
FFI: PLT Scheme Foreign Interface
Version 4.2.1

Eli Barzilay

July 30, 2009

(require scheme/foreign)

The scheme/foreign library enables the direct use of C-based APIs within Scheme
programs—without writing any new C code. From the Scheme perspective, functions and
data with a C-based API are foreign, hence the term foreign interface. Furthermore, since
most APIs consist mostly of functions, the foreign interface is sometimes called a foreign
function interface, abbreviated FFI.

Important: Many of the bindings documented here (the ones in sections with titles starting
“Unsafe”) are available only after an (unsafe!) declaration in the importing module.

1

Contents

1 Overview 4

2 Loading Foreign Libraries 5

2.1 Unsafe Library Functions . 5

3 C Types 8

3.1 Type Constructors . 8

3.2 Numeric Types . 9

3.3 Other Atomic Types . 11

3.4 String Types . 11

3.4.1 Primitive String Types . 11

3.4.2 Fixed Auto-Converting String Types 12

3.4.3 Variable Auto-Converting String Type 12

3.4.4 Other String Types . 13

3.5 Pointer Types . 13

3.6 Function Types . 14

3.6.1 Custom Function Types . 17

3.7 C Struct Types . 20

3.8 Enumerations and Masks . 24

4 Pointer Functions 25

4.1 Unsafe Pointer Operations . 26

4.2 Unsafe Memory Management . 30

5 Miscellaneous Support 34

5.1 Unsafe Miscellaneous Operations . 35

2

6 Derived Utilities 36

6.1 Tagged C Pointer Types . 36

6.1.1 Unsafe Tagged C Pointer Functions 37

6.2 Safe C Vectors . 37

6.2.1 Unsafe C Vector Construction . 39

6.3 SRFI-4 Vectors . 39

7 Unexported Primitive Functions 50

8 Macros for Unsafety 52

Index 53

3

1 Overview

Although using the FFI requires writing no new C code, it provides very little insulation
against the issues that C programmer faces related to safety and memory management. An
FFI programmer must be particularly aware of memory management issues for data that
spans the Scheme–C divide. Thus, this manual relies in many ways on the information in
§ “Inside: PLT Scheme C API”, which defines how PLT Scheme interacts with C APIs in
general.

Since using the FFI entails many safety concerns that Scheme programmers can normally
ignore, merely importing scheme/foreign with (require scheme/foreign) does not
import all of the FFI functionality. Only safe functionality is immediately imported. For
example, ptr-equal? can never cause memory corruption or an invalid memory access, so
it is immediately available on import.

Use (unsafe!) at the top-level of a module that imports scheme/foreign to make unsafe
features accessible. (For additional safety, the unsafe! is itself protected; see §13.9 “Code
Inspectors”.) Using this macro should be considered as a declaration that your code is itself
unsafe, therefore can lead to serious problems in case of bugs: it is your responsibility to
provide a safe interface. Bindings that become available only via unsafe! are documented
in this manual in sections with titles starting “Unsafe.”

For examples of common FFI usage patterns, see the defined interfaces in the "ffi" collec-
tion.

4

2 Loading Foreign Libraries

The FFI is normally used by extracting functions and other objects from shared objects
(a.k.a. shared libraries or dynamically loaded libraries). The ffi-lib function loads a
shared object.

(ffi-lib? v) → boolean>
v : any/c

Returns #t if v is the result of ffi-lib, #f otherwise.

2.1 Unsafe Library Functions

(ffi-lib path [version]) → any
path : (or/c path-string? #f)
version : (or/c string? (listof (or/c string? #f)) #f) = #f

Returns an foreign-library value. If path is a path, the result represents the foreign library,
which is opened in an OS-specific way (using LoadLibrary under Windows, and dlopen
under Unix and Mac OS X).

The path is not expected to contain the library suffix, which is added according to the cur-
rent platform. If adding the suffix fails, several other filename variations are tried: retrying
without an automatically added suffix, and using a full path of a file if it exists relative to
the current directory (since the OS-level library function usually searches, unless the library
name is an absolute path). An optional version string can be supplied, which is appended
to the name before or after the suffix, depending on platform conventions, unless it is #f or
"". If version is a list, ffi-lib will try each of them in order.

If path is #f, then the resulting foreign-library value represents all libraries loaded in the
current process, including libraries previously opened with ffi-lib. In particular, use #f
to access C-level functionality exported by the run-time system (as described in § “Inside:
PLT Scheme C API”).

Note: ffi-lib tries to look for the library file in a few places, inluding the PLT libraries
(see get-lib-search-dirs), a relative path, or a system search. When version is a
list, different versions are tried through each route before continuing the search with other
routes. However, if dlopen cannot open a library, there is no reliable way to know why it
failed, so if all path combinations fail, it will raise an error with the result of dlopen on
the unmodified argument name. For example, if you have a local "foo.so" library that
cannot be loaded because of a missing symbol, using (ffi-lib "foo.so") will fail with
all its search options, most because the library is not found, and once because of the missing

5

symbol, and eventually produce an error message that comes from dlopen("foo.so")
which will look like the file is not found. In such cases try to specify a full or relative path
(containing slashes, e.g., "./foo.so").

(get-ffi-obj objname lib type [failure-thunk]) → any
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?
failure-thunk : (or/c (-> any) #f) = #f

Looks for the given object name objname in the given lib library. If lib is not a foreign-
library value produced by ffi-lib, it is converted to one by calling ffi-lib. If objname
is found in lib , it is converted to Scheme using the given type . Types are described in §3
“C Types”; in particular the get-ffi-obj procedure is most often used with function types
created with _fun.

Keep in mind that get-ffi-obj is an unsafe procedure; see §1 “Overview” for details.

If the object is not found, and failure-thunk is provided, it is used to produce a return
value. For example, a failure thunk can be provided to report a specific error if an object is
not found:

(define foo
(get-ffi-obj "foo" foolib (_fun _int -> _int)
(lambda ()
(error ’foolib

"installed foolib does not provide \"foo\""))))

The default (also when failure-thunk is provided as #f) is to raise an exception.

(set-ffi-obj! objname lib type new) → void?
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?
new : any/c

Looks for objname in lib similarly to get-ffi-obj, but then it stores the given new value
into the library, converting it to a C value. This can be used for setting library customization
variables that are part of its interface, including Scheme callbacks.

(make-c-parameter objname lib type) → (and/c (-> any)
(any/c -> void?))

objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
type : ctype?

6

Returns a parameter-like procedure that can either references the specified foreign value, or
set it. The arguments are handled as in get-ffi-obj.

A parameter-like function is useful in case Scheme code and library code interact through
a library value. Although make-c-parameter can be used with any time, it is not recom-
mended to use this for foreign functions, since each reference through the parameter will
construct the low-level interface before the actual call.

(define-c id lib-expr type-expr)

Defines id behave like a Scheme binding, but id is actually redirected through a parameter-
like procedure created by make-c-parameter. The id is used both for the Scheme binding
and for the foreign object’s name.

(ffi-obj-ref objname lib [failure-thunk]) → any
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)
failure-thunk : (or/c (-> any) #f) = #f

Returns a pointer object for the specified foreign object. This procedure is for rare cases
where make-c-parameter is insufficient, because there is no type to cast the foreign object
to (e.g., a vector of numbers).

7

3 C Types

C types are the main concept of the FFI, either primitive types or user-defined types. The
FFI deals with primitive types internally, converting them to and from C types. A user type
is defined in terms of existing primitive and user types, along with conversion functions to
and from the existing types.

3.1 Type Constructors

(make-ctype type scheme-to-c c-to-scheme) → ctype?
type : ctype?
scheme-to-c : (or/c #f (any/c . -> . any))
c-to-scheme : (or/c #f (any/c . -> . any))

Creates a new C type value whose representation for foreign code is the same as type ’s. The
given conversions functions convert to and from the Scheme representation of type . Either
conversion function can be #f, meaning that the conversion for the corresponding direction
is the identity function. If both functions are #f, type is returned.

(ctype? v) → boolean?
v : any/c

Returns #t if v is a C type, #f otherwise.

(ctype-sizeof type) → exact-nonnegative-integer?
type : ctype?

(ctype-alignof type) → exact-nonnegative-integer?
type : ctype?

Returns the size or alignment of a given type for the current platform.

(ctype->layout type) → (flat-rec-contract rep
symbol?
(listof rep))

type : ctype?

Returns a value to describe the eventual C representation of the type. It can be any of the
following symbols:

’int8 ’uint8 ’int16 ’uint16 ’int32 ’uint32 ’int64 ’uint64
’float ’double ’bool ’void ’pointer ’fpointer

8

’bytes ’string/ucs-4 ’string/utf-16

The result can also be a list, which describes a C struct whose element representations are
provided in order within the list.

(compiler-sizeof sym) → exact-nonnegative-integer?
sym : symbol?

Possible values for symbol are ’int, ’char, ’short, ’long, ’*, ’void, ’float, ’dou-
ble. The result is the size of the correspond type according to the C sizeof operator for
the current platform. The compiler-sizeof operation should be used to gather informa-
tion about the current platform, such as defining alias type like _int to a known type like
_int32.

3.2 Numeric Types

_int8 : ctype?
_sint8 : ctype?
_uint8 : ctype?
_int16 : ctype?
_sint16 : ctype?
_uint16 : ctype?
_int32 : ctype?
_sint32 : ctype?
_uint32 : ctype?
_int64 : ctype?
_sint64 : ctype?
_uint64 : ctype?

The basic integer types at various sizes. The s or u prefix specifies a signed or an unsigned
integer, respectively; the ones with no prefix are signed.

9

_byte : ctype?
_sbyte : ctype?
_ubyte : ctype?
_short : ctype?
_sshort : ctype?
_ushort : ctype?
_int : ctype?
_sint : ctype?
_uint : ctype?
_word : ctype?
_sword : ctype?
_uword : ctype?
_long : ctype?
_slong : ctype?
_ulong : ctype?

Aliases for basic integer types. The _byte aliases correspond to _int8. The _short and
_word aliases correspond to _int16. The _int aliases correspond to _int32. The _long
aliases correspond to either _int32 or _int64, depending on the platform.

_fixnum : ctype?
_ufixnum : ctype?

For cases where speed matters and where you know that the integer is small enough, the types
_fixnum and _ufixnum are similar to _long and _ulong but assume that the quantities fit
in PLT Scheme’s immediate integers (i.e., not bignums).

_fixint : ctype?
_ufixint : ctype?

Like _fixnum and _ufixnum, but coercions from C are checked to be in range.

_float : ctype?
_double : ctype?
_double* : ctype?

The _float and _double types represent the corresponding C types. The type _double*
that implicitly coerces any real number to a C double.

10

3.3 Other Atomic Types

_bool : ctype?

Translates #f to a 0 _int, and any other value to 1.

_void : ctype?

Indicates a Scheme #<void> return value, and it cannot be used to translate values to C.
This type cannot be used for function inputs.

3.4 String Types

3.4.1 Primitive String Types

The five primitive string types correspond to cases where a C representation matches
MzScheme’s representation without encodings.

The form _bytes form can be used type for Scheme byte strings, which corresponds to C’s
char* type. In addition to translating byte strings, #f corresponds to the NULL pointer.

_string/ucs-4 : ctype?

A type for Scheme’s native Unicode strings, which are in UCS-4 format. These correspond
to the C mzchar* type used by PLT Scheme. As usual, the types treat #f as NULL and
vice-versa.

_string/utf-16 : ctype?

Unicode strings in UTF-16 format. As usual, the types treat #f as NULL and vice-versa.

_path : ctype?

Simple char* strings, corresponding to Scheme’s paths. As usual, the types treat #f as NULL
and vice-versa.

Beware that changing the current directory via current-directory does not change the
OS-level current directory as seen by foreign library functions. Paths normally should
be converted to absolute form using path->complete-path (which uses the current-
directory parameter) before passing them to a foreign function.

11

_symbol : ctype?

Simple char* strings as Scheme symbols (encoded in UTF-8). Return values using this type
are interned as symbols.

3.4.2 Fixed Auto-Converting String Types

_string/utf-8 : ctype?
_string/latin-1 : ctype?
_string/locale : ctype?

Types that correspond to (character) strings on the Scheme side and char* strings on the C
side. The bridge between the two requires a transformation on the content of the string. As
usual, the types treat #f as NULL and vice-versa.

_string*/utf-8 : ctype?
_string*/latin-1 : ctype?
_string*/locale : ctype?

Similar to _string/utf-8, etc., but accepting a wider range of values: Scheme byte strings
are allowed and passed as is, and Scheme paths are converted using path->bytes.

3.4.3 Variable Auto-Converting String Type

The _string/ucs-4 type is rarely useful when interacting with foreign code, while using
_bytes is somewhat unnatural, since it forces Scheme programmers to use byte strings.
Using _string/utf-8, etc., meanwhile, may prematurely commit to a particular encoding
of strings as bytes. The _string type supports conversion between Scheme strings and
char* strings using a parameter-determined conversion.

_string : ctype?

Expands to a use of the default-_string-type parameter. The parameter’s value is con-
sulted when _string is evaluated, so the parameter should be set before any interface defi-
nition that uses _string.

(default-_string-type) → ctype?
(default-_string-type type) → void?
type : ctype?

12

A parameter that determines the current meaning of _string. It is initially set to
_string*/utf-8. If you change it, do so before interfaces are defined.

3.4.4 Other String Types

_file : ctype?

Like _path, but when values go from Scheme to C, cleanse-path is used on the given
value. As an output value, it is identical to _path.

_bytes/eof : ctype?

Similar to the _bytes type, except that a foreign return value of NULL is translated to a
Scheme eof value.

_string/eof : ctype?

Similar to the _string type, except that a foreign return value of NULL is translated to a
Scheme eof value.

3.5 Pointer Types

_pointer : ctype?

Corresponds to Scheme “C pointer” objects. These pointers can have an arbitrary Scheme
object attached as a type tag. The tag is ignored by built-in functionality; it is intended to
be used by interfaces. See §6.1 “Tagged C Pointer Types” for creating pointer types that use
these tags for safety.

_scheme : ctype?

This type can be used with any Scheme object; it corresponds to the Scheme_Object* type
of PLT Scheme’s C API (see § “Inside: PLT Scheme C API”). It is useful only for libraries
that are aware of PLT Scheme’s C API.

_fpointer : ctype?

Similar to _pointer, except that when an _fpointer is extracted from a pointer produced
by ffi-obj-ref, then a level of indirection is skipped. A level of indirection is similarly

13

skipped when extracting a pointer via get-ffi-obj. Like _pointer, _fpointer treats #f
as NULL and vice-versa.

A type generated by _cprocedure builds on _fpointer, and normally _cprocedure
should be used instead of _fpointer.

3.6 Function Types

(_cprocedure input-types

output-type

[#:abi abi

#:atomic? atomic?

#:wrapper wrapper

#:keep keep]) → any
input-types : (list ctype?)
output-type : ctype?
abi : (or/c symbol/c #f) = #f
atomic? : any/c = #f
wrapper : (or/c #f (procedure? . -> . procedure?)) = #f
keep : (or/c boolean? box? (any/c . -> . any/c)) = #t

A type constructor that creates a new function type, which is specified by the given input-

types list and output-type . Usually, the _fun syntax (described below) should be used
instead, since it manages a wide range of complicated cases.

The resulting type can be used to reference foreign functions (usually ffi-objs, but any
pointer object can be referenced with this type), generating a matching foreign callout object.
Such objects are new primitive procedure objects that can be used like any other Scheme
procedure. As with other pointer types, #f is treated as a NULL function pointer and vice-
versa.

A type created with _cprocedure can also be used for passing Scheme procedures to for-
eign functions, which will generate a foreign function pointer that calls the given Scheme
procedure when it is used. There are no restrictions on the Scheme procedure; in particular,
its lexical context is properly preserved.

The optional abi keyword argument determines the foreign ABI that is used. #f or ’de-
fault will use a platform-dependent default; other possible values are ’stdcall and ’sysv
(the latter corresponds to “cdecl”). This is especially important on Windows, where most
system functions are ’stdcall, which is not the default.

If atomic? is true, then when a Scheme procedure is given this procedure type and called
from foreign code, then the PLT Scheme process is put into atomic mode while evaluating the
Scheme procedure body. In atomic mode, other Scheme threads do not run, so the Scheme

14

code must not call any function that potentially synchronizes with other threads, or else it
may deadlock. In addition, the Scheme code must not perform any potentially blocking
operation (such as I/O), it must not raise an uncaught exception, it must not perform any
escaping continuation jumps, and its non-tail recursion must be minimal to avoid C-level
stack overflow; otherwise, the process may crash or misbehave.

The optional wrapper , if provided, is expected to be a function that can change a callout
procedure: when a callout is generated, the wrapper is applied on the newly created primi-
tive procedure, and its result is used as the new function. Thus, wrapper is a hook that can
perform various argument manipulations before the foreign function is invoked, and return
different results (for example, grabbing a value stored in an “output” pointer and returning
multiple values). It can also be used for callbacks, as an additional layer that tweaks argu-
ments from the foreign code before they reach the Scheme procedure, and possibly changes
the result values too.

Sending Scheme functions as callbacks to foreign code is achieved by translating them to a
foreign “closure”, which foreign code can call as plain C functions. Additional care must
be taken in case the foreign code might hold on to the callback function. In these cases you
must arrange for the callback value to not be garbage-collected, or the held callback will
become invalid. The optional keep keyword argument is used to achieve this. It can have
the following values:

• #t makes the callback value stay in memory as long as the converted function is. In
order to use this, you need to hold on to the original function, for example, have a
binding for it. Note that each function can hold onto one callback value (it is stored
in a weak hash table), so if you need to use a function in multiple callbacks you will
need to use one of the last two options below. (This is the default, as it is fine in most
cases.)

• #f means that the callback value is not held. This may be useful for a callback that is
only used for the duration of the foreign call — for example, the comparison function
argument to the standard C library qsort function is only used while qsort is work-
ing, and no additional references to the comparison function are kept. Use this option
only in such cases, when no holding is necessary and you want to avoid the extra cost.

• A box holding #f (or a callback value) — in this case the callback value will be stored
in the box, overriding any value that was in the box (making it useful for holding a
single callback value). When you know that it is no longer needed, you can “release”
the callback value by changing the box contents, or by allowing the box itself to be
garbage-collected. This is can be useful if the box is held for a dynamic extent that
corresponds to when the callback is needed; for example, you might encapsulate some
foreign functionality in a Scheme class or a unit, and keep the callback box as a field
in new instances or instantiations of the unit.

• A box holding null (or any list) – this is similar to the previous case, except that new
callback values are consed onto the contents of the box. It is therefore useful in (rare)

15

cases when a Scheme function is used in multiple callbacks (that is, sent to foreign
code to hold onto multiple times).

• Finally, if a one-argument function is provided as keep , it will be invoked with the
callback value when it is generated. This allows you to grab the value directly and use
it in any way.

(_fun fun-option ... maybe-args type-spec ... -> type-spec

maybe-wrapper)

fun-option = #:abi abi-expr

| #:keep keep-expr

| #:atomic? atomic?-expr

maybe-args =
| (id ...) ::
| id ::
| (id id) ::

type-spec = type-expr

| (id : type-expr)
| (type-expr = value-expr)
| (id : type-expr = value-expr)

maybe-wrapper =
| -> output-expr

Creates a new function type. The _fun form is a convenient syntax for the _cprocedure
type constructor. In its simplest form, only the input type-exprs and the output type-
expr are specified, and each types is a simple expression, which creates a straightforward
function type.

In its full form, the _fun syntax provides an IDL-like language that can be used to create
a wrapper function around the primitive foreign function. These wrappers can implement
complex foreign interfaces given simple specifications. The full form of each of the type
specifications can include an optional label and an expression. If a = value-expr is pro-
vided, then the resulting function will be a wrapper that calculates the argument for that
position itself, meaning that it does not expect an argument for that position. The expression
can use previous arguments if they were labeled with id :. In addition, the result of a func-
tion call need not be the value returned from the foreign call: if the optional output-expr
is specified, or if an expression is provided for the output type, then this specifies an expres-
sion that will be used as a return value. This expression can use any of the previous labels,
including a label given for the output which can be used to access the actual foreign return
value.

16

In rare cases where complete control over the input arguments is needed, the wrapper’s argu-
ment list can be specified as args, in any form (including a “rest” argument). Identifiers in
this place are related to type labels, so if an argument is there is no need to use an expression.

For example,

(_fun (n s) :: (s : _string) (n : _int) -> _int)

specifies a function that receives an integer and a string, but the foreign function receives the
string first.

(function-ptr ptr-or-proc fun-type) → cpointer?
ptr-or-proc : (or cpointer? procedure?)
fun-type : ctype?

Casts ptr-or-proc to a function pointer of type fun-type .

3.6.1 Custom Function Types

The behavior of the _fun type can be customized via custom function types, which are
pieces of syntax that can behave as C types and C type constructors, but they can interact
with function calls in several ways that are not possible otherwise. When the _fun form
is expanded, it tries to expand each of the given type expressions, and ones that expand
to certain keyword-value lists interact with the generation of the foreign function wrapper.
This expansion makes it possible to construct a single wrapper function, avoiding the costs
involved in compositions of higher-order functions.

Custom function types are macros that expand to a sequence (key: val ...), where each
key: is from a short list of known keys. Each key interacts with generated wrapper functions
in a different way, which affects how its corresponding argument is treated:

• type: specifies the foreign type that should be used, if it is #f then this argument does
not participate in the foreign call.

• expr: specifies an expression to be used for arguments of this type, removing it from
wrapper arguments.

• bind: specifies a name that is bound to the original argument if it is required later
(e.g., _box converts its associated value to a C pointer, and later needs to refer back to
the original box).

• 1st-arg: specifies a name that can be used to refer to the first argument of the foreign
call (good for common cases where the first argument has a special meaning, e.g., for
method calls).

• prev-arg: similar to 1st-arg:, but refers to the previous argument.

17

• pre: a pre-foreign code chunk that is used to change the argument’s value.

• post: a similar post-foreign code chunk.

The pre: and post: bindings can be of the form (id => expr) to use the existing value.
Note that if the pre: expression is not (id => expr), then it means that there is no input
for this argument to the _fun-generated procedure. Also note that if a custom type is used
as an output type of a function, then only the post: code is used.

Most custom types are meaningful only in a _fun context, and will raise a syntax error if
used elsewhere. A few such types can be used in non-_fun contexts: types which use only
type:, pre:, post:, and no others. Such custom types can be used outside a _fun by
expanding them into a usage of make-ctype, using other keywords makes this impossible,
because it means that the type has specific interaction with a function call.

(define-fun-syntax id transformer-expr)

Binds id as a custom function type. The type is expanded by applying the procedure pro-
duced by transformer-expr to a use of the custom function type.

_?

A custom function type that is a marker for expressions that should not be sent to the foreign
function. Use this to bind local values in a computation that is part of an ffi wrapper interface,
or to specify wrapper arguments that are not sent to the foreign function (e.g., an argument
that is used for processing the foreign output).

(_ptr mode type-expr)

mode = i
| o
| io

Creates a C pointer type, where mode indicates input or output pointers (or both). The mode
can be one of the following:

• i — indicates an input pointer argument: the wrapper arranges for the function call to
receive a value that can be used with the type and to send a pointer to this value to
the foreign function. After the call, the value is discarded.

• o — indicates an output pointer argument: the foreign function expects a pointer to a
place where it will save some value, and this value is accessible after the call, to be
used by an extra return expression. If _ptr is used in this mode, then the generated

18

wrapper does not expect an argument since one will be freshly allocated before the
call.

• io — combines the above into an input/output pointer argument: the wrapper gets
the Scheme value, allocates and set a pointer using this value, and then references the
value after the call. The “_ptr” name can be confusing here: it means that the foreign
function expects a pointer, but the generated wrapper uses an actual value. (Note that
if this is used with structs, a struct is created when calling the function, and a copy
of the return value is made too—which is inefficient, but ensures that structs are not
modified by C code.)

For example, the _ptr type can be used in output mode to create a foreign function wrapper
that returns more than a single argument. The following type:

(_fun (i : (_ptr o _int))
-> (d : _double)
-> (values d i))

creates a function that calls the foreign function with a fresh integer pointer, and use the
value that is placed there as a second return value.

_box

A custom function type similar to a (_ptr io type) argument, where the input is ex-
pected to be a box holding an appropriate value, which is unboxed on entry and modified
accordingly on exit.

(_list mode type maybe-len)

mode = i

| o

| io

maybe-len =
| len-expr

A custom function type that is similar to _ptr, except that it is used for converting lists
to/from C vectors. The optional maybe-len argument is needed for output values where it
is used in the post code, and in the pre code of an output mode to allocate the block. In either
case, it can refer to a previous binding for the length of the list which the C function will
most likely require.

(_vector mode type maybe-len)

19

A custom function type like _list, except that it uses Scheme vectors instead of lists.

(_bytes o len-expr)
_bytes

A custom function type that can be used by itself as a simple type for a byte string as a C
pointer. Alternatively, the second form is for a pointer return value, where the size should be
explicitly specified.

There is no need for other modes: input or input/output would be just like _bytes, since the
string carries its size information (there is no real need for the o part of the syntax, but it is
present for consistency with the above macros).

(_cvector mode type maybe-len)
_cvector

Like _bytes, _cvector can be used as a simple type that corresponds to a pointer that is
managed as a safe C vector on the Scheme side; see §6.2 “Safe C Vectors”. The longer form
behaves similarly to the _list and _vector custom types, except that _cvector is more
efficient; no Scheme list or vector is needed.

3.7 C Struct Types

(make-cstruct-type types) → ctype?
types : (listof ctype?)

The primitive type constructor for creating new C struct types. These types are actually new
primitive types; they have no conversion functions associated. The corresponding Scheme
objects that are used for structs are pointers, but when these types are used, the value that
the pointer refers to is used, rather than the pointer itself. This value is basically made of a
number of bytes that is known according to the given list of types list.

(_list-struct type ...+) → ctype?
type : ctype?

A type constructor that builds a struct type using make-cstruct-type function and wraps
it in a type that marshals a struct as a list of its components. Note that space for structs must
to be allocated; the converter for a _list-struct type immediately allocates and uses a
list from the allocated space, so it is inefficient. Use define-cstruct below for a more
efficient approach.

20

(define-cstruct id/sup ([field-id type-expr] ...))

id/sup = _id

| (_id super-id)

Defines a new C struct type, but unlike _list-struct, the resulting type deals with C
structs in binary form, rather than marshaling them to Scheme values. The syntax is similar
to define-struct, providing accessor functions for raw struct values (which are pointer
objects). The new type uses pointer tags to guarantee that only proper struct objects are
used. The _id must start with _.

The resulting bindings are as follows:

• _id : the new C type for this struct.

• _id-pointer: a pointer type that should be used when a pointer to values of this
struct are used.

• id?: a predicate for the new type.

• id-tag: the tag string object that is used with instances.

• make-id : a constructor, which expects an argument for each type.

• id-field-id : an accessor function for each field-id .

• set-id-field-id! : a mutator function for each field-id .

Objects of the new type are actually C pointers, with a type tag that is a list that contains
the string form of id . Since structs are implemented as pointers, they can be used for a
_pointer input to a foreign function: their address will be used. To make this a little safer,
the corresponding cpointer type is defined as _id-pointer. The _id type should not be
used when a pointer is expected, since it will cause the struct to be copied rather than use the
pointer value, leading to memory corruption.

If the first field is itself a cstruct type, its tag will be used in addition to the new tag. This
feature supports common cases of object inheritance, where a sub-struct is made by having
a first field that is its super-struct. Instances of the sub-struct can be considered as instances
of the super-struct, since they share the same initial layout. Using the tag of an initial cstruct
field means that the same behavior is implemented in Scheme; for example, accessors and
mutators of the super-cstruct can be used with the new sub-cstruct. See the example below.

Providing a super-id is shorthand for using an initial field named super-id and using
_super-id as its type. Thus, the new struct will use _super-id ’s tag in addition to its
own tag, meaning that instances of _id can be used as instances of _super-id . Aside from
the syntactic sugar, the constructor function is different when this syntax is used: instead
of expecting a first argument that is an instance of _super-id , the constructor will expect

21

arguments for each of _super-id ’s fields, in addition for the new fields. This adjustment
of the constructor is, again, in analogy to using a supertype with define-struct.

Note that structs are allocated as atomic blocks, which means that the garbage collector
ignores their content. Currently, there is no safe way to store pointers to GC-managed objects
in structs (even if you keep a reference to avoid collecting the referenced objects, a the 3m
variant’s GC will invalidate the pointer’s value). Thus, only non-pointer values and pointers
to memory that is outside the GC’s control can be placed into struct fields.

As an example, consider the following C code:

typedef struct { int x; char y; } A;
typedef struct { A a; int z; } B;

A* makeA() {
A *p = malloc(sizeof(A));
p->x = 1;
p->y = 2;
return p;

}

B* makeB() {
B *p = malloc(sizeof(B));
p->a.x = 1;
p->a.y = 2;
p->z = 3;
return p;

}

char gety(A* a) {
return a->y;

}

Using the simple _list-struct, you might expect this code to work:

(define makeB
(get-ffi-obj ’makeB "foo.so"
(_fun -> (_list-struct (_list-struct _int _byte) _int))))

(makeB) ; should return ’((1 2) 3)

The problem here is that makeB returns a pointer to the struct rather than the struct itself.
The following works as expected:

(define makeB
(get-ffi-obj ’makeB "foo.so" (_fun -> _pointer)))

(ptr-ref (makeB) (_list-struct (_list-struct _int _byte) _int))

22

As described above, _list-structs should be used in cases where efficiency is not an
issue. We continue using define-cstruct, first define a type for A which makes it possible
to use makeA:

(define-cstruct _A ([x _int] [y _byte]))
(define makeA
(get-ffi-obj ’makeA "foo.so"
(_fun -> _A-pointer))) ; using _A is a memory-corrupting bug!

(define a (makeA))
(list a (A-x a) (A-y a))
; produces an A containing 1 and 2

Using gety is also simple:

(define gety
(get-ffi-obj ’gety "foo.so"
(_fun _A-pointer -> _byte)))

(gety a) ; produces 2

We now define another C struct for B, and expose makeB using it:

(define-cstruct _B ([a _A] [z _int]))
(define makeB
(get-ffi-obj ’makeB "foo.so"
(_fun -> _B-pointer)))

(define b (makeB))

We can access all values of b using a naive approach:

(list (A-x (B-a b)) (A-y (B-a b)) (B-z b))

but this is inefficient as it allocates and copies an instance of A on every access. Inspecting
the tags (cpointer-tag b) we can see that A’s tag is included, so we can simply use its
accessors and mutators, as well as any function that is defined to take an A pointer:

(list (A-x b) (A-y b) (B-z b))
(gety b)

Constructing a B instance in Scheme requires allocating a temporary A struct:

(define b (make-B (make-A 1 2) 3))

To make this more efficient, we switch to the alternative define-cstruct syntax, which
creates a constructor that expects arguments for both the super fields ands the new ones:

(define-cstruct (_B _A) ([z _int]))
(define b (make-B 1 2 3))

23

3.8 Enumerations and Masks

Although the constructors below are describes as procedures,they are implemented as syntax,
so that error messages can report a type name where the syntactic context implies one.

(_enum symbols [basetype]) → ctype?
symbols : list?
basetype : ctype? = _ufixint

Takes a list of symbols and generates an enumeration type. The enumeration maps between
the given symbols and integers, counting from 0.

The list symbols can also set the values of symbols by putting ’= and an exact integer after
the symbol. For example, the list ’(x y = 10 z) maps ’x to 0, ’y to 10, and ’z to 11.

The basetype argument specifies the base type to use.

(_bitmask symbols [basetype]) → ctype?
symbols : (or symbol? list?)
basetype : ctype? = _uint

Similar to _enum, but the resulting mapping translates a list of symbols to a number and
back, using bitwise-or. A single symbol is equivalent to a list containing just the symbol.
The default basetype is _uint, since high bits are often used for flags.

24

4 Pointer Functions

(cpointer? v) → boolean?
v : any/c

Returns #t if v is a C pointer or a value that can be used as a pointer: #f (used as a NULL
pointer), byte strings (used as memory blocks), or some additional internal objects (ffi-
objs and callbacks, see §7 “Unexported Primitive Functions”). Returns #f for other values.

(ptr-equal? cptr1 cptr2) → boolean?
cptr1 : cpointer?
cptr2 : cpointer?

Compares the values of the two pointers. Two different Scheme pointer objects can contain
the same pointer.

(ptr-add cptr offset [type]) → cpointer?
cptr : cpointer?
offset : exact-integer?
type : ctype? = _byte

Returns a cpointer that is like cptr offset by offset instances of ctype.

The resulting cpointer keeps the base pointer and offset separate. The two pieces are com-
bined at the last minute before any operation on the pointer, such as supplying the pointer to
a foreign function. In particular, the pointer and offset are not combined until after all alloca-
tion leading up to a foreign-function call; if the called function does not itself call anything
that can trigger a garbage collection, it can safely use pointers that are offset into the middle
of a GCable object.

(offset-ptr? cptr) → boolean?
cptr : cpointer?

A predicate for cpointers that have an offset, such as pointers that were created using ptr-
add. Returns #t even if such an offset happens to be 0. Returns #f for other cpointers and
non-cpointers.

(ptr-offset cptr) → exact-integer?
cptr : cpointer?

Returns the offset of a pointer that has an offset. The resulting offset is always in bytes.

25

4.1 Unsafe Pointer Operations

(set-ptr-offset! cptr offset [ctype]) → void?
cptr : cpointer?
offset : exact-integer?
ctype : ctype? = _byte

Sets the offset component of an offset pointer. The arguments are used in the same way as
ptr-add. If cptr has no offset, the exn:fail:contract exception is raised.

(ptr-add! cptr offset [ctype]) → void?
cptr : cpointer?
offset : exact-integer?
ctype : ctype? = _byte

Like ptr-add, but destructively modifies the offset contained in a pointer. The same opera-
tion could be performed using ptr-offset and set-ptr-offset!.

(ptr-ref cptr type [offset]) → any
cptr : cpointer?
type : ctype?
offset : exact-nonnegative-integer? = 0

(ptr-ref cptr type abs-tag offset) → any
cptr : cpointer?
type : ctype?
abs-tag : (one-of/c ’abs)
offset : exact-nonnegative-integer?

(ptr-set! cptr type val) → void?
cptr : cpointer?
type : ctype?
val : any/c

(ptr-set! cptr type offset val) → void?
cptr : cpointer?
type : ctype?
offset : exact-nonnegative-integer?
val : any/c

(ptr-set! cptr type abs-tag offset val) → void?
cptr : cpointer?
type : ctype?
abs-tag : (one-of/c ’abs)
offset : exact-nonnegative-integer?
val : any/c

26

The ptr-ref procedure returns the object referenced by cptr , using the given type . The
ptr-set! procedure stores the val in the memory cptr points to, using the given type

for the conversion.

In each case, offset defaults to 0 (which is the only value that should be used with ffi-
obj objects, see §7 “Unexported Primitive Functions”). If an offset index is non-0, the
value is read or stored at that location, considering the pointer as a vector of types — so
the actual address is the pointer plus the size of type multiplied by offset . In addition,
a ’abs flag can be used to use the offset as counting bytes rather then increments of the
specified type .

Beware that the ptr-ref and ptr-set! procedure do not keep any meta-information on
how pointers are used. It is the programmer’s responsibility to use this facility only when
appropriate. For example, on a little-endian machine:

> (define block (malloc _int 5))
> (ptr-set! block _int 0 196353)
> (map (lambda (i) (ptr-ref block _byte i)) ’(0 1 2 3))
(1 255 2 0)

In addition, ptr-ref and ptr-set! cannot detect when offsets are beyond an object’s mem-
ory bounds; out-of-bounds access can easily lead to a segmentation fault or memory corrup-
tion.

27

(memmove cptr src-cptr count [type]) → void?
cptr : cpointer?
src-cptr : cpointer?
count : exact-nonnegative-integer?
type : ctype? = _byte

(memmove cptr offset src-cptr count [type]) → void?
cptr : cpointer?
offset : exact-integer?
src-cptr : cpointer?
count : exact-nonnegative-integer?
type : ctype? = _byte

(memmove cptr

offset

src-cptr

src-offset

count

[type]) → void?
cptr : cpointer?
offset : exact-integer?
src-cptr : cpointer?
src-offset : exact-integer?
count : exact-nonnegative-integer?
type : ctype? = _byte

Copies to cptr from src-cptr . The destination pointer can be offset by an optional off-
set , which is in type instances. The source pointer can be similarly offset by src-offset .
The number of bytes copied from source to destination is determined by count , which is in
type instances when supplied.

28

(memcpy cptr src-cptr count [type]) → void?
cptr : cpointer?
src-cptr : cpointer?
count : exact-nonnegative-integer?
type : ctype? = _byte

(memcpy cptr offset src-cptr count [type]) → void?
cptr : cpointer?
offset : exact-integer?
src-cptr : cpointer?
count : exact-nonnegative-integer?
type : ctype? = _byte

(memcpy cptr

offset

src-cptr

src-offset

count

[type]) → void?
cptr : cpointer?
offset : exact-integer?
src-cptr : cpointer?
src-offset : exact-integer?
count : exact-nonnegative-integer?
type : ctype? = _byte

Like memmove, but the result is undefined if the destination and source overlap.

(memset cptr byte count [type]) → void?
cptr : cpointer?
byte : byte?
count : exact-nonnegative-integer?
type : ctype? = _byte

(memset cptr offset byte count [type]) → void?
cptr : cpointer?
offset : exact-integer?
byte : byte?
count : exact-nonnegative-integer?
type : ctype? = _byte

Similar to memmove, but the destination is uniformly filled with byte (i.e., an exact integer
between 0 and 255 inclusive).

(cpointer-tag cptr) → any
cptr : cpointer?

29

Returns the Scheme object that is the tag of the given cptr pointer.

(set-cpointer-tag! cptr tag) → void?
cptr : cpointer?
tag : any/c

Sets the tag of the given cptr . The tag argument can be any arbitrary value; other pointer
operations ignore it. When a cpointer value is printed, its tag is shown if it is a symbol, a
byte string, a string. In addition, if the tag is a pair holding one of these in its car, the car
is shown (so that the tag can contain other information).

4.2 Unsafe Memory Management

For general information on C-level memory management with PLT Scheme, see § “Inside:
PLT Scheme C API”.

(malloc bytes-or-type

[type-or-bytes
cptr

mode

fail-mode]) → cpointer?
bytes-or-type : (or/c exact-nonnegative-integer? ctype?)
type-or-bytes : (or/c exact-nonnegative-integer? ctype?)

= absent
cptr : cpointer? = absent
mode : (one-of/c ’nonatomic ’stubborn ’uncollectable

’eternal ’interior ’atomic-interior
’raw)

= absent

fail-mode : (one-of/c ’failok) = absent

Allocates a memory block of a specified size using a specified allocation. The result is a
cpointer to the allocated memory. Although not reflected above, the four arguments can
appear in any order since they are all different types of Scheme objects; a size specification
is required at minimum:

• If a C type bytes-or-type is given, its size is used to the block allocation size.

• If an integer bytes-or-type is given, it specifies the required size in bytes.

• If both bytes-or-type and type-or-bytes are given, then the allocated size is for
a vector of values (the multiplication of the size of the C type and the integer).

• If a cptr pointer is given, its content is copied to the new block.

30

• A symbol mode argument can be given, which specifies what allocation
function to use. It should be one of ’nonatomic (uses scheme_malloc
from PLT Scheme’s C API), ’atomic (scheme_malloc_atomic),
’stubborn (scheme_malloc_stubborn), ’uncollectable
(scheme_malloc_uncollectable), ’eternal (scheme_malloc_eternal),
’interior (scheme_malloc_allow_interior), ’atomic-interior
(scheme_malloc_atomic_allow_interior), or ’raw (uses the operating
system’s malloc, creating a GC-invisible block).

• If an additional ’failok flag is given, then scheme_malloc_fail_ok is used to
wrap the call.

If no mode is specified, then ’nonatomic allocation is used when the type is any pointer-
based type, and ’atomic allocation is used otherwise.

(free cptr) → void
cptr : cpointer?

Uses the operating system’s free function for ’raw-allocated pointers, and for pointers that
a foreign library allocated and we should free. Note that this is useful as part of a finalizer
(see below) procedure hook (e.g., on the Scheme pointer object, freeing the memory when
the pointer object is collected, but beware of aliasing).

(end-stubborn-change cptr) → void?
cptr : cpointer?

Uses scheme_end_stubborn_change on the given stubborn-allocated pointer.

(malloc-immobile-cell v) → cpointer?
v : any/c

Allocates memory large enough to hold one arbitrary (collectable) Scheme value, but that is
not itself collectable or moved by the memory manager. The cell is initialized with v ; use
the type _scheme with ptr-ref and ptr-set! to get or set the cell’s value. The cell must
be explicitly freed with free-immobile-cell.

(free-immobile-cell cptr) → void?
cptr : cpointer?

Frees an immobile cell created by malloc-immobile-cell.

31

(register-finalizer obj finalizer) → void?
obj : any/c
finalizer : (any/c . -> . any)

Registers a finalizer procedure finalizer-proc with the given obj , which can be any
Scheme (GC-able) object. The finalizer is registered with a will executor; see make-will-
executor. The finalizer is invoked when obj is about to be collected. (This is done by a
thread that is in charge of triggering these will executors.)

Finalizers are mostly intended to be used with cpointer objects (for freeing unused memory
that is not under GC control), but it can be used with any Scheme object—even ones that
have nothing to do with foreign code. Note, however, that the finalizer is registered for the
Scheme object. If you intend to free a pointer object, then you must be careful to not register
finalizers for two cpointers that point to the same address. Also, be careful to not make the
finalizer a closure that holds on to the object.

For example, suppose that you’re dealing with a foreign function that returns a C string that
you should free. Here is an attempt at creating a suitable type:

(define bytes/free
(make-ctype _pointer

#f ; a Scheme bytes can be used as a pointer
(lambda (x)
(let ([b (make-byte-string x)])
(register-finalizer x free)
b))))

The above code is wrong: the finalizer is registered for x, which is no longer needed once
the byte string is created. Changing this to register the finalizer for b correct this problem,
but then free will be invoked on it instead of on x. In an attempt to fix this, we will be
careful and print out a message for debugging:

(define bytes/free
(make-ctype _pointer

#f ; a Scheme bytes can be used as a pointer
(lambda (x)
(let ([b (make-byte-string x)])
(register-finalizer b
(lambda (ignored)
(printf "Releasing ∼s\n" b)
(free x)))

b))))

but we never see any printout. The problem is that the finalizer is a closure that keeps
a reference to b. To fix this, you should use the input argument to the finalizer. Simply
changing ignored to b will solve this problem. (Removing the debugging message also

32

avoids the problem, since the finalization procedure would then not close over b.)

(make-sized-byte-string cptr length) → bytes?
cptr : cpointer?
length : exact-nonnegative-integer?

Returns a byte string made of the given pointer and the given length. No copying is done.
This can be used as an alternative to make pointer values accessible in Scheme when the size
is known.

If cptr is an offset pointer created by ptr-add, the offset is immediately added to the
pointer. Thus, this function cannot be used with ptr-add to create a substring of a Scheme
byte string, because the offset pointer would be to the middle of a collectable object (which
is not allowed).

33

5 Miscellaneous Support

(regexp-replaces objname substs) → string?
objname : (or/c string? bytes? symbol?)
substs : (listof (list regexp? string?))

A function that is convenient for many interfaces where the foreign library has some naming
convention that you want to use in your interface as well. The objname argument can be
any value that will be used to name the foreign object; it is first converted into a string, and
then modified according to the given substs list in sequence, where each element in this
list is a list of a regular expression and a substitution string. Usually, regexp-replace* is
used to perform the substitution, except for cases where the regular expression begins with
a ^ or ends with a $, in which case regexp-replace is used.

For example, the following makes it convenient to define Scheme bindings such as foo-bar
for foreign names like MyLib_foo_bar:

(define mylib (ffi-lib "mylib"))
(define-syntax defmyobj
(syntax-rules (:)
[(_ name : type ...)
(define name
(get-ffi-obj
(regexp-replaces ’name ’((#rx"-" "_")

(#rx"^" "MyLib_")))
mylib (_fun type ...)))]))

(defmyobj foo-bar : _int -> _int)

(list->cblock lst type) → any
lst : list>
type : ctype?

Allocates a memory block of an appropriate size, and initializes it using values from lst and
the given type . The lst must hold values that can all be converted to C values according
to the given type .

(vector->cblock vector type) → any
vector : any/c
type : type?

Like list->cblock, but for Scheme vectors.

34

5.1 Unsafe Miscellaneous Operations

(cblock->list cblock type length) → list?
cblock : any/c
type : ctype?
length : exact-nonnegative-integer?

Converts C cblock , which is a vector of types, to a Scheme list. The arguments are the
same as in the list->cblock. The length must be specified because there is no way to
know where the block ends.

(cblock->vector cblock type length) → vector?
cblock : any/c
type : ctype?
length : exact-nonnegative-integer?

Like cblock->vector, but for Scheme vectors.

35

6 Derived Utilities

6.1 Tagged C Pointer Types

The unsafe cpointer-has-tag? and cpointer-push-tag! operations manage tags to
distinguish pointer types.

(_cpointer tag

[ptr-type
scheme-to-c

c-to-scheme]) → ctype
tag : any/c
ptr-type : ctype? = _pointer
scheme-to-c : (any/c . -> . any/c) = values
c-to-scheme : (any/c . -> . any/c) = values

(_cpointer/null tag

[ptr-type
scheme-to-c

c-to-scheme]) → ctype
tag : any/c
ptr-type : ctype? = _pointer
scheme-to-c : (any/c . -> . any/c) = values
c-to-scheme : (any/c . -> . any/c) = values

Construct a kind of a pointer that gets a specific tag when converted to Scheme, and accept
only such tagged pointers when going to C. An optional ptr-type can be given to be used
as the base pointer type, instead of _pointer.

Pointer tags are checked with cpointer-has-tag? and changed with cpointer-push-
tag! which means that other tags are preserved. Specifically, if a base ptr-type is given
and is itself a _cpointer, then the new type will handle pointers that have the new tag in
addition to ptr-type ’s tag(s). When the tag is a pair, its first value is used for printing, so
the most recently pushed tag which corresponds to the inheriting type will be displayed.

Note that tags are compared with eq? (or memq), which means an interface can hide its value
from users (e.g., not provide the cpointer-tag accessor), which makes such pointers un-
fake-able.

_cpointer/null is similar to _cpointer except that it tolerates NULL pointers both going
to C and back. Note that NULL pointers are represented as #f in Scheme, so they are not
tagged.

36

(define-cpointer-type _id)
(define-cpointer-type _id scheme-to-c-expr)
(define-cpointer-type _id scheme-to-c-expr c-to-scheme-expr)

A macro version of _cpointer and _cpointer/null, using the defined name for a tag
string, and defining a predicate too. The _id must start with _.

The optional expression produces optional arguments to _cpointer.

In addition to defining _id to a type generated by _cpointer, _id/null is bound to a type
produced by _cpointer/null type. Finally, id? is defined as a predicate, and id-tag is
defined as an accessor to obtain a tag. The tag is the string form of id .

6.1.1 Unsafe Tagged C Pointer Functions

(cpointer-has-tag? cptr tag) → boolean?
cptr : any/c
tag : any/c

(cpointer-push-tag! cptr tag) → void
cptr : any/c
tag : any/c

These two functions treat pointer tags as lists of tags. As described in §4 “Pointer Functions”,
a pointer tag does not have any role, except for Scheme code that uses it to distinguish
pointers; these functions treat the tag value as a list of tags, which makes it possible to
construct pointer types that can be treated as other pointer types, mainly for implementing
inheritance via upcasts (when a struct contains a super struct as its first element).

The cpointer-has-tag? function checks whether if the given cptr has the tag . A pointer
has a tag tag when its tag is either eq? to tag or a list that contains (in the sense of memq)
tag .

The cpointer-push-tag! function pushes the given tag value on cptr ’s tags. The main
properties of this operation are: (a) pushing any tag will make later calls to cpointer-has-
tag? succeed with this tag, and (b) the pushed tag will be used when printing the pointer
(until a new value is pushed). Technically, pushing a tag will simply set it if there is no tag
set, otherwise push it on an existing list or an existing value (treated as a single-element list).

6.2 Safe C Vectors

The cvector form can be used as a type C vectors (i.e., a pointer to a memory block).

37

(make-cvector type length) → cvector?
type : ctype?
length : exact-nonnegative-integer?

Allocates a C vector using the given type and length .

(cvector type val ...) → cvector?
type : ctype?
val : any/c

Creates a C vector of the given type , initialized to the given list of vals.

(cvector? v) → boolean?
v : any/c

Returns #t if v is a C vector, #f otherwise.

(cvector-length cvec) → exact-nonnegative-integer?
cvec : cvector?

Returns the length of a C vector.

(cvector-type cvec) → ctype?
cvec : cvector?

Returns the C type object of a C vector.

(cvector-ptr cvec) → cpointer?
cvec : cvector?

Returns the pointer that points at the beginning block of the given C vector.

(cvector-ref cvec k) → any
cvec : cvector?
k : exact-nonnegative-integer?

References the k th element of the cvec C vector. The result has the type that the C vector
uses.

38

(cvector-set! cvec k val) → void?
cvec : cvector?
k : exact-nonnegative-integer?
val : any

Sets the k th element of the cvec C vector to val . The val argument should be a value that
can be used with the type that the C vector uses.

(cvector->list cvec) → list?
cvec : cvector?

Converts the cvec C vector object to a list of values.

(list->cvector lst type) → cvector?
lst : list?
type : ctype?

Converts the list lst to a C vector of the given type .

6.2.1 Unsafe C Vector Construction

(make-cvector* cptr type length) → cvector?
cptr : any/c
type : ctype?
length : exact-nonnegative-integer?

Constructs a C vector using an existing pointer object. This operation is not safe, so it is
intended to be used in specific situations where the type and length are known.

6.3 SRFI-4 Vectors

SRFI-4 vectors are similar to C vectors (see §6.2 “Safe C Vectors”), except that they define
different types of vectors, each with a hard-wired type.

An exception is the u8 family of bindings, which are just aliases for byte-string bind-
ings: make-u8vector, u8vector. u8vector?, u8vector-length, u8vector-ref,
u8vector-set!, list->u8vector, u8vector->list.

39

(make-u8vector len) → u8vector?
len : exact-nonnegative-integer?

(u8vector val ...) → u8vector?
val : number?

(u8vector? v) → boolean?
v : any/c

(u8vector-length vec) → exact-nonnegative-integer?
vec : u8vector?

(u8vector-ref vec k) → number?
vec : u8vector?
k : exact-nonnegative-integer?

(u8vector-set! vec k val) → void?
vec : u8vector?
k : exact-nonnegative-integer?
val : number?

(list->u8vector lst) → u8vector?
lst : (listof number?)

(u8vector->list vec) → (listof number?)
vec : u8vector?

Like _cvector, but for vectors of _byte elements. These are aliases for byte operations.

(_u8vector mode maybe-len)
_u8vector

Like _cvector, but for vectors of _uint8 elements.

40

(make-s8vector len) → s8vector?
len : exact-nonnegative-integer?

(s8vector val ...) → s8vector?
val : number?

(s8vector? v) → boolean?
v : any/c

(s8vector-length vec) → exact-nonnegative-integer?
vec : s8vector?

(s8vector-ref vec k) → number?
vec : s8vector?
k : exact-nonnegative-integer?

(s8vector-set! vec k val) → void?
vec : s8vector?
k : exact-nonnegative-integer?
val : number?

(list->s8vector lst) → s8vector?
lst : (listof number?)

(s8vector->list vec) → (listof number?)
vec : s8vector?

Like make-vector, etc., but for _int8 elements.

(_s8vector mode maybe-len)
_s8vector

Like _cvector, but for vectors of _int8 elements.

41

(make-s16vector len) → s16vector?
len : exact-nonnegative-integer?

(s16vector val ...) → s16vector?
val : number?

(s16vector? v) → boolean?
v : any/c

(s16vector-length vec) → exact-nonnegative-integer?
vec : s16vector?

(s16vector-ref vec k) → number?
vec : s16vector?
k : exact-nonnegative-integer?

(s16vector-set! vec k val) → void?
vec : s16vector?
k : exact-nonnegative-integer?
val : number?

(list->s16vector lst) → s16vector?
lst : (listof number?)

(s16vector->list vec) → (listof number?)
vec : s16vector?

Like make-vector, etc., but for _int16 elements.

(_s16vector mode maybe-len)
_s16vector

Like _cvector, but for vectors of _int16 elements.

42

(make-u16vector len) → u16vector?
len : exact-nonnegative-integer?

(u16vector val ...) → u16vector?
val : number?

(u16vector? v) → boolean?
v : any/c

(u16vector-length vec) → exact-nonnegative-integer?
vec : u16vector?

(u16vector-ref vec k) → number?
vec : u16vector?
k : exact-nonnegative-integer?

(u16vector-set! vec k val) → void?
vec : u16vector?
k : exact-nonnegative-integer?
val : number?

(list->u16vector lst) → u16vector?
lst : (listof number?)

(u16vector->list vec) → (listof number?)
vec : u16vector?

Like make-vector, etc., but for _uint16 elements.

(_u16vector mode maybe-len)
_u16vector

Like _cvector, but for vectors of _uint16 elements.

43

(make-s32vector len) → s32vector?
len : exact-nonnegative-integer?

(s32vector val ...) → s32vector?
val : number?

(s32vector? v) → boolean?
v : any/c

(s32vector-length vec) → exact-nonnegative-integer?
vec : s32vector?

(s32vector-ref vec k) → number?
vec : s32vector?
k : exact-nonnegative-integer?

(s32vector-set! vec k val) → void?
vec : s32vector?
k : exact-nonnegative-integer?
val : number?

(list->s32vector lst) → s32vector?
lst : (listof number?)

(s32vector->list vec) → (listof number?)
vec : s32vector?

Like make-vector, etc., but for _int32 elements.

(_s32vector mode maybe-len)
_s32vector

Like _cvector, but for vectors of _int32 elements.

44

(make-u32vector len) → u32vector?
len : exact-nonnegative-integer?

(u32vector val ...) → u32vector?
val : number?

(u32vector? v) → boolean?
v : any/c

(u32vector-length vec) → exact-nonnegative-integer?
vec : u32vector?

(u32vector-ref vec k) → number?
vec : u32vector?
k : exact-nonnegative-integer?

(u32vector-set! vec k val) → void?
vec : u32vector?
k : exact-nonnegative-integer?
val : number?

(list->u32vector lst) → u32vector?
lst : (listof number?)

(u32vector->list vec) → (listof number?)
vec : u32vector?

Like make-vector, etc., but for _uint32 elements.

(_u32vector mode maybe-len)
_u32vector

Like _cvector, but for vectors of _uint32 elements.

45

(make-s64vector len) → s64vector?
len : exact-nonnegative-integer?

(s64vector val ...) → s64vector?
val : number?

(s64vector? v) → boolean?
v : any/c

(s64vector-length vec) → exact-nonnegative-integer?
vec : s64vector?

(s64vector-ref vec k) → number?
vec : s64vector?
k : exact-nonnegative-integer?

(s64vector-set! vec k val) → void?
vec : s64vector?
k : exact-nonnegative-integer?
val : number?

(list->s64vector lst) → s64vector?
lst : (listof number?)

(s64vector->list vec) → (listof number?)
vec : s64vector?

Like make-vector, etc., but for _int64 elements.

(_s64vector mode maybe-len)
_s64vector

Like _cvector, but for vectors of _int64 elements.

46

(make-u64vector len) → u64vector?
len : exact-nonnegative-integer?

(u64vector val ...) → u64vector?
val : number?

(u64vector? v) → boolean?
v : any/c

(u64vector-length vec) → exact-nonnegative-integer?
vec : u64vector?

(u64vector-ref vec k) → number?
vec : u64vector?
k : exact-nonnegative-integer?

(u64vector-set! vec k val) → void?
vec : u64vector?
k : exact-nonnegative-integer?
val : number?

(list->u64vector lst) → u64vector?
lst : (listof number?)

(u64vector->list vec) → (listof number?)
vec : u64vector?

Like make-vector, etc., but for _uint64 elements.

(_u64vector mode maybe-len)
_u64vector

Like _cvector, but for vectors of _uint64 elements.

47

(make-f32vector len) → f32vector?
len : exact-nonnegative-integer?

(f32vector val ...) → f32vector?
val : number?

(f32vector? v) → boolean?
v : any/c

(f32vector-length vec) → exact-nonnegative-integer?
vec : f32vector?

(f32vector-ref vec k) → number?
vec : f32vector?
k : exact-nonnegative-integer?

(f32vector-set! vec k val) → void?
vec : f32vector?
k : exact-nonnegative-integer?
val : number?

(list->f32vector lst) → f32vector?
lst : (listof number?)

(f32vector->list vec) → (listof number?)
vec : f32vector?

Like make-vector, etc., but for _float elements.

(_f32vector mode maybe-len)
_f32vector

Like _cvector, but for vectors of _float elements.

48

(make-f64vector len) → f64vector?
len : exact-nonnegative-integer?

(f64vector val ...) → f64vector?
val : number?

(f64vector? v) → boolean?
v : any/c

(f64vector-length vec) → exact-nonnegative-integer?
vec : f64vector?

(f64vector-ref vec k) → number?
vec : f64vector?
k : exact-nonnegative-integer?

(f64vector-set! vec k val) → void?
vec : f64vector?
k : exact-nonnegative-integer?
val : number?

(list->f64vector lst) → f64vector?
lst : (listof number?)

(f64vector->list vec) → (listof number?)
vec : f64vector?

Like make-vector, etc., but for _double* elements.

(_f64vector mode maybe-len)
_f64vector

Like _cvector, but for vectors of _double* elements.

49

7 Unexported Primitive Functions

Parts of the scheme/foreign library are implemented by the MzScheme built-in ’#%for-
eign module. The ’#%foreign module is not intended for direct use, but it exports the
following procedures. If you find any of these useful, please let us know.

(ffi-obj objname lib) → any
objname : (or/c string? bytes? symbol?)
lib : (or/c ffi-lib? path-string? #f)

Pulls out a foreign object from a library, returning a Scheme value that can be used as a
pointer. If a name is provided instead of a foreign-library value, ffi-lib is used to create a
library object.

(ffi-obj? x) → boolean?
x : any/c

(ffi-obj-lib obj) → ffi-lib?
obj : ffi-obj?

(ffi-obj-name obj) → string?
obj : ffi-obj?

A predicate for objects returned by ffi-obj, and accessor functions that return its corre-
sponding library object and name. These values can also be used as C pointer objects.

(ctype-basetype type) → (or/c ctype? #f)
type : ctype?

(ctype-scheme->c type) → procedure?
type : ctype?

(ctype-c->scheme type) → procedure?
type : ctype?

Accessors for the components of a C type object, made by make-ctype. The ctype-
basetype selector returns a symbol for primitive types that names the type, a list of ctypes
for cstructs, and another ctype for user-defined ctypes.

(ffi-call ptr in-types out-type [abi]) → any
ptr : any/c
in-types : (listof ctype?)
out-type : ctype?
abi : (or/c symbol/c #f) = #f

The primitive mechanism that creates Scheme “callout” values. The given ptr (any pointer

50

value, including ffi-obj values) is wrapped in a Scheme-callable primitive function that
uses the types to specify how values are marshaled.

The optional abi argument determines the foreign ABI that is used. #f or ’default will
use a platform-dependent default; other possible values are ’stdcall and ’sysv (the lat-
ter corresponds to “cdecl”). This is especially important on Windows, where most system
functions are ’stdcall, which is not the default.

(ffi-callback proc

in-types

out-type

[abi
atomic?]) → ffi-callback?

proc : any/c
in-types : any/c
out-type : any/c
abi : (or/c symbol/c #f) = #f
atomic? : any/c = #f

The symmetric counterpart of ffi-call. It receives a Scheme procedure and creates a
callback object, which can also be used as a pointer. This object can be used as a C-callable
function, which invokes proc using the types to specify how values are marshaled.

(ffi-callback? x) → boolean?
x : any/c

A predicate for callback values that are created by ffi-callback.

51

8 Macros for Unsafety

(unsafe!)

Makes most of the bindings documented in this module available. See §1 “Overview” for
information on why this declaration is required.

(provide* provide-star-spec ...)

provide-star-spec = (unsafe id)
| (unsafe (rename-out [id external-id]))
| provide-spec

Like provide, but ids under unsafe are not actually provided. Instead, they are collected
for introduction into an importing module via a macro created by define-unsafer.

Providing users with unsafe operations without using this facility should be considered a bug
in your code.

(define-unsafer id)

Cooperates with provide* to define id as a unsafe!-like form that introduces definitions
for each binding provided as unsafe. The define-unsafer form must occur after all the
provide* forms to which it refers.

52

Index
_?, 18
_bitmask, 24
_bool, 11
_box, 19
_byte, 10
_bytes, 20
_bytes/eof, 13
_cpointer, 36
_cpointer/null, 36
_cprocedure, 14
_cvector, 20
_double, 10
_double*, 10
_enum, 24
_f32vector, 48
_f64vector, 49
_file, 13
_fixint, 10
_fixnum, 10
_float, 10
_fpointer, 13
_fun, 16
_int, 10
_int16, 9
_int32, 9
_int64, 9
_int8, 9
_list, 19
_list-struct, 20
_long, 10
_path, 11
_pointer, 13
_ptr, 18
_s16vector, 42
_s32vector, 44
_s64vector, 46
_s8vector, 41
_sbyte, 10
_scheme, 13
_short, 10

_sint, 10
_sint16, 9
_sint32, 9
_sint64, 9
_sint8, 9
_slong, 10
_sshort, 10
_string, 12
_string*/latin-1, 12
_string*/locale, 12
_string*/utf-8, 12
_string/eof, 13
_string/latin-1, 12
_string/locale, 12
_string/ucs-4, 11
_string/utf-16, 11
_string/utf-8, 12
_sword, 10
_symbol, 12
_u16vector, 43
_u32vector, 45
_u64vector, 47
_u8vector, 40
_ubyte, 10
_ufixint, 10
_ufixnum, 10
_uint, 10
_uint16, 9
_uint32, 9
_uint64, 9
_uint8, 9
_ulong, 10
_ushort, 10
_uword, 10
_vector, 19
_void, 11
_word, 10
’atomic, 31
’atomic-interior, 31
C Struct Types, 20
C Types, 8
C types, 8

53

cblock->list, 35
cblock->vector, 35
compiler-sizeof, 9
cpointer-has-tag?, 37
cpointer-push-tag!, 37
cpointer-tag, 29
cpointer?, 25
ctype->layout, 8
ctype-alignof, 8
ctype-basetype, 50
ctype-c->scheme, 50
ctype-scheme->c, 50
ctype-sizeof, 8
ctype?, 8
Custom Function Types, 17
custom function types, 17
cvector, 38
cvector->list, 39
cvector-length, 38
cvector-ptr, 38
cvector-ref, 38
cvector-set!, 39
cvector-type, 38
cvector?, 38
default-_string-type, 12
define-c, 7
define-cpointer-type, 37
define-cstruct, 21
define-fun-syntax, 18
define-unsafer, 52
Derived Utilities, 36
dynamically loaded libraries, 5
end-stubborn-change, 31
Enumerations and Masks, 24
’eternal, 31
f32vector, 48
f32vector->list, 48
f32vector-length, 48
f32vector-ref, 48
f32vector-set!, 48
f32vector?, 48
f64vector, 49

f64vector->list, 49
f64vector-length, 49
f64vector-ref, 49
f64vector-set!, 49
f64vector?, 49
’failok, 31
FFI, 1
ffi-call, 50
ffi-callback, 51
ffi-callback?, 51
ffi-lib, 5
ffi-lib?, 5
ffi-obj, 50
ffi-obj-lib, 50
ffi-obj-name, 50
ffi-obj-ref, 7
ffi-obj?, 50
FFI: PLT Scheme Foreign Interface, 1
Fixed Auto-Converting String Types, 12
free, 31
free-immobile-cell, 31
Function Types, 14
function-ptr, 17
get-ffi-obj, 6
’interior, 31
list->cblock, 34
list->cvector, 39
list->f32vector, 48
list->f64vector, 49
list->s16vector, 42
list->s32vector, 44
list->s64vector, 46
list->s8vector, 41
list->u16vector, 43
list->u32vector, 45
list->u64vector, 47
list->u8vector, 40
Loading Foreign Libraries, 5
Macros for Unsafety, 52
make-c-parameter, 6
make-cstruct-type, 20
make-ctype, 8

54

make-cvector, 38
make-cvector*, 39
make-f32vector, 48
make-f64vector, 49
make-s16vector, 42
make-s32vector, 44
make-s64vector, 46
make-s8vector, 41
make-sized-byte-string, 33
make-u16vector, 43
make-u32vector, 45
make-u64vector, 47
make-u8vector, 40
malloc, 30
malloc-immobile-cell, 31
memcpy, 29
memmove, 28
memset, 29
Miscellaneous Support, 34
’nonatomic, 31
Numeric Types, 9
offset-ptr?, 25
Other Atomic Types, 11
Other String Types, 13
Overview, 4
Pointer Functions, 25
Pointer Types, 13
Primitive String Types, 11
provide*, 52
ptr-add, 25
ptr-add!, 26
ptr-equal?, 25
ptr-offset, 25
ptr-ref, 26
ptr-set!, 26
’raw, 31
regexp-replaces, 34
register-finalizer, 32
s16vector, 42
s16vector->list, 42
s16vector-length, 42
s16vector-ref, 42

s16vector-set!, 42
s16vector?, 42
s32vector, 44
s32vector->list, 44
s32vector-length, 44
s32vector-ref, 44
s32vector-set!, 44
s32vector?, 44
s64vector, 46
s64vector->list, 46
s64vector-length, 46
s64vector-ref, 46
s64vector-set!, 46
s64vector?, 46
s8vector, 41
s8vector->list, 41
s8vector-length, 41
s8vector-ref, 41
s8vector-set!, 41
s8vector?, 41
Safe C Vectors, 37
scheme/foreign, 1
set-cpointer-tag!, 30
set-ffi-obj!, 6
set-ptr-offset!, 26
shared libraries, 5
shared objects, 5
SRFI-4 Vectors, 39
String Types, 11
’stubborn, 31
Tagged C Pointer Types, 36
Type Constructors, 8
u16vector, 43
u16vector->list, 43
u16vector-length, 43
u16vector-ref, 43
u16vector-set!, 43
u16vector?, 43
u32vector, 45
u32vector->list, 45
u32vector-length, 45
u32vector-ref, 45

55

u32vector-set!, 45
u32vector?, 45
u64vector, 47
u64vector->list, 47
u64vector-length, 47
u64vector-ref, 47
u64vector-set!, 47
u64vector?, 47
u8vector, 40
u8vector->list, 40
u8vector-length, 40
u8vector-ref, 40
u8vector-set!, 40
u8vector?, 40
’uncollectable, 31
Unexported Primitive Functions, 50
Unsafe C Vector Construction, 39
Unsafe Library Functions, 5
Unsafe Memory Management, 30
Unsafe Miscellaneous Operations, 35
Unsafe Pointer Operations, 26
Unsafe Tagged C Pointer Functions, 37
unsafe!, 52
unsafe!, 4
Variable Auto-Converting String Type, 12
vector->cblock, 34

56

	1 Overview
	2 Loading Foreign Libraries
	2.1 Unsafe Library Functions

	3 C Types
	3.1 Type Constructors
	3.2 Numeric Types
	3.3 Other Atomic Types
	3.4 String Types
	3.4.1 Primitive String Types
	3.4.2 Fixed Auto-Converting String Types
	3.4.3 Variable Auto-Converting String Type
	3.4.4 Other String Types

	3.5 Pointer Types
	3.6 Function Types
	3.6.1 Custom Function Types

	3.7 C Struct Types
	3.8 Enumerations and Masks

	4 Pointer Functions
	4.1 Unsafe Pointer Operations
	4.2 Unsafe Memory Management

	5 Miscellaneous Support
	5.1 Unsafe Miscellaneous Operations

	6 Derived Utilities
	6.1 Tagged C Pointer Types
	6.1.1 Unsafe Tagged C Pointer Functions

	6.2 Safe C Vectors
	6.2.1 Unsafe C Vector Construction

	6.3 SRFI-4 Vectors

	7 Unexported Primitive Functions
	8 Macros for Unsafety
	Index

