XML: Parsing and Writing

Version 4.1.2

Paul Graunke

October 28, 2008

(require xml)

The xml library provides functions for parsing and generating XML. XML can be repre-
sented as an instance of the document structure type, or as a kind of S-expression that is
called an X-expression.

The xml library does not provides Document Type Declaration (DTD) processing, valida-
tion, expanding user-defined entities, or reading user-defined entities in attributes.

1 Datatypes

(xexpr? v) — boolean?
v : any/c

Returns #t if v is a X-expression, #f otherwise.
The following grammar describes expressions that create X-expressions:

xexpr = string

| (list symbol (1list (list symbol string) ...) xexpr ...)
| (cons symbol (list xexpr ...))

| symbol

| exact-nonnegative-integer

| cdata

|

misc

A string is literal data. When converted to an XML stream, the characters of the data will
be escaped as necessary.

A pair represents an element, optionally with attributes. Each attribute’s name is represented
by a symbol, and its value is represented by a string.

A symbol represents a symbolic entity. For example, *nbsp represents .

An exact-nonnegative-integer represents a numeric entity. For example, #x20 repre-
sents ;.

A cdata is an instance of the cdata structure type, and a misc is an instance of the comment
or pcdata structure types.

(struct document (prolog element misc))
prolog : prolog?
element : element?
misc : (or/c comment? pcdata?)

Represents a document.

(struct prolog (misc dtd misc2))
misc : (listof (or/c comment? pcdata?))
dtd : (or/c document-type false/c)
misc2 : (listof (or/c comment? pcdata?))

Represents a document prolog. The make-prolog binding is unusual: it accepts two or

more arguments, and all arguments after the first two are collected into the misc? field.

(struct document-type (name external inlined))
name :@ symbol?
external : external-dtd?
inlined : false/c

Represents a document type.

(struct external-dtd (system))
system : string?

(struct (external-dtd/public external-dtd) (public))
public : string?

(struct (external-dtd/system external-dtd) ())

Represents an externally defined DTD.

(struct (element source) (name attributes content))
name : symbol?
attributes : (listof attribute?)
content : (listof content?)

Represents an element.

(content? v) — boolean?
v : any/c

Returns #t if v is a pcdata instance, element instance, an entity instance, comment, or
pcdata instance.

(struct (attribute source) (name value))
name :@ symbol?
value : string?

Represents an attribute within an element.

(struct (entity source) (text))
text : (or/c symbol? exact-nonnegative-integer?)

Represents a symbolic or numerical entity.

(struct (pcdata source) (string))
string : string?

Represents PCDATA content.

(struct (cdata source) (string))
string : string?

Represents CDATA content.

The string field is assumed to be of the form <! [CDATA [{content)]]1> with proper quoting
of (content). Otherwise, write-xml generates incorrect output.

(struct (p-i source) (target-name instruction))
target-name : string?
instruction : string?

Represents a processing instruction.

(struct comment (text))
text : string?

Represents a comment.

(struct source (start stop))
start : (or/c location? symbol?)
stop : (or/c location? symbol?)

Represents a source location. Other structure types extend source.

When XML is generated from an input stream by read-xml, locations are represented by
location instances. When XML structures are generated by xexpr->xml, then locations
are symbols.

(struct location (line char offset))
line : exact-nonnegative-integer?
char : exact-nonnegative-integer?
offset : exact-nonnegative-integer?

Represents a location in an input stream.

(struct (exn:invalid-xexpr exn:fail) (code))
code : any/c

Raised by validate-xexpr when passed an invalid X-expression. The code fields contains
an invalid part of the input to validate-xexpr.

2 Reading and Writing XML

(read-xml [in]) — document?
in : input-port? = (current-input-port)

Reads in an XML document from the given or current input port XML documents contain
exactly one element, raising xm1-read: error if the input stream has zero elements or more
than one element.

Malformed xml is reported with source locations in the form (I) . (¢)/{0), where (I), {c), and
(0) are the line number, column number, and next port position, respectively as returned by
port-next-location.

Any non-characters other than eof read from the input-port appear in the document content.
Such special values may appear only where XML content may. See make-input-port for
information about creating ports that return non-character values.

Examples:
> (xml->xexpr (document-element
(read-xml (open-input-string
"<doc><bold>hi</bold> there!</doc>"))))
(doc () (bold () "hi") " there!")

(read-xml/element [in]) — element?
in : input-port? = (current-input-port)

Reads a single XML element from the port. The next non-whitespace character read must
start an XML element, but the input port can contain other data after the element.

(syntax:read-xml [in]) — syntax?
in : input-port? = (current-input-port)

Reads in an XML document and produces a syntax object version (like read-syntax) of an
X-expression.

(syntax:read-xml/element [in]) — syntax?
in : input-port? = (current-input-port)

Like syntax:real-xml, but it reads an XML element like read-xml/element.

(write-xml doc [out]) — void?
doc : document?

out : output-port? = (current-output-port)

Writes a document to the given output port, currently ignoring everything except the docu-
ment’s root element.

(write-xml/content content [out]) — void?
content : content?
out : output-port? = (current-output-port)

Writes document content to the given output port.

(display-xml doc [out]) — void?
doc : document?
out : output-port? = (current-output-port)

Like write-xml, but newlines and indentation make the output more readable, though less
technically correct when whitespace is significant.

(display-xml/content content [out]) — void?
content : content?
out : output-port? = (current-output-port)

Like write-xml/content, but with indentation and newlines like display-xml.

3 XML and X-expression Conversions

(xml->xexpr content) — xexpr?
content : content?

Converts document content into an X-expression.

(xexpr->xml xexpr) — content?
Xexpr . xexpr?

Converts an X-expression into XML content.

(xexpr->string xexpr) — string?
Xexpr . xexpr?

Converts an X-expression into a string containing XML.

((eliminate-whitespace tags choose) elem) — element?
tags : (listof symbol?)
choose : (boolean? . -> . any/c)
elem : element?

Some elements should not contain any text, only other tags, except they often contain whites-
pace for formating purposes. Given a list of tag names as tags and the identity function as
choose, eliminate-whitespace produces a function that filters out PCDATA consisting
solely of whitespace from those elements, and it raises an error if any non-whitespace text
appears. Passing in not as choose filters all elements which are not named in the tags list.
Using void as choose filters all elements regardless of the tags list.

(validate-xexpr v) — (one-of/c #t)
v : any/c

If v is an X-expression, the result #t. Otherwise, exn:invalid-xexprs is raised, with the
a message of the form “Expected (something), given (something-else)/” The code field of
the exception is the part of v that caused the exception.

(correct-xexpr? v success-k fail-k) — any/c

v : any/c
success-k : (-> any/c)
fail-k : (exn:invalid-xexpr? . -> . any/c)

Like validate-expr, except that success-k is called on each valid leaf, and fail-k is
called on invalid leaves; the fail-k may return a value instead of raising an exception of
otherwise escaping. Results from the leaves are combined with and to arrive at the final
result.

4 Parameters

(empty-tag-shorthand)

— (or/c (one-of/c ’always ’never) (listof symbol?))
(empty-tag-shorthand shorthand) — void?

shorthand : (or/c (one-of/c ’always ’never) (listof symbol?))

A parameter that determines whether output functions should use the <(fag)/> tag notation
instead of <(rag)></(tag)> for elements that have no content.

When the parameter is set to ’always, the abbreviated notation is always used. When set
of ‘never, the abbreviated notation is never generated. when set to a list of symbols is
provided, tags with names in the list are abbreviated. The default is ’always.

The abbreviated form is the preferred XML notation. However, most browsers designed
for HTML will only properly render XHTML if the document uses a mixture of the two
formats. The html-empty-tags constant contains the W3 consortium’s recommended list
of XHTML tags that should use the shorthand.

html-empty-tags : (listof symbol?)
See empty-tag-shorthand.

Examples:
> (parameterize ([empty-tag-shorthand html-empty-tags])
(write-xml/content (xexpr->xml ‘(html
(body ((bgcolor "red"))
"Hi!" (br) "Bye!")))))
<html><body bgcolor="red">Hi!
Bye!</body></html>

(collapse-whitespace) — boolean?
(collapse-whitespace collapse?) — void?
collapse? : any/c

A parameter that controls whether consecutive whitespace is replaced by a single space.
CDATA sections are not affected. The default is #£.

(read-comments) — boolean?
(read-comments preserve?) — void?
preserve? : any/c

A parameter that determines whether comments are preserved or discarded when reading

10

XML. The default is #f, which discards comments.

(xexpr-drop-empty-attributes) — boolean?
(xexpr-drop-empty-attributes drop?) — void?
drop? : any/c

Controls whether xm1->xexpr drops or preserves attribute sections for an element that has

no attributes. The default is #£, which means that all generated X-expression elements have
an attributes list (even if it’s empty).

11

5 PList Library

(require xml/plist)

The xm1/plist library provides the ability to read and write XML documents that conform
to the plist DTD, which is used to store dictionaries of string—value associations. This format
is used by Mac OS X (both the operating system and its applications) to store all kinds of
data.

A dictionary X-expression is an X-expression that could be create by an expression matching
the following dict-expr grammar:

dict-expr = (list ’dict assoc-pair ...)

assoc-pair = (list ’assoc-pair string pl-value)
pl-value = string

| (list ’true)

| (list ’false)

| (list ’integer integer)

| (list ’real real)

| dict-expr

| (list ’array pl-value ...)

(read-plist in) — xexpr?
in : input-port?

Reads a plist from a port, and produces a dictionary X-expression.

(write-plist dict out) — void?
dict : xexpr?
out : output-port?

Write a plist to the given port. If dict is not a dictionary X-expression, the
exn:fail:contract exception is raised.

Examples:
> (define my-dict
‘(dict (assoc-pair "first-key"

"just a string with some whitespace")

(assoc-pair "second-key"
(false))

(assoc-pair "third-key"
(dict))

12

(assoc-pair "fourth-key"
(dict (assoc-pair "inner-key"
(real 3.432))))
(assoc-pair "fifth-key"
(array (integer 14)
"another string"
(true)))
(assoc-pair "sixth-key"
(array))))
(define-values (in out) (make-pipe))
(write-plist my-dict out)
(close-output-port out)
(define new-dict (read-plist in))
(equal? my-dict new-dict)

V V V VvV V

#t

The XML generated by write-plist in the above example looks like the following, if
re-formatted by:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE plist SYSTEM
"file://localhost/System/Library/DTDs/PropertyList.dtd">
<plist version="0.9">
<dict>
<key>first-key</key>
<string>just a string with some whitespace</string>
<key>second-key</key>

<false />
<key>third-key</key>
<dict />
<key>fourth-key</key>
<dict>

<key>inner-key</key>
<real>3.432</real>
</dict>
<key>fifth-key</key>
<array>
<integer>14</integer>
<string>another string</string>
<true />
</array>
<key>sixth-key</key>
<array />
</dict>
</plist>

13

	1 Datatypes
	2 Reading and Writing XML
	3 XML and X-expression Conversions
	4 Parameters
	5 PList Library

