DrScheme: PLT Programming Environment

Version 4.2.1

Robert Bruce Findler
and PLT

July 30, 2009

DrScheme is a graphical environment for developing programs using the PLT Scheme pro-
gramming languages.

Contents

11.6.2 InputandOutput|

1.7 Graphical Syntax|

|1.8 Graphical Debugging Interface|

[1.8.1 Debugger Buttons|,

|1.8.4 Debugging Multiple Files|

1.9 Creating Executables|,

10

10

10

11

14

14

14

15

15

16

16

17

17

19

2.5 Other Experimental Languages| 24
2.6 Output Printing Styles|. 24
3 Interface Referencel 26
BI Menusl.o 26
BIT _FEldo 26
BIZ Editl oo 27
BIZ Viewl . . o oottt 28
B.1.4 Languagel 29
BIS Schemdo 30
BI6 Tnserlot 31
3.1.7 Windowsl 32

8 Helpl. 32

B2 Preferencesl oo 32
B2T Fontl.o 32
B22 Colors . . .o oo 32
3.2.3 diting] 33
B.24 Warnings| 34
3.25 Profiling] 35
32,6 Browser. 35

3.3 Keyboard Shortcuts| 35
3.3.1 MovingAround|. 36
3.3.2 Editing Operations| 37
3.3.3 FileOperations|, 38
334 Searchl. 38
B335 Miscellaneousl oo oo 38

3.3.7 LaleX and TeX inspired keybindings| 39

[3.3.8 Defining Custom Shortcuts|. 41

3.4 DrSchemeFiles| oo oo 41
3.4.1 ProgramFiles|. o oo 41

3.4.2 Backup and Autosave Files|. L. 42

343 PreferenceFilesl. o L. 42
|4__Extending DrScheme| 44
4 packs| 44
B2 Environment Varables] oo 45
Index 47

1 Interface Essentials

The DrScheme window has three parts: a row of buttons at the top, two editing panels in the
middle, and a status line at the bottom.

exampless ™ (define .)" Macro Stepper@ Debug@ Check SyntaxQ, Run & Stopil

#lang schame

;i sgquare : number -» number
i+ to produce the sguare of x
(define (sguare x|

(% xx))

‘Walcome to Drichame, version 3.98.0.23-wn 1may2008 [3m].
Language: Module; memary limit 128 megabyes.

= (square 2)

&

>

The top editing panel, called the definitions window, is for defining programs. The above
figure shows a program that defines the function square.

The bottom panel, called the interactions window, is for evaluating Scheme expressions
interactively. The Language line in the interactions window indicates which primitives are

available in the definitions and interactions windows. In the above figure, the language is
Module.

Madule ¥ 5:18 77.2me | | § .

The interactions
window is
described further in
§1.6 “The
Interactions
Window?”, later in
this manual.

Clicking the Run button evaluates the program in the definitions window, making the pro-
gram’s definitions available in the interactions window. Given the definition of square as in
the figure above, typing (square 2) in the interactions window produces the result 4.

The status line at the bottom of DrScheme’s window provides information about the cur-
rent line and position of the editing caret, whether the current file can be modified, and
whether DrScheme is currently evaluating any expression. The recycling icon flashes while
DrScheme is “recycling” internal resources, such as memory.

1.1 Buttons

The left end of the row of buttons in DrScheme contains a miniature button with the current
file’s name. Clicking the button opens a menu that shows the file’s full pathname. Selecting
one of the menu entries produces an open-file dialog starting in the corresponding directory.

Below the filename button is a (define ...) button for a popup menu of names that are defined
in the definitions window. Selecting an item from the menu moves the blinking caret to the
corresponding definition.

The Save button appears whenever the definitions window is modified. Clicking the button
saves the contents of the definitions window to a file. The current name of the file appears to
the left of the Save button, but a file-selection dialog appears if the file has never been saved
before.

The Step button—which appears only for the How to Design Programs teaching languages
Beginning Student through Intermediate Student with Lambda—starts the Stepper, which
shows the evaluation of a program as a series of small steps. Each evaluation step replaces
an expression in the program with an equivalent one using the evaluation rules of DrScheme.
For example, a step might replace (+ 1 2) with 3. These are the same rules used by
DrScheme to evaluate a program. Clicking Step opens a new window that contains the pro-
gram from the definitions window, plus several new buttons: these buttons allow navigation
of the evaluation as a series of steps.

The Debug button—which does not appear for the How to Design Programs teaching
languages—starts a more conventional stepping debugger. It runs the program in the def-
initions window like the Run button, but also opens a debugging panel with several other
buttons that provide control over the program’s execution.

Clicking the Check Syntax button annotates the program text in the definitions window. It
add the following annotations:

e Syntactic Highlighting: Imported variables and locally defined variables are high-
lighted with color changes. Documented identifiers are hyperlinked (via a right-click)
to the documentation page.

The debugging
interface is
described further in
§1.8 “Graphical
Debugging
Interface”, later in
this manual.

e Lexical Structure: The lexical structure is shown with arrows overlaid on the pro-
gram text. When the mouse cursor passes over a variable, DrScheme draws an arrow
from the binding location to the variable, or from the binding location to every bound
occurrence of the variable.

In addition to indicating definite references with blue arrows, DrScheme also draws
arrows to indicate potential references within macro definitions. Potential arrows are
drawn in purple and annotated with a question mark to indicate uncertainty, because
DrScheme cannot predict how such identifiers will eventually be used. Their roles
may depend on the arguments to the macro and the context the macro is used in.

Additionally, right-clicking (or Control-clicking under Mac OS X) on a variable acti-
vates a popup menu that lets you jump from binding location to bound location and
vice-versa, a-rename the variable, or tack the arrows so they do not disappear.

o Tail Calls: Any sub-expression that is (syntactically) in tail-position with respect to its
enclosing context is annotated by drawing a light purple arrow from the tail expression
to its surrounding expression.

e Require Annotations: Right-clicking (or Control-clicking under Mac OS X) on the
argument to require activates a popup menu that lets you open the file that contains
the required module.

Passing the mouse cursor over a require expression inside a module shows all of the
variables that are used from that require expression. Additionally, if no variables are
used from that require expression, it is colored like an unbound variable.

Finally, passing the mouse cursor over a variable that is imported from a module shows
the module that it is imported from in a status line at the bottom of the frame.

The Run button evaluates the program in the definitions window and resets the interactions
window.

The Break button interrupts an evaluation, or beeps if DrScheme is not evaluating anything.
For example, after clicking Run or entering an expression into the interactions window, click
Break to cancel the evaluation. Click the Break button once to try to interrupt the evaluation
gracefully; click the button twice to kill the evaluation immediately.

1.2 Choosing a Language

DrScheme supports multiple dialects of Scheme, as well as some non-Scheme languages.
You specify a language in one of two ways:

e Select the Language|Choose Language... menu item, and choose a language other
than Module. After changing the language, click Run to reset the language in the
interactions window. The bottom-left corner of DrScheme’s main window also has a
shortcut menu item for selecting previously selected languages.

e Select the Module language (via the Language|Choose Language... menu item),
and then specify a specific language as part of the program usually by starting the
definitions-window content with #lang.

The latter method, Module with #1ang, is the recommend mode, and it is described further
in §2.1 “Modules”.

The Language|Choose Language... dialog contains a Show Details button for configuring
certain details of the chosen language. Whenever the selected options do not match the
default language specification, a Custom indicator appears next to the language-selection
control at the top of the dialog.

See §2 “Languages” (later in this manual) for more information on the languages that
DrScheme supports.

1.3 Editing with Parentheses

In Scheme mode, especially, DrScheme’s editor provides special support for managing
parentheses in a program. When the blinking caret is next to a parenthesis, DrScheme shades
the region between the parenthesis and its matching parenthesis. This feature is especially
helpful when for balancing parentheses to complete an expression.

Although whitespace is not significant in Scheme, DrScheme encourages a particular format
for Scheme code. When you type Enter or Return, the editor inserts a new line and automat-
ically indents it. To make DrScheme re-indent an existing line, move the blinking caret to
the line and hit the Tab key. (The caret can be anywhere in the line.) You can re-indent an
entire region by selecting the region and typing Tab.

DrScheme also rewrites parenthesis as you type them, in order to make them match better. If
you type a closing parenthesis), a closing square bracket], or a closing curley brace }, and
if DrScheme can match it back to some earlier opening parenthesis, bracket, or brace, then
DrScheme changes what you type to match. DrScheme also rewrites open square brackets,
usually to an open parenthesis. There are some exceptions where opening square brackets
are not automatically changed to parentheses:

o [f the square bracket is after cond-like keyword, potentially skipping some of the sub-
expressions in the cond-like expression (for example, in a case expression, the square
brackets start in the second sub-expression).

o If the square bracket begins a new expression immediately after a local-like keyword.
Note that the second expression after a 1ocal-like keyword will automatically become
an ordinary parenthesis.

o If the square bracket is after a parenthesis that is after a letrec-like keyword,

o If the square bracket is in a sequence and the s-expression before in the sequence is a
compound expression, DrScheme uses the same kind parenthesis, brace, or bracket as
before, or

o If the square bracket is in the middle of string, comment, character, or symbol.

The upshot of DrScheme’s help is that you can always use the (presumably unshifted) square
brackets on your keyboard to type parenthesis. For example, when typing

(define (length 1)
(cond
[(empty? 1) 0]
[else (+ 1 (length (rest 1)))1))

If you always type [and] where any of the square brackets or parentheses appear, DrScheme
will change the square brackets to match the code above.

Of course, these features can be disabled and customized in the preferences dialog; see §3.2
“Preferences”. Also, in case DrScheme does not produce the character you want, holding
down the control key while typing disables DrScheme’s parenthesis, brace, and bracket con-
verter.

1.4 Searching

DrScheme’s search and replace feature is interactive, similar to those in Safari, Firefox, and
Emacs, but with a few differences.

To start a search, first select the Find menu item from the Edit menu. This will open a small
editor at the bottom of the DrScheme window. Start typing in there and, as you type, all
occurrences of the string you’re searching for will be circled in the editor window. Watch
the space right next to the search window to see how many occurrences of the search string
there are in your file. When you’re ready, you use the Find Again menu item to jump to the
first occurrence of the search string. This will color in one of the circles. Use Find Again a
second time to jump to the next occurrence.

If you click back into the definitions window, the Find Again menu item, DrScheme will
move the selection to the next occurrence of the search string.

DrScheme also supports a mode where typing in the search editor takes you directly to
the next occurrence of the search string, without selecting the Find Again menu item. In
the preference dialog, in the Editing sectino and then in the General section is a checkbox
labelled Search using anchors. When it is checked, DrScheme shows a little red dot and a
red line indicating where the search anchor is. When the search anchor is enabled, typing in
the search window jumps to the first occurrence of the search string after the anchor.

1.5 Tabbed Editing

DrScheme’s allows you to edit multiple files in a single window via tabs. The File|New Tab
menu item creates a new tab to show a new file. Each tab has its own interactions window.

In the General sub-pane of the Editing pane in the preferences window, a checkbox labelled
Open files in separate tabs causes DrScheme to open files in new tabs in the frontmost
window, rather than opening a new window for the file.

The key bindings Control-Pageup and Control-Pagedown move between tabs. Under Mac
OS X, Command-Shift-Left and Command-Shift-Right also move between tabs.

1.6 The Interactions Window

The interactions window lets you type an expression after the > prompt for immediate evalu-
ation. You cannot modify any text before the last > prompt. To enter an expression, the blink-
ing caret must appear after the last prompt, and also after the space following the prompt.

When you type a complete expression and hit Enter or Return, DrScheme evaluates the
expression and prints the result. After printing the result, DrScheme creates a new prompt
for another expression. Some expressions return a special “void” value; DrScheme never
prints void, but instead produces a new prompt immediately.

If the expression following the current prompt is incomplete, then DrScheme will not try to
evaluate it. In that case, hitting Enter or Return produces a new, auto-indented line. You
can force DrScheme to evaluate the expression by typing Alt-Return or Command-Return
(depending on your platform).

To copy the previous expression to the current prompt, type ESC-p (i.e., type Escape and
then type p). Type ESC-p multiple times to cycle back through old expressions. Type ESC-n
to cycle forward through old expressions.

Clicking the Run button evaluates the program in the definitions window and makes the
program’s definitions available in the interactions window. Clicking Run also resets the
interactions window, erasing all old interactions and removing old definitions from the inter-
action environment. Although Run erases old > prompts, ESC-p and ESC-n can still retrieve
old expressions.

1.6.1 Errors

Whenever DrScheme encounters an error while evaluating an expression, it prints an error
message in the interactions window and highlights the expression that triggered the error.
The highlighted expression might be in the definitions window, or it might be after an old

10

prompt in the interactions window.

For certain kinds of errors, DrScheme turns a portion of the error message into a hyperlink.
Click the hyperlink to get help regarding a function or keyword related to the error.

For some run-time errors, DrScheme shows a bug icon next to the error message. Click the
bug icon to open a window that shows a “stack” of expressions that were being evaluated
at the time of the error. In addition, if the expressions in the stack appear in the definitions
window, a red arrow is drawn to each expression from the next deeper one in the stack.

1.6.2 Input and Output

Many Scheme programs avoid explicit input and output operations, obtaining input via di-
rect function calls in the interactions window, and producing output by returning values.
Other Scheme programs explicitly print output for the user during evaluation using write
or display, or explicitly request input from the user using read or read-char.

Explicit input and output appear in the interactions window, but within special boxes that
separate explicit I/O from normal expressions and results. For example, evaluating

> (read)

in the interactions window produces a special box for entering input:

11

Untitled = (define .}~ Save il Macro Stepper @@ Debug@ Check Syntax @, Run 22 Stopi@
#lang scheme

Walcome In DrSchame, version 3.89.0.23-svi1may2008 [Am].
Language: Module; memary limit: 128 megabytes.
> (read)

Module * 4:2 76.64MB [|4

Type a number into the box and hit Enter, and that number becomes the result of the (read)
expression. Once text is submitted for an input box, it is moved outside the input box, and
when DrScheme shows a new prompt, it hides the interaction box. Thus, if you type 5 in the
above input box and hit Return, the result appears as follows:

> (read)

5

5

> _
In this case, the first 5 is the input, and the second 5 is the result of the (read) expression.
The second 5 is colored blue, as usual for a result printed by DrScheme. (The underscore
indicates the location of the blinking caret.)

Output goes into the interactions window directly. If you run the program

#lang scheme

(define v (read))
(display v) (newline)
v

12

and provide the input S-expression (1 2), the interactions window ultimately appears as
follows:

1 2)

12

12

> _
In this example, display produces output immediately beneath the input you typed, and
the final result is printed last. The displayed output is drawn in purple. (The above example
assumes default printing. With constructor-style value printing, the final before the prompt
would be (1ist 1 2).)

Entering the same program line-by-line in the interactions window produces a different-
looking result:

> (define v (read))

12

> (display wv)

12)

> v

12

> _
Depending on the input operation, you may enter more text into an input box than is con-
sumed. In that case, the leftover text remains in the input stream for later reads. For example,
in the following interaction, two values are provided in response to the first (read), so the
second value is returned immediately for the second (read):

> (read)

56

5

> (read)

6

> _
The following example illustrates that submitting input with Return inserts a newline char-
acter into the input stream:

\4

(read)

5

> (read-char)
#\newline

>

Within a #lang scheme module, the results of top-level expression print the same as the

13

results of an expression entered in the interactions window. The reason is that #lang
scheme explicitly prints the results of top-level expressions using (current-print), and
DrScheme sets (current-print) to print values in the same way as for interactions.

1.7 Graphical Syntax

In addition to normal textual program, DrScheme supports certain graphical elements as
expressions within a program. Plug-in tools can extend the available graphical syntax, but
this section describes some of the more commonly used elements.

1.7.1 Images

DrScheme’s Insert|Insert Image... menu item lets you select an image file from disk (in
various formats such as GIF, PNG, and BMP), and the image is inserted at the current editing
caret.

As an expression an image behaves like a number or string constant: it evaluates to itself.
DrScheme’s interactions window knows how to draw image-value results or images dis-
played via print.

A program can manipulate image values in various ways, such as using the htdp/image
library or as an image-snip} value.

1.7.2 XML Boxes and Scheme Boxes

DrScheme has special support for XML concrete syntax. The Special|lnsert XML Box
menu item inserts an embedded editor into your program. In that embedded editor, you type
XML’s concrete syntax. When a program containing an XML box is evaluated, the XML
box is translated into an x-expression (or xexpr), which is an s-expression representation of
an XML expression. Each xexpr is a list whose first element is a symbol naming the tag,
second element is an association list representing attributes and remaining elements are the
nested XML expressions.

XML boxes have two modes for handling whitespace. In one mode, all whitespace is left
intact in the resulting xexpr. In the other mode, any tag that only contains nested XML
expressions and whitespace has the whitespace removed. You can toggle between these
modes by right-clicking or Control-clicking (Mac OS X) on the top portion of the XML box.

In addition to containing XML text, XML boxes can also contain Scheme boxes. Scheme
boxes contain Scheme expressions. These expressions are evaluated and their contents are
placed into the containing XML box’s xexpr. There are two varieties of Scheme box: the
standard Scheme box and the splicing Scheme box. The standard Scheme box inserts its

14

value into the containing xexpr. The contents of the splice box must evaluate to a list and
the elements of the list are “flattened” into the containing xexpr. Right-clicking or control-
clicking (Mac OS X) on the top of a Scheme box opens a menu to toggle the box between a
Scheme box and a Scheme splice box.

1.8 Graphical Debugging Interface

Tip: Changing the name of a file in the middle of a debugging session will prevent the
debugger from working properly on that file.

Like the Run button, the Debug button runs the program in the definitions window. However,
instead of simply running it from start to finish, it lets users control and observe the program
as it executes. The interface includes a panel of buttons above the definitions window, as
well as extensions to the definitions window itself.

The program starts out paused just before the first expression is executed. This is indicated
in the definitions window by the presence of a green triangle over this expression’s left
parenthesis.

1.8.1 Debugger Buttons
While execution is paused, several buttons are available:

e The Go button is enabled whenever the program is paused. It causes the program to
resume until it either completes, reaches a breakpoint, or raises an unhandled excep-
tion.

e The Step button is enabled whenever the program is paused. It causes the program to
make a single step and then pause again.

e The Over button is only enabled when execution is paused at the start of an expression
that is not in tail position. It sets a one-time breakpoint at the end of the expression
(represented by a yellow circle) and causes the program to proceed. When execution
reaches the one-time breakpoint, it pauses and removes that breakpoint.

e The Out button is only enabled when execution is paused within the context of an-
other expression. Like the Over button, it sets a one-time breakpoint and continues
execution. In this case, the program stops upon returning to the context or raising an
unhandled exception.

If the program is running (not paused), then only the Pause button will be enabled. Clicking it
will interrupt execution and pause it. In this case, the current expression may only be known
approximately, and it will be represented as a gray triangle. The other features described
above will still be available.

15

At any time, execution may be interrupted by clicking the Stop button. However, unlike with
the Pause button, stopped execution cannot be continued.

1.8.2 Definitions Window Actions
When execution is paused, the definitions window supports several additional actions:

e Hovering the mouse cursor over a parenthesis may reveal a pink circle. If so, right-
clicking or control-clicking (Mac OS X) will open a menu with options to Pause at
this point or Continue to this point. The former sets an ordinary breakpoint at that
location; the latter sets a one-time breakpoint and resumes execution. An ordinary
breakpoint appears as a red circle, and a one-time breakpoint appears as a yellow
circle.

Tip: If the debugged program is not in the Module language, then the first time it is
debugged, breakpoints will only become available in expressions as they are evaluated.
However, the next time the program is debugged, the debugger will remember the set
of breakable locations from the previous session.

Tip: Clicking the Run button after a debugging session will cause all breakpoints
to disappear from the definitions window. These breakpoints are not forgotten, and
clicking Debug again will restore them. However, breakpoints do not persist across
restarts of DrScheme.

e If execution is paused at the start of an expression, then right-clicking or control-
clicking (Mac OS X) on the green triangle opens a menu with the option to Skip ex-
pression.... Selecting this opens a text box in which to enter a value for the expression.
The expression is skipped, with the entered value substituted for it.

o If execution is paused at the end of an expression, then the expression and its value
are displayed to the left of the button bar. Right-clicking or control-clicking (Mac OS
X) on the green triangle opens a menu with options to Print return value to console
and Change return value.... The former displays the return value in the interactions
window; the latter opens a text box in which to enter a substitute value.

e Hovering the mouse cursor over a bound variable displays the variable’s name and
value to the right of the button bar. Right-clicking or control-clicking (Mac OS X)
opens a menu with options to Print value of <var> to console or (set! <var> ...).
The former displays the variable’s value in the interactions window; the latter opens a
text box in which to enter a new value for the variable.

1.8.3 Stack View Pane

In addition, while execution is paused, the stack view pane at the right of the DrScheme
frame is active. The top of the pane shows a list of active stack frames. Mousing over a

16

frame produces a faint green highlighting of the corresponding expression. Clicking on the
frame selects that frame, which makes its lexical variables visible. The selected frame is
indicated by a bold font.

The bottom of the pane shows the lexical variables in the selected stack frame.

The following screenshot illustrates several aspects of the debugger interface. The red circle
before the if is a breakpoint, and the green triangle at the end of the (fact (subl n)) is
where execution is currently paused. The expression’s return value is displayed at the left of
the button bar, and the value of n is displayed in the stack view pane.

-

‘806 fact.ss - DrScheme o

fact.ss v
Sto
(define ...) ¥ © E

(fact..) => 6 I»co || Plstep (e® Out
(fact ...)

(define (fact n) (fact...)
@if (zero? n) (fact ...)

Stack

(* n (fact (subl n)jp)))

Variables

(fact 5)
| n=>>4

Pretty Big (includes MrEd and Advanced Student) ¥ 7:0 63.18 MB Dﬁ p

1.8.4 Debugging Multiple Files

To debug a program that spans several files, make sure that all of the files are open in
DrScheme. Click the Debug button in the window containing the main program. As this
program loads additional files that are present in other windows or tabs, message boxes will
pop up asking whether or not to include the file in the debugging session. Including the file
means that it will be possible to set breakpoints, inspect variables, and single-step in that
file.

Tip: A file may only be involved in one debugging session at a time. If you try to debug a file

that loads another file that is already being debugged, a message box will pop up explaining
that the file cannot be included in another debugging session.

1.9 Creating Executables

DrScheme’s Create Executable... menu item lets you create an executable for your program
that you can start without first starting DrScheme. To create an executable, first save your
program to a file and set the language and teachpacks. Click Run, just to make sure that

17

the program is working as you expect. The executable you create will not have a read-eval-
print-loop, so be sure to have an expression that starts your program running in the definitions
window before creating the executable.

Once you are satisfied with your program, choose the Create Executable... menu item from
the Scheme menu. You will be asked to choose an executable file name or an archive file
name. In the latter case, unpack the generated archive (on this machine or another one) to
access the executable. In either case, you will be able to start the executable in the same way
that you start any other program on your computer.

The result of Create Executable... is either a launcher executable, a stand-alone executable,
or a distribution archive, and it uses either a MzScheme (textual) or MrEd (graphical) engine.
For programs implemented with certain languages, Create Executable... will prompt you
to choose the executable type and engine, while other languages support only one type or
engine.

Each type has advantages and disadvantages:

o A launcher executable uses the latest version of your program source file when it
starts. It also accesses library files from your DrScheme installation when it runs.
Since a launcher executable contains specific paths to access those files, launchers
usually cannot be moved from one machine to another.

e A stand-alone executable embeds a compiled copy of your program and any Scheme
libraries that your program uses. When the executable is started, it uses the embedded
copies and does not need your original source file. It may, however, access your
DrScheme installation for DLLs, frameworks, shared libraries, or helper executables.
Consequently, a stand-alone executable usually cannot be moved from one machine
to another.

e A distribution archive packages a stand-alone executable together with any needed
DLLs, frameworks, shared libraries, and helper executables. A distribution archive
can be unpacked and run on any machine with the same operating system as yours.

In general, DrScheme’s Module language gives you the most options. Most other languages
only allow one type of executable. The teaching langauges create stand-alone executables in
distributions. The legacy languages create launchers.

Tip: Disable debugging in the language dialog before creating your executable. With de-
bugging enabled, you will see a stack trace with error messages, but your program will run
more slowly. To disable debugging, open the language dialog, click the Show Details button,
and select No debugging or profiling, if it is available.

18

2 Languages

This chapter describes some of the languages that are available for use within DrScheme.
The list here is potentially incomplete, because new languages can be added through
DrScheme plug-ins.

2.1 Modules

The Module language is really a kind of meta-language, where the program itself specifies
its language, usually through a #lang line.

More generally, when using Module, the definitions window must contain a module in some
form. Besides #lang, a Scheme module can be written as (module ...). In any case,
aside from comments, the definitions window must contain exactly one module.

2.2 Legacy Languages
DrScheme supports several historically useful variants of Scheme without a #1lang prefix:

e The R5RS language contains those primitives and syntax defined in the R’RS Scheme
standard. See the r5rs library for details.

e The PLT Pretty Big language provides a language roughly compatible with
a language in earlier versions of DrScheme. It evaluates a program in
the same way as load, and it starts by importing the following mod-
ules: mzscheme, scheme/gui/base, mzlib/class, mzlib/etc, mzlib/file,
mzlib/list, mzlib/unit, mzlib/include, mzlib/defmacro, mzlib/pretty,
mzlib/string, mzlib/thread, mzlib/math, mzlib/match, and mzlib/shared.

e The Swindle language starts with the same bindings as swindle, and evaluates the
program like load.

2.3 How to Design Programs Teaching Languages
Five of DrScheme’s languages are specifically designed for teaching:

e The Beginning Student language is a small version of Scheme that is tailored for
beginning computer science students.

19

e The Beginning Student with List Abbreviations languages is an extension to Begin-
ning Student that prints lists with 1ist instead of cons, and accepts quasiquoted
input.

e The Intermediate Student language adds local bindings and higher-order functions.
e The Intermediate Student with Lambda language adds anonymous functions.

e The Advanced Student language adds mutable state.

The teaching languages are different from conventional Scheme in a number of ways:

o Case-sensitive identifiers and symbols — In a case-sensitive language, the variable
names x and X are distinct, and the symbols ’x and ’X are also distinct. In a case-
insensitive language, x and X are equivalent and ’x and ’X represent the same value.
The teaching languages are case-sensitive by default, and other languages are usually
case-insensitive. Case-sensitivity can be adjusted through the detail section of the
language-selection dialog.

o All numbers are exact unless #1 is specified — In the Beginning Student through
Intermediate Student with Lambda languages, numbers containing a decimal point
are interpreted as exact numbers. This interpretation allows students to use familiar
decimal notation without inadvertently triggering inexact arithmetic. Exact numbers
with decimal representations are also printed in decimal. Inexact inputs and results
are explicitly marked with #i.

e Procedures must take at least one argument — In the Beginning Student through
Intermediate Student languages, defined procedures must consume at least one ar-
gument. Since the languages have no side-effects, zero-argument functions are not
useful, and rejecting such function definitions helps detect confusing syntactic mis-
takes.

o Identifier required at function call position — In the Beginning Student through In-
termediate Student languages, procedure calls must be of the form (identifier
...). This restriction helps detect confusing misuses of parentheses, such as (1)
or ((+ 3 4)), which is a common mistake among beginners who are used to the
optional parentheses of algebra.

e Top-level required at function call position — In the Beginning Student languages,
procedure calls must be of the form (top-level-identifier ...),and the num-
ber of actual arguments must match the number of formal arguments if top-level-
identifier is defined. This restriction helps detect confusing misuses of parenthe-
ses, such as (x) where x is a function argument. DrScheme can detect such mistakes
syntactically because Beginning Student does not support higher-order procedures.

e Primitive and defined functions allowed only in function call position — In Begin-
ning Student languages, the name of a primitive operator or of a defined function

20

can be used only after the open-parenthesis of a function call (except where teach-
pack extensions allow otherwise, as in the convert-gui teachpack). Incorrect uses
of primitives trigger a syntax error. Incorrect uses of defined names trigger a run-
time error. DrScheme can detect such mistakes because Beginning Student does not
support higher-order procedures.

Lambda allowed only in definitions — In the Beginning Student through Intermediate
Student languages, lambda (or case-lambda) may appear only in a definition, and
only as the value of the defined variable.

Free variables are not allowed — In the Beginning Student through Advanced Stu-
dent languages, every variable referenced in the definitions window must be defined,
pre-defined, or the name of a local function argument.

quote works only on symbols, quasiquote disallowed — In the Beginning Student
language, quote and ’ can specify only symbols. This restriction avoids the need to
explain to beginners why 1 and ’1 are equivalent in standard Scheme. In addition,
quasiquote, ¢, unquote, ,, unquote-splicing, and ,@ are disallowed.

Unmatched cond/case is an error — In the Beginning Student through Advanced
Student languages, falling through a cond or case expression without matching a
clause signals a run-time error. This convention helps detect syntactic and logical
errors in programs.

Conditional values must be true or false — In the Beginning Student through
Advanced Student languages, an expression whose value is treated as a boolean must
return an actual boolean, true or false. This restriction, which applies to if, cond,
and, or, nand, and nor expressions, helps detect errors where a boolean function
application is omitted.

+, *, and / take at least two arguments — In the Beginning Student through Advanced
Student languages, mathematical operators that are infix in algebra notation require
at least two arguments in DrScheme. This restriction helps detect missing arguments
to an operator.

and, or, nand, and nor require at least 2 expressions — In the Beginning Stu-
dent through Advanced Student languages, the boolean combination forms require
at least two sub-expressions. This restriction helps detect missing or ill-formed sub-
expressions in a boolean expression.

set! disallowed on arguments — In the Advanced Student language, set! cannot
be used to mutate variables bound by lambda. This restriction ensures that the substi-
tution model of function application is consistent with DrScheme’s evaluation.

Improper lists disallowed — A proper list is either an empty list or a list created
by consing onto a proper list. In the Beginning Student through Advanced Student
languages, cons constructs only proper lists, signaling an error if the second argument
is not a proper list. Since beginning students do not need improper lists, this restriction
help detect logical errors in recursive functions.

21

e Dot is disallowed — In the Beginning Student through Advanced Student languages,
a delimited period . is disallowed, (e.g., as an improper-list constructor in a quoted
form, or for defining multi-arity procedures).

e Syntactic form names disallowed as variable names — In the Beginning Student
through Advanced Student languages, all syntactic form names are keywords that
cannot be used as variable names.

o Re-definitions are disallowed — In the Beginning Student through Advanced Student
languages, top-level names can never be re-defined.

e Function definitions are allowed only in the definitions window — In the Beginning
Student languages, function definitions are not allowed in the interactions window.

The teaching languages also deviate from traditional Scheme in printing values. Different
printing formats can be selected for any language through the detail section of language-
selection dialog.

o Constructor-style output — See §2.6 “Output Printing Styles”.
e Quasiquote-style output — See §2.6 “Output Printing Styles”.

e Rational number printing — In the teaching languages, all numbers that have a finite
decimal expansion are printed in decimal form. For those numbers that do not have
a finite decimal expansion (such as 4/3) DrScheme offers a choice. It either prints
them as mixed fractions or as repeating decimals, where the repeating portion of the
decimal expansion is shown with an overbar. In addition, DrScheme only shows the
first 25 digits of the number’s decimal expansion. If there are more digits, the number
appears with an ellipses at the end. Click the ellipses to see the next 25 digits of the
expansion.

This setting controls only the initial display of a number. Right-clicking or Control-
clicking (Mac OS X) on the number lets you change from the fraction representation
to the decimal representation.

e write output — Prints values with write.

o Show sharing in values — Prints interaction results using the shared syntax, which
exposes shared structure within a value. For example, the list created by (let ([1t
(list 0)]) (list 1t 1t)) prints as

(shared ((-1- (list 0))) (list -1- -1-))
instead of
(1ist (1ist 0) (1list 0))

A program in the teaching languages should be tested using the check forms —
(check-expect value value), (check-within value value value), or (check-
error value string). Tests are evaluated when running the program: when there are no

22

tests, a warning appears in the interactions window; when all tests succeed, an acknowledge-
ment appears in the interactions window; otherwise, a testing window appears to report the
results. See §3.1.3 “View” for details on configuring the report behavior.

Tests can be disabled if necessary, see §3.1.5 “Scheme” for details.

2.4 Professor])

The Professor] languages are Java based languages designed for teaching and experimenta-
tion. There are four teaching based languages:

e The Professor) Beginner language is a small subset of Java, designed for novice com-
puter science students. Each class must contain a constructor that initializes the class’s
fields; each method must return a value.

e The Professor) Intermediate language is an extension to Professor] Beginner that
adds full class-based inheritance and mutation. Classes do not require constructors
and null values may arise.

e The Professor] Intermediate + access language adds access controls, such as public
or private, to member definitions and supports overloading constructor definitions.

e The ProfessorJ Advanced language adds arrays, loop constructs, and package speci-
fications.

The remaining two languages support language extensions and experimentations:

e The Professor) Full language supports most of Java 1.1 features, as well as a set of
constructs designed for the development of unit tests

e The Professor) Java 4+ dynamic language extends the Professor] Full language with
a dynamic type and the ability to import Scheme libraries directly, for developing
programs that use both languages.

Value printing can be either Class or Class + Field, selectable in the show details section of
the language selection window. The Class printing style only displays the class name for any
object value. The Class + Field style displays the class combined with the names and values
for all of the class’s fields; when displaying a recursively defined object, any repeated object
reverts to the Class style display for the second appearance. Languages with arrays may opt
to always display an entire array or truncate the middle section of longer arrays.

All of the Professor] languages support testing extensions, and tests are required within
the teaching languages. The experimental languages, Full and Java + dynamic, allow the
removal of these forms within the language selection window.

23

Programs in the teaching languages must be tested, using a class containing the word "Ex-
ample’ in the name and the ’check ... expect ...’ comparison forms. On run, all Example
classes are instanstiated and all methods prefixed with the word ’test’ are run. When there
are no tests, a warning appears in the interactions window; when all tests succeed, an ac-
knowledgement appears in the interactions window; otherwise, a testing window appears to
report the results. See §3.1.3 “View” for details on configuring the report behavior. Tests can
be disabled if necessary, see §3.1.5 “Scheme” for details.

Unless disabled in the language configuration window, expression-level coverage informa-
tion is collected during testing. Selecting the buttons within the report modifies the color of
the program in the definitions window, to distinguish expressions that were used in the test
from those that were not. Typing into the definitions window restores the original coloring.

2.5 Other Experimental Languages

For information on Lazy Scheme, see § “Lazy Scheme”.
For information on FrTime, see § “FrTime: A Language for Reactive Programs”.

For information on Algol 60, see § “Algol 60”.

2.6 Output Printing Styles

Many Scheme languages support a Output Syntax choice that determines how evaluation
results are printed in the interactions window. This setting also applies to output generated
by calling print explicitly.

The following table illustrates the difference between the different output styles:

Input expression ~ Constructor Quasiquote write

(cons 1 2) (cons 1 2) ‘(1. 2) 1.2

(list 1 2) (1list 1 2) ‘(1 2) (1 2)

(1 2) (1ist 1 2) ‘(12 (1 2)

(1ist (void)) (1list (void)) “(, (void)) (#<void>)

“(, (void)) (list (void)) “(, (void)) (#<void>)
(vector 1 2 3) (vector 1 2 3) (vector 1 2 3) #(1 2 3)

(box 1) (box 1) (box 1) #&1

(lambda (x) x) (lambda (al) ...) (lambda (al) ...) #<procedure>
’sym ’sym ’sym sym

(make-s 1 2) (make-s 1 2) (make-s 1 2) #(struct:s 1 2)
> () empty ‘O O

add1 add1l add1 #<procedure:addl>
(delay 1) (delay ...) (delay ...) #<promise>

24

(regexp "a") (regexp "a") (regexp "a") #rx"a"

The Constructor output mode treats cons, vector, and similar primitives as value con-
structors, rather than functions. It also treats 1ist as shorthand for multiple cons’s ending
with the empty list. Constructor output is especially valuable for beginning programmers,
because output values look the same as input values.

The Quasiquote output mode is like Constructor output, but it uses quasiquote (abbre-
viated with ¢) to print lists, and it uses unquote (abbreviated with ,) to escape back to
Constructor printing as needed. This mode provides the same benefit as Constructor out-
put, in that printed results are expressions, but it is more convenient for many kinds of data,
especially data that represents expressions.

The print output mode corresponds to traditional Scheme printing via the print procedure,
which defaults to write-like printing, as shown in the last column.

DrScheme also sets the global-port-print-handler in order to customize a few aspects
of the printing for all of these modes, namely printing the symbol quote as a single tick
mark (mutatis mutandis for quasiquote, unquote, and unquote-splicing), and to print
rational real numbers using a special snip object that lets the user choose between improper
fractions, mixed fractions, and repeating decimals.

25

3 Interface Reference

3.1

3.1.1

Menus
File

New : Creates a new DrScheme window.
Open... : Opens a find-file dialog for choosing a file to load into a definitions window.

Open Recent : Lists recently opened files. Choosing one of them opens that file for
editing.

Install PLT File... : Opens a dialog asking for the location of the " .plt" file (either
on the local disk or on the web) and installs the contents of the file.

Revert : Re-loads the file that is currently in the definitions window. All changes since
the file was last saved will be lost.

Save Definitions : Saves the program in the definitions window. If the program has
never been saved before, a save-file dialog appears.

Save Definitions As... : Opens a save-file dialog for choosing a destination file to save
the program in the definitions window. Subsequent saves write to the newly-selected
file.

Save Other : Contains these sub-items

— Save Definitions As Text... : Like Save Definitions As..., but the file is saved
in plain-text format (see §3.4.1 “Program Files”). Subsequent saves also write in
plain-text format.

— Save Interactions : Saves the contents of the interactions window to a file. If the
interaction constants have never been saved before, a save-file dialog appears.

— Save Interactions As... : Opens a save-file dialog for choosing a destination file
to save the contents of the interactions window. Subsequent saves write to the
newly-selected file.

— Save Interactions As Text... : Like Save Interactions As..., but the file is saved
in plain-text format (see §3.4.1 “Program Files”). Subsequent saves are write in
plain-text format.

Log Definitions and Interactions... : Starts a running of log of the text in the
interactions and definitions windows, organized by executions. In a directory of
your choosing, DrScheme saves files with the names "Ol1-definitions", "01-
interactions", "02-definitions", "02-interactions", etc. as you interact
with various programs.

26

e Print Definitions... : Opens a dialog for printing the current program in the definitions
window.

e Print Interactions... : Opens a dialog for printing the contents of the interactions
window.

e Search in Files... : Opens a dialog where you can specify the parameters of a multi-file
search. The results of the search are displayed in a separate window.

e Close : Closes this DrScheme window. If this window is the only open DrScheme
window, then DrScheme quits, except under Mac OS X.

e {Quit or Exit} Exits DrScheme. (Under Mac OS X, this menu item is in the Apple
menu.)

3.1.2 Edit

All Edit menu items operate on either the definitions or interactions window, depending on
the location of the selection or blinking caret. Each window maintains its own Undo and
Redo history.

e Undo : Reverses an editing action. Each window maintains a history of actions, so
multiple Undo operations can reverse multiple editing actions.

e Redo : Reverses an Undo action. Each window (and boxed-subwindow) maintains its
own history of Undo actions, so multiple Redo operations can reverse multiple Undo
actions.

e Cut : Copies the selected text to the clipboard and deletes it from the window.
e Copy : Copies the selected text to the clipboard.

e Paste : Pastes the current clipboard contents into the window.

e Delete : or Clear : Deletes the selected text.

e Select All : Highlights the entire text of the buffer.

o Wrap Text : Toggles between wrapped text and unwrapped text in the window.

e Find... : Opens an interactive search window at the bottom of the frame and moves the
insertion point to the search string editor (or out of it, if the insertion point is already
there).

See also §1.4 “Searching”.
e Find Again : Finds the next occurrence of the text in the search window.

e Find Again Backwards : Finds the next occurrence of the text in the search window,
but searching backwards.

27

e Replace & Find Again : Replaces the selection with the replace string (if it matches
the find string) and finds the next occurrence of the text that was last searched for,
looking forwards.

e Replace & Find Again Backwards : Replaces the selection with the replace string
(if it matches the find string) and finds the next occurrence of the text that was last
searched for, looking backwards.

e Replace All : Replaces all occurrences of the search string with the replace string.
e Find Case Sensitive : Toggles between case-sensitive and case-insensitive search.
e Keybindings :

— Show Active Keybindings : Shows all of the keybindings available in the current
window.

— Add User-defined Keybindings... : Choosing this menu item opens a file dialog
where you can select a file containing Scheme-definitions of keybindings. See
§3.3.8 “Defining Custom Shortcuts” for more information.

e Complete Word : Completes the word at the insertion point, using the manuals as a
source of completions.

o Preferences... : Opens the preferences dialog. See §3.2 “Preferences”. (Under Mac
OS X, this menu item is in the Apple menu.)

3.1.3 View

One each of the following show/hide pairs of menu items appears at any time.

e Show Definitions : Shows the definitions window.
e Hide Definitions : Hides the definitions window.
e Show Interactions : Shows interactions window.
e Hide Interactions : Hides interactions window.

e Show Program Contour : Shows a “20,000 foot” overview window along the edge
of the DrScheme window. Each pixel in this window corresponds to a letter in the
program text.

e Hide Program Contour : Hides the contour window.

e Show Module Browser : Shows the module DAG rooted at the currently opened file
in DrScheme.

e Hide Module Browser : Hides the module browser.

28

Note:

314

Toolbar :

Toolbar on Left : Moves the tool bar (defaultly on the top of DrScheme’s win-
dow) to the left-hand side, organized vertically.

Toolbar on Top : Moves the toolbar to the top of the DrScheme window.

Toolbar on Right : Moves the tool bar to the right-hand side, organized verti-
cally.

Toolbar Hidden : Hides the toolbar entirely.
Show Log : Shows the current log messages.
Hide Log : Hides the current log messages.

Show Profile : Shows the current profiling report. This menu is useful only if you
have enabled profiling in the Choose Language... dialog’s Details section. Profiling
does not apply to all languages.

Hide Profile : Hides any profiling information currently displayed in the DrScheme
window.

Dock Test Report : Like the dock button on the test report window, this causes all test
report windows to merge with the appropriate DrScheme window at the bottom of the
frame.

Undock Test Report : Like the undock button on the test report window, this causes
the test reports attached to appropriate DrScheme tabs to become separate windows.

Show Tracing : Shows a trace of functions called since the last time Run was clicked.
This menu is useful only if you have enabled tracing in the Choose Language... dia-
log’s Details section. Profiling does not apply to all languages.

Hide Tracing : Hides the tracing display.

Split : Splits the current window in half to allow for two different portions of the
current window to be visible simultaneously.

Collapse : If the window has been split before, this menu item becomes enabled,
allowing you to collapse the split window.

whenever a program is run, the interactions window is made visible if it is hidden.

Language

Choose Language... : Opens a dialog for selecting the current evaluation language.
Click Run to make the language active in the interactions window. See §1.2 “Choosing
a Language” for more information about the languages.

29

Add Teachpack... : Opens a find-file dialog for choosing a teachpack to extend the
current language. Click Run to make the teachpack available in the interactions win-
dows. See §4 “Extending DrScheme” for information on creating teachpacks.

Clear All Teachpacks : Clears all of the current teachpacks. Click Run to clear the
teachpack from the interactions window.

In addition to the above items, a menu item for each teachpack that clears only the corre-
sponding teachpack.

3.1.5

Scheme

Run : Resets the interactions window and runs the program in the definitions window.
Break : Breaks the current evaluation.
Kill : Terminates the current evaluation.

Limit Memory... : Allow you to specify a limit on the amount of memory that a
program running in DrScheme is allowed to consume.

Clear Error Highlight : Removes the red background that signals the source location
of an error.

Create Executable... : Creates a separate launcher for running your program. See
§1.9 “Creating Executables” for more info.

Module Browser... : Prompts for a file and then opens a window showing the module
import structure for the module import DAG starting at the selected module.

The module browser window contains a square for each module. The squares are
colored based on the number of lines of code in the module. If a module has more
lines of code, it gets a darker color.

In addition, for each normal import, a blue line drawn is from the module to the
importing module. Similarly, purple lines are drawn for each for-syntax import. In
the initial module layout, modules to the left import modules to the right, but since
modules can be moved around interactively, that property might not be preserved.

To open the file corresponding to the module, right-click or control-click (Mac OS X)
on the box for that module.

Reindent : Indents the selected text according to the standard Scheme formatting
conventions. (Pressing the Tab key has the same effect.)

Reindent All : Indents all of the text in either the definitions or interactions window,
depending on the location of the selection or blinking caret.

Comment Out with Semicolons : Puts ; characters at each of the beginning of each
selected line of text.

30

3.1.6

Comment Out with a Box : Boxes the selected text with a comment box.

Uncomment : Removes all ; characters at the start of each selected line of text or
removes a comment box around the text. Uncommenting only removes a ; if it appears
at the start of a line and it only removes the first ; on each line.

Disable Tests : Stops tests written in the definitions window from evaluating when the
program is Run. Tests can be enabled using the Enable Tests menu item. Disabling
tests freezes the contents of any existing test report window.

Enable Tests : Allows tests written in the definitions window to evaluate when the
program is Run. Tests can be disabled using the Disable Tests menu item.

Insert

Insert Comment Box : Inserts a box that is ignored by DrScheme; use it to write
comments for people who read your program.

Insert Image... : Opens a find-file dialog for selecting an image file in GIF, BMP,
XBM, XPM, PNG, or JPG format. The image is treated as a value.

Insert Fraction... : Opens a dialog for a mixed-notation fraction, and inserts the given
fraction into the current editor.

Insert Large Letters... : Opens a dialog for a line of text, and inserts a large version
of the text (using semicolons and spaces).

Insert A : Inserts the symbol A (as a Unicode character) into the program. The A
symbol is normally bound the same as lambda.

Insert Java Comment Box : Inserts a box that is ignored by DrScheme. Unlike the
Insert Comment Box menu item, this is designed for the ProfessorJ language levels.
See §2.4 “Professor]”.

Insert Java Interactions Box : Inserts a box that will allows Java expressions and
statements within Scheme programs. The result of the box is a Scheme value corre-
sponding to the result(s) of the Java expressions. At this time, Scheme values cannot
enter the box. The box will accept one Java statement or expression per line.

Insert XML Box : Inserts an XML; see §1.7.2 “XML Boxes and Scheme Boxes” for
more information.

Insert Scheme Box : Inserts a box to contain Scheme code, typically used inside an
XML box; see §1.7.2 “XML Boxes and Scheme Boxes”.

Insert Scheme Splice Box : Inserts a box to contain Scheme code, typically used
inside an XML box; see also §1.7.2 “XML Boxes and Scheme Boxes”.

Insert Pict Box : Creates a box for generating a Slideshow picture. Inside the pict
box, insert and arrange Scheme boxes that produce picture values.

31

3.1.7 Windows
e Bring Frame to Front... : Opens a window that lists all of the opened DrScheme
frames. Selecting one of them brings the window to the front.

e Most Recent Window : Toggles between the currently focused window and the one
that most recently had the focus.

Additionally, after the above menu items, this menu contains an entry for each window in
DrScheme. Selecting a menu item brings the corresponding window to the front.

3.1.8 Help
e Help Desk : Opens the Help Desk. This is the clearing house for all documentation
about DrScheme and its language.
e About DrScheme... : Shows the credits for DrScheme.
e Related Web Sites : Provides links to related web sites.
e Tool Web Sites : Provides links to web sites for installed tools.

e Interact with DrScheme in English : Changes DrScheme’s interface to use English;
the menu item appears only when the current language is not English. Additional
menu items switch DrScheme to other languages.

3.2 Preferences

The preferences dialog consists of several panels.

3.2.1 Font

This panel controls the main font used by DrScheme.

3.2.2 Colors

The Colors panel has several sub-panels that let you configure the colors that DrScheme uses
for the editor background, for highlighting matching parentheses, for the online coloring for
Scheme and Java modes, for Check Syntax, and for the colors of the text in the interactions
window.

32

It also has two buttons, White on Black and Black on White, which set a number of defaults
for the color preferences and change a few other aspects of DrScheme’s behavior to make
DrScheme’s colors look nicer for those two modes.

3.2.3 Editing

The Editing panel consists of several sub-panels:

e Indenting

This panel controls which keywords DrScheme recognizes for indenting, and how
each keyword is treated.

e Square bracket

This panel controls which keywords DrScheme uses to determine when to rewrite [

to (.

For cond-like keywords, the number in parenthesis indicates how many sub-

expressions are skipped before square brackets are started.

See §1.3 “Editing with Parentheses” for details on how the entries in the columns
behave.

o General

Number of recent items — controls the length of the Open Recent menu (in the
File menu).

Auto-save files — If checked, the editor generates autosave files (see §3.4.2
“Backup and Autosave Files”) for files that have not been saved after five min-
utes.

Backup files — If checked, when saving a file for the first time in each editing
session, the original copy of the file is copied to a backup file in the same direc-
tory. The backup files have the same name as the original, except that they end
in either " .bak" or "~".

Map delete to backspace — If checked, the editor treats the Delete key like the
Backspace key.

Show status-line — If checked, DrScheme shows a status line at the bottom of
each window.

Count column numbers from one — If checked, the status line’s column counter
counts from one. Otherwise, it counts from zero.

Display line numbers in buffer; not character offsets — If checked, the status
line shows a (line):{column) display for the current selection rather than the
character offset into the text.

Wrap words in editor buffers — If checked, DrScheme editors auto-wrap text
lines by default. Changing this preference affects new windows only.

33

— Use separate dialog for searching — If checked, then selecting the Find menu
item opens a separate dialog for searching and replacing. Otherwise, selecting
Find opens an interactive search-and-replace panel at the bottom of a DrScheme
window.

— Reuse existing frames when opening new files — If checked, new files are
opened in the same DrScheme window, rather than creating a new DrScheme
window for each new file.

— Enable keybindings in menus — If checked, some DrScheme menu items have
keybindings. Otherwise, no menu items have key bindings. This preference is
designed for people who are comfortable editing in Emacs and find the standard
menu keybindings interfere with the Emacs keybindings.

— Color syntax interactively — If checked, DrScheme colors your syntax as you
type.
— Automatically print to PostScript file — If checked, printing will automatically

save PostScript files. If not, printing will use the standard printing mechanisms
for your computer.

— Open files in separate tabs (not separate windows) — If checked, DrScheme
will use tabs in the front-most window to open new files, rather than creating
new windows for new files.

— Automatically open interactions window when running a program — If checked,
DrScheme shows the interactions window (if it is hidden) when a program is run.

— Put the interactions window beside the definitions window — If checked,
DrScheme puts the interactions window to the right of the definitions window.
By default, the interactions window is below the definitions window.

— Always show the #lang line in the Module language — If checked, the module
language always shows the #1ang line (even when it would ordinarily be scrolled
off of the page), assuming that the #1lang line is the first line in the file.

e Scheme

— Highlight between matching parens — If checked, the editor marks the region
between matching parenthesis with a gray background (in color) or a stipple
pattern (in monochrome) when the blinking caret is next to a parenthesis.

— Correct parens — If checked, the editor automatically converts a typed) to] to
match [, or it converts a typed] to) to match (. Also, the editor changes typed
[to match the context (as explained in §1.3 “Editing with Parentheses”).

— Flash paren match — If checked, typing a closing parenthesis, square bracket,
or quotation mark flashes the matching open parenthesis/bracket/quote.

3.24 Warnings

e Ask before changing save format — If checked, DrScheme consults the user before
saving a file in non-text format (see §3.4.1 “Program Files”).

34

o Verify exit — If checked, DrScheme consults the user before exiting.

e Only warn once when executions and interactions are not synchronized — If
checked, DrScheme warns the user on the first interaction after the definitions window,
language, or teachpack is changed without a corresponding click on Run. Otherwise,
the warning appears on every interaction.

e Ask about clearing test coverage — If checked, when test coverage annotations are
displayed DrScheme prompts about removing them. This setting only applies to the
PLT languages. DrScheme never asks in the teaching languages.

e Check for newer PLT Scheme versions — If checked, DrScheme periodically polls a
server to determine whether a newer version of DrScheme is available.

3.2.5 Profiling

This preference panel configures the profiling report. The band of color shows the range
of colors that profiled functions take on. Colors near the right are used for code that is not
invoked often and colors on the right are used for code that is invoked often.

If you are interested in more detail at the low end, choose the Square root check box. If you
are interested in more detail at the upper end, choose the Square check box.

3.2.6 Browser

This preferences panel allows you to configure your HTTP proxy. Contact your system
administrator for details.

3.3 Keyboard Shortcuts

Most key presses simply insert a character into the editor, such as a, 3, or (. Other keys
and key combinations act as keyboard shortcuts that move the blinking caret, delete a line,
copy the selection, etc. Keyboard shortcuts are usually trigger by key combinations using
the Control, Meta, or Command key.

C-(key) means press the Control key, hold it down and then press (key) and then release them
both. For example: C-e (Control-E) moves the blinking caret to the end of the current line.

M-(key) is the same as C-(key), except with the Meta key. Depending on your keyboard,
Meta may be called “Left,” “Right,” or have a diamond symbol, but it’s usually on the bottom
row next to the space bar. M-(key) can also be performed as a two-character sequence: first,
strike and release the Escape key, then strike (key). Under Windows and Mac OS X, Meta is
only available through the Escape key.

35

Many of the
key-binding actions
can also be
performed with
menu items.

DEL is the Delete key.
SPACE is the Space bar.

On most keyboards, “<” and “>" are shifted characters. So, to get M->, you actually have
to type Meta-Shift->. That is, press and hold down both the Meta and Shift keys, and then
strike “>”.

Under Windows, some of these keybindings are actually standard menu items. Those key-
bindings will behave according to the menus, unless the Enable keybindings in menus pref-
erence is unchecked.

If you are most familiar with Emacs-style key bindings, you should uncheck the Enable
keybindings in menus preference. Many of the keybindings below are inspired by Emacs. }

3.3.1 Moving Around

e C-f: move forward one character

e C-b: move backward one character

e M-f: move forward one word

e M-b : move backward one word

e C-v: move forward one page

e M-v : move backward one page

e M-< : move to beginning of file

e M->: move to end of file

e C-a: move to beginning of line (left)

e C-e: move to end of line (right)

e C-n: move to next line (down)

e C-p: move to previous line (up)

e M-C-f: move forward one S-expression

e M-C-b : move backward one S-expression
e M-C-u : move up out of an S-expression

e M-C-d : move down into a nested S-expression

e M-C-SPACE : select forward S-expression

36

e M-C-p : match parentheses backward

e M-C-left : move backwards to the nearest editor box
e A-C-left : move backwards to the nearest editor box
e M-C-right : move forward to the nearest editor box
e A-C-right : move forward to the nearest editor box

e M-C-up : move up out of an embedded editor

e A-C-up : move up out of an embedded editor

e M-C-down : move down into an embedded editor

e A-C-down : move down into an embedded editor

e C-F6 : move the cursor from the definitions window to the interactions window (or
the search window, if it is open).

3.3.2 Editing Operations

e C-_:undo

e C-+:redo

e C-xu: undo

e (C-d: delete forward one character

e C-h: delete backward one character

e M-d : delete forward one word

e M-DEL : delete backward one word

e C-k: delete forward to end of line

e M-C-k : delete forward one S-expression
e M-w : copy selection to clipboard

e C-w : delete selection to clipboard (cut)
e (C-y : paste from clipboard (yank)

e C-t: transpose characters

e M-t : transpose words

e M-C-t : transpose sexpressions

37

e M-C-m : toggle dark green marking of matching parenthesis
e M-C-k : cut complete sexpression

e M-(: wrap selection in parentheses

e M-[: wrap selection in square brackets

e M-{ : wrap selection in curly brackets

e M-S-L : wrap selection in (lambda () ...) and put the insertion point in the arglist
of the lambda

e C-c C-o: the sexpression following the insertion point is put in place of its containing
sexpression

e C-c C-e: the first and last characters (usually parentheses) of the containing expression
are removed

e C-c C-1: wraps a let around the sexpression following the insertion point and puts a
printf in at that point (useful for debugging).

e M-o : toggle overwrite mode

3.3.3 File Operations

o C-x C-s: save file

e C-x C-w : save file under new name

3.3.4 Search

e C-s: search for string forward

e C-r: search for string backward

3.3.5 Miscellaneous

e F5: Run

38

3.3.6 Interactions

The interactions window has all of the same keyboard shortcuts as the definitions window
plus a few more:

e M-p : bring the previously entered expression down to the prompt

e M-n : bring the expression after the current expression in the expression history down
to the prompt

3.3.7 LaTeX and TeX inspired keybindings

e C-\ M-\ : traces backwards from the insertion point, looking for a backslash followed
by a LaTeX macro name; if one is found, it replaces the backslash and the macro’s
name with the keybinding. These are the currently supported macro names and the
keys they map into:

39

\Downarrow
\nwarrow
\downarrow
\Rightarrow
\rightarrow
\mapsto
\searrow
\swarrow
\leftarrow
\uparrow
\Leftarrow
\longrightarrow
\Uparrow
\Leftrightarrow
\updownarrow
\leftrightarrow
\nearrow
\Updownarrow
\aleph
\prime
\emptyset
\nabla
\diamondsuit
\spadesuit
\clubsuit
\heartsuit
\sharp

\flat
\natural
\surd

\neg
\triangle
\forall
\exists
\infty

\circ

\alpha
\theta

\tau

\beta
\vartheta
\pi

\upsilon
\gamma
\varpi

\phi

\delta
\kappa

\rho

\varphi
\epsilon
\lambda
\varrho

\chi
\varepsilon
\m11

L= /<

40

= AR T A>T A OISy DY DD 08m<|>J§Hvu<3g.’<><|®\z<:>\1<—>@:>lﬂ—>T\/

3.3.8 Defining Custom Shortcuts

The Add User-defined Keybindings... menu item in the Keybindings sub-menu of Edit
selects a file containing Scheme definitions of keybindings. The file must contain a module
that uses a special keybindings language, framework/keybinding-lang. To do so, begin
your file with this line:

#lang s-exp framework/keybinding-lang

The framework/keybinding-lang languages provides all of the bindings from scheme,
scheme/class, and drscheme/tool-1ib, except that it adjusts #/module-begin to in-
troduce a keybinding form:

(keybinding string-expr proc-expr)
Declares a keybinding, where string-expr must produce a suitable first ar-

gument for map-function in keymap’, and the proc-expr must produce a
suitable second argument for add-function in keymap¥.

For example, this remaps the key combination “control-a” key to “!”.

#lang s-exp framework/keybinding-lang
(keybinding "c:a" (A (editor evt) (send editor insert "!")))

Note that DrScheme does not reload this file automatically when you make a change, so
you’ll need to restart DrScheme to see changes to the file.

3.4 DrScheme Files
34.1 Program Files

The standard file extension for a PLT Scheme program file is " . ss". The extensions " .scm"
and ".sch" are also popular.

DrScheme’s editor can save a program file in two different formats:

o Plain-text file format — All text editors can read this format. DrScheme saves a pro-
gram in plain-text format by default, unless the program contains images or text boxes.
(Plain-text format does not preserve images or text boxes.)

Plain-text format is platform-specific because different platforms have different new-
line conventions. However, most tools for moving files across platforms support a
“text” transfer mode that adjusts newlines correctly.

41

o Multimedia file format — This format is specific to DrScheme, and no other editor
recognizes it. DrScheme saves a program in multimedia format by default when the
program contains images, text boxes, or formatted text.

Multimedia format is platform-independent, and it uses an ASCII encoding (so that
different ways of transferring the file are unlikely to corrupt the file).

3.4.2 Backup and Autosave Files

When you modify an existing file in DrScheme and save it, DrScheme copies the old version
of the file to a special backup file if no backup file exists. The backup file is saved in the
same directory as the original file, and the backup file’s name is generated from the original
file’s name:

e Under Unix and Mac OS X, a "~" is added to the end of the file’s name.

e Under Windows, the file’s extension is replaced with " .bak".

Every five minutes, DrScheme checks each open file. If any file is modified and not saved,
DrScheme saves the file to a special autosave file (just in case there is a power failure or
some other catastrophic error). If the file is later saved, or if the user exists DrScheme
without saving the file, the autosave file is removed. The autosave file is saved in the same
directory as the original file, and the autosave file’s name is generated from the original file’s
name:

e Under Unix and Mac OS X, a "#" is added to the start and end of the file’s name, then
a number is added after the ending "#", and then one more "#" is appended after the
number. The number is selected to make the autosave filename unique.

e Under Windows, the file’s extension is replaced with a number to make the autosave
filename unique.

If the definitions window is modified and there is no current file, then an autosave file is
written to the user’s “documents” directory.

The “documents”
directory is

determined by
. (find-system-path
3.4.3 Preference Files »doc-dir).
On start-up, DrScheme reads configuration information from a preferences file. The name
and location of the preferences file depends on the platform and user: The expression
(find-system-path
‘pref-file)

returns the
platform- and

42 user-specific
preference file path.

e Under Unix, preferences are stored in a ".plt-scheme" subdirectory in the user’s
home directory, in a file "plt-prefs.ss".

e Under Windows, preferences are stored in a file "plt-prefs.ss" in a sub-directory
"PLT Scheme" in the user’s application-data folder as specified by the Windows reg-
istry; the application-data folder is usually "Application Data" in the user’s profile
directory, and that directory is usually hidden in the Windows GUL

e Under Mac OS X, preferences are stored in "org.plt-scheme.prefs.ss" in the
user’s preferences folder.

A lock file is used while modifying the preferences file, and it is created in the same directory
as the preferences file. Under Windows, the lock file is named " _LOCKplt-prefs.ss";
under Unix, it is ".LOCK.plt-prefs.ss"; under Mac OS X, it is ".LOCK.org.plt-
scheme.prefs.ss".

If the user-specific preferences file does not exist, and the file "plt-prefs.ss" in the
"defaults" collection does exist, then it is used for the initial preference settings. (See
§16.2 “Libraries and Collections” for more information about collections.) This file thus al-
lows site-specific configuration for preference defaults. To set up such a configuration, start
DrScheme and configure the preferences to your liking. Then, exit DrScheme and copy your
preferences file into the "defaults" collection as "plt-prefs.ss". Afterward, users who
have no preference settings already will get the preference settings that you chose.

43

4 Extending DrScheme

DrScheme supports two forms of extension to the programming environment:

e A teachpack extends the set of procedures that are built into a language in DrScheme.
For example, a teachpack might extend the Beginning Student language with a proce-
dure for playing sounds.

Teachpacks are particularly useful in a classroom setting, where an instructor can
provide a teachpack that is designed for a specific exercise. To use the teachpack,
each student must download the teachpack file and select it through the Language|Add
Teachpack... menu item.

See §4.1 “Teachpacks” for information in creating teachpacks.

e A tool extends the set of utilities within the DrScheme environment. For example,
DrScheme’s Check Syntax button starts a syntax-checking tool. For information on
creating tools, see § “Plugins: Extending DrScheme”.

4.1 Teachpacks

Teachpacks are designed to supplement student programs with code that cannot be expressed
in a teaching language. For example, to enable students to play hangman, we supply a
teachpack that

e implements the random choosing of a word,
e maintains the state variable of how many guesses have gone wrong, and

e manages the GUI.

All these tasks are beyond students in the third week and/or impose memorization of cur-
rently useless knowledge on students. The essence of the hangman game, however, is not.
The use of teachpacks enables the students to implement the interesting part of this exercise
and still be able to enjoy today’s graphics without the useless memorization.

A single Scheme source file defines a teachpack (although the file may access other files via
require). The file must contain a module (see §6 “Modules”). Each exported syntax defi-
nition or value definition from the module is provided as a new primitive form or primitive
operation to the user, respectively.

As an example, the following teachpack provides a lazy cons implementation. To test it, be
sure to save it in a file named "lazycons.ss".

#lang scheme

44

(provide (rename-out [:lcons lcons]) lcar lcdr)
(define-struct lcons (hd tl))

(define-syntax (:lcons stx)
(syntax-case stx (O
[(_ hd-exp tl-exp)
#’ (make-1lcons
(delay hd-exp)
(delay tl-exp))1))

(define (lcar lcons) (force (lcons-hd lcons)))
(define (lcdr lcoms) (force (lcons-tl lcomns)))

Then, in this program:

(define (lmap f 1)
(1cons
(f (lcar 1))
(lmap £ (lcdr 1))))

(define all-nums (lcons 1 (Ilmap addl all-nums)))
the list all-nums is bound to an infinite list of ascending numbers.

For more examples, see the "htdp" sub-collection in the "teachpack" collection of the
PLT installation.

4.2 Environment Variables

Several environment variables can affect DrScheme’s behavior:

e PLTNOTOOLS : When this environment variable is set, DrScheme doesn’t load any
tools.

e PLTONLYTOOL : When this environment variable is set, DrScheme only loads the tools
in the collection named by the value of the environment variable. If the variable is
bound to a parenthesized list of collections, only the tools in those collections are
loaded (The contents of the environment variable are read and expected to be a single
symbol or a list of symbols).

e PLTDRCM : When this environment variable is set, DrScheme installs the compilation
manager before starting up, which means that the ".zo" files are automatically kept
up to date, as DrScheme’s (or a tools) source is modified.

45

If the variable is set to trace then the compilation manager’s output is traced, using
the manager-trace-handler procedure.

PLTDRDEBUG : When this environment variable is set, DrScheme starts up with er-
rortrace enabled. If the variable is set to profile, DrScheme also records profiling
information about itself.

PLTDRPROFILE : When this environment variable is set, DrScheme uses the profile
library (with a little GUI) to collect profiling information about itself.

PLTDRBREAK : When this environment variable is set, DrScheme creates a win-
dow with a break button, during startup. Clicking the button breaks DrScheme’s
eventspace’s main thread. This works well in combination with PLTDRDEBUG since
the source locations are reported for the breaks.

PLTDRTESTS : When this environment variable is set, DrScheme installs a special
button in the button bar that starts the test suite. (The test suite is available only in the
source distribution.)

PLTSTRINGCONSTANTS : When this environment variable is set, DrScheme prints out
the string constants that have not yet been translated. If it is set to a particular language
(corresponding to one of the files in "string-constants" collection) it only shows
the unset string constants matching that language.

This environment variable must be set when " .zo" files are made. To ensure that you
see its output properly, run setup-plt with the -c flag, set the environment variable,
and then run setup-plt again.

46

Index

(define ...) button, 6]
" .bak",@

".LOCK.org.plt-scheme.prefs.ss",[A3|

".LOCK.plt-prefs. ss",@

" .plt—scheme",@

".sch",[4]]

.scm",

.ss",

> prompt, [T0]

\aleph keyboard shortcut,
\alpha keyboard shortcut,
\amalg keyboard shortcut, @
\approx keyboard shortcut, @

\ast keyboard shortcut,

\asymp keyboard shortcut, @
\beta keyboard shortcut,
\bigtriangledown keyboard shortcut,
\bigtriangleup keyboard shortcut, @
\blacksmiley keyboard shortcut,
\bowtie keyboard shortcut,
\bullet keyboard shortcut,

\cap keyboard shortcut, [40]

\chi keyboard shortcut,

\circ keyboard shortcut,
\clubsuit keyboard shortcut, 40]
\cong keyboard shortcut,

\cup keyboard shortcut,
\dagger keyboard shortcut,
\dashv keyboard shortcut,
\ddagger keyboard shortcut,
\Delta keyboard shortcut,
\delta keyboard shortcut,
\diamond keyboard shortcut, @
\diamondsuit keyboard shortcut, @
\div keyboard shortcut,

\doteq keyboard shortcut,
\Downarrow keyboard shortcut,
\downarrow keyboard shortcut,
\emptyset keyboard shortcut,
\epsilon keyboard shortcut,

\equiv keyboard shortcut,
\eta keyboard shortcut,
\exists keyboard shortcut,
\flat keyboard shortcut,
\forall keyboard shortcut,
\frown keyboard shortcut,
\frownie keyboard shortcut,
\Gamma keyboard shortcut,
\ gamma keyboard shortcut,

\ geq keyboard shortcut,

\gg keyboard shortcut, 40]
\heartsuit keyboard shortcut,
\in keyboard shortcut,

\infty keyboard shortcut,
\kappa keyboard shortcut,
\Lambda keyboard shortcut,
\lambda keyboard shortcut,
\Leftarrow keyboard shortcut,
\leftarrow keyboard shortcut,
\Leftrightarrow keyboard shortcut,
\leftrightarrow keyboard shortcut, @|
\leq keyboard shortcut, 40|

\1l keyboard shortcut,
\longrightarrow keyboard shortcut,
\mapsto keyboard shortcut,
\models keyboard shortcut,
\mp keyboard shortcut,

\mu keyboard shortcut,
\nabla keyboard shortcut,
\natural keyboard shortcut,
\nearrow keyboard shortcut,
\neg keyboard shortcut,

\neq keyboard shortcut,

\ni keyboard shortcut,

\nu keyboard shortcut, 40|
\nwarrow keyboard shortcut,
\odot keyboard shortcut, 40]
\Omega keyboard shortcut,
\omega keyboard shortcut,
\ominus keyboard shortcut,
\oplus keyboard shortcut,
\oslash keyboard shortcut, @

\otimes keyboard shortcut,
\parallel keyboard shortcut, @l
\perp keyboard shortcut,

\Phi keyboard shortcut, 40]

\phi keyboard shortcut,

\Pi keyboard shortcut, [40]

\pi keyboard shortcut, 40|

\pm keyboard shortcut,

\prec keyboard shortcut, @l
\preceq keyboard shortcut, @
\prime keyboard shortcut,
\propto keyboard shortcut, @
\Psi keyboard shortcut,

\psi keyboard shortcut, 40|

\rho keyboard shortcut, 40]
\Rightarrow keyboard shortcut,
\rightarrow keyboard shortcut,
\searrow keyboard shortcut, @
\sharp keyboard shortcut,
\Sigma keyboard shortcut,
\sigma keyboard shortcut,
\sim keyboard shortcut,
\simeq keyboard shortcut,
\skull keyboard shortcut,
\smile keyboard shortcut,
\smiley keyboard shortcut,
\spadesuit keyboard shortcut, @
\sqcap keyboard shortcut, @
\sqcup keyboard shortcut,
\sqsubsetb keyboard shortcut, @l
\sqsubseteq keyboard shortcut,
\sqsupsetb keyboard shortcut, @l
\sqsupseteq keyboard shortcut,
\ star keyboard shortcut,
\subset keyboard shortcut,
\subseteq keyboard shortcut,
\succ keyboard shortcut,
\succeq keyboard shortcut,
\supset keyboard shortcut,
\supseteq keyboard shortcut,
\surd keyboard shortcut, 40]
\swarrow keyboard shortcut, @

48

\tau keyboard shortcut, 40|

\Theta keyboard shortcut, 40|

\theta keyboard shortcut, 40|

\times keyboard shortcut,

\triangle keyboard shortcut, 40]

\triangleleft keyboard shortcut,

\triangleright keyboard shortcut,

\Uparrow keyboard shortcut, 0]

\uparrow keyboard shortcut,

\Updownarrow keyboard shortcut, @

\updownarrow keyboard shortcut, @

\uplus keyboard shortcut,

\ Upsilon keyboard shortcut, @

\upsilon keyboard shortcut,

\varepsilon keyboard shortcut,

\varphi keyboard shortcut,

\varpi keyboard shortcut,

\varrho keyboard shortcut,

\varsigma keyboard shortcut,

\vartheta keyboard shortcut, @

\vdash keyboard shortcut,

\vee keyboard shortcut,

\wedge keyboard shortcut,

\wr keyboard shortcut, @

\Xi keyboard shortcut, @

\xi keyboard shortcut,

\zeta keyboard shortcut, 40|

"_LOCKplt-prefs.ss",[A3|

A-C-down keybinding, [37]

A-C-left keybinding, [37]

A-C-right keybinding, [37]

A-C-up keybinding, [37]

About DrScheme... menu item, 32

Add Teachpack... menu item, [30]

Add User-defined Keybindings...
item, 28]

Advanced Student language, 20]

alpha renaming,

"Application Data",@

automatic parenthesis, 8]

Backup and Autosave Files, @

Beginning Student language, [I9]

Beginning Student with List Abbreviations Collapse menu item, 29

languages, [20]
Break button,
Break menu item, 30|
Bring Frame to Front... menu item, 32]
Browser, [33]
Buttons, [6]
C-+ keybinding,
C-\ keybinding, M-\ keybinding,
C-_keybinding,
C-a keybinding, [36]
C-b keybinding, [36]
C-c C-¢ keybinding, [3§]
C-c C-1 keybinding, 38|
C-c C-o keybinding, 38|
C-d keybinding, [37]
C-e keybinding, [36]
C-f keybinding, 36|
C-F6 keybinding, [37]
C-h keybinding, [37]
C-k keybinding, [37]
C-n keybinding, [36]
C-p keybinding, [36]
C-r keybinding, [38]
C-s keybinding, [3§]
C-t keybinding, [37]
C-v keybinding, [36|
C-w keybinding, [37]
C-x C-s keybinding, [3§]
C-x C-w keybinding, [38]
C-x u keybinding,
C-y keybinding,
changing a parenthesis as you type, [§]
Check syntax, question-mark arrows,
Check syntax, purple arrows,
Check Syntax button, [f]
Choose Language... menu item, 29|
Choosing a Language,
Clear All Teachpacks menu item, @
Clear Error Highlight menu item, [30]
Clear menu item, 27]
Close menu item, 27]

Colors, 32

Comment Out with a Box menu item, 3]

Comment Out with Semicolons menu item,
30

Complete Word menu item, 28]

Constructor output, 23]

Copy menu item,

Create Executable... menu item, 30|

Creating Executables,

Cut menu item, 27]

cycle back through old expressions, [I0]

Debug button, [T3]

Debug button, [6]

debugger, [§]

Debugger Buttons, T3]

Debugging Multiple Files, [T7]

Defining Custom Shortcuts, |Z-_T|

definitions window, 5]

Definitions Window Actions, [16]

Delete menu item,

Disable Tests menu item,

display, [IT]

distribution archive,[T§|

Dock Test Report menu item, 29]

DrScheme Files, 1]

DrScheme Teachpacks, [#4]

DrScheme: PLT Programming Environ-
ment, [T]

Edit,

Editing, 33]

Editing Operations,

Editing with Parentheses, [§]

Emacs keybindings, [36]

Enable Tests menu item, [31]

Environment Variables, 3]

error highlighting, [T0]

Errors, [10]

evaluating expressions, [I0]

Extending DrScheme, [44]

F5 keybinding, [38]

File,

49

file extension, [41] Interact with DrScheme in English menu

File Operations, [38] item, 32]
filename button, [6] Interactions, 39
Find Again Backwards menu item,[27] interactions window, P
Find Again menu item,[27] Interface Essentials, [3]
Find Case Sensitive menu item, 28| Interface Reference, [26]
Find... menu item, 27] Intermediate Student language, [20]
flashing parenthesis matches, [§] Intermediate Student with Lambda lan-
Font, [32] guage, 20]
formatting Scheme code, [§] keybindings, [33]
Go button, [13] Keybindings menu item,
Graphical Debugging Interface, [T3] Keyboard Shortcuts, [33]
Graphical Syntax, [T4] Kill menu item,
gray highlight regions, [§] Language,
Help, 32] language levels, [7]
Help Desk menu item, 32] languages, extending, 4]
Hide Definitions menu item, 2§] Languages, [T9]
Hide Interactions menu item, 2§] LaTeX, [39]
Hide Log menu item, LaTeX and TeX inspired keybindings, [39]
Hide Module Browser menu item, 28] launcher executable, [T8]
Hide Profile menu item, Legacy Languages, [I9]
Hide Program Contour menu item, 28] Limit Memory... menu item, [30]
Hide Tracing menu item, Log Definitions and Interactions... menu
How to Design Programs Teaching Lan- item, 26]
guages, [T9] M-(keybinding, 38|
/0O, [1]] M-< keybinding, 36
Images, [T4] M-> keybinding, 3]
indenting Scheme code, 3] M-[keybinding, [38]
Input and Output, [T1] M-b keybinding, [36]
Insert, 3] M-C-b keybinding, [36]
Insert Comment Box menu item, [31] M-C-d keybinding, 36
Insert Fraction... menu item, [31] M-C-down keybinding, [37]
Insert Image... menu item, [31] M-C-f keybinding, 3§

Insert Java Comment Box menu item,[3T] ~ M-C-k keybinding, [37]
Insert Java Interactions Box menu item,[3T] M-C-k keybinding, 38|

Insert Large Letters... menu item, 3] M-C-left keybinding, [37]
Insert Pict Box menu item, [31] M-C-m keybinding, 38]
Insert Scheme Box menu item, 3] M-C-p keybinding, [37]
Insert Scheme Splice Box menu item, [31] M-C-right keybinding, [37]
Insert XML Box menu item, [31] M-C-SPACE keybinding, [36]
Insert A\ menu item, [31] M-C-t keybinding, [37]

Install PLT File... menu item, 26] M-C-u keybinding, 36|

50

M-C-up keybinding, [37]
M-d keybinding, [37]
M-DEL keybinding, [37]
M-f keybinding, [36]
M-n keybinding, [39]
M-o keybinding, [3§|
M-p keybinding, [39]
M-S-L keybinding, 38|
M-t keybinding,
M-v keybinding, [36]
M-w keybinding,
M-{ keybinding,
Menus, 26]
Miscellaneous, 38|
Module Browser... menu item, [30]
Module language, [T9]
Modules, [T9]

Most Recent Window menu item,[32]

Moving Around, [36]
Multimedia file format,[42)

New menu item,

Open Recent menu item,
Open... menu item, 26]
"org.plt-scheme.prefs.ss",[A3|
Other Experimental Languages, 24]
Out button,

Output Printing Styles, 24]

Over button,

overwrite mode, B8]

Paste menu item,

Pause, [T3]

Plain-text file format,

PLT Pretty Big language, [19]

"PLT Scheme",[43]
"plt-prefs.ss",[A3|
"plt-prefs.ss",[A3|

"plt-prefs.ss",[3|
PLTDRBREAK, [46]

PLTDRCM, [43]
PLTDRDEBUG, [46]
PLTDRPROFILE, [46]
PLTDRTESTS, [46]

PLTNOTOOLS, [43]

PLTONLYTOOL, [43]

PLTSTRINGCONSTANTS, @

Preference Files, [A2]

Preferences, 32

Preferences... menu item, 28]

previous expression,

Print Definitions... menu item, 27]

Print Interactions... menu item, 27]

print output, 23]

printing format, 24]

ProfessorJ, 23]

Professor) Advanced language, 23]

ProfessorJ Beginner language, 23]

ProfessorJ Full language, 23]

ProfessorJ Intermediate + access language,
23

ProfessorJ Intermediate language,

ProfessorJ Java + dynamic language,

Profiling, [33]

Program Files, 4]

Quasiquote output,

R5RS language,

read, [T]]

read-char, [T]]

recycling icon, [§]

Redo menu item,

Reindent All menu item, 30|

Reindent menu item, 30|

Related Web Sites menu item, 32]

Replace & Find Again Backwards menu
item, 2§

Replace & Find Again menu item, 28]

Replace All menu item, 28]

Revert menu item, 26]

Run button, 7]

Run menu item, 30]

Save button, [f]

Save Definitions As Text... menu item,

Save Definitions As... menu item,

Save Definitions menu item, 26]

Save Interactions As Text... menu item,

Save Interactions As... menu item, 26] Windows, 32]

Save Interactions menu item, 26] Wrap Text menu item,

Save Other menu item, 26] write,[I]

Scheme, 30| x-expression, 4]

Search, 3§ xexpr,[14]

search anchor,[9] XML Boxes and Scheme Boxes, [14]
Search in Files... menu item, LIPS

Searching, 0] a-rename, [7]

Select All menu item, [27]

Show Active Keybindings menu item, 28]
Show Definitions menu item, 28]
Show Interactions menu item, 28]
Show Log menu item, [29]

Show Module Browser menu item, 28]
Show Profile menu item, 29]

Show Program Contour menu item,@
Show Tracing menu item, 29]

Split menu item, 29|

Stack View Pane, [16]

stand-alone executable, (T8

status line,[6]

Step button,

Step button, [6]

Stepper, [0]

Swindle language,

Tabbed Editing, [T0]

tail calls, [7]

teachpack, @4

Teachpacks, #4]

The Interactions Window, [T0]

tool, |44

Tool Web Sites menu item, [32]
Toolbar Hidden menu item, 29]
Toolbar menu item, [29]

Toolbar on Left menu item, 29]
Toolbar on Right menu item, 29
Toolbar on Top menu item, 29]
Uncomment menu item, 31]

Undo menu item,

Undock Test Report menu item, 29]
View, 28]

Warnings, [34]

52

	1 Interface Essentials
	1.1 Buttons
	1.2 Choosing a Language
	1.3 Editing with Parentheses
	1.4 Searching
	1.5 Tabbed Editing
	1.6 The Interactions Window
	1.6.1 Errors
	1.6.2 Input and Output

	1.7 Graphical Syntax
	1.7.1 Images
	1.7.2 XML Boxes and Scheme Boxes

	1.8 Graphical Debugging Interface
	1.8.1 Debugger Buttons
	1.8.2 Definitions Window Actions
	1.8.3 Stack View Pane
	1.8.4 Debugging Multiple Files

	1.9 Creating Executables

	2 Languages
	2.1 Modules
	2.2 Legacy Languages
	2.3 How to Design Programs Teaching Languages
	2.4 ProfessorJ
	2.5 Other Experimental Languages
	2.6 Output Printing Styles

	3 Interface Reference
	3.1 Menus
	3.1.1 File
	3.1.2 Edit
	3.1.3 View
	3.1.4 Language
	3.1.5 Scheme
	3.1.6 Insert
	3.1.7 Windows
	3.1.8 Help

	3.2 Preferences
	3.2.1 Font
	3.2.2 Colors
	3.2.3 Editing
	3.2.4 Warnings
	3.2.5 Profiling
	3.2.6 Browser

	3.3 Keyboard Shortcuts
	3.3.1 Moving Around
	3.3.2 Editing Operations
	3.3.3 File Operations
	3.3.4 Search
	3.3.5 Miscellaneous
	3.3.6 Interactions
	3.3.7 LaTeX and TeX inspired keybindings
	3.3.8 Defining Custom Shortcuts

	3.4 DrScheme Files
	3.4.1 Program Files
	3.4.2 Backup and Autosave Files
	3.4.3 Preference Files

	4 Extending DrScheme
	4.1 Teachpacks
	4.2 Environment Variables

	Index

