
Games: Fun Examples
Version 4.1.3

November 20, 2008

The PLT Games executable (or plt-games under Unix) lets you select one of the games
distributed by PLT or other games installed as sub-collections of the "games" collection
(see §2 “Implementing New Games”).

1

Contents

1 Bundled Games 4

1.1 Aces — Solitaire Card Game . 4

1.2 Go Fish — Kid’s Card Game . 4

1.3 Crazy 8s — Card Game . 5

1.4 Blackjack — 21 Card Game . 5

1.5 Rummy — Card Game . 6

1.6 Spider — Solitaire Card Game . 6

1.7 Memory — Kid’s Game . 7

1.8 Slidey — Picture Puzzle . 7

1.9 Same — Dot-Removing Game . 8

1.10 Minesweeper — Logic Game . 8

1.11 Paint By Numbers — Logic Game . 8

1.12 Lights Out — Logic Game . 10

1.13 Pousse — Tic-Tac-Toe-like Game . 11

1.14 Gobblet — Strategy Game . 12

1.14.1 Game Rules . 12

1.14.2 Controls . 13

1.14.3 Auto-Play . 13

1.15 Jewel — 3-D Skill Game . 14

1.16 Parcheesi — Board Game . 14

1.17 Checkers — Board Game . 15

1.18 Chat Noir — Puzzle Game . 15

1.19 GCalc — Visual λ-Calculus . 39

1.19.1 The Window Layout . 39

2

1.19.2 User Interaction . 39

1.19.3 Cube operations . 40

2 Implementing New Games 41

3 Showing Scribbled Help 42

4 Showing Text Help 43

3

1 Bundled Games

1.1 Aces — Solitaire Card Game
To play Aces, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

Aces is a solitaire card game. The object is to remove all of the cards from the board, except
the four Aces.

Remove a card by clicking it. You may remove a card when two conditions are true. First, it
must be at the bottom of one of the four stacks of cards. Second, either the ace of the same
suit, or a higher card of the same suit must also be at the bottom of one of the four stacks of
cards.

You may also move any card from the bottom of one of the stacks to an empty stack by
clicking it. If there are still cards in the deck on the right, you may click the deck to deal
four new cards, one onto the bottom of each stack.

Good Luck!

1.2 Go Fish — Kid’s Card Game
To play Go Fish,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Go Fish is the children’s card game where you try to get rid of all you cards by forming
pairs. You play against two computer players.

On each turn, if you have a match in your hand, drag one of the matching cards to your
numbered box, and the match will move into the box.

After forming matches from your own hand, drag one of your cards to an opponent’s area to
ask the opponent for a matching card:

• If the opponent has a card with the same value as the card that you drag, the opponent
will give you the card, and they’ll go into your match area. Drag another card to an
opponent.

• If the opponent has no matching card, the top card on draw pile will move, indicating
that you must “Go Fish!” Draw a card by dragging it from the draw pile to your hand.
If the drawn card gives you a match, then the match will automatically move into your
match area, and it’s still your turn (so drag another card to one of the opponents).

The game is over when one player runs out of cards. The winner is the one with the most
matches.

4

The status line at the bottom of the window provides instructions as you go. The computer
players are not particularly smart.

1.3 Crazy 8s — Card Game
To play Crazy 8s,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Try to get rid of all you cards by matching the value or suit of the top card in the discard pile.
In the default mode, click a card to discard it; you can adjust the options so that you discard
by dragging a card from your hand to the discard pile.

An 8 can be discarded at any time, and in that case, the player who discarded the 8 gets to
pick any suit for it (hence the craziness of 8s). When you discard an 8, a panel of buttons
appears to the right of the discard pile, so you can pick the suit.

A player can choose to draw a card instead of discarding, as long as cards are left in the
draw pile. A player’s turn continues after drawing, so a player can continue drawing to find
something to discard. In the default mode, click the face-down draw pile in the middle of
the table; you can adjust the options to that you draw by dragging it from the draw pile to
your hand.

If no cards are left in the deck, a player may pass instead of discarding. To pass, click the
Pass button.

The status line at the bottom of the window provides instructions as you go.

1.4 Blackjack — 21 Card Game
To play Blackjack,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Standard Blackjack rules with the following specifics:

• 1 player (not counting the dealer).

• 4 decks, reshuffled after 3/4 of the cards are used.

• Dealer stands on soft 17s.

• Splitting is allowed only on the first two cards, and only if they are equal. 10 and the
face cards are all considered equal for splitting.

• Doubling is allowed on all unsplit hands, not on split hands.

• No blackjacks after splitting.

5

• No surrender.

• No insurance.

• No maximum under-21 hand size.

• Dealer’s second card is not revealed if the player busts (or both halves of a split hand
bust).

1.5 Rummy — Card Game
To play Rummy,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

This is a simple variant of Rummy.

Put all cards in your hand into straights (3 or more cards in the same suit) and 3- or 4-of-
a-kind sets to win. Each card counts for only one set. Aces can be used in both A-2-3
sequences and Q-K-A sequences.

When all of your cards fit into sets (the game detects this automatically), you win.

On each turn, you can either draw from the deck or from the top of the discard pile (drag
from either to your hand), then you must discard one of your own cards (by dragging from
your hand to the discard pile).

The status line at the bottom of the window provides instructions as you go. The computer
player is fairly smart.

1.6 Spider — Solitaire Card Game
To play Spider,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Spider is a solitaire card game played with 104 cards. The cards can include either a single
suit, two suits, or four suites. (Choose your variant through the Options item in the Edit
menu.)

Terminology:

• Tableau: one of the ten stacks of cards in the play area. The game starts with six cards
in the first four tableaus, and five cards in the rest; only the topmost card is face up,
and others are revealed when they become the topmost card of the tableau.

• Sequence: a group of cards on the top of a tableau that are in the same suit, and that
are in sequence, with the lowest numbered card topmost (i.e., closer to the bottom of
the screen). King is high and ace is low.

6

The object of the game is to create a sequence with ace through king, at which point the
sequence is removed from play. Create eight such sequences to win the game.

On each move, you can take one of the following actions:

• Move a sequence from any tableau to one whose topmost card (i.e., closest to the
bottom of the screen) has a value that’s one more than the sequence’s value. Note that
if the top card of the target tableau has the same suit as the sequence, a larger sequence
is formed, but the target tableau’s card is not required to have the same suit.

• Move a sequence to an empty tableau.

• Deal ten cards from the deck (in the upper left corder), one to each tableau. This move
is allowed only if no tableau is empty.

To move a sequence, either drag it to the target tableau, or click the sequence and then click
the top card of the target tableau (or the place where a single card would be for an empty
tableau). Click a select card to de-select it. Clicking a card that is not a valid target for the
currently selected sequence causes the clicked card’s sequence to be selected (if the card is
face up in a sequence).

To deal, click the deck.

To undo a move, use Undo from the Edit menu.

1.7 Memory — Kid’s Game
To play Memory,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Flip two cards in a row that have the same picture, and the cards are removed. If the two
cards don’t match, they are flipped back over, and you try again. Each card has a single
match on the board. The game is over and the clock stops when all cards are removed.

1.8 Slidey — Picture Puzzle
To play Slidey, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

Click a tile to slide it into the adjacent space, and keep shifting tiles that way to repair the
picture.

7

1.9 Same — Dot-Removing Game
To play Same, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

The object of Same is to score points by removing dots from the board. To remove a dot,
click on it. As long as there is another dot of the same color next to the clicked dot, it will
disappear along with all adjacent dots of the same color. After the dots disappear, dots in the
rows above the deleted dots will fall into the vacated spaces. If an entire column is wiped
out, all of the dots from the right will slide left to take up the empty column’s space.

Your score increases for each ball removed from the board. The score for each click is a
function of the number of balls that disappeared. The This Click label shows how many
points you would score for clicking the dots underneath the mouse pointer. The score varies
quadratically with the number of balls, so eliminating many balls with one click is advanta-
geous.

Click the New Game button to play again.

1.10 Minesweeper — Logic Game
To play
Minesweeper,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Remove all the tiles that have no bomb underneath. When you remove such a tile, a number
appears that indicates how many of the surrounding squares (up to 8) have a bomb; a blank
means zero bombs, and the game automatically uncovers all surrounding tiles in that case.

Right- or Control-click to flag a tile that you think has a bomb, so that you cannot acciden-
tally uncover it. Right- or Control-click again to remove the flag.

You don’t have to use flags. When all of the non-bomb tiles are removed, the game is over,
and the clock stops.

1.11 Paint By Numbers — Logic Game
To play Paint By
Numbers, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

The object of Paint By Numbers is to discover which cells should be colored blue and which
should be colored white. Initially, all squares are grey, indicating that the correct colors are
not known. The lists of numbers to the left and above the grid are your clues to the correct
color of each square. Each list of numbers specifies the pattern of blue squares in the row
beside it or the column below it. Each number indicates the length of a group of blue squares.
For example, if the list of numbers beside the first row is 2 3 then you know that there is a
contiguous block of two blue squares followed by a contiguous block of three blue squares

8

with at least one white square between them. The label does not tell you where the blue
squares are, only their shapes. The trick is to gather as much information as you can about
each row, and then use that information to determine more about each column. Eventually
you should be able to fill in the entire puzzle.

Click on a square to toggle it between blue and gray. Hold down a modifier key (shift,
command, meta, or alt depending on the platform) to toggle a square between white and
gray. The third button under unix and the right button under windows also toggles between
white and gray.

For some puzzles, hints are available. Choose the Nongram|Show Mistakes menu item to
receive the hints. This will turn all incorrectly colored squares red.

Thanks to Shoichiro Hattori for his puzzles! Visit him on the web at:

http://hattori.m78.com/puzzle/

Thanks also to many of the contributors to the Kajitani web site for permission to re-
distribute their puzzles. Visit them online at:

http://nonogram.freehostia.com/pbn/index.html

The specific contributers who have permitted their puzzles to be redistributed are:

snordmey /at/ dayton <dot> net
jtraub /at/ dragoncat <dot> net
e0gb258s /at/ mail <dot> erin <dot> utoronto <dot> ca
mattingly /at/ bigfoot <dot> com
jennifer <dot> forman /at/ umb <dot> edu
karen <dot> hoover /at/ bigfoot <dot> com
sssstree /at/ ix <dot> netcom <dot> com
we bakers 3 /at/ earthlink <dot> net
bbart /at/ cs <dot> sfu <dot> ca
jonesjk /at/ thegrid <dot> net
rrichard /at/ lexitech <dot> ca
helena <dot> montauban /at/ auroraenergy <dot> com <dot> au
barblane /at/ ionsys <dot> com
m5rammy /at/ maale5 <dot> com
nmbauer /at/ sprynet <dot> com
ncfrench /at/ aol <dot> com
km29 /at/ drexel <dot> edu
jjl /at/ stanford <dot> edu
disneyfan13 /at/ hotmail <dot> com
richard /at/ condor-post <dot> com
lady tabitha /at/ yahoo <dot> com
vaa /at/ psulias <dot> psu <dot> edu
kimbhall /at/ yahoo <dot> com

9

kcottam /at/ cusa <dot> com
karganov /at/ hotmail <dot> com
jdmaynard /at/ excite <dot> com
mnemoy /at/ gameworks <dot> com
arrelless /at/ jayco <dot> net
azisi /at/ skiathos <dot> physics <dot> auth <dot> gr
whoaleo /at/ hotmail <dot> com
tucker1999 /at/ earthlink <dot> net
bergles /at/ yahoo <dot> com
elisabeth <dot> springfelter /at/ lanab <dot> amv <dot> se
ewhaynes /at/ mit <dot> edu
mjcarroll /at/ ccnmail <dot> com
dahu /at/ netcourrier <dot> com
joy /at/ dcs <dot> gla <dot> ac <dot> uk
piobst /at/ wam <dot> umd <dot> edu
dani681 /at/ aol <dot> com
Talzhemir <pixel /at/ realtime <dot> net>
hkittredge /at/ hotmail <dot> com
allraft /at/ sccoast <dot> net
karlvonl /at/ geocities <dot> com
ailsa /at/ worldonline <dot> nl
Carey Willis <N8NRG /at/ hotmail <dot> com>
citragreen /at/ hotmail <dot> com
dhalayko /at/ cgocable <dot> net
jontive1 /at/ elp <dot> rr <dot> com
hublan /at/ rocketmail <dot> com
barbridgway /at/ compuserve <dot> com
mijoy /at/ mailcity <dot> com
joostdh /at/ sci <dot> kun <dot> nl
gossamer kwaj /at/ hotmail <dot> com
williamson /at/ proaxis <dot> com
vacko 6 /at/ hotmail <dot> com
jojess /at/ earthlink <dot> net

1.12 Lights Out — Logic Game
To play Lights
Out, run the PLT

Games program.
(Under Unix, it’s
called plt-games).

The object of this game is to turn all of the lights off. Click on a button to turn that light
off, but beware it will also toggle the lights above, below to the left and to the right of that
button.

Good luck.

10

1.13 Pousse — Tic-Tac-Toe-like Game
To play Pousse,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Pousse (French for ”push”, pronounced ”poo-ss”) is a 2 person game, played on an N by N
board (usually 4 by 4). Initially the board is empty, and the players take turns inserting one
marker of their color (X or O) on the board. The color X always goes first. The columns and
rows are numbered from 1 to N, starting from the top left, as in:

1 2 3 4
+-+-+-+-+

1 | | | | |
+-+-+-+-+

2 | | | | |
+-+-+-+-+

3 | | | | |
+-+-+-+-+

4 | | | | |
+-+-+-+-+

A marker can only be inserted on the board by sliding it onto a particular row from the left or
from the right, or onto a particular column from the top or from the bottom. So there are 4*N
possible “moves” (ways to insert a marker). They are named Li, Ri, Ti, and Bi respectively,
where i is the number of the row or column where the insertion takes place.

When a marker is inserted, there may be a marker on the square where the insertion takes
place. In this case, all markers on the insertion row or column from the insertion square upto
the first empty square are moved one square further to make room for the inserted marker.
Note that the last marker of the row or column will be pushed off the board (and must be
removed from play) if there are no empty squares on the insertion row or column.

A row or a column is a straight of a given color if it contains N markers of the given color.

The game ends either when an insertion

• repeats a previous configuration of the board; in this case the player who inserted the
marker LOSES.

• creates a configuration with more straights of one color than straights of the other
color; the player whose color is dominant (in number of straights) WINS.

A game always leads to a win by one of the two players. Draws are impossible.

This game is from the 1998 ICFP programming contest.

11

1.14 Gobblet — Strategy Game
To play Gobblet,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Gobblet! is a board game from Blue Orange Games:

http://www.blueorangegames.com/

Our 3x3 version actually corresponds to Gobblet! Jr., while the 4x4 version matches Gob-
blet!.

The Blue Orange web site provides rules for Gobblet! Jr. and Gobblet!. The rules below
are in our own words; see also the Blue Orange version.

1.14.1 Game Rules

The 3x3 game is a generalization of tic-tac-toe:

• The object of the game is to get three in a row of your color, vertically, horizontally,
or diagonally. Size doesn’t matter for determining a winner.

• Each player (red or yellow) starts with 6 pieces: two large, two medium, and two
small.

• On each turn, a player can either place a new piece on the board, or move a piece
already on the board—from anywhere to anywhere, as long as the “from” and “to” are
different.

• A piece can be placed (or moved to) an empty space, or it can be placed/moved on
top of a smaller piece already on the board, “gobbling” the smaller piece. The smaller
piece does not have to be an opponent’s piece, and the smaller piece may itself have
gobbled another piece previously.

• Only visible pieces can be moved, and only visible pieces count toward winning. Gob-
bled pieces stay on the board, however, and when a piece is moved, any piece that it
gobbled stays put and becomes visible.

• If moving a piece exposes a winning sequence for the opponent, and if the destination
for the move does not cover up one of the other pieces in the sequence, then the
opponent wins—even if the move makes a winning sequence for the moving player.

• Technically, if a player touches a piece, then the piece must be moved on that turn. In
other words, you’re not allowed to peek under a piece to remind yourself whether it
gobbled anything. If the piece can’t be moved, the player forfeits. This particular rule
is not enforced by our version — in part because our version supports a rewind button,
which is also not in the official game.

12

The 4x4 game has a few changes:

• The object of the game is to get four in a row of your color.

• Each player (red or yellow) starts with 12 pieces: three large, three medium-large,
three medium-small, and three small.

• Each player’s pieces are initially arranged into three stacks off the board, and only
visible pieces can be moved onto the board. The initial stacks prevent playing a smaller
piece before a corresponding larger piece.

• When a piece is moved from off-board onto the board, it must be moved to either (1) an
empty space, or (2) a space to gobble an opponent’s piece that is part of three in a row
(for the opponent). In other words, a new piece can gobble only an opponent’s piece,
and only to prevent an immediate win on the opponent’s next turn. These restrictions
do not apply when a piece that is already on the board is moved.

1.14.2 Controls

Click and drag pieces in the obvious way to take a turn. The shadow under a piece shows
where it will land when you drop it.

Use the arrow keys on your keyboard to rotate the board. Use the - and = keys to zoom
in and out. Use and + to make the game smaller and larger. (Changing the size adjusts
perspective in a slightly different way than zooming.) Depending on how keyboard focus
works on your machine, you may have to click the board area to make these controls work.

The button labeled < at the bottom of the window rewinds the game by one turn. The button
labeled > re-plays one turn in a rewound game. An alternate move can be made at any point
in a rewound game, replacing the old game from that point on.

1.14.3 Auto-Play

Turn on a computer player at any time by checking the Auto-Play Red or Auto-Play Yel-
low checkbox. If you rewind the game, you can choose an alternate move for yourself or
for the auto-player to find out what would have happened. The auto-player is not always
deterministic, so replying the same move might lead to a different result. You can disable an
auto-player at any point by unchecking the corresponding Auto-Play”checkbox.

Important: In the 3x3 game, you cannot win as yellow against the smart auto-player (if the
auto-player is allowed to play red from the start of the game). In other words, red has a
forced win in the 3x3 game, and the smart auto-player knows the path to victory. You might
have a chance to beat the red player in the default mode, though, which is represented by the
Ok choice (instead of Smart) in the Auto-Play Options dialog.

13

Configure the auto-player by clicking the Auto-Play Options button. Currently, there’s no
difference between Smart and Ok in the 4x4 game.

1.15 Jewel — 3-D Skill Game
To play Jewel, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

The board is an 8 by 8 array of jewels of 7 types. You need to get 3 or more in a row
horizontally or vertically in order to score points. You can swap any two jewels that are next
to each other up and down or left and right. The mechanic is to either:

• Click the mouse on the first one, then drag in the direction for the swap.

• Move a bubble using the arrow keys, lock the bubble to a jewel with the space bar,
and the swap the locked jewel with another by using the arrow keys. Space unlocks a
locked bubble without swapping.

Jewels can only be swapped if after the swap there are at least 3 or more same shape or color
in a row or column. Otherwise the jewels return to their original position. There is a clock
shown on the left. When it counts down to 0 the game is over. Getting 3 in a row adds time
to the clock.

Hit spacebar to start a new game then select the difficulty number by pressing 0, 1, 2, 3, or
0. You can always press ESC to exit. During playing press P to pause the game.

The code is released under the LGPL. The code is a conversion of Dave Ashley’s C program
to Scheme with some modifications and enhancements.

Enjoy.

1.16 Parcheesi — Board Game
To play Parcheesi,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

Parcheesi is a race game for four players. The goal is for each player to move their pieces
from the starting position (the circles in the corners) to the home square (in the center of the
board), passing a nearly complete loop around the board in the counter-clockwise direction
and then heads up towards the main row. For example, the green player enters from the
bottom right, travels around the board on the light blue squares, passing each of the corners,
until it reaches the middle of the bottom of the board, where it turns off the light blue squares
and heads into the central region.

14

On each turn, the player rolls two dice and advances the pawn, based on the die rolls. Typ-
ically the players may move a pawn for each die. The pawn moves by the number of pips
showing on the die and all of the dice must be used to complete a turn.

There are some exceptions, however:

• You must roll a 5 (either directly or via summing) to enter from the start area to the
main ring.

• If two pieces of the same color occupy a square, no pieces may pass that square.

• If an opponent’s piece lands on your piece, you piece is returned to the starting area
and the opponent receives a bonus of 20 (which is treated just as if they had rolled a
20 on the dice).

• If your piece makes it home (and it must do so by exact count) you get a bonus of 10,
to be used as an additional die roll.

These rules induce a number of unexpected corner cases, but the GUI only lets you make
legal moves. Watch the space along the bottom of the board for reasons why a move is illegal
or why you have not used all of your die rolls.

The automated players are:

• Reckless Renee, who tries to maximize the chances that someone else bops her.

• Polite Polly, who tries to minimize the distance her pawns move. (“No, after you. I
insist.”)

• Amazing Grace, who tries to minimize the chance she gets bopped while moving as
far as possible.

1.17 Checkers — Board Game
To play Checkers,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

This simple checkers game (with no AI player) is intended as a demonstration use of the
games/gl-board-game library.

1.18 Chat Noir — Puzzle Game
To play Chat Noir,
run the PLT Games

program. (Under
Unix, it’s called
plt-games).

The goal of the game is to stop the cat from escaping the board. Each turn you click on a
circle, which prevents the cat from stepping on that space, and the cat responds by taking a

15

step. If the cat is completely boxed in and thus unable reach the border, you win. If the cat
does reach the border, you lose.

The game was inspired by this one the one at Game Design and has essentailly the same
rules.

This game is written in the How to Design Programs Intermediate language. It is a model
solution to the final project for the introductory programming course at the University of
Chicago in the fall of 2008, as below.

; ;;constants
(define circle-radius 20)
(define circle-spacing 22)

; ;;datadefinitions

; ;;aworldis:
; ;;(make-worldboardposnstatenumber)
(define-struct world (board cat state size))

; ;;astateiseither:
; ;;-’playing
; ;;-’cat-won
; ;;-’cat-lost

; ;;aboardis
; ;;(listofcell)

; ;;acellis
; ;;(make-cell(make-posnint[0-board-size]
; ;;int[0-board-size])
; ;;boolean)
(define-struct cell (p blocked?))

; ;
; ;
; ;
; ;
; ;
; ;;;;;;;
; ;;;;;;;;;;
; ;;;;;
; ;;;
; ;;
; ;;

16

; ;;
; ;;
; ;;;
; ;;;
; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;
; ;;;;;;;
; ;

; ;;world->image:world->image
(define (world->image w)
(chop-whiskers
(overlay (board->image (world-board w) (world-size w))

(move-pinhole
(cond
[(equal? (world-state w) ’cat-won) happy-cat]
[(equal? (world-state w) ’cat-lost) sad-cat]
[else thinking-cat])

(- (cell-center-x (world-cat w)))
(- (cell-center-y (world-cat w)))))))

(check-expect
(world->image
(make-world (list (make-cell (make-posn 0 1) false))

(make-posn 0 1)
’playing
2))

(overlay
(board->image (list (make-cell (make-posn 0 1) false))

2)
(move-pinhole thinking-cat

(- (cell-center-x (make-posn 0 1)))
(- (cell-center-y (make-posn 0 1))))))

(check-expect
(world->image
(make-world (list (make-cell (make-posn 0 1) false))

(make-posn 0 1)
’cat-won
2))

(overlay
(board->image (list (make-cell (make-posn 0 1) false))

2)
(move-pinhole happy-cat

(- (cell-center-x (make-posn 0 1)))
(- (cell-center-y (make-posn 0 1))))))

17

(check-expect
(world->image
(make-world (list (make-cell (make-posn 0 1) false))

(make-posn 0 1)
’cat-lost
2))

(overlay
(board->image (list (make-cell (make-posn 0 1) false))

2)
(move-pinhole sad-cat

(- (cell-center-x (make-posn 0 1)))
(- (cell-center-y (make-posn 0 1))))))

; ;;chop-whiskers:image->image
; ;;cropstheimagesothatanythingaboveortotheleftofthepinholeisgone
(define (chop-whiskers img)
(shrink img

0
0
(- (image-width img) (pinhole-x img) 1)
(- (image-height img) (pinhole-y img) 1)))

(check-expect (chop-whiskers (rectangle 5 5 ’solid ’black))
(put-pinhole (rectangle 3 3 ’solid ’black) 0 0))

(check-expect (chop-whiskers (rectangle 6 6 ’solid ’black))
(put-pinhole (rectangle 3 3 ’solid ’black) 0 0))

(check-expect
(pinhole-x
(world->image
(make-world
(list (make-cell (make-posn 0 0) false)

(make-cell (make-posn 0 1) false)
(make-cell (make-posn 1 0) false))

(make-posn 0 0)
’playing
2)))

0)
(check-expect
(pinhole-x
(world->image
(make-world
(list (make-cell (make-posn 0 0) false)

(make-cell (make-posn 0 1) false)
(make-cell (make-posn 1 0) false))

(make-posn 0 1)

18

’playing
2)))

0)

; ;;board->image:boardnumber->image
(define (board->image cs world-size)
(foldl (lambda (x y) (overlay y x))

(nw:rectangle (world-width world-size)
(world-height world-size)
’solid
’white)

(map cell->image cs)))

(check-expect (board->image (list (make-cell (make-posn 0 0) false)) 3)
(overlay
(nw:rectangle (world-width 3)

(world-height 3)
’solid
’white)

(cell->image (make-cell (make-posn 0 0) false))))

; ;;cell->image:cell->image
(define (cell->image c)
(local [(define x (cell-center-x (cell-p c)))

(define y (cell-center-y (cell-p c)))]
(move-pinhole
(cond
[(cell-blocked? c)
(circle circle-radius ’solid ’black)]
[else
(circle circle-radius ’solid ’lightblue)])

(- x)
(- y))))

(check-expect (cell->image (make-cell (make-posn 0 0) false))
(move-pinhole (circle circle-radius ’solid ’lightblue)

(- circle-radius)
(- circle-radius)))

(check-expect (cell->image (make-cell (make-posn 0 0) true))
(move-pinhole (circle circle-radius ’solid ’black)

(- circle-radius)
(- circle-radius)))

; ;;world-width:number->number

19

; ;;computesthewidthofthedrawnworldintermsofitssize
(define (world-width board-size)
(local [(define rightmost-posn

(make-posn (- board-size 1) (- board-size 2)))]
(+ (cell-center-x rightmost-posn) circle-radius)))

(check-expect (world-width 3) 150)

; ;;world-height:number->number
; ;;computestheheightofthedrawnworldintermsofitssize
(define (world-height board-size)
(local [(define bottommost-posn

(make-posn (- board-size 1) (- board-size 1)))]
(+ (cell-center-y bottommost-posn) circle-radius)))

(check-expect (world-height 3) 116.208)

; ;;cell-center-x:posn->number
(define (cell-center-x p)
(local [(define x (posn-x p))

(define y (posn-y p))]
(+ circle-radius

(* x circle-spacing 2)
(if (odd? y)

circle-spacing
0))))

(check-expect (cell-center-x (make-posn 0 0))
circle-radius)

(check-expect (cell-center-x (make-posn 0 1))
(+ circle-spacing circle-radius))

(check-expect (cell-center-x (make-posn 1 0))
(+ (* 2 circle-spacing) circle-radius))

(check-expect (cell-center-x (make-posn 1 1))
(+ (* 3 circle-spacing) circle-radius))

; ;;cell-center-y:posn->number
(define (cell-center-y p)
(local [(define y (posn-y p))]
(+ circle-radius

(* y circle-spacing 2
0.866))))

(check-expect (cell-center-y (make-posn 1 1))
(+ circle-radius (* 2 circle-spacing 0.866)))

20

(check-expect (cell-center-y (make-posn 1 0))
circle-radius)

; ;
; ;
; ;
; ;
; ;
; ;;;;;;
; ;;;;;
; ;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;
; ;;;;;;;;
; ;

; ;;adistance-mapis
; ;;(listofdist-cells)

; ;;adist-cellis
; ;;-(make-dist-cellposn(numberor’))
(define-struct dist-cell (p n))

; ;;build-table/fast:world->distance-map
(define (build-table/fast world)
(local [(define board-size (world-size world))

(define blocked (make-hash))
(define ht (make-hash))
(define (search p)
(cond
[(hash-ref blocked p)
’]
[(on-boundary? p board-size)
((lambda (a b) b)
(hash-set! ht p 0)
0)]

[(not (boolean? (hash-ref ht p #f)))
(hash-ref ht p)]

21

[else
((lambda (a b c) c)
(hash-set! ht p ’)
(hash-set!
ht
p
(add1/f (min-l (map search

(adjacent p board-size)))))
(hash-ref ht p))]))]

((lambda (a b c) c)
(for-each (lambda (cell)

(hash-set! blocked
(cell-p cell)
(cell-blocked? cell)))

(world-board world))
(search (world-cat world))
(hash-map ht make-dist-cell))))

; ;;build-table:world->distance-map
(define (build-table world)
(build-distance (world-board world)

(world-cat world)
’()
’()
(world-size world)))

; ;;build-distance:boardposndistance-map(listofposn)number->distance-map
(define (build-distance board p t visited board-size)
(cond
[(cell-blocked? (lookup-board board p))
(add-to-table p ’ t)]
[(on-boundary? p board-size)
(add-to-table p 0 t)]
[(in-table? t p)
t]
[(member p visited)
(add-to-table p ’ t)]
[else
(local [(define neighbors (adjacent p board-size))

(define neighbors-t (build-distances
board
neighbors
t
(cons p visited)
board-size))]

(add-to-table p

22

(add1/f
(min-l
(map (lambda (neighbor)

(lookup-in-table neighbors-t neighbor))
neighbors)))

neighbors-t))]))

; ;;build-distances:board(listofposn)distance-map(listofposn)number
; ;;->distance-map
(define (build-distances board ps t visited board-size)
(cond
[(empty? ps) t]
[else
(build-distances board

(rest ps)
(build-distance board (first ps) t visited board-size)
visited
board-size)]))

(check-expect (build-distance (list (make-cell (make-posn 0 0) false))
(make-posn 0 0)
’()
’()
1)

(list (make-dist-cell (make-posn 0 0) 0)))

(check-expect (build-distance (list (make-cell (make-posn 0 0) true))
(make-posn 0 0)
’()
’()
1)

(list (make-dist-cell (make-posn 0 0) ’)))

(check-expect (build-distance (list (make-cell (make-posn 0 1) false)
(make-cell (make-posn 1 0) false)
(make-cell (make-posn 1 1) false)
(make-cell (make-posn 1 2) false)
(make-cell (make-posn 2 0) false)
(make-cell (make-posn 2 1) false)
(make-cell (make-posn 2 2) false))

(make-posn 1 1)
’()
’()
3)

(list (make-dist-cell (make-posn 1 0) 0)
(make-dist-cell (make-posn 2 0) 0)

23

(make-dist-cell (make-posn 0 1) 0)
(make-dist-cell (make-posn 2 1) 0)
(make-dist-cell (make-posn 1 2) 0)
(make-dist-cell (make-posn 2 2) 0)
(make-dist-cell (make-posn 1 1) 1)))

(check-expect (build-distance (list (make-cell (make-posn 0 1) true)
(make-cell (make-posn 1 0) true)
(make-cell (make-posn 1 1) false)
(make-cell (make-posn 1 2) true)
(make-cell (make-posn 2 0) true)
(make-cell (make-posn 2 1) true)
(make-cell (make-posn 2 2) true))

(make-posn 1 1)
’()
’()
3)

(list (make-dist-cell (make-posn 1 0) ’)
(make-dist-cell (make-posn 2 0) ’)
(make-dist-cell (make-posn 0 1) ’)
(make-dist-cell (make-posn 2 1) ’)
(make-dist-cell (make-posn 1 2) ’)
(make-dist-cell (make-posn 2 2) ’)
(make-dist-cell (make-posn 1 1) ’)))

(check-expect (build-distance
(append-all
(build-list
5
(lambda (i)
(build-list
5
(lambda (j)
(make-cell (make-posn i j) false))))))

(make-posn 2 2)
’()
’()
5)
(list (make-dist-cell (make-posn 1 0) 0)

(make-dist-cell (make-posn 2 0) 0)
(make-dist-cell (make-posn 0 1) 0)
(make-dist-cell (make-posn 3 0) 0)
(make-dist-cell (make-posn 1 1) 1)
(make-dist-cell (make-posn 4 0) 0)
(make-dist-cell (make-posn 2 1) 1)
(make-dist-cell (make-posn 4 1) 0)

24

(make-dist-cell (make-posn 3 1) 1)
(make-dist-cell (make-posn 2 2) 2)
(make-dist-cell (make-posn 4 2) 0)
(make-dist-cell (make-posn 3 2) 1)
(make-dist-cell (make-posn 0 2) 0)
(make-dist-cell (make-posn 0 3) 0)
(make-dist-cell (make-posn 1 3) 1)
(make-dist-cell (make-posn 1 2) 1)
(make-dist-cell (make-posn 2 3) 1)
(make-dist-cell (make-posn 1 4) 0)
(make-dist-cell (make-posn 2 4) 0)
(make-dist-cell (make-posn 4 3) 0)
(make-dist-cell (make-posn 3 4) 0)
(make-dist-cell (make-posn 4 4) 0)
(make-dist-cell (make-posn 3 3) 1)))

; ;;lookup-board:boardposn->cell-or-false
(define (lookup-board board p)
(cond
[(empty? board) (error ’lookup-board "did not find posn")]
[else
(cond
[(equal? (cell-p (first board)) p)
(first board)]
[else
(lookup-board (rest board) p)])]))

(check-expect (lookup-board (list (make-cell (make-posn 2 2) false))
(make-posn 2 2))

(make-cell (make-posn 2 2) false))
(check-error (lookup-board ’() (make-posn 0 0))

"lookup-board: did not find posn")

; ;;add-to-table:posn(numberor’)distance-map->distance-map
(define (add-to-table p n t)
(cond
[(empty? t) (list (make-dist-cell p n))]
[else
(cond
[(equal? p (dist-cell-p (first t)))
(cons (make-dist-cell p (min/f (dist-cell-n (first t)) n))

(rest t))]
[else
(cons (first t) (add-to-table p n (rest t)))])]))

25

(check-expect (add-to-table (make-posn 1 2) 3 ’())
(list (make-dist-cell (make-posn 1 2) 3)))

(check-expect (add-to-table (make-posn 1 2)
3
(list (make-dist-cell (make-posn 1 2) 4)))

(list (make-dist-cell (make-posn 1 2) 3)))
(check-expect (add-to-table (make-posn 1 2)

3
(list (make-dist-cell (make-posn 1 2) 2)))

(list (make-dist-cell (make-posn 1 2) 2)))
(check-expect (add-to-table (make-posn 1 2)

3
(list (make-dist-cell (make-posn 2 2) 2)))

(list (make-dist-cell (make-posn 2 2) 2)
(make-dist-cell (make-posn 1 2) 3)))

; ;;in-table:distance-mapposn->boolean
(define (in-table? t p) (number? (lookup-in-table t p)))

(check-expect (in-table? empty (make-posn 1 2)) false)
(check-expect (in-table? (list (make-dist-cell (make-posn 1 2) 3))

(make-posn 1 2))
true)

(check-expect (in-table? (list (make-dist-cell (make-posn 2 1) 3))
(make-posn 1 2))

false)

; ;;lookup-in-table:distance-mapposn->numberor’
; ;;looksforthedistanceasrecordedinthetablet,
; ;;ifnotfoundreturnsadistanceof’
(define (lookup-in-table t p)
(cond
[(empty? t) ’]
[else (cond

[(equal? p (dist-cell-p (first t)))
(dist-cell-n (first t))]
[else
(lookup-in-table (rest t) p)])]))

(check-expect (lookup-in-table empty (make-posn 1 2)) ’)
(check-expect (lookup-in-table (list (make-dist-cell (make-posn 1 2) 3))

(make-posn 1 2))
3)

(check-expect (lookup-in-table (list (make-dist-cell (make-posn 2 1) 3))
(make-posn 1 2))

’)

26

; ;;on-boundary?:posnnumber->boolean
(define (on-boundary? p board-size)
(or (= (posn-x p) 0)

(= (posn-y p) 0)
(= (posn-x p) (- board-size 1))
(= (posn-y p) (- board-size 1))))

(check-expect (on-boundary? (make-posn 0 1) 13) true)
(check-expect (on-boundary? (make-posn 1 0) 13) true)
(check-expect (on-boundary? (make-posn 12 1) 13) true)
(check-expect (on-boundary? (make-posn 1 12) 13) true)
(check-expect (on-boundary? (make-posn 1 1) 13) false)
(check-expect (on-boundary? (make-posn 10 10) 13) false)

; ;;adjacent:posnnumber->(listofposn)
(define (adjacent p board-size)
(local [(define x (posn-x p))

(define y (posn-y p))]
(filter (lambda (x) (in-bounds? x board-size))

(cond
[(even? y)
(list (make-posn (- x 1) (- y 1))

(make-posn x (- y 1))
(make-posn (- x 1) y)
(make-posn (+ x 1) y)
(make-posn (- x 1) (+ y 1))
(make-posn x (+ y 1)))]

[else
(list (make-posn x (- y 1))

(make-posn (+ x 1) (- y 1))
(make-posn (- x 1) y)
(make-posn (+ x 1) y)
(make-posn x (+ y 1))
(make-posn (+ x 1) (+ y 1)))]))))

(check-expect (adjacent (make-posn 1 1) 11)
(list (make-posn 1 0)

(make-posn 2 0)
(make-posn 0 1)
(make-posn 2 1)
(make-posn 1 2)
(make-posn 2 2)))

(check-expect (adjacent (make-posn 2 2) 11)
(list (make-posn 1 1)

(make-posn 2 1)

27

(make-posn 1 2)
(make-posn 3 2)
(make-posn 1 3)
(make-posn 2 3)))

; ;;in-bounds?:posnnumber->boolean
(define (in-bounds? p board-size)
(and (<= 0 (posn-x p) (- board-size 1))

(<= 0 (posn-y p) (- board-size 1))
(not (equal? p (make-posn 0 0)))
(not (equal? p (make-posn 0 (- board-size 1))))))

(check-expect (in-bounds? (make-posn 0 0) 11) false)
(check-expect (in-bounds? (make-posn 0 1) 11) true)
(check-expect (in-bounds? (make-posn 1 0) 11) true)
(check-expect (in-bounds? (make-posn 10 10) 11) true)
(check-expect (in-bounds? (make-posn 0 -1) 11) false)
(check-expect (in-bounds? (make-posn -1 0) 11) false)
(check-expect (in-bounds? (make-posn 0 11) 11) false)
(check-expect (in-bounds? (make-posn 11 0) 11) false)
(check-expect (in-bounds? (make-posn 10 0) 11) true)
(check-expect (in-bounds? (make-posn 0 10) 11) false)

; ;;min-l:(listofnumber-or-symbol)->number-or-symbol
(define (min-l ls) (foldr (lambda (x y) (min/f x y)) ’ ls))
(check-expect (min-l (list)) ’)
(check-expect (min-l (list 10 1 12)) 1)

; ;;<=/f:(numberor’)(numberor’)->boolean
(define (<=/f a b) (equal? a (min/f a b)))
(check-expect (<=/f 1 2) true)
(check-expect (<=/f 2 1) false)
(check-expect (<=/f ’ 1) false)
(check-expect (<=/f 1 ’) true)
(check-expect (<=/f ’ ’) true)

; ;;min/f:(numberor’)(numberor’)->(numberor’)
(define (min/f x y)
(cond
[(equal? x ’) y]
[(equal? y ’) x]
[else (min x y)]))

(check-expect (min/f ’ 1) 1)
(check-expect (min/f 1 ’) 1)
(check-expect (min/f ’ ’) ’)
(check-expect (min/f 1 2) 1)

28

; ;;add1/f:numberor’->numberor’
(define (add1/f n)
(cond
[(equal? n ’) ’]
[else (add1 n)]))

(check-expect (add1/f 1) 2)
(check-expect (add1/f ’) ’)

; ;
; ;
; ;
; ;
; ;
; ;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;
; ;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;
; ;
; ;
; ;

(define (clack world x y evt)
(cond
[(and (equal? evt ’button-up)

(equal? ’playing (world-state world))
(point-in-circle? (world-board world) x y))

(move-cat
(make-world (add-obstacle (world-board world) x y)

(world-cat world)
(world-state world)
(world-size world)))]

[else
world]))

(check-expect (clack (make-world ’() (make-posn 0 0) ’playing 1)
10
10
’button-down)

29

(make-world ’() (make-posn 0 0) ’playing 1))

(check-expect (clack (make-world ’() (make-posn 0 0) ’playing 1)
0
0
’button-up)

(make-world ’() (make-posn 0 0) ’playing 1))

(check-expect (clack (make-world ’() (make-posn 0 0) ’cat-lost 1)
10
10
’button-up)

(make-world ’() (make-posn 0 0) ’cat-lost 1))
(check-expect (clack

(make-world
(list (make-cell (make-posn 1 0) false)

(make-cell (make-posn 2 0) true)
(make-cell (make-posn 0 1) true)
(make-cell (make-posn 1 1) false)
(make-cell (make-posn 2 1) true)
(make-cell (make-posn 1 2) true)
(make-cell (make-posn 2 2) true))

(make-posn 1 1)
’playing
3)

(cell-center-x (make-posn 1 0))
(cell-center-y (make-posn 1 0))
’button-up)
(make-world
(list (make-cell (make-posn 1 0) true)

(make-cell (make-posn 2 0) true)
(make-cell (make-posn 0 1) true)
(make-cell (make-posn 1 1) false)
(make-cell (make-posn 2 1) true)
(make-cell (make-posn 1 2) true)
(make-cell (make-posn 2 2) true))

(make-posn 1 1)
’cat-lost
3))

; ;;move-cat:world->world
(define (move-cat world)
(local [(define cat-position (world-cat world))

(define table (build-table/fast world))
(define neighbors (adjacent cat-position (world-size world)))
(define next-cat-positions

30

(find-best-positions neighbors
(map (lambda (p) (lookup-in-table table p))

neighbors)))
(define next-cat-position
(cond
[(boolean? next-cat-positions) false]
[else
(list-ref next-cat-positions

(random (length next-cat-positions)))]))]
(make-world (world-board world)

(cond
[(boolean? next-cat-position)
cat-position]

[else next-cat-position])
(cond
[(boolean? next-cat-position)
’cat-lost]

[(on-boundary? next-cat-position (world-size world))
’cat-won]

[else ’playing])
(world-size world))))

(check-expect
(move-cat
(make-world (list (make-cell (make-posn 1 0) false)

(make-cell (make-posn 2 0) false)
(make-cell (make-posn 3 0) false)
(make-cell (make-posn 4 0) false)

(make-cell (make-posn 0 1) false)
(make-cell (make-posn 1 1) true)
(make-cell (make-posn 2 1) true)
(make-cell (make-posn 3 1) false)
(make-cell (make-posn 4 1) false)

(make-cell (make-posn 0 2) false)
(make-cell (make-posn 1 2) true)
(make-cell (make-posn 2 2) false)
(make-cell (make-posn 3 2) true)
(make-cell (make-posn 4 2) false)

(make-cell (make-posn 0 3) false)
(make-cell (make-posn 1 3) true)
(make-cell (make-posn 2 3) false)
(make-cell (make-posn 3 3) false)

31

(make-cell (make-posn 4 3) false)

(make-cell (make-posn 1 4) false)
(make-cell (make-posn 2 4) false)
(make-cell (make-posn 3 4) false)
(make-cell (make-posn 4 4) false))

(make-posn 2 2)
’playing
5))

(make-world (list (make-cell (make-posn 1 0) false)
(make-cell (make-posn 2 0) false)
(make-cell (make-posn 3 0) false)
(make-cell (make-posn 4 0) false)

(make-cell (make-posn 0 1) false)
(make-cell (make-posn 1 1) true)
(make-cell (make-posn 2 1) true)
(make-cell (make-posn 3 1) false)
(make-cell (make-posn 4 1) false)

(make-cell (make-posn 0 2) false)
(make-cell (make-posn 1 2) true)
(make-cell (make-posn 2 2) false)
(make-cell (make-posn 3 2) true)
(make-cell (make-posn 4 2) false)

(make-cell (make-posn 0 3) false)
(make-cell (make-posn 1 3) true)
(make-cell (make-posn 2 3) false)
(make-cell (make-posn 3 3) false)
(make-cell (make-posn 4 3) false)

(make-cell (make-posn 1 4) false)
(make-cell (make-posn 2 4) false)
(make-cell (make-posn 3 4) false)
(make-cell (make-posn 4 4) false))

(make-posn 2 3)
’playing
5))

; ;;find-best-positions:(nelistofposn)(nelistofnumberor’)->(nelistofposn)orfalse
(define (find-best-positions posns scores)
(local [(define best-score (foldl (lambda (x sofar)

(if (<=/f x sofar)
x
sofar))

32

(first scores)
(rest scores)))]

(cond
[(symbol? best-score) false]
[else
(map
second
(filter (lambda (x) (equal? (first x) best-score))

(map list scores posns)))])))
(check-expect (find-best-positions (list (make-posn 0 0)) (list 1))

(list (make-posn 0 0)))
(check-expect (find-best-positions (list (make-posn 0 0)) (list ’))

false)
(check-expect (find-best-positions (list (make-posn 0 0)

(make-posn 1 1))
(list 1 2))

(list (make-posn 0 0)))
(check-expect (find-best-positions (list (make-posn 0 0)

(make-posn 1 1))
(list 1 1))

(list (make-posn 0 0)
(make-posn 1 1)))

(check-expect (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))

(list ’ 2))
(list (make-posn 1 1)))

(check-expect (find-best-positions (list (make-posn 0 0)
(make-posn 1 1))

(list ’ ’))
false)

; ;;add-obstacle:boardnumbernumber->board
(define (add-obstacle board x y)
(cond
[(empty? board) board]
[else
(local [(define cell (first board))

(define cx (cell-center-x (cell-p cell)))
(define cy (cell-center-y (cell-p cell)))]

(cond
[(and (<= (- cx circle-radius) x (+ cx circle-radius))

(<= (- cy circle-radius) y (+ cy circle-radius)))
(cons (make-cell (cell-p cell) true)

(rest board))]
[else
(cons cell (add-obstacle (rest board) x y))]))]))

33

(check-expect (add-obstacle (list (make-cell (make-posn 0 0) false))
circle-spacing circle-spacing)

(list (make-cell (make-posn 0 0) true)))
(check-expect (add-obstacle (list (make-cell (make-posn 0 0) false)) 100 100)

(list (make-cell (make-posn 0 0) false)))
(check-expect (add-obstacle (list (make-cell (make-posn 0 0) false)

(make-cell (make-posn 0 1) false))
circle-spacing circle-spacing)

(list (make-cell (make-posn 0 0) true)
(make-cell (make-posn 0 1) false)))

; ;;point-in-circle?:boardnumbernumber->boolean
(define (point-in-circle? board x y)
(cond
[(empty? board) false]
[else
(local [(define cell (first board))

(define center (+ (cell-center-x (cell-p cell))
(* (sqrt -1) (cell-center-y (cell-p cell)))))

(define p (+ x (* (sqrt -1) y)))]
(or (<= (magnitude (- center p)) circle-radius)

(point-in-circle? (rest board) x y)))]))
(check-expect (point-in-circle? empty 0 0) false)
(check-expect (point-in-circle? (list (make-cell (make-posn 0 0) false))

(cell-center-x (make-posn 0 0))
(cell-center-y (make-posn 0 0)))

true)
(check-expect (point-in-circle? (list (make-cell (make-posn 0 0) false))

0 0)
false)

; ;
; ;
; ;
; ;
; ;
; ;;;;;
; ;;;;
; ;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;

34

; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;
; ;
; ;
; ;

; ;;cat:symbol->image
(define (cat mode)
(local [(define face-color

(cond
[(symbol=? mode ’sad) ’pink]
[else ’lightgray]))

(define left-ear (regular-polygon 3 8 ’solid ’black (/ pi -3)))
(define right-ear (regular-polygon 3 8 ’solid ’black 0))
(define ear-x-offset 14)
(define ear-y-offset 9)

(define eye (overlay (ellipse 12 8 ’solid ’black)
(ellipse 6 4 ’solid ’limegreen)))

(define eye-x-offset 8)
(define eye-y-offset 3)

(define nose (regular-polygon 3 5 ’solid ’black (/ pi 2)))

(define mouth-happy
(overlay (ellipse 8 8 ’solid face-color)

(ellipse 8 8 ’outline ’black)
(move-pinhole
(rectangle 10 5 ’solid face-color)
0
4)))

(define mouth-no-expression
(overlay (ellipse 8 8 ’solid face-color)

(ellipse 8 8 ’outline face-color)
(rectangle 10 5 ’solid face-color)))

(define mouth
(cond
[(symbol=? mode ’happy) mouth-happy]
[else mouth-no-expression]))

35

(define mouth-x-offset 4)
(define mouth-y-offset -5)]

(add-line
(add-line
(add-line
(add-line
(add-line
(add-line
(overlay (move-pinhole left-ear (- ear-x-offset) ear-y-offset)

(move-pinhole right-ear (- ear-x-offset 1) ear-y-offset)
(ellipse 40 26 ’solid ’black)
(ellipse 36 22 ’solid face-color)
(move-pinhole mouth (- mouth-x-offset) mouth-y-offset)
(move-pinhole mouth mouth-x-offset mouth-y-offset)
(move-pinhole eye (- eye-x-offset) eye-y-offset)
(move-pinhole eye eye-x-offset eye-y-offset)
(move-pinhole nose -1 -4))

6 4 30 12 ’black)
6 4 30 4 ’black)

6 4 30 -4 ’black)
-6 4 -30 12 ’black)

-6 4 -30 4 ’black)
-6 4 -30 -4 ’black)))

(define happy-cat (cat ’happy))
(define sad-cat (cat ’sad))
(define thinking-cat (cat ’thinking))

; ;
; ;
; ;
; ;
; ;
; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;
; ;;;;;;;;;;;;;;;

36

; ;;;;
; ;
; ;
; ;
; ;
; ;
; ;
; ;
; ;;;;;;;;
; ;;;;;;;;;
; ;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;
; ;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; ;;;
; ;;;;;;;;;;
; ;
; ;
; ;

; ;;append-all:(listof(listX))->(listofX)
(define (append-all ls)
(foldr append empty ls))

(check-expect (append-all empty) empty)
(check-expect (append-all (list (list 1 2 3))) (list 1 2 3))
(check-expect (append-all (list (list 1) (list 2) (list 3)))

(list 1 2 3))

; ;;add-n-random-blocked-cells:number(listofcell)number->(listofcell)
(define (add-n-random-blocked-cells n all-cells board-size)
(cond
[(zero? n) all-cells]
[else
(local [(define unblocked-cells

(filter (lambda (x)
(let ([cat-cell? (and (= (posn-x (cell-p x)) (quotient board-size 2))

(= (posn-y (cell-p x)) (quotient board-size 2)))])

(and (not (cell-blocked? x))
(not cat-cell?))))

all-cells))
(define to-block (list-ref unblocked-cells

37

(random (length unblocked-cells))))]
(add-n-random-blocked-cells
(sub1 n)
(map (lambda (c) (if (equal? to-block c)

(make-cell (cell-p c) true)
c))

all-cells)
board-size))]))

(check-expect (add-n-random-blocked-cells 0 (list (make-cell (make-posn 0 0) true)) 10)
(list (make-cell (make-posn 0 0) true)))

(check-expect (add-n-random-blocked-cells 1 (list (make-cell (make-posn 0 0) false)) 10)
(list (make-cell (make-posn 0 0) true)))

(define dummy
(local
[(define board-size 11)
(define initial-board
(add-n-random-blocked-cells
6
(filter
(lambda (c)
(not (and (= 0 (posn-x (cell-p c)))

(or (= 0 (posn-y (cell-p c)))
(= (- board-size 1)

(posn-y (cell-p c)))))))
(append-all
(build-list
board-size
(lambda (i)
(build-list
board-size
(lambda (j)
(make-cell (make-posn i j)

false)))))))
board-size))

(define initial-world
(make-world initial-board

(make-posn (quotient board-size 2)
(quotient board-size 2))

’playing
board-size))]

(and
(big-bang (world-width board-size)

(world-height board-size)

38

1
initial-world)

(on-redraw world->image)
(on-mouse-event clack))))

1.19 GCalc — Visual λ-Calculus
To play GCalc, run
the PLT Games

program. (Under
Unix, it’s called
plt-games).

GCalc is a system for visually demonstrating the λ-Calculus (not really a game).

See the following for the principles:

http://www.grame.fr/Research/GCalcul/Graphic Calculus.html

ftp://ftp.grame.fr/pub/Documents/ICMC94LambdaCalc.pdf

1.19.1 The Window Layout

The window is divided into three working areas, each made of cells. Cells hold cube objects,
which can be dragged between cells (with a few exceptions that are listed below). The
working areas are as follows:

• The right side is the storage area. This is used for saving objects – drag any cube
to/from here. Note that cubes can be named for convenience.

• The left side is a panel of basic color cubes. These cells always contain a set of basic
cubes that are used as the primitive building blocks all other values are made of. They
cannot be overwritten. (Note that this includes a transparent cell.)

• The center part is the working panel. This is the main panel where new cubes are
constructed. The center cell is similar to a storage cell, and the surrounding eight cells
all perform some operation on this cell.

1.19.2 User Interaction

Right-click any cell except for the basic colors on the left panel, or hit escape or F10 for a
menu of operations. The menu also includes the keyboard shortcuts for these operations.

39

1.19.3 Cube operations

There are six simple operations that are considered part of the simple graphic cube world.
The operations correspond to six of the operation cells: a left-right composition is built
using the left and the right cells, a top-bottom using the top and the bottom, and a front-
back using the top-left and bottom-right. Dragging a cube to one of these cells will use the
corresponding operator to combine it with the main cell’s cube. Using a right mouse click
on one of these cells can be used to cancel dragging an object to that cell, this is not really
an undo feature: a right-click on the right cell always splits the main cube to two halves and
throws the right side.

The colored cubes and the six basic operators make this simple domain, which is extended
to form a λ-Calculus-like language by adding abstractions and applications. Right-clicking
on a basic cube on the left panel creates an abstraction which is actually a lambda expression
except that colors are used instead of syntactic variables. For example, if the main cell
contains R|G (red-green on the left and right), then right-clicking the green cube on the left
panel leaves us with λ G . R|G, which is visualized as R|G with a green circle. The last two
operator cells are used for application of these abstractions: drag a function to the top-right
to have it applied on the main cube, or to the bottom-left to have the main cube applied to
it. As in the λ-Calculus, all abstractions have exactly one variable, use currying for multiple
variables.

So far the result is a domain of colored cubes that can be used in the same way as the
simple λ-Calculus. There is one last extension that goes one step further: function cubes can
themselves be combined with other functions using the simple operations. This results in a
form of ”spatial functions” that behave differently in different parts of the cube according to
the construction. For example, a left-right construction of two functions f|g operates on a
given cube by applying f on its left part and g on its right part. You can use the preferences
dialog to change a few aspects of the computation.

Use the Open Example menu entry to open a sample file that contains lots of useful objects:
Church numerals, booleans, lists, Y-combinator, etc.

40

2 Implementing New Games

The game-starting console inspects the sub-collections of the "games" collection. If a sub-
collection has an "info.ss" module (see setup/infotab), the following fields of the
collection’s ”info.ss” file are used:

• game [required] : used as a module name in the sub-collection to load for the game;
the module must provide a game@ unit (see scheme/unit) with no particular exports;
the unit is invoked with no imports to start the game.

• name [defaults to the collection name] : used to label the game-starting button in the
game console.

• game-icon [defaults to collection name with ".png"] : used as a path to a bitmap file
that is used for the game button’s label; this image should be 32 by 32 pixels and have
a mask.

• game-set [defaults to "Other Games"] : a label used to group games that declare
themselves to be in the same set.

To implement card games, see games/cards. Card games typically belong in the "Cards"
game set.

41

3 Showing Scribbled Help

(require games/show-scribbling)

(show-scribbling mod-path section-tag) → (-> void?)
mod-path : module-path?
section-tag : string?

Returns a thunk for opening a Scribbled section in the user’s HTML browser. The mod-

path is the document’s main source module, and section-tag specifies the section in the
document.

42

4 Showing Text Help

(require games/show-help)

(show-help coll-path frame-title [verbatim?]) → (-> any)
coll-path : (listof string?)
frame-title : string?
verbatim? : any/c = #f

Returns a thunk for showing a help window based on plain text. Multiple invocations of the
thunk bring the same window to the foreground (until the user closes the window).

The help window displays "doc.txt" from the collection specified by coll-path .

The frame-title argument is used for the help window title.

If verbatim? is true, then "doc.txt" is displayed verbatim, otherwise it is formatted as
follows:

• Any line of the form **....** is omitted.

• Any line that starts with * after whitespace is indented as a bullet point.

• Any line that contains only -s and is as long as the previous line causes the previous
line to be formatted as a title.

• Other lines are paragraph-flowed to fit the window.

43

	1 Bundled Games
	1.1 Aces --- Solitaire Card Game
	1.2 Go Fish --- Kid's Card Game
	1.3 Crazy 8s --- Card Game
	1.4 Blackjack --- 21 Card Game
	1.5 Rummy --- Card Game
	1.6 Spider --- Solitaire Card Game
	1.7 Memory --- Kid's Game
	1.8 Slidey --- Picture Puzzle
	1.9 Same --- Dot-Removing Game
	1.10 Minesweeper --- Logic Game
	1.11 Paint By Numbers --- Logic Game
	1.12 Lights Out --- Logic Game
	1.13 Pousse --- Tic-Tac-Toe-like Game
	1.14 Gobblet --- Strategy Game
	1.14.1 Game Rules
	1.14.2 Controls
	1.14.3 Auto-Play

	1.15 Jewel --- 3-D Skill Game
	1.16 Parcheesi --- Board Game
	1.17 Checkers --- Board Game
	1.18 Chat Noir --- Puzzle Game
	1.19 GCalc --- Visual -Calculus
	1.19.1 The Window Layout
	1.19.2 User Interaction
	1.19.3 Cube operations

	2 Implementing New Games
	3 Showing Scribbled Help
	4 Showing Text Help

