
errortrace flag to setup-plt to create ".zo" files with Errortrace information.

Explicitly requiring errortrace within a module is generally a bad idea, since errortrace
sets various parameters.

3 Using Errortrace

(require errortrace)

3.1 Instrumentation and Profiling

By default, errortrace only instruments for stack-trace-on-exception. Profiling and cov-
erage need to be enabled separately.

(instrumenting-enabled) — boolean?
(instrumenting-enabled on?) — void?
on? : any/c

A parameter that determines whether tracing instrumentation is enabled, #t by default. Af-
fects only the way that source code is compiled, not the way that exception information is
reported. The instrumentation for storing exception information slows most programs by a
factor of 2 or 3.

(profiling-enabled) — boolean?
(profiling-enabled on?) — void?
on? : any/c

Errortrace’s profiling instrumentation is #f by default. To use it, you also need to ensure that
instrumenting-enabled is on.

(profiling-record-enabled) — boolean?
(profiling-record-enabled on?) — void?
on? : any/c

Enables/disables the recording of profiling info for the instrumented code. The default is #t.

Profiling information is accumulated in a hash table. If a procedure is redefined, new profil-
ing information is accumulated for the new version of the procedure, but the old information
is also preserved.

Depending of the source program, profiling usually induces a factor of 2 to 4 slowdown in
addition to any slowdown from the exception information instrumentation.

(output-profile-results paths? sort-time?) — void?
paths? : any/c
sort-time? : any/c

Gets the current profile results using get-profile-results and displays them. It option-
ally shows paths information (if it is recorded), and sorts by either time or call counts.

(get-profile-results) — list?

Returns a list of lists that contain all profiling information accumulated so far:

o the number of times a procedure was called.

o the number of milliseconds consumed by the procedure’s body across all calls (in-
cluding the time consumed by any nested non-tail call within the procedure, but not
including time consumed by a tail-call from the procedure).

e an inferred name (or #£) for the procedure.

e the procedure’s source in the form of a syntax object (which might, in turn, provide a
source location file and position).

e optionally, a list of unique call paths (i.e. stack traces) recorded if profile-paths-
enabled is set to #t. Each call path is a pair of
— acount (the number of times the path occurred), and
— a list containing two-element lists. Each two-element list contains

* the calling procedure’s name or source expression, and
* the calling procedure’s source file or #f.

Collecting this information is relatively expensive.

(profile-paths-enabled) — boolean?
(profile-paths-enabled on?) — void?
on? : any/c

Enables/disables collecting path information for profiling. The default is #f, but setting the
parameter to #t immediately affects all procedures instrumented for profiling information.

(clear-profile-results) — void?

Clears accumulated profile results.

3.2 Coverage

Errortrace can produce coverage information in two flavors: both count the number of times
each expression in the source was used during execution. The first flavor uses a simple
approach, where each expression is counted when executed; the second one uses the same
annotations that the profiler uses, so only function bodies are counted. To see the difference
between the two approaches, try this program:

(define (foo x) (if x 1 2))
(equal? (foo #t) 1)

The first approach will produce exact results, but it is more expensive; use it when you
want to know how covered your code is (when the expected counts are small). The second
approach produces coarser results (which, in the above case, will miss the 2 expression), but
is less expensive; use it when you want to use the counts for profiling (when the expected
counts are large).

(coverage-counts-enabled) — boolean?

(coverage-counts-enabled on?) — void?
on? : any/c

(execute-counts-enabled) — boolean?

(execute-counts-enabled on?) — void?
on? : any/c

Parameters that determine if the first (exact coverage) or second (profiler-based coverage)
are enabled. Remember that setting instrumenting-enabled to #f also disables both.

(get-coverage-counts) — list?
(get-execute-counts) — list?

Returns a list of pairs, one for each instrumented expression. The first element of the pair is a
syntax? object (usually containing source location information) for the original expression,
and the second element of the pair is the number of times that the expression has been
evaluated. These elements are destructively modified, so to take a snapshot you will need to
copy them.

(annotate-covered-file filename-path
[display-string]) — void?
filename-path : path-string?
display-string : (or/c string? false/c) = #f
(annotate-executed-file filename-path
[display-string]) — void?
filename-path : path-string?
display-string : (or/c string? false/c) = "".,"

7

Writes the named file to the current-output-port, inserting an additional line between
each source line to reflect execution counts (as reported by get-coverage-counts or get-
execute-counts). The optional display-string is used for the annotation: the first
character is used for expressions that were visited 0 times, the second character for 1 time,
..., and the last character for expressions that were visited more times. It can also be #t for
a maximal display ("012...9ABC. ..Z"), or #f for a minimal display ("#-").

3.3 Other Errortrace Bindings

The errortrace module also exports:

(print-error-trace output-port exn) — void?
output-port : output-port?
exn : exn?

The print-error-trace procedure takes a port and exception and prints the Errortrace-
collected debugging information contained in the exception. It is used by the exception
handler installed by Errortrace.

(error-context-display-depth) — integer?
(error-context-display-depth d) — void?
d : integer?

The error-context-display-depth parameter controls how much context Errortrace’s
exception handler displays. The default value is 10,000.

4 Errortrace Library

(require errortrace/errortrace-lib)

The errortrace/errortrace-1ib module exports all of the exports of errortrace, plus
a few more. It does not install any handlers.

The additional exports are as follows:

(errortrace-compile-handler stx
immediate-eval?)
— compiled-expression?
stx : any/c
immediate-eval? : any/c

Compiles stx using the compilation handler that was active when the
errortrace/errortrace-1ib module was executed, but first instruments the code for
Errortrace information. The code is instrumented only if (namespace-module-registry
(current-namespace)) is the same as when the errortrace/errortrace-1ib
module was executed. This procedure is suitable for use as a compilation handler via
current-compile.

(errortrace-error-display-handler string
exn) — void?
string : string?
exn : exn?

Displays information about the exception; this procedure is suitable for use as an error dis-
play handler.

(errortrace-annotate stx) — any/c
stx : any/c

Macro-expands and instruments the given top-level form. If the form is a module named
errortrace-key, no instrumentation is applied. This annotation function is used by
errortrace-compile-handler.

(annotate-top stx phase-level) — any/c
stx : any/c
phase-level : exact-integer?

Like errortrace-annotate, but given an explicit phase level for stx; (namespace-

base-phase) is typically the right value for the phase-level argument.

Unlike errortrace-annotate, there no special case for a module named errortrace-
key. Also, if stx is a module declaration, it is not enriched with imports to explicitly load
Errortrace run-time support.

10

5 Re-using Errortrace Stack Tracing

(require errortrace/stacktrace)

The errortrace collection also includes a errortrace/stacktrace library. It exports the
stacktrace@ unit, its import signature stacktrace-imports~, and its export signature

stacktrace”.

stacktrace@ : unit?

Imports stacktrace-imports™ and exports stacktrace”.

stacktrace” : signature

(annotate stx phase-level) — syntax?

stx : syntax?

phase-level : exact-integer?
(annotate-top stx phase-level) — syntax?

stx . syntax?

phase-level : exact-integer?
Annotate expressions with errortrace information. The annotate-top func-
tion should be called with a top-level expression, and annotate should be
called with a nested expression (e.g., by initialize-profile-point). The
phase-level argument indicates the phase level of the expression, typically
(namespace-base-phase) for a top-level expression.

(make-st-mark syntax) — st-mark?
syntax : syntax?

(st-mark-source st-mark) — syntax?
st-mark : st-mark?

(st-mark-bindings st-mark) — list?
st-mark : st-mark?

The st-mark-source and st-mark-bindings functions extract information
from a particular kind of value. The value must be created by make-st-mark.
The st-mark-source extracts the value originally provided to the expression-
maker, and st-mark-bindings returns local binding information (if available)
as a list of two element (syntax? any/c) lists. The st-mark-bindings function
is currently hardwired to return null.

11

stacktrace-imports” : signature

(with-mark source-stx dest-stx) — any/c
source-stx : any/c
dest-stx : any/c

Called by annotate and annotate-top to wrap expressions with with-
continuation-mark. The first argument is the source expression and the sec-
ond argument is the expression to be wrapped.

(test-coverage-enabled) — boolean?
(test-coverage-enabled on?) — void?

on? : any/c
Determines if the test coverage annotation is inserted into the code. This param-
eter controls how compilation happens—it does not affect the dynamic behavior
of the already compiled code. If the parameter is set, calls to test-covered
are inserted into the code (and initialize-test-coverage-point is called
during compilation). If not, no calls to test-covered are inserted.

(test-covered key) — void?
key : any/c

During execution of the program, this is called for each point with the key for
that program point that was passed to initialize-test-coverage-point.

(initialize-test-coverage-point key stx) — void?

key : any/c

stx : any/c
During compilation of the program, this function is called with each sub-
expression of the program. The first argument is a special key used to identify
this program point. The second argument is the syntax of this program point.

profile-key : any/c
Only used for profiling paths.

(profiling-enabled) — boolean?
(profiling-enabled on?) — void?

on? : any/c
Determines if profiling information is currently collected (affects the behavior
of compiling the code—does not affect running code). If this always returns #£,
the other profiling functions are never called.

12

(initialize-profile-point key name stx) — void?
key : any/c
name : (or/c syntax? false/c)
stx : any/c

Called as the program is compiled for each profiling point that might be encoun-
tered during the program’s execution. The first argument is a key identifying
this code. The second argument is the inferred name at this point and the final
argument is the syntax of this expression.

(register-profile-start key) — (or/c number? false/c)

key : any/c
Called when some profiled code is about to be executed. If the result is a num-
ber, it is expected to be the current number of milliseconds. key is unique to this
fragment of code—it is the same key passed to initialize-profile-point
for this code fragment.

(register-profile-done key start) — void?
key : any/c
start : (or/c number? false/c)
This function is called when some profiled code is finished executing.

Note that register-profile-start and register-profile-done can be
called in a nested manner; in this case, the result of register-profile-start
should be #f.

13

	1 Quick Instructions
	2 Installing Errortrace
	3 Using Errortrace
	3.1 Instrumentation and Profiling
	3.2 Coverage
	3.3 Other Errortrace Bindings

	4 Errortrace Library
	5 Re-using Errortrace Stack Tracing

