
Teachpacks
Version 4.1.3

November 20, 2008

Teaching languages are small subsets of a full programming language. While such restric-
tions simplify error diagnosis and the construction of tools, they also make it impossible
(or at least difficult) to write some interesting programs. To circumvent this restriction, it is
possible to import teachpacks into programs written in a teaching language.

In principle, a teachpack is just a library written in the full language, not the teaching subset.
Like any other library, it may export values, functions, etc. In contrast to an ordinary library,
however, a teachpack must enforce the contracts of the ”lowest” teaching language into
which it is imported and signal errors in a way with which students are familiar at that level.

This chapter covers the teachpacks for How to Design Programs and How to Design Classes.

1

Contents

1 HtDP Teachpacks 3

1.1 Manipulating Images: "image.ss" . 3

1.1.1 Images . 3

1.1.2 Modes and Colors . 3

1.1.3 Creating Basic Shapes . 4

1.1.4 Basic Image Properties . 5

1.1.5 Composing Images . 6

1.1.6 Manipulating Images . 8

1.1.7 Miscellaneous Image Manipulation and Creation 9

1.2 Simulations and Animations: "world.ss" 10

1.2.1 Basics . 11

1.2.2 Simple Simulations . 11

1.2.3 Interactions . 12

1.2.4 Scenes and Images . 16

1.2.5 A First Example . 17

1.3 Converting Temperatures: "convert.ss" 22

1.4 Guessing Numbers: "guess.ss" . 23

1.5 MasterMinding: "master.ss" . 24

1.6 Simple Drawing: "draw.ss" . 24

1.6.1 Drawing on a Canvas . 24

1.6.2 Interactions with Canvas . 26

1.7 Hangman: "hangman.ss" . 27

1.8 Managing Control Arrows: "arrow.ss" 28

1.9 Manipulating Simple HTML Documents: "docs.ss" 29

2

1.10 Working with Files and Directories: "dir.ss" 30

1.11 Graphing Functions: "graphing.ss" . 31

1.12 Simple Graphical User Interfaces: "gui.ss" 31

1.13 An Arrow GUI: "arrow-gui.ss" . 34

1.14 Controlling an Elevator: "elevator.ss" 35

1.15 Queens: "show-queen.ss" . 35

1.16 Matrix Operations: "matrix.ss" . 36

2 HtDC Teachpacks 39

2.1 Geometry: geometry.* . 39

2.2 Colors: colors.* . 39

2.3 Draw: draw.* . 40

2.3.1 World . 41

2.3.2 Canvas . 42

2.4 Draw: idraw.* . 43

3

1 HtDP Teachpacks

1.1 Manipulating Images: "image.ss"

The teachpack provides primitives for constructing and manipulating images. Basic, colored
images are created as outlines or solid shapes. Additional primitives allow for the composi-
tion of images.

1.1.1 Images

(image? x) → boolean?
x : any/c

Is x an image?

1.1.2 Modes and Colors

Mode (one-of/c ’solid ’outline "solid" "outline")

A Mode is used to specify whether painting a shape fills or outlines the form.

(struct color (red green blue))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

RGB color?

A RGB describes a color via a shade of red, blue, and green colors (e.g., (make-color 100
200 30)).

Color (or/c symbol? string? color?)

A Color is a color-symbol (e.g., ’blue) or a color-string (e.g., "blue") or an RGB structure.

(image-color? x) → boolean?
x : any

Determines if the input is a valid image Color.

4

1.1.3 Creating Basic Shapes

In DrScheme, you can insert images from your file system. Use PNG images instead when-
ever possible for insertions. In addition, you can create basic shapes with the following
functions.

(rectangle w h m c) → image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a w by h rectangle, filled in according to m and painted in color c

(circle r m c) → image?
r : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a circle or disk of radius r , filled in according to m and painted in color c

(ellipse w h m c) → image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
c : Color

Creates a w by h ellipse, filled in according to m and painted in color c

(triangle s m c) → image?
s : number?
m : Mode
c : Color

Creates an upward pointing equilateral triangle whose side is s pixels long, filled in accord-
ing to m and painted in color c

(star n outer inner m c) → image?
n : (and/c number? (>=/c 2))
outer : (and/c number? (>=/c 1))
inner : (and/c number? (>=/c 1))
m : Mode

5

c : Color

Creates a multi-pointed star with n points, an outer radius for the max distance of the
points to the center, and an inner radius for the min distance to the center.

(regular-polygon s r m c [angle]) → image?
s : side
r : number?
m : Mode
c : Color
angle : real? = 0

Creates a regular polygon with s sides inscribed in a circle of radius r , using mode m and
color c . If an angle is specified, the polygon is rotated by that angle.

(line x y c) → image?
x : number?
y : number?
c : Color

Creates a line colored c from (0,0) to (x ,y). See add-line below.

(text s f c) → Image
s : string?
f : (and/c number? positive?)
c : Color

Creates an image of the text s at point size f and painted in color c .

1.1.4 Basic Image Properties

To understand how images are manipulated, you need to understand the basic properties of
images.

(image-width i) → integer?
i : image?

Obtain i ’s width in pixels

(image-height i) → integer?
i : image?

6

Obtain i ’s height in pixels

For the composition of images, you must know about pinholes. Each image, including
primitive ones, come with a pinhole. For images created with the above primitives, the
pinhole is at the center of the shape except for those created from line and text. The text
function puts the pinhole at the upper left corner of the image, and line puts the pinhole
at the beginning of the line (meaning that if the first two arguments to line are positive,
the pinhole is also in the upper left corner). The pinhole can be moved, of course, and
compositions locate pinholes according to their own rules. When in doubt you can always
find out where the pinhole is and place it where convenient.

(pinhole-x i) → integer?
i : image?

Determines the x coordinate of the pinhole, measuring from the left of the image.

(pinhole-y i) → integer?
i : image?

Determines the y coordinate of the pinhole, measuring from the top (down) of the image.

(put-pinhole i x y) → image?
i : image?
x : number?
y : number?

Creates a new image with the pinhole in the location specified by x and y , counting from
the left and top (down), respectively.

(move-pinhole i delta-x delta-y) → image?
i : image?
delta-x : number?
delta-y : number?

Creates a new image with the pinhole moved down and right by delta-x and delta-y

with respect to its current location. Use negative numbers to move it up or left.

1.1.5 Composing Images

Images can be composed, and images can be found within compositions.

7

(add-line i x y z u c) → image?
i : image?
x : number?
y : number?
z : number?
u : number?
c : Color

Creates an image by adding a line (colored c) from (x ,y) to (z ,u) to image i .

(overlay img img2 img* ...) → image?
img : image?
img2 : image?
img* : image?

Creates an image by overlaying all images on their pinholes. The pinhole of the resulting
image is the same place as the pinhole in the first image.

(overlay/xy img delta-x delta-y other) → image?
img : image?
delta-x : number?
delta-y : number?
other : image?

Creates an image by adding the pixels of other to img .

Instead of lining the two images up on their pinholes, other ’s pinhole is lined up on the
point:

(make-posn (+ (pinhole-x img) delta-x)
(+ (pinhole-y img) delta-y))

The pinhole of the resulting image is the same place as the pinhole in the first image.

The same effect can be had by combining move-pinhole and overlay,

(overlay img

(move-pinhole other

(- delta-x)
(- delta-y)))

(image-inside? img other) → boolean?
img : image?
other : image?

8

Determines whether the pixels of the second image appear in the first.

Be careful when using this function with jpeg images. If you use an image-editing program
to crop a jpeg image and then save it, image-inside? does not recognize the cropped
image, due to standard compression applied to JPEG images.

(find-image img other) → posn?
img : image?
other : image?

Determines where the pixels of the second image appear in the first, with respect to the pin-
hole of the first image. If (image-inside? img other) isn’t true, find-image signals
an error.

1.1.6 Manipulating Images

Images can also be shrunk. These “shrink” functions trim an image by eliminating extrane-
ous pixels.

(shrink-tl img width height) → image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the top-left corner. The
pinhole of the resulting image is in the center of the image.

(shrink-tr img width height) → image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the top-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink-bl img width height) → image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-left corner. The

9

pinhole of the resulting image is in the center of the image.

(shrink-br img width height) → image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink img left above right below) → image?
img : image?
left : number?
above : number?
right : number?
below : number?

Shrinks an image around its pinhole. The numbers are the pixels to save to left, above, to the
right, and below the pinhole, respectively. The pixel directly on the pinhole is always saved.

1.1.7 Miscellaneous Image Manipulation and Creation

The last group of functions extracts the constituent colors from an image and converts a list
of colors into an image.

List-of-color : list?

is one of:

; -- empty
; -- (cons Color List-of-color)
; Interpretation: represents a list of colors.

(image->color-list img) → List-of-color
img : image?

Converts an image to a list of colors.

(color-list->image l width height x y) → image?
l : List-of-color
width : natural-number/c

10

height : natural-number/c
x : natural-number/c
y : natural-number/c

Converts a list of colors l to an image with the given width and height and pinhole (x ,y)
coordinates, specified with respect to the top-left of the image.

The remaining functions provide alpha-channel information as well. Alpha channels are a
measure of transparency; 0 indicates fully opaque and 255 indicates fully transparent.

(struct alpha-color (alpha red green blue))
alpha : (and/c natural-number/c (<=/c 255))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

A structure representing an alpha color.

(image->alpha-color-list img) → (list-of alpha-color?)
img : image?

to convert an image to a list of alpha colors

(alpha-color-list->image l width height x y) → image?
l : (list-of alpha-color?)
width : integer?
height : integer?
x : integer?
y : integer?

Converts a list of alpha-colors l to an image with the given width and height and
pinhole (x ,y) coordinates, specified with respect to the top-left of the image.

1.2 Simulations and Animations: "world.ss"

Note: For a quick and educational introduction to the teachpack, see How to Design Pro-
grams, Second Edition: Prologue. As of August 2008, we also have a series of projects
available as a small booklet on How to Design Worlds.

The purpose of this documentation is to give experienced Schemers a concise overview for
using the library and for incorporating it elsewhere. The last section presents §1.2.5 “A First
Example” for an extremely simple domain and is suited for a novice who knows how to

11

design conditional functions for symbols.

The teachpack provides two sets of tools. The first allows students to create and display a
series of animated scenes, i.e., a simulation. The second one generalizes the first by adding
interactive GUI features.

1.2.1 Basics

The teachpack assumes working knowledge of the basic image manipulation primitives and
introduces a special kind of image: a scene.

Scene

(define (focus-at-0-0 i)
(and (= (pinhole-x i) 0) (= (pinhole-y i) 0)))

(and/c image? focus-at-0-0)

The teachpack can display only Scenes, which are images whose pinholes are at position (0
,0).

(empty-scene width height) → Scene
width : natural-number/c
height : natural-number/c

Creates a width x height Scene.

(place-image img x y s) → Scene
img : image?
x : number?
y : number?
s : Scene

Creates a scene by placing img at (x ,y) into s ; (x ,y) are comp. graph. coordinates,
i.e., they count right and down from the upper-left corner.

1.2.2 Simple Simulations

(run-simulation w h r create-image [gifs?]) → true
w : natural-number/c
h : natural-number/c

12

r : number?
create-image : (-> natural-number/c scene)
gifs? : boolean? = #f

creates and shows a canvas of width w and height h , starts a clock, making it tick every r

(usually fractional) seconds. Every time the clock ticks, drscheme applies create-image
to the number of ticks passed since this function call. The results of these applications are
displayed in the canvas.

The fifth (and last) argument is optional. Providing true as the fifth argument causes
drscheme to collect the scenes that the animation generates and to create an animated GIF
from the results. Both the intermediate images as well as the final animated GIF are saved
in a user-specified directory. This is useful for writing documentation and for describing
students work.

Example:

(define (create-UFO-scene height)
(place-image UFO 50 height (empty-scene 100 100)))

(define UFO
(overlay (circle 10 ’solid ’green)

(rectangle 40 4 ’solid ’green)))

(run-simulation 100 100 (/ 1 28) create-UFO-scene)

1.2.3 Interactions

An animation starts from a given “world” and generates new ones in response to events on
the computer. This teachpack keeps track of the “current world” and recognizes three kinds
of events: clock ticks; keyboard presses and releases; and mouse movements, mouse clicks,
etc.

Your program may deal with such events via the installation of handlers. The teachpack
provides for the installation of three event handlers: on-tick-event, on-key-event, and
on-mouse-event. In addition, it provides for the installation of a draw handler, which is
called every time your program should visualize the current world.

The following picture provides an intuitive overview of the workings of ”world”.

13

The big-bang function installs World 0 as the initial world; the callbacks tock, react, and
click transform one world into another one; done checks each time whether the world is final;
and draw renders each world as a scene.

World any/c

For animated worlds and games, using the teachpack requires that you provide a data defi-
nition for World. In principle, there are no constraints on this data definition. You can even
keep it implicit, even if this violates the Design Recipe.

(big-bang width height r world0) → true

14

width : natural-number/c
height : natural-number/c
r : number?
world0 : World

(big-bang width height r world0 animated-gif?) → true
width : natural-number/c
height : natural-number/c
r : number?
world0 : World
animated-gif? : boolean?

Creates and displays a width x height canvas, starts the clock, makes it tick every r sec-
onds, and makes world0 the current world. If it is called with five instead of four arguments
and the last one (animated-gif?) is true, the teachpack allows the generation of images
from the animation, including an animated GIF image.

(on-tick-event tock) → true
tock : (-> World World)

Tell DrScheme to call tock on the current world every time the clock ticks. The result of
the call becomes the current world.

KeyEvent (or/c char? symbol?)

A KeyEvent represents key board events, e.g., keys pressed or released, by the computer’s
user. A char? KeyEvent is used to signal that the user has hit an alphanumeric key. Symbols
such as ’left, ’right, ’up, ’down, ’release denote arrow keys or special events, such
as releasing the key on the keypad.

(key-event? x) → boolean?
x : any

is x a KeyEvent

(key=? x y) → boolean?
x : key-event?
y : key-event?

compares two KeyEvent for equality

(on-key-event change) → true
change : (-> World key-event? World)

15

Tell DrScheme to call change on the current world and a KeyEvent for every keystroke the
user of the computer makes. The result of the call becomes the current world.

Here is a typical key-event handler:

(define (change w a-key-event)
(cond
[(key=? a-key-event ’left) (world-go w -DELTA)]
[(key=? a-key-event ’right) (world-go w +DELTA)]
[(char? a-key-event) w] ; to demonstrate order-free checking
[(key=? a-key-event ’up) (world-go w -DELTA)]
[(key=? a-key-event ’down) (world-go w +DELTA)]
[else w]))

MouseEvent (one-of/c ’button-down ’button-up ’drag ’move ’enter ’leave)

A MouseEvent represents mouse events, e.g., mouse movements or mouse clicks, by the
computer’s user.

(on-mouse-event clack) → true
clack : (-> World natural-number/c natural-number/c MouseEvent World)

Tell DrScheme to call clack on the current world, the current x and y coordinates of the
mouse, and and a MouseEvent for every action of the mouse by the user of the computer.
The result of the call becomes the current world.

(on-redraw to-scene) → true
to-scene : (-> World Scene)

Tell DrScheme to call to-scene whenever the canvas must be redrawn. The canvas is
usually re-drawn after a tick event, a keyboard event, or a mouse event has occurred. The
generated scene is displayed in the world’s canvas.

(stop-when last-world?) → true
last-world? : (-> World boolean?)

Tell DrScheme to call last-world? whenever the canvas is drawn. If this call produces
true, the clock is stopped; no more tick events, KeyEvents, or MouseEvents are forwarded
to the respective handlers. As a result, the canvas isn’t updated either.

Example: The following examples shows that (run-simulation 100 100 (/ 1 28)
create-UFO-scene) is a short-hand for three lines of code:

(define (create-UFO-scene height)
(place-image UFO 50 height (empty-scene 100 100)))

16

(define UFO
(overlay (circle 10 ’solid ’green)

(rectangle 40 4 ’solid ’green)))

(big-bang 100 100 (/1 28) 0)
(on-tick-event add1)
(on-redraw create-UFO-scene)

Exercise: Add a condition for stopping the flight of the UFO when it reaches the bottom.

1.2.4 Scenes and Images

For the creation of scenes from the world, use the functions from §1.1 “Manipulating Images:
"image.ss"”. The following two functions have turned out to be useful for the creation of
scenes, too.

(nw:rectangle width height solid-or-filled c) → image?
width : natural-number/c
height : natural-number/c
solid-or-filled : Mode
c : Color

Creates a width x height rectangle, solid or outlined as specified by solid-or-filled

and colored according to c , with a pinhole at the upper left corner.

(scene+line s x0 y0 x1 y1 c) → Scene
s : Scene
x0 : number?
y0 : number?
x1 : number?
y1 : number?
c : Color

Creates a scene by placing a line of color c from (x0 ,y0) to (x1 ,y1) into scene; (x
,y) are comp. graph. coordinates; in contrast to the add-line function, this one cuts off
those portions of the line that go beyond the boundaries of the given s .

17

1.2.5 A First Example

Understanding a Door

Say we want to represent a door with an automatic door closer. If this kind of door is locked,
you can unlock it. While this doesn’t open the door per se, it is now possible to do so.
That is, an unlocked door is closed and pushing at the door opens it. Once you have passed
through the door and you let go, the automatic door closer takes over and closes the door
again. Of course, at this point you could lock it again.

Here is a picture that translates our words into a graphical representation:

The picture displays a so-called ”state machine”. The three circled words are the states that
our informal description of the door identified: locked, closed (and unlocked), and open.
The arrows specify how the door can go from one state into another. For example, when
the door is open, the automatic door closer shuts the door as time passes. This transition
is indicated by the arrow labeled ”time passes.” The other arrows represent transitions in a
similar manner:

• ”push” means a person pushes the door open (and let’s go);

• ”lock” refers to the act of inserting a key into the lock and turning it to the locked
position; and

• ”unlock” is the opposite of ”lock”.

18

Simulations of the World

Simulating any dynamic behavior via a program demands two different activities. First, we
must tease out those portions of our ”world” that change over time or in reaction to actions,
and we must develop a data representation D for this information. Keep in mind that a good
data definition makes it easy for readers to map data to information in the real world and
vice versa. For all others aspects of the world, we use global constants, including graphical
or visual constants that are used in conjunction with the rendering operations.

Second, we must translate the ”world” actions—the arrows in the above diagram—into in-
teractions with the computer that the world teachpack can deal with. Once we have decided
to use the passing of time for one aspect and mouse movements for another, we must develop
functions that map the current state of the world—represented as data—into the next state of
the world. Since the data definition D describes the class of data that represents the world,
these functions have the following general contract and purpose statements:

; tick : D -> D
; deal with the passing of time
(define (tick w) ...)

; click : D "Number" "Number" MouseEvent -> D
; deal with a mouse click at (x,y) of kind "me"
; in the current world "w"
(define (click w x y me) ...)

; control : D KeyEvent -> D
; deal with a key event (symbol, char) "ke"
; in the current world "w"
(define (control w ke) ...)

That is, the contracts of the various hooks dictate what the contracts of these functions are
once we have defined how to represent the world in data.

A typical program does not use all three of these actions and functions but often just one or
two. Furthermore, the design of these functions provides only the top-level, initial design
goal. It often demands the design of many auxiliary functions.

Simulating a Door: Data

Our first and immediate goal is to represent the world as data. In this specific example, the
world consists of our door and what changes about the door is whether it is locked, unlocked
but closed, or open. We use three symbols to represent the three states:

SD

19

; DATA DEF.
; The state of the door (SD) is one of:
; -- ’locked
; -- ’closed
; -- ’open

Symbols are particularly well-suited here because they directly express the state of the door.

Now that we have a data definition, we must also decide which computer actions and in-
teractions should model the various actions on the door. Our pictorial representation of the
door’s states and transitions, specifically the arrow from ”open” to ”closed” suggests the use
of a function that simulates time. For the other three arrows, we could use either keyboard
events or mouse clicks or both. Our solution uses three keystrokes: "#\\u" for unlocking
the door, "#\\l" for locking it, and "#\\space" for pushing it open. We can express these
choices graphically by translating the above ”state machine” from the world of information
into the world of data:

Simulating a Door: Functions

Our analysis and data definition leaves us with three functions to design:

• "automatic-closer", which closes the time during one tick;

• "door-actions", which manipulates the time in response to pressing a key; and

• "render", which translates the current state of the door into a visible scene.

20

Let’s start with "automatic-closer". We know its contract and it is easy to refine the
purpose statement, too:

; automatic-closer : SD -> SD
; closes an open door over the period of one tick
(define (automatic-closer state-of-door) ...)

Making up examples is trivial when the world can only be in one of three states:

given statedesired state
’locked ’locked
’closed ’closed
’open ’closed

; automatic-closer : SD -> SD
; closes an open door over the period of one tick

(check-expect (automatic-closer ’locked) ’locked)
(check-expect (automatic-closer ’closed) ’closed)
(check-expect (automatic-closer ’open) ’closed)

(define (automatic-closer state-of-door) ...)

The template step demands a conditional with three clauses:

(define (automatic-closer state-of-door)
(cond
[(symbol=? ’locked state-of-door) ...]
[(symbol=? ’closed state-of-door) ...]
[(symbol=? ’open state-of-door) ...]))

The examples basically dictate what the outcomes of the three cases must be:

(define (automatic-closer state-of-door)
(cond
[(symbol=? ’locked state-of-door) ’locked]
[(symbol=? ’closed state-of-door) ’closed]
[(symbol=? ’open state-of-door) ’closed]))

Don’t forget to run the example-tests.

For the remaining three arrows of the diagram, we design a function that reacts to the three
chosen keyboard events. As mentioned, functions that deal with keyboard events consume
both a world and a keyevent:

; door-actions : SD Keyevent -> SD

21

; key events simulate actions on the door
(define (door-actions s k) ...)

given stategiven keyeventdesired state
’locked #\u ’closed
’closed #\l ’locked
’closed #\space ’open
’open — ’open

The examples combine what the above picture shows and the choices we made about map-
ping actions to keyboard events.

From here, it is straightforward to turn this into a complete design:

(define (door-actions s k)
(cond
[(and (symbol=? ’locked s) (key=? #\u k)) ’closed]
[(and (symbol=? ’closed s) (key=? #\l k)) ’locked]
[(and (symbol=? ’closed s) (key=? #\space k)) ’open]
[else s]))

(check-expect (door-actions ’locked #\u) ’closed)
(check-expect (door-actions ’closed #\l) ’locked)
(check-expect (door-actions ’closed #\space) ’open)
(check-expect (door-actions ’open ’any) ’open)
(check-expect (door-actions ’closed ’any) ’closed)

Last but not least we need a function that renders the current state of the world as a scene.
For simplicity, let’s just use a large enough text for this purpose:

; render : SD -> "Scene"
; translate the current state of the door into a large text
(define (render s)
(text (symbol->string s) 40 ’red))

(check-expecy (render ’closed) (text "closed" 40 ’red))

The function "symbol->string" translates a symbol into a string, which is needed because
"text" can deal only with the latter, not the former. A look into the language documentation
revealed that this conversion function exists, and so we use it.

Once everything is properly designed, it is time to run the program. In the case of the world
teachpack, this means we must specify which function takes care of tick events, key events,
and redraws:

(big-bang 100 100 1 ’locked)

22

(on-tick-event automatic-closer)
(on-key-event door-actions)
(on-redraw render)

Now it’s time for you to collect the pieces and run them in DrScheme to see whether it all
works.

1.3 Converting Temperatures: "convert.ss"

The teachpack convert.ss provides three functions for converting Fahrenheit temperatures
to Celsius. It is useful for a single exercise in HtDP. Its purpose is to demonstrate the inde-
pendence of “form” (user interface) and “function” (also known as “model”).

(convert-gui convert) → true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and creates a graphical user
interface with two rulers, which users can use to convert temperatures according to the given
temperature conversion function.

(convert-repl convert) → true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and then starts a read-evaluate-
print loop. The loop prompts users to enter a number and then converts the number according
to the given temperature conversion function. A user can exit the loop by entering “x.”

(convert-file in convert out) → true
in : string?
convert : (-> number? number?)
out : string?

Consumes a file name in , a conversion function from Fahrenheit to Celsius, and a string
out . The program then reads all the number from in , converts them according to convert ,
and prints the results to the newly created file out .

Warning: If out already exists, it is deleted.

Example: Create a file with name "in.dat" with some numbers in it, using your favorite
text editor on your computer. Define a function f2c in the Definitions window and set
teachpack to “convert.ss” and click RUN. Then evaluate

(convert-gui f2c)

23

; and
(convert-file "in.dat" f2c "out.dat")
; and
(convert-repl f2c)

Finally inspect the file "out.dat" and use the repl to check the answers.

1.4 Guessing Numbers: "guess.ss"

The teachpack provides operations to play a guess-the-number game. Each operation display
a GUI in which a player can choose specific values for some number of digits and then check
the guess. The more advanced operations ask students to implement more of the game.

(guess-with-gui check-guess) → true
check-guess : (-> number? number? symbol?)

The check-guess function consumes two numbers: guess, which is the user’s guess, and
target, which is the randomly chosen number-to-be-guessed. The result is a symbol that
reflects the relationship of the player’s guess to the target.

(guess-with-gui-3 check-guess) → true
check-guess : (-> digit? digit? digit? number? symbol?)

The check-guess function consumes three digits (digit0, digit1, digit2) and one
number (target). The latter is the randomly chosen number-to-be-guessed; the three digits
are the current guess. The result is a symbol that reflects the relationship of the player’s
guess (the digits converted to a number) to the target.

Note: digit0 is the least significant digit that the user chose and digit2 is the most signif-
icant one.

(guess-with-gui-list check-guess) → true
check-guess : (-> (list-of digit?) number? symbol?)

The check-guess function consumes a list of digits (digits) and a number (target). The
former is a list that makes up the user’s guess, and the latter is the randomly chosen number-
to-be-guessed. The result is a symbol that reflects the relationship of the player’s guess (the
digits converted to a number) to the target.

Note: the first item on digits is the least significant digit that the user chose, and the last
one is the most significant digit.

24

1.5 MasterMinding: "master.ss"

The teachpack implements GUI for playing a simple master mind-like game, based on a
function designed by a student. The player clicks on two colors and the program responds
with an answer that indicates how many colors and places were correct.

(master check-guess) → symbol?
check-guess : (-> symbol? symbol? symbol? symbol? boolean?)

Chooses two “secret” colors and then opens a graphical user interface for playing Master-
Mind. The player is prompted to choose two colors, via a choice tablet and mouse clicks.
Once chosen, master uses check-guess to compare them.

If the two guesses completely match the two secret colors, check-guess must return ’Per-
fectGuess; otherwise it must return a different, informative symbol.

1.6 Simple Drawing: "draw.ss"

The teachpack provides two sets of functions: one for drawing into a canvas and one for
reacting to canvas events.

Warning: This teachpack is deprecated. Unless you’re solving exercises taken from How To
Design Programs, we strongly encourage you to use the world teachpack instead; see §1.2
“Simulations and Animations: "world.ss"”.

1.6.1 Drawing on a Canvas

DrawColor: (and/c symbol? (one-of/c ’white ’yellow ’red ’blue ’green
’black)) These six colors are definitely provided. If you want other colors, guess! For
example, ’orange works, but ’mauve doesn’t. If you apply the function to a symbol that it
doesn’t recognize as a color, it raises an error.

(start width height) → true
width : number?
height : number?

Opens a width x height canvas.

(start/cartesian-plane width height) → true
width : number?
height : number?

25

Opens a width x height canvas and draws a Cartesian plane.

(stop) → true

Closes the canvas.

(draw-circle p r c) → true
p : posn?
r : number?
c : DrawColor

Draws a c circle at p with radius r .

(draw-solid-disk p r c) → true
p : posn?
r : number?
c : DrawColor

Draws a c disk at p with radius r .

(draw-solid-rect ul width height c) → true
ul : posn?
width : number?
height : number?
c : DrawColor

Draws a width x height , c rectangle with the upper-left corner at ul .

(draw-solid-line strt end c) → true
strt : posn?
end : posn?
c : DrawColor

Draws a c line from strt to end .

(draw-solid-string p s) → true
p : posn?
s : string?

Draws s at p .

26

(sleep-for-a-while s) → true
s : number?

Suspends evaluation for s seconds.

The teachpack also provides clear- operations for each draw- operation. The arguments
are the same. Note: use clear-rectangle instead of clear-string for now. The color
argument for all clear- functions are optional.

1.6.2 Interactions with Canvas

(wait-for-mouse-click) → posn?

Waits for the user to click on the mouse, within the canvas.

DrawKeyEvent: (or/c char? symbol?) A DrawKeyEvent represents keyboard events:

• char?, if the user pressed an alphanumeric key;

• symbol?, if the user pressed, for example, an arror key: ’up ’down ’left ’right

(get-key-event) → (or/c false DrawKeyEvent)

Checks whether the user has pressed a key within the window; false if not.

DrawWorld: For proper interactions, using the teachpack requires that you provide a data
definition for DrawWorld . In principle, there are no constraints on this data definition. You
can even keep it implicit, even if this violates the Design Recipe.

The following functions allow programs to react to events from the canvas.

(big-bang n w) → true
n : number?
w : DrawWorld

Starts the clock, one tick every n (fractal) seconds; w becomes the first “current” world.

(on-key-event change) → true
change : (-> DrawKeyEvent DrawWorld DrawWorld)

27

Adds change to the world. The function reacts to keyboard events and creates a new Draw-
World.

(on-tick-event tock) → true
tock : (-> DrawWorld DrawWorld)

Adds tock to the world. The function reacts to clock tick events, creating a new current
world.

(end-of-time) → DrawWorld

Stops the world; returns the current world.

1.7 Hangman: "hangman.ss"

The teachpack implements the callback functions for playing a Hangman game, based on a
function designed by a student. The player guesses a letter and the program responds with
an answer that indicates how many times, if at all, the letter occurs in the secret word.

The teachpack provides all the drawing operations from §1.6 “Simple Drawing: "draw.ss"”
for managing a canvas into which the “hangman” is drawn.

(hangman make-word reveal draw-next-part) → true
make-word : (-> symbol? symbol? symbol? word?)
reveal : (-> word? word? word?)
draw-next-part : (-> symbol? true)

Chooses a “secret” three-letter word and uses the given functions to manage the Hangman
game.

(hangman-list reveal-for-list

draw-next-part) → true
reveal-for-list : (-> symbol? (list-of symbol?) (list-of symbol?)

(list-of symbol?))
draw-next-part : (-> symbol? true)

Chooses a “secret” word—a list of symbolic letters—and uses the given functions to man-
age the Hangman game: reveal-for-list determines how many times the chosen letter
occurs in the secret word; draw-next-part is given the symbolic name of a body part and
draws it on a separately managed canvas.

28

1.8 Managing Control Arrows: "arrow.ss"

The teachpack implements a controller for moving shapes across a canvass. A shape is a
class of data for which move and draw operations can be drawn.

(control-left-right shape n move draw) → true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels left (negative) or right (positive).

(control-up-down shape n move draw) → true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels up (negative) or down (positive).

(control shape n move-lr move-ud draw) → true
shape : Shape
n : number?
move-lr : (-> number? Shape Shape)
move-ud : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape N pixels left or right and up or down, respectively.

Example:

; A shape is a structure:
; (make-posn num num)

; RAD : the radius of the simple disk moving across a canvas
(define RAD 10)

; move : number shape -> shape or false
; to move a shape by delta according to translate
; effect: to redraw it
(define (move delta sh)
(cond
[(and (clear-solid-disk sh RAD)

29

(draw-solid-disk (translate sh delta) RAD))
(translate sh delta)]
[else false]))

; translate : shape number -> shape
; to translate a shape by delta in the x direction
(define (translate sh delta)
(make-posn (+ (posn-x sh) delta) (posn-y sh)))

; draw-it : shape -> true
; to draw a shape on the canvas: a disk with radius
(define (draw-it sh)
(draw-solid-disk sh RAD))

; RUN:

; this creates the canvas
(start 100 50)

; this creates the controller GUI
(control-left-right (make-posn 10 20) 10 move draw-it)

1.9 Manipulating Simple HTML Documents: "docs.ss"

The teachpack provides three operations for creating simple “HTML” documents:

Annotation An Annotation is a symbol that starts with “<” and ends in “>”. An end anno-
tation is one that starts with “</”.

(atom? x) → boolean?
x : any/c

Determines whether or not a Scheme value is a number, a symbol, or a string.

(annotation? x) → boolean?
x : any/c

Determines whether or not a Scheme symbol is a document annotation.

(end-annotation x) → Annotation
x : Annotation

30

Consumes an annotation and produces a matching ending annotation.

(write-file l) → true
l : (list-of atom)

Consumes a list of symbols and annotations and prints them out as a ”file”.

Sample session: set teachpack to “docs.ss”> and click RUN:

> (annotation? 0)
false
> (annotation? ’<bold>)
true
> (end-annotation 0)
end-annotation: not an annotation: 0
> (write-file (list ’a ’b))
a b

1.10 Working with Files and Directories: "dir.ss"

The teachpack provides structures and operations for working with files and directories:

(struct dir (name dirs files))
name : string?
dirs : (list-of dir?)
files : (list-of file?)

(struct file (name content))
name : string?
content : (list-of char?)

(create-dir path) → dir?
path : string?

Turns the directory found at path on your computer into an instance of dir?.

Sample: Set teachpack to <code>dir.ss</code> and click RUN:

> (create-dir ".")
(make-dir
’|.|

31

empty
(cons (make-file ’ball1.gif 1289 empty)

(cons (make-file ’blueball.gif 205 empty)
(cons (make-file ’greenbal.gif 204 empty)

(cons (make-file ’redball.gif 203 empty)
(cons (make-file ’ufo.gif 1044 empty)

(cons (make-file ’gif-test.ss 5811 empty)
empty)))))))

Using “.” usually means the directory in which your program is located. In this case, the
directory contains no sub-directories and six files.

Note: Softlinks are always treated as if they were empty files.

1.11 Graphing Functions: "graphing.ss"

The teachpack provides two operations for graphing functions in the regular (upper right)
quadrant of the Cartesian plane (between 0 and 10 in both directions):

(graph-fun f color) → true
f : (-> number? number?)
color : symbol?

Draws the graph of f with the given color .

(graph-line line color) → true
line : (-> number? number?)
color : symbol?

Draws line , a function representing a straight line, with a given color.

For color symbols, see §1.6 “Simple Drawing: "draw.ss"”.

1.12 Simple Graphical User Interfaces: "gui.ss"

The teachpack provides operations for creating and manipulating graphical user interfaces.
We recommend using the world teachpack instead.

Window A Window is a data representation of a visible window on your computer screen.

GUI-ITEM A GUI-Item is a data representation of an active component of a window on your
computer screen.

32

(create-window g) → Window
g : (listof (listof GUI-ITEM))

Creates a window from the “matrix” of gui items g .

(window? x) → boolean?
x : any/c

Is the given value a window?

(show-window w) → true
w : Window

Shows w .

(hide-window w) → true
w : window

Hides w .

(make-button label callback) → GUI-ITEM
label : string>
callback : (-> event% boolean)

Creates a button with label and callback function. The latter receives an argument that
it may safely ignore.

(make-message msg) → GUI-ITEM
msg : string?

Creates a message item from msg .

(draw-message g m) → true
g : GUI-ITEM
m : string?

Displays m in message item g and erases the current message.

(make-text txt) → GUI-ITEM
txt : string?

33

Creates an text editor (with label txt) that allows users to enter text.

(text-contents g) → string?
g : GUI-ITEM

Determines the current contents of a text GUI-ITEM.

(make-choice choices) → GUI-ITEM
choices : (listof string?)

Creates a choice menu from choices that permits users to choose from some alternatives.

(choice-index g) → natural-number/c
g : GUI-ITEM

Determines the choice that is currently selected in a choice GUI-ITEM; the result is the
0-based index in the choice menu

Example 1:

> (define w
(create-window
(list (list (make-button "QUIT" (lambda (e) (hide-window w)))))))

; A button appears on the screen.
; Click on the button and it will disappear.
> (show-window w)
; The window disappears.

Example 2:

; text1 : GUI-ITEM
(define text1
(make-text "Please enter your name"))

; msg1 : GUI-ITEM
(define msg1
(make-message (string-append "Hello, World" (make-string 33 #\space))))

; Event -> true
; draws the current contents of text1 into msg1, prepended with "Hello, "
(define (respond e)
(draw-message msg1 (string-append "Hello, " (text-contents text1))))

; set up window with three "lines":

34

; a text field, a message, and two buttons
; fill in text and click OKAY
(define w
(create-window
(list
(list text1)
(list msg1)
(list (make-button "OKAY" respond)

(make-button "QUIT" (lambda (e) (hide-window w)))))))

1.13 An Arrow GUI: "arrow-gui.ss"

The teachpack provides operations for creating and manipulating an arrow GUI. We recom-
mend using the world teachpack instead.

modelT (-> button% event% true)

A modelT is a function that accepts and ignores two arguments.

(control) → symbol?

Reads out the current state of the message field.

(view s) → true
s : (or/c string? symbol?)

Displays s in the message field.

(connect l r u d) → true
l : modelT
r : modelT
u : modelT
d : modelT

Connects four controllers with the four directions in the arrow window.

Example:

; Advanced
(define (make-model dir)

(lambda (b e)
(begin
(view dir)

35

(printf "∼a ∼n" (control)))))

(connect
(make-model "left")
(make-model "right")
(make-model "up")
(make-model "down"))

Now click on the four arrows. The message field contains the current direction, the print-out
the prior contents of the message field.

1.14 Controlling an Elevator: "elevator.ss"

The teachpack implements an elevator simulator.

It displays an eight-floor elevator and accepts mouse clicks from the user, which are trans-
lated into service demands for the elevator.

(run NextFloor) → any/c
NextFloor : number?

Creates an elevator simulator that is controlled by NextFloor . This function consumes the
current floor, the direction in which the elevator is moving, and the current demands. From
that, it computes where to send the elevator next.

Example: Define a function that consumes the current state of the elevator (three arguments)
and returns a number between 1 and 8. Here is a non-sensical definition:

(define (controller x y z) 7)

It moves the elevator once, to the 7th floor.

Second, set the teachpack to <code>elevator.ss</code>, click RUN, and evaluate

(run controller)

1.15 Queens: "show-queen.ss"

The teachpack provides the operation show-queen, which implements a GUI for exploring
the n-queens problem.

(show-queen board) → true
board : (list-of (list-of boolean?))

36

The function show-queen consumes a list of lists of booleans that describes a board . Each
of the inner lists must have the same length as the outer list. The trues correspond to
positions where queens are, and the falses correspond to empty squares. The function
returns nothing.

In the GUI window that show-queen opens, the red and orange dots show where the queens
are. The green dot shows where the mouse cursor is. Each queen that threatens the green
spot is shown in red, and the queens that do not threaten the green spot are shown in orange.

1.16 Matrix Operations: "matrix.ss"

The experimental teachpack supports matrices and matrix operations. A matrix is just a rect-
angle of ’objects’. It is displayed as an image, just like the images from §1.1 “Manipulating
Images: "image.ss"”. Matrices are images and, indeed, scenes in the sense of the §1.2
“Simulations and Animations: "world.ss"”.

No educational materials involving matrices exist.

The operations access a matrix in the usual (school-mathematics) manner: row first, column
second.

The operations aren’t tuned for efficiency so don’t expect to build programs that process lots
of data.

Rectangle A Rectangle (of X) is a non-empty list of lists containing X where all elements of
the list are lists of equal (non-zero) length.

(matrix? o) → boolean?
o : any/c

determines whether the given object is a matrix?

(matrix-rows m) → natural-number/c
m : matrix?

determines how many rows this matrix m has

(matrix-cols m) → natural-number/c
m : matrix?

determines ow many columns this matrix m has

37

(rectangle->matrix r) → matrix?
r : Rectangle

creates a matrix from the given Rectangle

(matrix->rectangle m) → Rectangle
m : matrix?

creates a rectangle from this matrix m

(make-matrix n m l) → matrix?
n : natural-number/c
m : natural-number/c
l : (Listof X)

creates an n by m matrix from l

NOTE: make-matrix would consume an optional number of entries, if it were like make-
vector

(build-matrix n m f) → matrix?
n : natural-number/c
m : natural-number/c
f : (-> (and/c natural-number/c (</c m))

(and/c natural-number/c (</c n))
any/c)

creates an n by m matrix by applying f to (0 ,0), (0 ,1), ..., ((sub1 m) ,(sub1 n))

(matrix-ref m i j) → any/c
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))

retrieve the item at (i ,j) in matrix m

(matrix-set m i j x) → matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))
x : any/c

38

creates a new matrix with x at (i ,j) and all other places the same as in m

(matrix-where? m pred?) → (listof posn?)
m : matrix?
pred? : (-> any/c boolean?)

(matrix-where? M P) produces a list of (make-posn i j) such that (P (matrix-ref
M i j)) holds

(matrix-render m) → Rectangle
m : matrix?

renders this matrix m as a rectangle of strings

(matrix-minor m i j) → matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))

creates a matrix minor from m at (i ,j)

(matrix-set! m i j x) → matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))
x : any/c

like matrix-set but uses a destructive update

39

2 HtDC Teachpacks

2.1 Geometry: geometry.*

Add

import geometry.*

at the top of your Definitions Window to import this library.

This package provides a class for representing positions in a Cartesian world:

+----------+
| Posn |
+----------+
| int x |
| int y |
+----------+

Posn is a class with two fields, one per coordinate. The constructor consumes two integers.

2.2 Colors: colors.*

Add

import colors.*

at the top of your Definitions Window to import this library.

This package provides classes for representing colors:

+--------+
| IColor |
+--------+

|
/ \

|

--
| | | | | |

+-------+ +-------+ +-------+ +-------+ +-------+ +-------+
| Blue | | Green | | Red | | White | | Yellow| | Black |
+-------+ +-------+ +-------+ +-------+ +-------+ +-------+

40

IColor is an interface. Its variants are created with no arguments.

2.3 Draw: draw.*

Add

import draw.*

at the top of your Definitions Window to import this library.

This package provides classes and methods for a visual world. Here is its class diagram of
public fields and methods:

import colors.*;
import geometry.*;

+-----------------------------------+
| abstract World |
+-----------------------------------+
| Canvas theCanvas |----+
+-----------------------------------+ |
boolean bigBang(int,int,double)	
boolean endOfTime(String)	
World endOfWorld(String)	
abstract World onTick()	
abstract World onKeyEvent(String)	
abstract boolean draw()	
+-----------------------------------+ |

|
v

+---------------------------------------+
| Canvas |
+---------------------------------------+
+---------------------------------------+
| boolean show() |
| boolean close() |
| boolean drawCircle(Posn,int,IColor) |
| boolean drawDisk(Posn,int,IColor) |
| boolean drawRect(Posn,int,int,IColor) |
| boolean drawLine(Posn,Posn,IColor) |
| boolean drawString(Posn,String) |
+---------------------------------------+

41

Methods in these classes may fail due to the unavailability of the physical devices, inappro-
priate uses, etc. In those cases, they fail with an exception.

2.3.1 World

The abstract World class exports the following methods.

bigBang : (int width,int height,double speed)

Initializes the world, associates it with a width x height Canvas, displays this canvas,
enables keyevents, and finally starts the clock at a rate of one tick per speed seconds. If it
succeeds with all of its actions, the method produces true.

Note: width, height and speed must be a positive.

The canvas in World is called

theCanvas.

References to a ”canvas” in conjunction with the World class denote this default canvas.

endOfTime : ()

Displays the given message, stops the clock and, if it succeeds, produces true. After the
end of time, events no longer trigger calls to onTick or onKeyEvent. The canvas remains
visible.

endOfWorld : (String msg)

Displays the given message, stops the clock and, if it succeeds, produces the last World.
After the end of the world, events no longer trigger calls to onTick or onKeyEvent (see
below). The canvas remains visible.

A derived concrete class must supply definitions for the following methods:

onTick : ()

Invoked for every tick of the clock. Its purpose is to create a World whose differences with
this one represent what happened during the amount of time it takes the clock to tick.

onKeyEvent : (String key)

42

Invoked for every keyboard event associated with the canvas. Its purposes is to create a
World whose differences with this one represent what happens due to the user’s use of the
keyboard. The latter is represented with the string-valued argument key.

draw : ()

Invoked after one of the two event handlers has been called. Its purpose is to present this
World graphically on its canvas. If it succeeds, its result is true.

A program may, in principle, start several instances of (subclasses of) World. If it does, the
event handlers are called in a unpredictable order.

2.3.2 Canvas

To create an instance of the Canvas class, a program must supply two int values: one for
the width of the canvas and one for its height. The canvas is a rectangle, whose borders
are parallel to the computer screen’s borders. A program can use the following methods on
instances of Canvas]

show : ()

Initializes the canvas to a white area, enables the drawing methods, and finally displays the
canvas. If it succeeds, it produces true. Invoking the method a second time without calling
close before has no effect.

close : ()

Hides the canvas and erases the current content. If it succeeds, it produces true.

Closing the Canvas using the display controls does not fully hide the canvas; it is still neces-
sary to invoke close before show is re-enabled.

drawCircle : (Posn p,int r,IColor c)

Draws a circle on thisCanvas] at p with radius r and color c. If it succeeds, it produces
true.

drawDisk : (Posn p,int r,IColor c)

Draws a disk on thisCanvas] at p with radius r and color c. If it succeeds, it produces
true.

43

drawRect : (Posn p,int w,int h,IColor c)

Draws a solid rectangle on thisCanvas] at p with width w, height h, and color c. The
rectangle’s lines are parallel to the canvas’s borders. If it succeeds, it produces true.

drawLine : (Posn p0,Posn p1,IColor c)

Draws a line on thisCanvas] from p0 to p1 using color c. If it succeeds, it produces true.

drawString : (Posn p,String s)

Draws the string s at p on thisCanvas]. If it succeeds, it produces true.

2.4 Draw: idraw.*

Add

import idraw.*

at the top of your Definitions Window to import this library.

This package provides stateful classes and imperative methods for a visual world. Here is its
class diagram of public fields and methods:

import colors.*;
import geometry.*;

+---------------------------------+
| abstract World |
+---------------------------------+
| Canvas theCanvas |---+
+---------------------------------+ |
void bigBang(int,int,double)	
World endOfTime(String)	
World endOfWorld(String)	
abstract void onTick()	
abstract void onKeyEvent(String)	
abstract void draw()	
+---------------------------------+ |

|
v

+------------------------------------+

44

| Canvas |
+------------------------------------+
+------------------------------------+
| void show() |
| void close() |
| void drawCircle(Posn,int,IColor) |
| void drawDisk(Posn,int,IColor) |
| void drawRect(Posn,int,int,IColor) |
| void drawLine(Posn,Posn,IColor) |
| void drawString(Posn,String) |
+------------------------------------+

The abstract World class in idraw provides the same methods as the World class in §2.3.1
“World” (draw package). Their return values are usually void, however, except for endOf-
Time and endOfWorld, which continue to return the last world.

In an analogous manner, the methods in the Canvas class export the same methods as the
Canvas class in §2.3.2 “Canvas” (draw package). Again their return values are void.

45

	1 HtDP Teachpacks
	1.1 Manipulating Images: "image.ss"
	1.1.1 Images
	1.1.2 Modes and Colors
	1.1.3 Creating Basic Shapes
	1.1.4 Basic Image Properties
	1.1.5 Composing Images
	1.1.6 Manipulating Images
	1.1.7 Miscellaneous Image Manipulation and Creation

	1.2 Simulations and Animations: "world.ss"
	1.2.1 Basics
	1.2.2 Simple Simulations
	1.2.3 Interactions
	1.2.4 Scenes and Images
	1.2.5 A First Example

	1.3 Converting Temperatures: "convert.ss"
	1.4 Guessing Numbers: "guess.ss"
	1.5 MasterMinding: "master.ss"
	1.6 Simple Drawing: "draw.ss"
	1.6.1 Drawing on a Canvas
	1.6.2 Interactions with Canvas

	1.7 Hangman: "hangman.ss"
	1.8 Managing Control Arrows: "arrow.ss"
	1.9 Manipulating Simple HTML Documents: "docs.ss"
	1.10 Working with Files and Directories: "dir.ss"
	1.11 Graphing Functions: "graphing.ss"
	1.12 Simple Graphical User Interfaces: "gui.ss"
	1.13 An Arrow GUI: "arrow-gui.ss"
	1.14 Controlling an Elevator: "elevator.ss"
	1.15 Queens: "show-queen.ss"
	1.16 Matrix Operations: "matrix.ss"

	2 HtDC Teachpacks
	2.1 Geometry: geometry.*
	2.2 Colors: colors.*
	2.3 Draw: draw.*
	2.3.1 World
	2.3.2 Canvas

	2.4 Draw: idraw.*

