
c-lambda: C FFI via mzc
Version 4.1.4

January 20, 2009

(require compiler/cffi)

The compiler/cffi module relies on a C compiler to statically construct an interface to C
code through directives embedded in a Scheme program. The library implements a subset
of Gambit-C’s foreign-function interface [Feeley98].

The scheme/foreign library is a better interface for most tasks; see §“FFI: PLT Scheme
Foreign Interface” for more information on scheme/foreign. See also §“Inside: PLT
Scheme C API”, which describes PLT Scheme’s C-level API for extending the run-time
system.

The compiler/cffi library defines three forms: c-lambda, c-declare, and c-include.
When interpreted directly or compiled to byte code, c-lambda produces a function that
always raises exn:fail, and c-declare and c-include raise exn:fail. When compiled
by mzc --extension, the forms provide access to C. Thus, compiler/cffi is normally
required by a module to be compiled via mzc. In addition, the mzc compiler implicitly
imports compiler/cffi into the top-level environment for non-module compilation.

The c-lambda form creates a Scheme procedure whose body is implemented in C. Instead
of declaring argument names, a c-lambda form declares argument types, as well as a return
type. The implementation can be simply the name of a C function, as in the following
definition of fmod:

(define fmod (c-lambda (double double) double "fmod"))

Alternatively, the implementation can be C code to serve as the body of a function, where
the arguments are bound to arg1 (three underscores), etc., and the result is installed into

result (three underscores):

(define machine-string->float
(c-lambda (char-string) float

" result = *(float *) arg1;"))

1

The c-lambda form provides only limited conversions between C and Scheme data. For
example, the following function does not reliably produce a string of four characters:

(define broken-machine-float->string
(c-lambda (float) char-string

"char b[5]; *(float *)b = arg1; b[4] = 0; result = b;"))

because the representation of a float can contain null bytes, which terminate the string.
However, the full MzScheme API, which is described in §“Inside: PLT Scheme C API”, can
be used in a function body:

(define machine-float->string
(c-lambda (float) scheme-object

"char b[4];"
"*(float *)b = arg1;"
" result = scheme make sized byte string(b, 4, 1);"))

The c-declare form declares arbitrary C code to appear after "escheme.h" or
"scheme.h" is included, but before any other code in the compilation environment of the
declaration. It is often used to declare C header file inclusions. For example, a proper defi-
nition of fmod needs the "math.h" header file:

(c-declare "#include <math.h>")
(define fmod (c-lambda (double double) double "fmod"))

The c-declare form can also be used to define helper C functions to be called through
c-lambda.

The c-include form expands to a c-declare form using the content of a specified file.
Use (c-include file) instead of (c-declare "#include file") when it’s easier to
have MzScheme resolve the file path than to have the C compiler resolve it.

The "plt/collects/mzscheme/examples" directory in the PLT distribution contains ad-
ditional examples.

When compiling for MzScheme3m (see §“Inside: PLT Scheme C API”), C code inserted
by c-lambda, c-declare, and c-include will be transformed in the same was as mzc’s
--xform mode (which may or may not be enough to make the code work correctly in
MzScheme3m; see §“Inside: PLT Scheme C API” for more information).

(c-lambda (argument-type ...) return-type impl-string ...+)

Creates a Scheme procedure whose body is implemented in C. The procedure takes as many
arguments as the supplied argument-types, and it returns one value. If return-type is
void, the procedure’s result is always void. The impl-string is either the name of a C
function (or macro) or the body of a C function.

2

If a single impl-string is provided, and if it is a string containing only alphanumeric char-
acters and , then the created Scheme procedure passes all of its arguments to the named
C function (or macro) and returns the function’s result. Each argument to the Scheme pro-
cedure is converted according to the corresponding argument-type (as described below)
to produce an argument to the C function. Unless return-type is void, the C function’s
result is converted according to return-type for the Scheme procedure’s result.

If more than impl-string is provided, or if it contains more than alphanumeric characters
and , then the concatenated impl-strings must contain C code to implement the function
body. The converted arguments for the function will be in variables arg1, arg2, ...
(with three underscores in each name) in the context where the impl-strings are placed for
compilation. Unless return-type is void, the impl-strings code should assign a result
to the variable result (three underscores), which will be declared but not initialized.
The impl-strings code should not return explicitly; control should always reach the end
of the body. If the impl-strings code defines the pre-processor macro AT END (with
three leading underscores), then the macro’s value should be C code to execute after the
value result is converted to a Scheme result, but before the result is returned, all in the
same block; defining AT END is primarily useful for deallocating a string in result
that has been copied by conversion. The impl-strings code will start on a new line at the
beginning of a block in its compilation context, and AT END will be undefined after the
code.

In addition to arg1, etc., the variable argc is bound in impl-strings to the number of
arguments supplied to the function, and argv is bound to a Scheme Object* array of length
argc containing the function arguments as Scheme values. The argv and argc variables
are mainly useful for error reporting (e.g., with scheme wrong type).

Each argument-type must be one of the following, which are recognized symbolically:

• bool
Scheme range: any value
C type: int
Scheme to C conversion: #f→ 0, anything else → 1
C to Scheme conversion: 0 → #f, anything else → #t

• char
Scheme range: character
C type: char
Scheme to C conversion: character’s Latin-1 value cast to signed byte
C to Scheme conversion: Latin-1 value from unsigned cast mapped to character

• unsigned-char
Scheme range: character
C type: unsigned char
Scheme to C conversion: character’s Latin-1 value
C to Scheme conversion: Latin-1 value mapped to character

3

• signed-char
Scheme range: character
C type: signed char
Scheme to C conversion: character’s Latin-1 value cast to signed byte
C to Scheme conversion: Latin-1 value from unsigned cast mapped to character

• int
Scheme range: exact integer that fits into an int
C type: int
conversions: (obvious and precise)

• unsigned-int
Scheme range: exact integer that fits into an unsigned int
C type: unsigned int
conversions: (obvious and precise)

• long
Scheme range: exact integer that fits into a long
C type: long
conversions: (obvious and precise)

• unsigned-long
Scheme range: exact integer that fits into an unsigned long
C type: unsigned long
conversions: (obvious and precise)

• short
Scheme range: exact integer that fits into a short
C type: short
conversions: (obvious and precise)

• unsigned-short
Scheme range: exact integer that fits into an unsigned short
C type: unsigned short
conversions: (obvious and precise)

• float
Scheme range: real number
C type: float
Scheme to C conversion: number converted to inexact and cast to float
C to Scheme conversion: cast to double and encapsulated as an inexact number

• double
Scheme range: real number
C type: double
Scheme to C conversion: number converted to inexact
C to Scheme conversion: encapsulated as an inexact number

4

• char-string
Scheme range: byte string or #f
C type: char*
Scheme to C conversion: string → contained byte-array pointer, #f→ NULL
C to Scheme conversion: NULL→ #f, anything else → new byte string created by copying the string

• nonnull-char-string
Scheme range: byte string
C type: char*
Scheme to C conversion: byte string’s contained byte-array pointer
C to Scheme conversion: new byte string created by copying the string

• scheme-object
Scheme range: any value
C type: Scheme Object*
Scheme to C conversion: no conversion
C to Scheme conversion: no conversion

• (pointer bstr)
Scheme range: an opaque c-pointer value, identified as type bstr, or #f
C type: bstr*
Scheme to C conversion: #f→ NULL, c-pointer → contained pointer cast to bstr*
C to Scheme conversion: NULL→ #f, anything else → new c-pointer containing the pointer and identified as type bstr

The return-type must be void or one of the arg-type keywords.

(c-declare code-string)

Declares arbitrary C code to appear after "escheme.h" or "scheme.h" is included, but
before any other code in the compilation environment of the declaration. A c-declare
form can appear only at the top-level or within a module’s top-level sequence.

The code code will appear on a new line in the file for C compilation. Multiple c-include
declarations are concatenated (with newlines) in order to produces a sequence of declara-
tions.

(c-include path-spec)

Expands to a use of c-declare with the content of path-spec . The path-spec has the
same form as for mzlib/include’s include.

5

Bibliography

[Feeley98] Marc Feeley, “Gambit-C, version 3.0.” 1998.

6

