
setup-plt: PLT Configuration and Installation
Version 4.1.5

March 21, 2009

The setup-plt executable finds, compiles, configures, and installs documentation for all
collections in a PLT Scheme installation. It can also install single ".plt" files.

1

Contents

1 Running setup-plt Executable 3

1.1 Controlling setup-plt with "info.ss" Files 3

2 Running setup-plt from Scheme 8

2.1 Options Unit . 8

2.2 Options Signature . 9

3 ".plt" Archives 12

3.1 Making ".plt" Archives . 12

3.2 Installing a Single ".plt" File . 16

3.2.1 Non-GUI Installer . 16

3.2.2 GUI Installer . 16

3.2.3 GUI Unpacking Signature . 17

3.2.4 GUI Unpacking Unit . 18

3.3 Unpacking ".plt" Archives . 18

3.4 Format of ".plt" Archives . 20

4 Finding Installation Directories 23

5 "info.ss" File Format 26

6 Reading "info.ss" Files 28

7 Paths Relative to "collects" 30

8 Cross-References for Installed Manuals 31

Index 32

2

1 Running setup-plt Executable

The setup-plt executable performs two main services:

• Compiling and setting up all (or some of the) collections: When setup-plt is run
without any arguments, it finds all of the current collections (see §16.2 “Libraries and
Collections”) and compiles libraries in each collection.

An optional "info.ss" within the collection can indicate specifically how the collec-
tion’s files are to be compiled and other actions to take in setting up a collection, such
as creating executables or building documentation. See §1.1 “Controlling setup-plt
with "info.ss" Files” for more information.

The --clean (or -c) flag to setup-plt causes it to delete existing ".zo" files, thus
ensuring a clean build from the source files. The exact set of deleted files can be
controlled by "info.ss"; see clean for more information.

The -l flag takes one or more collection names and restricts setup-plt’s action to
those collections.

The --mode 〈mode〉 flag causes setup-plt to use a ".zo" compiler other than the
default compiler, and to put the resulting ".zo" files in a subdirectory (of the usual
place) named by 〈mode〉. The compiler is obtained by using 〈mode〉 as a collection
name, finding a "zo-compile.ss" module in that collection, and extracting its zo-
compile export. The zo-compile export should be a function like compile; see the
"errortrace" collection for an example.

• Unpacking ".plt" files: A ".plt" file is a platform-independent distribution
archive for software based on PLT Scheme. When one or more file names are pro-
vided as the command line arguments to setup-plt, the files contained in the ".plt"
archive are unpacked (according to specifications embedded in the ".plt" file) and
only collections specified by the ".plt" file are compiled and setup.

Run setup-plt with the -h flag to see a list of all options accepted by the setup-plt
executable.

1.1 Controlling setup-plt with "info.ss" Files

To compile a collection’s files to bytecode, setup-plt uses the compile-collection-
zos procedure. That procedure, in turn, consults the collection’s "info.ss" file, if it exists,
for specific instructions on compiling the collection. See compile-collection-zos for
more information on the fields of "info.ss" that it uses, and see §5 “"info.ss" File
Format” for information on the format of an "info.ss" file.

Optional "info.ss" fields trigger additional actions by setup-plt:

3

• scribblings : (listof (cons/c string? list?)) — A list of documents to
build. Each document in the list is itself represented as a list, where each document’s
list starts with a string that is a collection-relative path to the document’s source file.

More precisely a scribblings entry must be a value that can be generated from an
expression matching the following entry grammar:

entry = (list doc ...)

doc = (list src-string)
| (list src-string flags)
| (list src-string flags category)
| (list src-string flags category name-string)

flags = (list mode-symbol ...)

category = (list category-symbol)
| (list category-symbol sort-number)

A document’s list optionally continues with information on how to build the docu-
ment. If a document’s list contains a second item, it must be a list of mode symbols
(described below). If a document’s list contains a third item, it must be a list that cate-
gorizes the document (described further below). If a document’s list contains a fourth
item, it is a name to use for the generated documentation, instead of defaulting to the
source file’s name (sans extension).

Each mode symbol in flags can be one of the following, where only ’multi-page
is commonly used:

– ’multi-page : Generates multi-page HTML output, instead of the default
single-page format.

– ’main-doc : Indicates that the generated documentation should be written into
the main installation directory, instead of to a user-specific directory. This mode
is the default for a collection that is itself located in the main installation.

– ’user-doc : Indicates that the generated documentation should be written a
user-specific directory. This mode is the default for a collection that is not itself
located in the main installation.

– ’depends-all : Indicates that the document should be re-built if any other doc-
ument is rebuilt—except for documents that have the ’no-depends-on mode.

– ’depends-all-main : Indicates that the document should be re-built if any
other document is rebuilt that is installed into the main installation—except for
documents that have the ’no-depends-on mode.

– ’always-run : Build the document every time that setup-plt is run, even if
none of its dependencies change.

– ’no-depend-on : Removes the document for consideration for other depen-
dencies. This mode is typically used with ’always-run to avoid unnecessary
dependencies that prevent reaching a stable point in building documentation.

4

– ’main-doc-root : Designates the root document for the main installation. The
document that currently has this mode should be the only one with the mode.

– ’user-doc-root : Designates the root document for the user-specific docu-
mentation directory. The document that currently has this mode should be the
only one with the mode.

The category list specifies how to show the document in the root table of contents.
The list must start with a symbol, usually one of the following categories, which are
ordered as below in the root documentation page:

– ’getting-started : High-level, introductory documentation.

– ’language : Documentation for a prominent programming language.

– ’tool : Documentation for an executable.

– ’gui-library : Documentation for GUI and graphics libraries.

– ’net-library : Documentation for networking libraries.

– ’parsing-library : Documentation for parsing libraries.

– ’tool-library : Documentation for programming-tool libraries (i.e., not im-
portant enough for the more prominent ’tool category).

– ’interop : Documentation for interoperability tools and libraries.

– ’library : Documentation for libraries; this category is the default and used
for unrecognized category symbols.

– ’legacy : Documentation for deprecated libraries, languages, and tools.

– ’experimental : Documentation for an experimental language or library.

– ’other : Other documentation.

– ’omit : Documentation that should not be listed on the root page.

If the category list has a second element, it must be a real number that designates
the manual’s sorting position with the category; manuals with the same sorting po-
sition are ordered alphabetically. For a pair of manuals with sorting numbers n and
m , the groups for the manuals are separated by space if (truncate (/ n 10))and
(truncate (/ m 10)) are different.

• mzscheme-launcher-names : (listof string?) — A list of executable names
to be generated in the installation’s executable directory to run MzScheme-based pro-
grams implemented by the collection. A parallel list of library names must be provided
by mzscheme-launcher-libraries or mzscheme-launcher-flags.

For each name, a launching executable is set up using make-mzscheme-launcher.
The arguments are -l- and 〈colls〉/.../〈file〉, where 〈file〉 is the file named by
mzscheme-launcher-libraries and 〈colls〉/... are the collections (and subcol-
lections) of the "info.ss" file.

In addition,

5

(build-aux-from-path
(build-path (collection-path 〈colls〉 ...) 〈suffixless-file〉))

is provided for the optional aux argument (for icons, etc.) to make-mzscheme-
launcher, where where 〈suffixless-file〉 is 〈file〉 without its suffix.

If mzscheme-launcher-flags is provided, it is used as a list of command-line
arguments passed to mzscheme instead of the above default, allowing arbitrary
command-line arguments. If mzscheme-launcher-flags is specified together with
mzscheme-launcher-libraries, then the flags will override the libraries, but the
libraries can still be used to specify a name for build-aux-from-path (to find re-
lated information like icon files etc).

• mzscheme-launcher-libraries : (listof path-string?) — A list of library
names in parallel to mzscheme-launcher-names.

• mzscheme-launcher-flags : (listof string?) — A list of command-line flag
lists, in parallel to mzscheme-launcher-names.

• mred-launcher-names : (listof string?) — Like mzscheme-launcher-
names, but for MrEd-based executables. The launcher-name list is treated in parallel
to mred-launcher-libraries and mred-launcher-flags.

• mred-launcher-libraries : (listof path-string?) — A list of library names
in parallel to mred-launcher-names.

• mred-launcher-flags : (listof string?) — A list of command-line flag lists,
in parallel to mred-launcher-names.

• install-collection : path-string? — A library module relative to the collec-
tion that provides installer. The installer procedure accepts either one or two
arguments. The first argument is a directory path to the parent of the PLT installation’s
"collects" directory; the second argument, if accepted, is a path to the collection’s
own directory. The procedure should perform collection-specific installation work,
and it should avoid unnecessary work in the case that it is called multiple times for the
same installation.

• pre-install-collection : path-string? — Like install-collection, ex-
cept that the corresponding installer is called before the normal ".zo" build, instead
of after. The provided procedure should be named pre-installer in this case, so it
can be provided by the same file that provides an installer.

• post-install-collection : path-string? — Like install-collection. It is
called right after the install-collection procedure is executed. The only differ-
ence between these is that the --no-install flag can be used to disable the previous
two installers, but not this one. It is therefore expected to perform operations that
are always needed, even after an installation that contains pre-compiled files. The pro-
vided procedure should be named post-installer in this case, so it can be provided
by the same file that provides the previous two.

6

• clean : (listof path-string?) — A list of pathnames to be deleted when the
--clean or -c flag is passed to setup-plt. The pathnames must be relative to the
collection. If any path names a directory, each of the files in the directory are deleted,
but none of the subdirectories of the directory are checked. If the path names a file,
the file is deleted. The default, if this flag is not specified, is to delete all files in the
"compiled" subdirectory, and all of the files in the platform-specific subdirectory of
the compiled directory for the current platform.

Just as compiling ".zo" files will compile each module used by a compiled module,
deleting a module’s compiled image will delete the ".zo" of each module that is
used by the module. More specifically, used modules are determined when deleting
a ".dep" file, which would have been created to accompany a ".zo" file when the
".zo" was built by setup-plt. If the ".dep" file indicates another module, that
module’s ".zo" is deleted only if it also has an accompanying ".dep" file. In that
case, the ".dep" file is deleted, and additional used modules are deleted based on the
used module’s ".dep" file, etc. Supplying a specific list of collections to setup-plt
disables this dependency-based deletion of compiled files.

7

2 Running setup-plt from Scheme

The setup/setup-unit library provides setup-plt in unit form. The associated
setup/option-sig and setup/option-unit libraries provides the interface for setting
options for the run of setup-plt.

For example, to unpack a single ".plt" archive "x.plt", set the archives parameter to
(list "x.plt") and leave specific-collections as null.

Link the options and setup units so that your option-setting code is initialized between them,
e.g.:

(compound-unit
...

(link ...

[(OPTIONS : setup-option^) setup:option@]
[() my-init-options@ OPTIONS]
[() setup@ OPTIONS ...])

...)

#<part-start>

(require setup/setup-unit)

setup@ : unit?

Imports

• setup-option^

• compiler^

• compiler:option^

• launcher^

and exports nothing. Invoking setup@ starts the setup process.

2.1 Options Unit

(require setup/option-unit)

setup:option@ : unit?

8

Imports nothing and exports setup-option^.

2.2 Options Signature

(require setup/option-sig)

setup-option^ : signature

Provides parameters used to control setup-plt in unit form.

(verbose) → boolean?
(verbose on?) → void?
on? : any/c

If on, prints message from make to stderr. The default is #f.

(make-verbose) → boolean?
(make-verbose on?) → void?
on? : any/c

If on, verbose make. The default is #f.

(compiler-verbose) → boolean?
(compiler-verbose on?) → void?
on? : any/c

If on, verbose compiler. The default is #f.

(clean) → boolean?
(clean on?) → void?
on? : any/c

If on, delete ".zo" and ".so"/".dll"/".dylib" files in the specified collec-
tions. The default is #f.

(compile-mode) → (or/c path? false/c)
(compile-mode path) → void?
path : (or/c path? false/c)

If a path is given, use a ".zo" compiler other than plain compile, and build
to (build-path "compiled" (compile-mode)). The default is #f.

(make-zo) → boolean?
(make-zo on?) → void?
on? : any/c

9

If on, compile ".zo". The default is #t.

(make-so) → boolean?
(make-so on?) → void?
on? : any/c

If on, compile ".so"/".dll" files. The default is #f.

(make-launchers) → boolean?
(make-launchers on?) → void?
on? : any/c

If on, make collection "info.ss"-specified launchers. The default is #t.

(make-info-domain) → boolean?
(make-info-domain on?) → void?
on? : any/c

If on, update "info-domain/compiled/cache.ss" for each collection path.
The default is #t.

(call-install) → boolean?
(call-install on?) → void?
on? : any/c

If on, call collection "info.ss"-specified setup code. The default is #t.

(force-unpack) → boolean?
(force-unpack on?) → void?
on? : any/c

If on, ignore version and already-installed errors when unpacking a ".plt"
archive. The default is #f.

(pause-on-errors) → boolean?
(pause-on-errors on?) → void?
on? : any/c

If on, in the event of an error, prints a summary error and waits for stdin input
before terminating. The default is #f.

(specific-collections) → (listof path-string?)
(specific-collections coll) → void?
coll : (listof path-string?)

A list of collections to set up; the empty list means set-up all collections if the
archives list is also empty The default is null.

10

(archives) → (listof path-string?)
(archives arch) → void?
arch : (listof path-string?)

A list of ".plt" archives to unpack; any collections specified by the archives
are set-up in addition to the collections listed in specific-collections. The default
is null.

(current-target-directory-getter) → (-> . path-string?)
(current-target-directory-getter thunk) → void?
thunk : (-> . path-string?)

A thunk that returns the target directory for unpacking a relative ".plt"
archive; when unpacking an archive, either this or the procedure in current-
target-plt-directory-getter will be called. The default is current-
directory.

(current-target-plt-directory-getter)
→ (path-string?

path-string?
(listof path-string?) . -> . path-string?)

(current-target-plt-directory-getter proc) → void?
proc : (path-string?

path-string?
(listof path-string?) . -> . path-string?)

A procedure that takes a preferred path, a path to the parent of the main "col-
lects" directory, and a list of path choices; it returns a path for a ”plt-relative”
install; when unpacking an archive, either this or the procedure in current-
target-directory-getter will be called, and in the former case, this pro-
cedure may be called multiple times. The default is (lambda (preferred
main-parent-dir choices) preferred).

11

3 ".plt" Archives

3.1 Making ".plt" Archives

(require setup/pack)

Although the mzc executable can be used to create ".plt" files (see § “mzc: PLT Compi-
lation and Packaging”), the setup/pack library provides a more general Scheme API for
making ".plt" archives:

(pack-collections-plt
dest

name

collections

[#:replace? replace?

#:at-plt-home? at-home?

#:test-plt-collects? test?

#:extra-setup-collections collection-list

#:file-filter filter-proc])
→ void?
dest : path-string?
name : string?
collections : (listof (listof path-string?))
replace? : boolean? = #f
at-home? : boolean? = #f
test? : boolean? = #t
collection-list : (listof path-string?) = null
filter-proc : (path-string? . -> . boolean?) = std-filter

Creates the ".plt" file specified by the pathname dest , using the name as the name re-
ported to setup-plt as the archive’s description.

The archive contains the collections listed in collections , which should be a list of col-
lection paths; each collection path is, in turn, a list of relative-path strings.

If the #:replace? argument is #f, then attempting to unpack the archive will report an error
when any of the collections exist already, otherwise unpacking the archive will overwrite an
existing collection.

If the #:at-plt-home? argument is #t, then the archived collections will be installed into
the PLT installation directory instead of the user’s directory if the main "collects" direc-
tory is writable by the user. If the #:test-plt-collects? argument is #f (the default is
#t) and the #:at-plt-home? argument is #t, then installation fails if the main "collects"
directory is not writable.

12

The optional #:extra-setup-collections argument is a list of collection paths that are
not included in the archive, but are set-up when the archive is unpacked.

The optional #:file-filter argument is the same as for pack-plt.

(pack-collections dest

name

collections

replace?

extra-setup-collections

[filter
at-plt-home?]) → void?

dest : path-string?
name : string?
collections : (listof (listof path-string?))
replace? : boolean?
extra-setup-collections : (listof path-string?)
filter : (path-string? . -> . boolean?) = std-filter
at-plt-home? : boolean? = #f

Old, keywordless variant of pack-collections-plt for backward compatibility.

(pack-plt dest

name

paths

[#:file-filter filter-proc

#:encode? encode?

#:file-mode file-mode-sym

#:unpack-unit unit200-expr

#:collections collection-list

#:plt-relative? plt-relative?

#:at-plt-home? at-plt-home?

#:test-plt-dirs dirs

#:requires mod-and-version-list

#:conflicts mod-list]) → void?
dest : path-string?
name : string?
paths : (listof path-string?)
filter-proc : (path-string? . -> . boolean?) = std-filter
encode? : boolean? = #t
file-mode-sym : symbol? = ’file
unit200-expr : any/c = #f
collection-list : (listof path-string?) = null
plt-relative? : any/c = #f
at-plt-home? : any/c = #f

13

dirs : (or/c (listof path-string?) false/c) = #f
mod-and-version-list : (listof (listof path-string?)

(listof exact-integer?))
= null

mod-list : (listof (listof path-string?)) = null

Creates the ".plt" file specified by the pathname dest , using the string name as the name
reported to setup-plt as the archive’s description. The paths argument must be a list
of relative paths for directories and files; the contents of these files and directories will be
packed into the archive.

The #:file-filter procedure is called with the relative path of each candidate for packing.
If it returns #f for some path, then that file or directory is omitted from the archive. If it
returns ’file or ’file-replace for a file, the file is packed with that mode, rather than
the default mode. The default is std-filter.

If the #:encode? argument is #f, then the output archive is in raw form, and still must be
gzipped and mime-encoded (in that order). The default value is #t.

The #:file-mode argument must be ’file or ’file-replace, indicating the default
mode for a file in the archive. The default is ’file.

The #:unpack-unit argument is usually #f. Otherwise, it must be an S-expression for
a mzlib/unit200-style unit that performs the work of unpacking; see §3.4 “Format of
".plt" Archives” more information about the unit. If the #:unpack-unit argument is #f,
an appropriate unpacking unit is generated.

The #:collections argument is a list of collection paths to be compiled after the archive
is unpacked. The default is the null.

If the #:plt-relative? argument is true (the default is #f), the archive’s files and di-
rectories are to be unpacked relative to the user’s add-ons directory or the PLT installation
directories, depending on whether the #:at-plt-home? argument is true and whether di-
rectories specified by #:test-plt-dirs are writable by the user.

If the #:at-plt-home? argument is true (the default is #f), then #:plt-relative? must
be true, and the archive is unpacked relative to the PLT installation directory. In that case, a
relative path that starts with "collects" is mapped to the installation’s main "collects"
directory, and so on, for the following the initial directory names:

• "collects"

• "doc"

• "lib"

• "include"

14

If #:test-plt-dirs is a list, then #:at-plt-home? must be #t. In that case, when
the archive is unpacked, if any of the relative directories in the #:test-plt-dirs list is
unwritable by the current user, then the archive is unpacked in the user’s add-ons directory
after all.

The #:requires argument should have the shape (list (list coll-path version)
...) where each coll-path is a non-empty list of relative-path strings, and each version

is a (possibly empty) list of exact integers. The indicated collections must be installed at
unpacking time, with version sequences that match as much of the version sequence specified
in the corresponding version . A collection’s version is indicated by the version field of
its "info.ss" file.

The #:conflicts argument should have the shape (list coll-path ...) where each
coll-path is a non-empty list of relative-path strings. The indicated collections must not
be installed at unpacking time.

(pack dest

name

paths

collections

[filter
encode?

file-mode

unpack-unit

plt-relative?

requires

conflicts

at-plt-home?]) → void?
dest : path-string?
name : string?
paths : (listof path-string?)
collections : (listof path-string?)
filter : (path-string? . -> . boolean?) = std-filter
encode? : boolean? = #t
file-mode : symbol? = ’file
unpack-unit : boolean? = #f
plt-relative? : boolean? = #t
requires : (listof (listof path-string?)

(listof exact-integer?))
= null

conflicts : (listof (listof path-string?)) = null
at-plt-home? : boolean? = #f

Old, keywordless variant of pack-plt for backward compatibility.

(std-filter p) → boolean?

15

p : path-string?

Returns #t unless p , after stripping its directory path and converting to a byte string,
matches one of the following regular expressions: ^CVS$, ^[.]svn$, ^[.]cvsignore,
^compiled$, ^doc, ∼$, ^#.*#$, ^[.]#, or [.]plt$.

(mztar path output filter file-mode) → void?
path : path-string?
output : output-port?
filter : (path-string? . -> . boolean?)
file-mode : (symbols ’file ’file-replace)

Called by pack to write one directory/file path to the output port output using the fil-
ter procedure filter (see pack for a description of filter). The file-mode argument
specifies the default mode for packing a file, either ’file or ’file-replace.

3.2 Installing a Single ".plt" File

The setup/plt-single-installer module provides a function for installing a single
".plt" file, and setup/plt-single-installer wraps it with a GUI interface.

3.2.1 Non-GUI Installer

(require setup/plt-single-installer)

(run-single-installer file get-dir-proc) → void?
file : path-string?
get-dir-proc : (-> (or/c path-string? false/c))

Creates a separate thread and namespace, runs the installer in that thread with the new names-
pace, and returns when the thread completes or dies. It also creates a custodian (see §13.6
“Custodians”) to manage the created thread, sets the exit handler for the thread to shut down
the custodian, and explicitly shuts down the custodian when the created thread terminates or
dies.

The get-dir-proc procedure is called if the installer needs a target directory for installa-
tion, and a #f result means that the user canceled the installation. Typically, get-dir-proc
is current-directory.

3.2.2 GUI Installer

16

(require setup/plt-installer)

The setup/plt-installer library in the setup collection defines procedures for installing
a ".plt" archive with a GUI (using the facilities of scheme/gui/base).

(run-installer filename) → void?
filename : path-string?

Run the installer on the ".plt" file in filename and show the output in a window. This
is a composition of with-installer-window and run-single-installer with a get-
dir-proc that prompts the user for a directory (turning off the busy cursor while the dialog
is active).

(on-installer-run) → (-> any)
(on-installer-run thunk) → void?
thunk : (-> any)

A thunk that is run after a ".plt" file is installed.

(with-installer-window do-install

cleanup-thunk) → void?
do-install : ((or/c (is-a?/c dialog%) (is-a?/c frame%))

. -> . void?)
cleanup-thunk : (-> any)

Creates a frame, sets up the current error and output ports, and turns on the busy cursor
before calling do-install in a separate thread.

Returns before the installation process is complete; cleanup-thunk is called on a queued
callback to the eventspace active when with-installer-window is invoked.

(run-single-installer file get-dir-proc) → void?
file : path-string?
get-dir-proc : (-> (or/c path-string? false/c))

The same as the sole export of setup/plt-single-installer, but with a GUI.

3.2.3 GUI Unpacking Signature

(require setup/plt-installer-sig)

setup:plt-installer^ : signature

17

Provides two names: run-installer and on-installer-run.

3.2.4 GUI Unpacking Unit

(require setup/plt-installer-unit)

Imports mred^ and exports setup:plt-installer^.

3.3 Unpacking ".plt" Archives

(require setup/unpack)

The setup/unpack library provides raw support for unpacking a ".plt" file.

(unpack archive

[main-collects-parent-dir
print-status

get-target-directory

force?

get-target-plt-directory]) → void?
archive : path-string?
main-collects-parent-dir : path-string? = (current-directory)
print-status : (string? . -> . any)

= (lambda (x) (printf "∼a\n" x))
get-target-directory : (-> path-string?)

= (lambda () (current-directory))
force? : any/c = #f
get-target-plt-directory : (path-string?

path-string?
(listof path-string?)
. -> . path-string?)

= (lambda (preferred-dir main-dir options)
preferred-dir)

Unpacks archive .

The main-collects-parent-dir argument is passed along to get-target-plt-

directory .

The print-status argument is used to report unpacking progress.

The get-target-directory argument is used to get the destination directory for unpack-
ing an archive whose content is relative to an arbitrary directory.

18

If force? is true, then version and required-collection mismatches (comparing information
in the archive to the current installation) are ignored.

The get-target-plt-directory function is called to select a target for installation for
an archive whose is relative to the installation. The function should normally return one if
its first two arguments; the third argument merely contains the first two, but has only one
element if the first two are the same. If the archive does not request installation for all uses,
then the first two arguments will be different, and the former will be a user-specific location,
while the second will refer to the main installation.

(fold-plt-archive archive

on-config-fn

on-setup-unit

on-directory

on-file

initial-value) → any/c
archive : path-string?
on-config-fn : (any/c any/c . -> . any/c)
on-setup-unit : (any/c input-port? any/c . -> . any/c)
on-directory : (path-string? any/c . -> . any/c)
on-file : (path-string? input-port? any/c . -> . any/c)
initial-value : any/c

Traverses the content of archive , which must be a ".plt" archive that is created with the
default unpacking unit and configuration expression. The configuration expression is not
evaluated, the unpacking unit is not invoked, and not files are unpacked to the filesystem.
Instead, the information in the archive is reported back through on-config, on-setup-
unit , on-directory , and on-file , each of which can build on an accumulated value that
starts with initial-value and whose final value is returned.

The on-config-fn function is called once with an S-expression that represents a function
to implement configuration information. The second argument to on-config is initial-
value , and the function’s result is passes on as the last argument to on-setup-unit .

The on-setup-unit function is called with the S-expression representation of the instal-
lation unit, an input port that points to the rest of the file, and the accumulated value. This
input port is the same port that will be used in the rest of processing, so if on-setup-unit
consumes any data from the port, then that data will not be consumed by the remaining func-
tions. (This means that on-setup-unit can leave processing in an inconsistent state, which is
not checked by anything, and therefore could cause an error.) The result of on-setup-unit
becomes the new accumulated value.

For each directory that would be created by the archive when unpacking normally, on-
directory is called with the directory path and the accumulated value up to that point, and
its result is the new accumulated value.

19

For each file that would be created by the archive when unpacking normally, on-file is
called with the file path, an input port containing the contents of the file, and the accumulated
value up to that point; its result is the new accumulated value. The input port can be used
or ignored, and parsing of the rest of the file continues the same either way. After on-file
returns control, however, the input port is drained of its content.

3.4 Format of ".plt" Archives

The extension ".plt" is not required for a distribution archive, but the ".plt"-extension
convention helps users identify the purpose of a distribution file.

The raw format of a distribution file is described below. This format is uncompressed and
sensitive to communication modes (text vs. binary), so the distribution format is derived
from the raw format by first compressing the file using gzip, then encoding the gzipped file
with the MIME base64 standard (which relies only the characters A-Z, a-z, 0-9, +, /, and =;
all other characters are ignored when a base64-encoded file is decoded).

The raw format is

• PLT are the first three characters.

• A procedure that takes a symbol and a failure thunk and returns information about
archive for recognized symbols and calls the failure thunk for unrecognized symbols.
The information symbols are:

– ’name — a human-readable string describing the archive’s contents. This name
is used only for printing messages to the user during unpacking.

– ’unpacker — a symbol indicating the expected unpacking environment. Cur-
rently, the only allowed value is ’mzscheme.

– ’requires — collections required to be installed before unpacking the archive,
which associated versions; see the documentation of pack for details.

– ’conflicts — collections required not to be installed before unpacking the
archive.

– ’plt-relative? — a boolean; if true, then the archive’s content should be
unpacked relative to the plt add-ons directory.

– ’plt-home-relative? — a boolean; if true and if ’plt-relative? is true,
then the archive’s content should be unpacked relative to the PLT Scheme instal-
lation.

– ’test-plt-dirs — #f or a list of path strings; in the latter case, a true value of
’plt-home-relative? is cancelled if any of the directories in the list (relative
to the PLT Scheme installation) is unwritable by the user.

The procedure is extracted from the archive using the read and eval procedures in a
fresh namespace.

20

• An old-style, unsigned unit using (lib mzlib/unit200) that drives the unpacking
process. The unit accepts two imports: a path string for the parent of the main "col-
lects" directory and an unmztar procedure. The remainder of the unpacking process
consists of invoking this unit. It is expected that the unit will call unmztar procedure
to unpack directories and files that are defined in the input archive after this unit. The
result of invoking the unit must be a list of collection paths (where each collection
path is a list of strings); once the archive is unpacked, setup-plt will compile and
setup the specified collections.

The unmztar procedure takes one argument: a filter procedure. The filter procedure
is called for each directory and file to be unpacked. It is called with three arguments:

– ’dir, ’file, ’file-replace — indicates whether the item to be unpacked is
a directory, a file, or a file to be replaced,

– a relative path string — the pathname of the directory or file to be unpacked,
relative to the unpack directory, and

– a path string for the unpack directory (which can vary for a PLT-relative install
when elements of the archive start with "collects", "lib", etc.).

If the filter procedure returns #f for a directory or file, the directory or file is not
unpacked. If the filter procedure returns #t and the directory or file for ’dir or ’file
already exists, it is not created. (The file for file-replace need not exist already.)

When a directory is unpacked, intermediate directories are created as necessary to
create the specified directory. When a file is unpacked, the directory must already
exist.

The unit is extracted from the archive using read and eval.

Assuming that the unpacking unit calls the unmztar procedure, the archive should continue
with unpackables. Unpackables are extracted until the end-of-file is found (as indicated by
an = in the base64-encoded input archive).

An unpackable is one of the following:

• The symbol ’dir followed by a list. The build-path procedure will be applied to
the list to obtain a relative path for the directory (and the relative path is combined
with the target directory path to get a complete path).

The ’dir symbol and list are extracted from the archive using read (and the result is
not evaluated).

• The symbol ’file, a list, a number, an asterisk, and the file data. The list specifies the
file’s relative path, just as for directories. The number indicates the size of the file to
be unpacked in bytes. The asterisk indicates the start of the file data; the next n bytes
are written to the file, where n is the specified size of the file.

The symbol, list, and number are all extracted from the archive using read (and the
result is not evaluated). After the number is read, input characters are discarded until
an asterisk is found. The file data must follow this asterisk immediately.

21

• The symbol ’file-replace is treated like ’file, but if the file exists on disk al-
ready, the file in the archive replaces the file on disk.

22

4 Finding Installation Directories

(require setup/dirs)

The setup/dirs library provides several procedures for locating installation directories:

(find-collects-dir) → (or/c path? false/c)

Returns a path to the installation’s main "collects" directory, or #f if none can be found.
A #f result is likely only in a stand-alone executable that is distributed without libraries.

(find-user-collects-dir) → path?

Returns a path to the user-specific "collects" directory; the directory indicated by the
returned path may or may not exist.

(get-collects-search-dirs) → (listof path?)

Returns the same result as (current-library-collection-paths), which means that
this result is not sensitive to the value of the use-user-specific-search-paths param-
eter.

(find-doc-dir) → (or/c path? false/c)

Returns a path to the installation’s "doc" directory. The result is #f if no such directory is
available.

(find-user-doc-dir) → path?

Returns a path to a user-specific "doc" directory. The directory indicated by the returned
path may or may not exist.

(get-doc-search-dirs) → (listof path?)

Returns a list of paths to search for documentation, not including documentation stored in
individual collections. Unless it is configured otherwise, the result includes any non-#f
result of (find-doc-dir) and (find-user-doc-dir)—but the latter is included only if
the value of the use-user-specific-search-paths parameter is #t.

(find-lib-dir) → (or/c path? false/c)

23

Returns a path to the installation’s "lib" directory, which contains libraries and other build
information. The result is #f if no such directory is available.

(find-dll-dir) → (or/c path? false/c)

Returns a path to the directory that contains DLLs for use with the current executable (e.g.,
"libmzsch.dll" under Windows). The result is #f if no such directory is available, or if
no specific directory is available (i.e., other than the platform’s normal search path).

(find-user-lib-dir) → path?

Returns a path to a user-specific "lib" directory; the directory indicated by the returned
path may or may not exist.

(get-lib-search-dirs) → (listof path?)

Returns a list of paths to search for libraries. Unless it is configured otherwise, the re-
sult includes any non-#f result of (find-lib-dir), (find-dll-dir), and (find-user-
lib-dir)—but the last is included only if the value of the use-user-specific-search-
paths parameter is #t.

(find-include-dir) → (or/c path? false/c)

Returns a path to the installation’s "include" directory, which contains ".h" files for build-
ing MzScheme extensions and embedding programs. The result is #f if no such directory is
available.

(find-user-include-dir) → path?

Returns a path to a user-specific "include" directory; the directory indicated by the re-
turned path may or may not exist.

(get-include-search-dirs) → (listof path?)

Returns a list of paths to search for ".h" files. Unless it is configured otherwise, the result in-
cludes any non-#f result of (find-include-dir) and (find-user-include-dir)—but
the latter is included only if the value of the use-user-specific-search-paths param-
eter is #t.

(find-console-bin-dir) → (or/c path? false/c)

Returns a path to the installation’s executable directory, where the stand-alone MzScheme

24

executable resides. The result is #f if no such directory is available.

(find-gui-bin-dir) → (or/c path? false/c)

Returns a path to the installation’s executable directory, where the stand-alone MrEd exe-
cutable resides. The result is #f if no such directory is available.

absolute-installation? : boolean?

A binary boolean flag that is true if this installation is using absolute path names.

25

5 "info.ss" File Format

#lang setup/infotab

In each collection, a special module file "info.ss" provides general information about a
collection for use by various tools. For example, an "info.ss" file specifies how to build
the documentation for a collection, and it lists plug-in tools for DrScheme that the collection
provides.

Although an "info.ss" file contains a module declaration, the declaration has a highly
constrained form. It must match the following grammar of info-module :

info-module = (module info intotab-mod-path

(define id info-expr)
...)

intotab-mod-path = (lib "infotab.ss" "setup")
| setup/infotab

info-expr = ’datum
| ‘datum
| (info-primitive info-expr ...)
| id

| string

| number

| boolean

| (string-constant identifier)

info-primitive = cons
| car
| cdr
| list
| list*
| reverse
| append
| string-append
| path->string
| build-path
| collection-path
| system-library-subpath

For example, the following declaration could be the "info.ss" library of the "help" col-
lection. It contains definitions for three info tags, name, mzscheme-launcher-libraries,
and mzscheme-launcher-names.

#lang setup/infotab

26

(define name "Help")
(define mzscheme-launcher-libraries ’("help.ss"))
(define mzscheme-launcher-names ’("PLT Help"))

As illustrated in this example, an "info.ss" file can use #lang notation, but only with the
setup/infotab language.

See also get-info from setup/getinfo.

27

6 Reading "info.ss" Files

(require setup/getinfo)

The setup/getinfo library provides functions for accessing fields in "info.ss" files.

(get-info collection-names) → (or/c
(symbol? [(-> any)] . -> . any)
false/c)

collection-names : (listof string?)

Accepts a list of strings naming a collection or sub-collection, and calls get-info/full
with the full path corresponding to the named collection.

(get-info/full path) → (or/c
(symbol? [(-> any)] . -> . any)
false/c)

path : path?

Accepts a path to a directory. It returns #f if there is no "info.ss" file in the directory.
If the "info.ss" file has the wrong shape (i.e., not a module using setup/infotab or
(lib "infotab.ss" "setup")), or if the "info.ss" file fails to load, then an exception
is raised.

Otherwise, get-info/full returns an info procedure of one or two arguments. The first
argument to the info procedure is always a symbolic name, and the result is the value of the
name in the "info.ss" file, if the name is defined. The optional second argument, thunk ,
is a procedure that takes no arguments to be called when the name is not defined; the result
of the info procedure is the result of the thunk in that case. If the name is not defined and
no thunk is provided, then an exception is raised.

(find-relevant-directories syms [mode]) → (listof path?)
syms : (listof symbol?)
mode : (symbols ’preferred ’all-available) = ’preferred

Returns a list of paths identifying installed directories (i.e., collections and installed PLane
T packages) whose "info.ss" file defines one or more of the given symbols. The result
is based on a cache that is computed by setup-plt and stored in the "info-domain"
sub-directory of each collection directory (as determined by the PLT_COLLECTION_PATHS
environment variable, etc.) and the file "cache.ss" in the user add-on directory.

The result is in a canonical order (sorted lexicographically by directory name), and the paths
it returns are suitable for providing to get-info/full.

28

If mode is specified, it must be either ’preferred (the default) or ’all-available. If
mode is ’all-available, find-relevant-collections returns all installed directories
whose info files contain the specified symbols—for instance, all installed PLaneT packages
will be searched if ’all-available is specified. If mode is ’preferred, then only a sub-
set of “preferred” packages will be searched, and in particular only the directory containing
the most recent version of any PLaneT package will be returned.

No matter what mode is specified, if more than one collection has the same name,
find-relevant-directories will only search the one that occurs first in the
PLT_COLLECTION_PATHS environment variable.

(reset-relevant-directories-state!) → void?

Resets the cache used by find-relevant-directories.

29

7 Paths Relative to "collects"

(require setup/main-collects)

(path->main-collects-relative path)
→ (or/c path? (cons/c ’collects (listof bytes?)))
path : (or/c bytes? path-string?)

Checks whether path has a prefix that matches the prefix to the main "collects" directory
as determined by (find-collects-dir). If so, the result is a list starting with ’collects
and containing the remaining path elements as byte strings. If not, the path is returned as-is.

The path argument should be a complete path. Applying simplify-path before path-
>main-collects-relative is usually a good idea.

For historical reasons, path can be a byte string, which is converted to a path using bytes-
>path.

(main-collects-relative->path rel) → path?
rel : (or/c bytes? path-string?

(cons/c ’collects
(or/c (listof bytes?) bytes?)))

The inverse of path->main-collects-relative: if rel is a pair that starts with ’col-
lects, then it is converted back to a path relative to (find-collects-dir).

For historical reasons, a single byte string is allowed in place of a list of byte strings after
’collects, in which case it is assumed to be a relative path after conversion with bytes-
>path.

Also for historical reasons, if rel is any kind of value other than specified in the contract
above, it is returned as-is.

30

8 Cross-References for Installed Manuals

(require setup/xref)

(load-collections-xref [on-load]) → xref?
on-load : (-> any/c) = (lambda () (void))

Like load-xref, but automatically find all cross-reference files for manuals that have been
installed with setup-plt.

31

Index
".plt" Archives, 12
"info.ss" File Format, 26
absolute-installation?, 25
archives, 11
call-install, 10
clean, 9
compile-mode, 9
compiler-verbose, 9
Controlling setup-plt with "info.ss"

Files, 3
Cross-References for Installed Manuals, 31
current-target-directory-getter, 11
current-target-plt-directory-
getter, 11

find-collects-dir, 23
find-console-bin-dir, 24
find-dll-dir, 24
find-doc-dir, 23
find-gui-bin-dir, 25
find-include-dir, 24
find-lib-dir, 23
find-relevant-directories, 28
find-user-collects-dir, 23
find-user-doc-dir, 23
find-user-include-dir, 24
find-user-lib-dir, 24
Finding Installation Directories, 23
fold-plt-archive, 19
force-unpack, 10
Format of ".plt" Archives, 20
get-collects-search-dirs, 23
get-doc-search-dirs, 23
get-include-search-dirs, 24
get-info, 28
get-info/full, 28
get-lib-search-dirs, 24
GUI Installer, 16
GUI Unpacking Signature, 17
GUI Unpacking Unit, 18
"info-domain", 28

Installing a Single ".plt" File, 16
load-collections-xref, 31
main-collects-relative->path, 30
make-info-domain, 10
make-launchers, 10
make-so, 10
make-verbose, 9
make-zo, 9
Making ".plt" Archives, 12
mztar, 16
Non-GUI Installer, 16
on-installer-run, 17
Options Signature, 9
Options Unit, 8
pack, 15
pack-collections, 13
pack-collections-plt, 12
pack-plt, 13
path->main-collects-relative, 30
Paths Relative to "collects", 30
pause-on-errors, 10
Reading "info.ss" Files, 28
reset-relevant-directories-state!,

29
run-installer, 17
run-single-installer, 17
run-single-installer, 16
Running setup-plt Executable, 3
Running setup-plt from Scheme, 8
scribblings, 4
setup-option^, 9
setup-plt: PLT Configuration and Instal-

lation, 1
setup/dirs, 23
setup/getinfo, 28
setup/infotab, 26
setup/main-collects, 30
setup/option-sig, 9
setup/option-unit, 8
setup/pack, 12
setup/plt-installer, 16
setup/plt-installer-sig, 17

32

setup/plt-installer-unit, 18
setup/plt-single-installer, 16
setup/setup-unit, 8
setup/unpack, 18
setup/xref, 31
setup:option@, 8
setup:plt-installer^, 17
setup@, 8
specific-collections, 10
std-filter, 15
unpack, 18
unpackable, 21
Unpacking ".plt" Archives, 18
verbose, 9
with-installer-window, 17

33

	1 Running setup-plt Executable
	1.1 Controlling setup-plt with "info.ss" Files

	2 Running setup-plt from Scheme
	2.1 Options Unit
	2.2 Options Signature

	3 ".plt" Archives
	3.1 Making ".plt" Archives
	3.2 Installing a Single ".plt" File
	3.2.1 Non-GUI Installer
	3.2.2 GUI Installer
	3.2.3 GUI Unpacking Signature
	3.2.4 GUI Unpacking Unit

	3.3 Unpacking ".plt" Archives
	3.4 Format of ".plt" Archives

	4 Finding Installation Directories
	5 "info.ss" File Format
	6 Reading "info.ss" Files
	7 Paths Relative to "collects"
	8 Cross-References for Installed Manuals
	Index

