
More: Systems Programming with PLT Scheme
Version 4.1

August 12, 2008

In contrast to the impression that §“Quick: An Introduction to PLT Scheme with Pictures”
may give, PLT Scheme is not just another pretty face. Underneath the graphical facade of
DrScheme lies a sophisticated toolbox for managing threads and processes, which is the
subject of this tutorial.

Specifically, we show how to build a secure, multi-threaded, servlet-extensible, continuation-
based web server. We use much more of the language than in §“Quick: An Introduction to
PLT Scheme with Pictures”, and we expect you to click on syntax or function names that
you don’t recognize (which will take you to the relevant documentation). Beware that the
last couple of sections present material that is normally considered difficult. If you’re still
new to Scheme and have relatively little programming experience, you may want to skip to
§“Guide: PLT Scheme”.

To get into the spirit of this tutorial, we suggest that you set DrScheme aside for a moment,
and switch to raw mzscheme in a terminal. You’ll also need a text editor, such as emacs or
vi. Finally, you’ll need a web client, perhaps lynx or firefox. Of course, if you’re

already spoiled,
you can keep using
DrScheme.

1

1 Ready...

Download PLT Scheme, install, and then start mzscheme with no command-line arguments:

$ mzscheme
Welcome to MzScheme
>

If you’re using a plain terminal, if you have GNU Readline installed on your system, and
if you’d like Readline support in mzscheme, then evaluate (require readline). If you
also evaluate (install-readline!), then your "∼/.mzschemerc" is updated to load
Readline whenever you start mzscheme for interactive evaluation. Unfortunately, for

legal reasons related
to GPL vs. LGPL,
mzscheme cannot
provide Readline
automatically.

> (require readline)
> (install-readline!)

2

2 Set...

In the same directory where you started mzscheme, create a text file "serve.ss", and start
it like this:

#lang scheme

(define (go)
’yep-it-works) Here’s the whole

program so far in
plain text: step 0.

3

3 Go!

Back in mzscheme, try loading the file and running go:

> (enter! "serve.ss")
[loading serve.ss]
> (go)
yep-it-works

Try modifying "serve.ss", and then running (enter! "serve.ss") again to re-load the
module, then check your changes.

4

4 “Hello World” Server

We’ll implement the web server through a serve function that takes a IP port number for
client connections:

(define (serve port-no)
...)

The server accepts TCP connections through a listener, which we create with tcp-listen.
To make interactive development easier, we supply #t as the third argument to tcp-listen,
which lets us re-use the port number without waiting on TCP timeouts.

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
...)

The server must loop to accept connections from the listener:

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))

(loop))

Our accept-and-handle function accepts a connection using tcp-accept, which returns
two values: a stream for input from the client, and a stream for output to the client.

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(handle in out)
(close-input-port in)
(close-output-port out))

To handle a connection, for now, we’ll read and discard the request header, and then write a
“Hello, world!” web page as the result:

(define (handle in out)
; Discard the request header (up to blank line):
(regexp-match #rx"(\r\n|^)\r\n" in)
; Send reply:
(display "HTTP/1.0 200 Okay\r\n" out)
(display "Server: k\r\nContent-Type: text/html\r\n\r\n" out)
(display "<html><body>Hello, world!</body></html>" out))

Note that regexp-match operates directly on the input stream, which is easier than bother-
ing with individual lines. Here’s the whole

program so far in
plain text: step 1.

5

Copy the above three definitions—serve, accept-and-handle, and handle—into
"serve.ss" and re-load:

> (enter! "serve.ss")
[re-loading serve.ss]
> (serve 8080)

Now point your browser to http://localhost:8080 (assuming that you used 8080 as the
port number, and that the browser is running on the same machine) to receive a friendly
greeting from your web server.

6

5 Server Thread

Before we can make the web server respond in more interesting ways, we need to get a
Scheme prompt back. Typing Ctl-C in your terminal window interrupts the server loop: In DrScheme, in-

stead of typing Ctl-
C, click the Stop
button once.

> (serve 8080)
ˆCuser break
>

Unfortunately, we cannot now re-start the server with the same port number:

> (serve 8080)
tcp-listen: listen on 8080 failed (address already in use)

The problem is that the listener that we created with serve is still listening on the original
port number.

To avoid this problem, let’s put the listener loop in its own thread, and have serve return
immediately. Furthermore, we’ll have serve return a function that can be used to shut down
the server thread and TCP listener:

(define (serve port-no)
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))

(define t (thread loop))
(lambda ()
(kill-thread t)
(tcp-close listener))) Here’s the whole

program so far in
plain text: step 2.Try the new one:

> (enter! "serve.ss")
[re-loading serve.ss]
> (define stop (serve 8081))

Your server should now respond to http://localhost:8081, but you can shut down and
restart the server on the same port number as often as you like:

> (stop)
> (define stop (serve 8081))
> (stop)
> (define stop (serve 8081))
> (stop)

7

6 Connection Threads

In the same way that we put the main server loop into a background thread, we can put each
individual connection into its own thread:

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(thread
(lambda ()
(handle in out)
(close-input-port in)
(close-output-port out)))) Here’s the whole

program so far in
plain text: step 3.With this change, our server can now handle multiple threads at once. The handler is so fast

that this fact will be difficult to detect, however, so try inserting (sleep (random 10))
before the handle call above. If you make multiple connections from the web browser at
roughly the same time, some will return soon, and some will take up to 10 seconds. The
random delays will be independent of the order in which you started the connections.

8

7 Terminating Connections

A malicious client could connect to our web server and not send the HTTP header, in which
case a connection thread will idle forever, waiting for the end of the header. To avoid this
possibility, we’d like to implement a timeout for each connection thread.

One way to implement the timeout is to create a second thread that waits for 10 seconds, and
then kills the thread that calls handle. Threads are lightweight enough in Scheme that this
watcher-thread strategy works well:

(define (accept-and-handle listener)
(define-values (in out) (tcp-accept listener))
(define t (thread

(lambda ()
(handle in out)
(close-input-port in)
(close-output-port out))))

; Watcher thread:
(thread (lambda ()

(sleep 10)
(kill-thread t))))

This first attempt isn’t quite right, because when the thread is killed, its in and out streams
remain open. We could add code to the watcher thread to close the streams as well as
kill the thread, but Scheme offers a more general shutdown mechanism: custodians. A
custodian is a kind of container for all resources other than memory, and it supports a
custodian-shutdown-all operation that terminates and closes all resources within the
container, whether they’re threads, streams, or other kinds of limited resources.

Whenever a thread or stream is created, it is placed into the current custodian as determined
by the current-custodian parameter. To place everything about a connection into a cus-
todian, we parameterize all the resource creations to go into a new custodian:

(define (accept-and-handle listener)
(define cust (make-custodian))
(parameterize ([current-custodian cust])
(define-values (in out) (tcp-accept listener))
(thread (lambda ()

(handle in out)
(close-input-port in)
(close-output-port out))))

; Watcher thread:
(thread (lambda ()

(sleep 10)
(custodian-shutdown-all cust))))

9

With this implementation, in, out, and the thread that calls handle all belong to cust. In
addition, if we later change handle so that it, say, opens a file, then the file handles will also
belong to cust, so they will be reliably closed when cust is shut down.

In fact, it’s a good idea to change serve to that it uses a custodian, too:

(define (serve port-no)
(define main-cust (make-custodian))
(parameterize ([current-custodian main-cust])
(define listener (tcp-listen port-no 5 #t))
(define (loop)
(accept-and-handle listener)
(loop))

(thread loop))
(lambda ()
(custodian-shutdown-all main-cust)))

That way, the main-cust created in serve not only owns the TCP listener and the main
server thread, it also owns every custodian created for a connection. Consequently, the
revised shutdown procedure for the server immediately terminates all active connections, in
addition to the main server loop. Here’s the whole

program so far in
plain text: step 4.After updating the serve and accept-and-handle functions as above, here’s how you can

simulate a malicious client:

> (enter! "serve.ss")
[re-loading serve.ss]
> (define stop (serve 8081))
> (define-values (cin cout) (tcp-connect "localhost" 8081))

Now wait 10 seconds. If you try reading from cin, which is the stream that sends data from
the server back to the client, you’ll find that the server has shut down the connection:

> (read-line cin)
#<eof>

Alternatively, you don’t have to wait 10 seconds if you explicitly shut down the server:

> (define-values (cin2 cout2) (tcp-connect "localhost" 8081))
> (stop)
> (read-line cin2)
#<eof>

10

8 Dispatching

It’s finally time to generalize our server’s “Hello, World!” response to something more
useful. Let’s adjust the server so that we can plug in dispatching functions to handle requests
to different URLs.

To parse the incoming URL and to more easily format HTML output, we’ll require two extra
libraries:

(require net/url xml)

The xml library gives us xexpr->string, which takes a Scheme value that looks like
HTML and turns it into actual HTML:

> (xexpr->string ’(html (head (title "Hello")) (body "Hi!")))
"<html><head><title>Hello</title></head><body>Hi!</body></html>"

We’ll assume that our new dispatch function (to be written) takes a requested URL and
produces a result value suitable to use with xexpr->string to send back to the client:

(define (handle in out)
(define req
; Match the first line to extract the request:
(regexp-match #rx"^GET (.+) HTTP/[0-9]+\\.[0-9]+"

(read-line in)))
(when req
; Discard the rest of the header (up to blank line):
(regexp-match #rx"(\r\n|^)\r\n" in)
; Dispatch:
(let ([xexpr (dispatch (list-ref req 1))])
; Send reply:
(display "HTTP/1.0 200 Okay\r\n" out)
(display "Server: k\r\nContent-Type: text/html\r\n\r\n" out)
(display (xexpr->string xexpr) out))))

The net/url library gives us string->url, url-path, path/param-path, and url-
query for getting from a string to parts of the URL that it represents:

> (define u (string->url "http://localhost:8080/foo/bar?x=bye"))
> (url-path u)
(#<path/param> #<path/param>)
> (map path/param-path (url-path u))
("foo" "bar")
> (url-query u)
((x . "bye"))

We use these pieces to implement dispatch. The dispatch function consults a hash table

11

that maps an initial path element, like "foo", to a handler function:

(define (dispatch str-path)
; Parse the request as a URL:
(define url (string->url str-path))
; Extract the path part:
(define path (map path/param-path (url-path url)))
; Find a handler based on the path’s first element:
(define h (hash-ref dispatch-table (car path) #f))
(if h

; Call a handler:
(h (url-query url))
; No handler found:
‘(html (head (title "Error"))

(body
(font ((color "red"))

"Unknown page: "
,str-path)))))

(define dispatch-table (make-hash))

With the new require import and new handle, dispatch, and dispatch-table defini-
tions, our “Hello World!” server has turned into an error server. You don’t have to stop the
server to try it out. After modifying "serve.ss" with the new pieces, evaluate (enter!
"serve.ss") and then try again to connect to the server. The web browser should show an
“Unknown page” error in red.

We can register a handler for the "hello" path like this:

(hash-set! dispatch-table "hello"
(lambda (query)
‘(html (body "Hello, World!")))) Here’s the whole

program so far in
plain text: step 5.After adding these lines and evaluating (enter! "serve.ss"), opening

http://localhost:8081/hello should produce the old greeting.

12

9 Servlets and Sessions

Using the query argument that is passed to a handler by dispatch, a handler can respond
to values that a user supplies through a form.

The following helper function constructs an HTML form. The label argument is a string
to show the user. The next-url argument is a destination for the form results. The hidden
argument is a value to propagate through the form as a hidden field. When the user responds,
the "number" field in the form holds the user’s value:

(define (build-request-page label next-url hidden)
‘(html
(head (title "Enter a Number to Add"))
(body ([bgcolor "white"])

(form ([action ,next-url] [method "get"])
,label
(input ([type "text"] [name "number"]

[value ""]))
(input ([type "hidden"] [name "hidden"]

[value ,hidden]))
(input ([type "submit"] [name "enter"]

[value "Enter"]))))))

Using this helper function, we can create a servlet that generates as many “hello”s as a user
wants:

(define (many query)
(build-request-page "Number of greetings:" "/reply" ""))

(define (reply query)
(define n (string->number (cdr (assq ’number query))))
‘(html (body ,@(for/list ([i (in-range n)])

" hello"))))

(hash-set! dispatch-table "many" many)
(hash-set! dispatch-table "reply" reply) Here’s the whole

program so far in
plain text: step 6.As usual, once you have added these to your program, update with (enter! "serve.ss"),

and then visit http://localhost:8081/many. Provide a number, and you’ll receive a new
page with that many “hello”s.

13

10 Limiting Memory Use

With our latest "many" servlet, we seem to have a new problem: a malicious client could
request so many “hello”s that the server runs out of memory. Actually, a malicious client
could also supply an HTTP request whose first line is arbitrarily long.

The solution to this class of problems is to limit the memory use of a connection. Inside
accept-and-handle, after the definition of cust, add the line

(custodian-limit-memory cust (* 50 1024 1024)) Here’s the whole
program so far in
plain text: step 7.We’re assuming that 50MB should be plenty for any servlet. Due to the way that memory

accounting is defined, cust might also be charged for the core server implementation and all
of the libraries loaded on start-up, so the limit cannot be too small. Also, garbage-collector
overhead means that the actual memory use of the system can be some small multiple of 50
MB. An important guarantee, however, is that different connections will not be charged for
each other’s memory use, so one misbehaving connection will not interfere with a different
one.

So, with the new line above, and assuming that you have a couple of hundred megabytes
available for the mzscheme process to use, you shouldn’t be able to crash the web server by
requesting a ridiculously large number of “hello”s.

Given the "many" example, it’s a small step to a web server that accepts arbitrary Scheme
code to execute on the server. In that case, there are many additional security issues besides
limiting processor time and memory consumption. The scheme/sandbox library provides
support to managing all those other issues.

14

11 Continuations

As a systems example, the problem of implementing a web server exposes many system and
security issues where a programming language can help. The web-server example also leads
to a classic, advanced Scheme topic: continuations. In fact, this facet of a web server needs
delimited continuations, which PLT Scheme provides.

The problem solved by continuations is related to servlet sessions and user input, where a
computation spans multiple client connections [Queinnec00]. Often, client-side computation
(as in AJAX) is the right solution to the problem, but many problems are best solved with a
mixture of techniques (e.g., to take advantage of the browser’s “back” button).

As the multi-connection computation becomes more complex, propagating arguments
through query becomes increasingly tedious. For example, we can implement a servlet
that takes two numbers to add by using the hidden field in the form to remember the first
number:

(define (sum query)
(build-request-page "First number:" "/one" ""))

(define (one query)
(build-request-page "Second number:"

"/two"
(cdr (assq ’number query))))

(define (two query)
(let ([n (string->number (cdr (assq ’hidden query)))]

[m (string->number (cdr (assq ’number query)))])
‘(html (body "The sum is " ,(number->string (+ m n))))))

(hash-set! dispatch-table "sum" sum)
(hash-set! dispatch-table "one" one)
(hash-set! dispatch-table "two" two) Here’s the whole

program so far in
plain text: step 8.While the above works, we would much rather write such computations in a direct style:

(define (sum2 query)
(define m (get-number "First number:"))
(define n (get-number "Second number:"))
‘(html (body "The sum is " ,(number->string (+ m n)))))

(hash-set! dispatch-table "sum2" sum2)

The problem is that get-number needs to send an HTML response back for the current
connection, and then it must obtain a response through a new connection. That is, somehow
it needs to convert the page generated by build-request-page into a query result:

15

(define (get-number label)
(define query
... (build-request-page label ...) ...)

(number->string (cdr (assq ’number query))))

Continuations let us implement a send/suspend operation that performs exactly that oper-
ation. The send/suspend procedure generates a URL that represents the current connec-
tion’s computation, capturing it as a continuation. It passes the generated URL to a procedure
that creates the query page; this query page is used as the result of the current connection,
and the surrounding computation (i.e., the continuation) is aborted. Finally, send/suspend
arranges for a request to the generated URL (in a new connection) to restore the aborted
computation.

Thus, get-number is implemented as follows:

(define (get-number label)
(define query
; Generate a URL for the current computation:
(send/suspend
; Receive the computation-as-URL here:
(lambda (k-url)
; Generate the query-page result for this connection.
; Send the query result to the saved-computation URL:
(build-request-page label k-url ""))))

; We arrive here later, in a new connection
(string->number (cdr (assq ’number query))))

We still have to implement send/suspend. Plain Scheme’s call/cc is not quite enough,
so we import a library of control operators:

(require scheme/control)

Specifically, we need prompt and abort from scheme/control. We use prompt to mark
the place where a servlet is started, so that we can abort a computation to that point. Change
handle by wrapping an prompt around the call to dispatch:

(define (handle in out)
....
(let ([xexpr (prompt (dispatch (list-ref req 1)))])
....))

Now, we can implement send/suspend. We use call/cc in the guise of let/cc, which
captures the current computation up to an enclosing prompt and binds that computation to
an identifier—k, in this case:

(define (send/suspend mk-page)
(let/cc k
...))

16

Next, we generate a new dispatch tag, and we record the mapping from the tag to k:

(define (send/suspend mk-page)
(let/cc k
(define tag (format "k∼a" (current-inexact-milliseconds)))
(hash-set! dispatch-table tag k)
...))

Finally, we abort the current computation, supplying instead the page that is built by applying
the given mk-page to a URL for the generated tag:

(define (send/suspend mk-page)
(let/cc k
(define tag (format "k∼a" (current-inexact-milliseconds)))
(hash-set! dispatch-table tag k)
(abort (mk-page (string-append "/" tag)))))

When the user submits the form, the handler associated with the form’s URL is the old
computation, stored as a continuation in the dispatch table. Calling the continuation (like a
function) restores the old computation, passing the query argument back to that computa-
tion. Here’s the final pro-

gram in plain text:
step 9.In summary, the new pieces are: (require scheme/control), adding prompt in-

side handle, the definitions of send/suspend, get-number, and sum2, and (hash-
set! dispatch-table "sum2" sum2). Once you have the server updated, visit
http://localhost:8081/sum2.

17

12 Where to Go From Here

If you arrived here as part of an introduction to PLT Scheme, then your next stop is probably
§“Guide: PLT Scheme”.

If the topics covered here are the kind that interest you, see also §10 “Concurrency” and §13
“Reflection and Security” in §“Reference: PLT Scheme”.

Some of this material is based on relatively recent research, and more information can be
found in papers written by the authors of PLT Scheme, including papers on MrEd [Flatt99],
memory accounting [Wick04], kill-safe abstractions [Flatt04], and delimited continuations
[Flatt07].

The PLT Scheme distribution includes a production-quality web server that addresses all of
the design points mentioned here and more [Krishnamurthi07]. See §“Web Server: PLT
HTTP Server”.

18

Bibliography

[Flatt99] Matthew Flatt, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias Felleisen, “Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine),” International Conference on Functional Programming, 1999. http://www.ccs.neu.edu/scheme/pubs/icfp99-ffkf.pdf
[Flatt04] Matthew Flatt and Robert Bruce Findler, “Kill-Safe Synchronization Abstractions,” Programming Language Design and Implementation, 2004. http://www.cs.utah.edu/plt/publications/pldi04-ff.pdf
[Flatt07] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen, “Adding Delimited and Composable Control to a Production Programming Environment,” International Conference on Functional Programming, 2007. http://www.cs.utah.edu/plt/publications/icfp07-fyff.pdf
[Krishnamurthi07] Shriram Krishnamurthi, Peter Hopkins, Jay McCarthy, Paul T. Graunke, Greg Pettyjohn, and Matthias Felleisen, “Implementation and Use of the PLT Scheme Web Server,” Higher-Order and Symbolic Computation, 2007. http://www.cs.brown.edu/∼sk/Publications/Papers/Published/khmgpf-impl-use-plt-web-server-journal/paper.pdf
[Queinnec00] Christian Queinnec, “The Influence of Browsers on Evaluators or, Continuations to Program Web Servers,” International Conference on Functional Programming, 2000. http://www-spi.lip6.fr/∼queinnec/Papers/webcont.ps.gz
[Wick04] Adam Wick and Matthew Flatt, “Memory Accounting without Partitions,” International Symposium on Memory Management, 2004. http://www.cs.utah.edu/plt/publications/ismm04-wf.pdf

19

	1 Ready...
	2 Set...
	3 Go!
	4 ``Hello World'' Server
	5 Server Thread
	6 Connection Threads
	7 Terminating Connections
	8 Dispatching
	9 Servlets and Sessions
	10 Limiting Memory Use
	11 Continuations
	12 Where to Go From Here

