
Web: PLT Web Applications
Version 4.2.2

Jay McCarthy

October 4, 2009

This manual describes the PLT libraries for building Web applications.

§1 “Running Web Servlets” describes how to run the servlets you’ve written.

§2 “Stateful Servlets” and §3 “Stateless Servlets” describe two ways to write Web applica-
tions. §2 “Stateful Servlets” use the entire PLT Scheme language, but their continuations
are stored in the Web server’s memory. §3 “Stateless Servlets” use a slightly restricted PLT
Scheme language, but their continuation can be stored by the Web client or on a Web server’s
disk. If you can, you want to use §3 “Stateless Servlets” for the improved scalability.

The §4 “HTTP: Hypertext Transfer Protocol” section describes the common library function
for manipulating HTTP requests and creating HTTP responses. In particular, this section
covers cookies, authentication, and request bindings.

The final three sections (§5 “URL-Based Dispatch”, §6 “Formlets: Functional Form Ab-
straction”, and §7 “Templates: Separation of View”) cover utility libraries that ease the
creation of typical Web applications.

This manual closes with a frequently asked questions section: §8 “Troubleshooting and
Tips”.

1

1 Running Web Servlets

There are a number of ways to run Web servlets.

1.1 Instant Servlets

#lang web-server/insta

The fastest way to get a servlet running in the Web server is to use the "Insta" language in
DrScheme. Enter the following into DrScheme:

#lang web-server/insta

(define (start request)

`(html (head (title "Hello world!"))

(body (p "Hey out there!"))))

And press Run. A Web browser will open up showing your new servlet. This servlet will
only be accessible from your local machine.

Behind the scenes, DrScheme has used serve/servlet to start a new server that uses your
start function as the servlet. You are given the entire web-server/servlet API.

The following API is provided to customize the server instance:

(no-web-browser) → void

Calling this will instruct DrScheme to not start a Web browser when you press Run.

(static-files-path path) → void

path : path-string?

This instructs the Web server to serve static files, such as stylesheet and images, from path .

1.2 Simple Single Servlet Servers

(require web-server/servlet-env)

The Web Server provides a way to quickly configure and start a servlet.

Here’s a simple example:

2

#lang scheme

(require web-server/servlet

web-server/servlet-env)

(define (my-app request)

`(html (head (title "Hello world!"))

(body (p "Hey out there!"))))

(serve/servlet my-app)

Suppose you’d like to change the port to something else, change the last line to:

(serve/servlet my-app

#:port 8080)

Suppose you want to accept connections from external machines:

(serve/servlet my-app

#:listen-ip #f)

By default the URL for your servlet is "http://localhost:8000/servlets/standalone.ss",
suppose you wanted it to be "http://localhost:8000/hello.ss":

(serve/servlet my-app

#:servlet-path "/hello.ss")

Suppose you wanted it to capture top-level requests:

(serve/servlet my-app

#:servlet-path "/")

Or, perhaps just some nice top-level name:

(serve/servlet my-app

#:servlet-path "/main")

Suppose you wanted to use a style-sheet ("style.css") found on your Desktop
("/Users/jay/Desktop/"):

(serve/servlet my-app

#:extra-files-paths

(list

(build-path "/Users/jay/Desktop")))

These files are served in addition to those from the #:server-root-path "htdocs" direc-
tory. You may pass any number of extra paths.

3

If you want to use serve/servlet in a start up script for a Web application, and don’t want
a browser opened or the DrScheme banner printed, then you can write:

(serve/servlet my-app

#:command-line? #t)

Suppose you would like to start a server for a stateless Web servlet "servlet.ss" that
provides start:

#lang scheme

(require "servlet.ss"

web-server/servlet-env)

(serve/servlet start #:stateless? #t)

Warning: If you put the call to serve/servlet in a web-server module directly it will
not work correctly. Consider the following module:

#lang web-server

(require web-server/servlet-env)

(define (start req)

(start

(send/suspend

(lambda (k-url)

`(html (body (a ([href ,k-url]) "Hello world!")))))))

(serve/servlet start #:stateless? #t)

First, if this module is not saved in a file (e.g., "servlet.ss"), then the serialization layer
cannot locate the definitions of the serialized continuations. Second, due to an unfortu-
nately subtle bug that we have not yet corrected, every time the continuation link is clicked,
serve/servlet will run and attempt to start a Web server instance and open a browser win-
dow. These problems do not occur if your servlet is saved in a file and if serve/servlet is
run in another module.

4

(serve/servlet

start

[#:command-line? command-line?

#:launch-browser? launch-browser?

#:quit? quit?

#:banner? banner?

#:listen-ip listen-ip

#:port port

#:servlet-path servlet-path

#:servlet-regexp servlet-regexp

#:stateless? stateless?

#:stuffer stuffer

#:manager manager

#:servlet-namespace servlet-namespace

#:server-root-path server-root-path

#:extra-files-paths extra-files-paths

#:servlets-root servlets-root

#:servlet-current-directory servlet-current-directory

#:file-not-found-responder file-not-found-responder

#:mime-types-path mime-types-path

#:ssl? ssl?

#:ssl-cert ssl-cert

#:ssl-key ssl-key

#:log-file log-file

#:log-format log-format])
→ void

start : (request? . -> . response/c)

command-line? : boolean? = #f

launch-browser? : boolean? = (not command-line?)

quit? : boolean? = (not command-line?)

banner? : boolean? = (not command-line?)

listen-ip : (or/c false/c string?) = "127.0.0.1"

port : number? = 8000

servlet-path : string? = "/servlets/standalone.ss"

servlet-regexp : regexp? = (regexp

(format

"^∼a$"
(regexp-quote servlet-path)))

stateless? : boolean? = #f

stuffer : (stuffer/c serializable? bytes?) = default-stuffer

manager : manager?

= (make-threshold-LRU-manager #f (* 128 1024 1024))

servlet-namespace : (listof module-path?) = empty

server-root-path : path-string? = default-server-root-path

5

extra-files-paths : (listof path-string?)

= (list (build-path server-root-path "htdocs"))

servlets-root : path-string?

= (build-path server-root-path "htdocs")

servlet-current-directory : path-string? = servlets-root

file-not-found-responder : (request? . -> . response/c)

= (gen-file-not-found-responder

(build-path

server-root-path

"conf"

"not-found.html"))

mime-types-path : path-string? =

ssl? : boolean? = #f

ssl-cert : (or/c false/c path-string?)

= (and ssl? (build-path server-root-path "server-cert.pem"))

ssl-key : (or/c false/c path-string?)

= (and ssl? (build-path server-root-path "private-key.pem"))

log-file : (or/c false/c path-string?) = #f

log-format : log-format/c = 'apache-default

This sets up and starts a fairly default server instance.

start is loaded as a servlet and responds to requests that match servlet-regexp . The
current directory of servlet execution is servlet-current-directory .

If launch-browser? is true, then a web browser is opened to
"http://localhost:<port><servlet-path>".

If quit? is true, then the URL "/quit" ends the server.

If stateless? is true, then the servlet is run as a stateless

#lang web-server

module and stuffer is used as the stuffer.

Advanced users may need the following options:

The server listens on listen-ip and port port . If listen-ip is #f, then the server
accepts connections to all of the listening machine’s addresses. Otherwise, the server accepts
connections only at the interface(s) associated with the given string. For example, providing
"127.0.0.1" (the default) as listen-ip creates a server that accepts only connections to
"127.0.0.1" (the loopback interface) from the local machine.

If ssl-cert and ssl-key are not false, then the server runs in HTTPS mode with ssl-

cert and ssl-key as the certificates and private keys.

6

The servlet is loaded with manager as its continuation manager. (The default manager
limits the amount of memory to 64 MB and deals with memory pressure as discussed in the
make-threshold-LRU-manager documentation.)

The modules specified by servlet-namespace are shared with other servlets.

The server files are rooted at server-root-path (which is defaultly the distribution root.)
File paths, in addition to the "htdocs" directory under server-root-path may be pro-
vided with extra-files-paths . These paths are checked first, in the order they appear in
the list.

Other servlets are served from servlets-root .

If a file cannot be found, file-not-found-responder is used to generate an error re-
sponse.

If banner? is true, then an informative banner is printed. You may want to use this when
running from the command line, in which case the command-line? option controls similar
options.

MIME types are looked up at mime-types-path . By default the "mime.types" file in the
server-root-path is used, but if that file does not exist, then the file that ships with the
Web Server is used instead. Of course, if a path is given, then it overrides this behavior.

If log-file is given, then it used to log requests using log-format as the format. Allow-
able formats are those allowed by log-format->format.

1.3 Command-line Tools

One command-line utility is provided with the Web Server:

plt-web-server [-f <file-name> -p <port> -a <ip-address> �ssl]

The optional file-name argument specifies the path to a configuration-table S-
expression (see configuration-table->sexpr for the syntax documentation.) If this is
not provided, the default configuration shipped with the server is used. The optional port and
ip-address arguments override the corresponding portions of the configuration-table.
If the SSL option is provided, then the server uses HTTPS with "server-cert.pem"

and "private-key.pem" in the current directory, with 443 as the default port. (See the
openssl module for details on the SSL implementation.)

The configuration-table is given to configuration-table->web-config@ and used
to construct a web-config^ unit, and is linked with the web-server@ unit. The resulting
unit is invoked, and the server runs until the process is killed.

7

2 Stateful Servlets

(require web-server/servlet)

2.1 Example

A stateful servlet should provide the following exports:

interface-version : (one-of/c 'v2)

This indicates that the servlet is a version two servlet.

manager : manager?

The manager for the continuations of this servlet. See §2.5 “Continuation Managers” for
options.

(start initial-request) → response/c

initial-request : request?

This function is called when an instance of this servlet is started. The argument is the HTTP
request that initiated the instance.

An example version 2 module:

#lang scheme

(require web-server/managers/none)

(provide interface-version manager start)

(define interface-version 'v2)

(define manager

(create-none-manager

(lambda (req)

`(html (head (title "No Continuations Here!"))

(body (h1 "No Continuations Here!"))))))

(define (start req)

`(html (head (title "Hello World!"))

(body (h1 "Hi Mom!"))))

These servlets have an extensive API available to them: net/url, web-

server/http, web-server/http/bindings, web-server/servlet/servlet-

structs, web-server/servlet/web, web-server/servlet/web-cells, and web-

8

server/dispatch. Some of these are documented in the subsections that follow.

2.2 Common Contracts

(require web-server/servlet/servlet-structs)

This module provides a number of contracts for use in servlets.

k-url? : contract?

Equivalent to string?.

Example: "http://localhost:8080/servlets;1*1*20131636/examples/add.ss"

response-generator/c : contract?

Equivalent to (-> k-url? response/c).

Example:

(lambda (k-url)

`(html

(body

(a ([href ,k-url])

"Click Me to Invoke the Continuation!"))))

expiration-handler/c : contract?

Equivalent to (or/c false/c (-> request? response/c)).

Example:

(lambda (req)

`(html (head (title "Expired"))

(body (h1 "Expired")

(p "This URL has expired. "

"Please return to the home page."))))

embed/url/c : contract?

Equivalent to (-> (-> request? any) string?).

This is what send/suspend/dispatch gives to its function argument.

9

2.3 Web Interaction

(require web-server/servlet/web)

The web-server/servlet/web library provides the primary functions of interest for the
servlet developer.

(send/back response) → void?

response : response/c

Sends response to the client. No continuation is captured, so the servlet is done.

Example:

(send/back

`(html

(body

(h1 "The sum is: "

,(+ first-number

second-number)))))

(send/suspend make-response) → request?

make-response : (string? . -> . response/c)

Captures the current continuation, stores it with exp as the expiration handler, and binds it to
a URL. make-response is called with this URL and is expected to generate a response/c,
which is sent to the client. If the continuation URL is invoked, the captured continuation is
invoked and the request is returned from this call to send/suspend.

Example:

(send/suspend

(lambda (k-url)

`(html (head (title "Enter a number"))

(body

(form ([action ,k-url])

"Enter a number: "

(input ([name "number"]))

(input ([type "submit"])))))))

When this form is submitted by the browser, the request will be sent to the URL gener-
ated by send/suspend. Thus, the request will be “returned” from send/suspend to the
continuation of this call.

(send/suspend/url make-response) → request?

10

make-response : (url? . -> . response/c)

Like send/suspend but with a URL struct.

(send/suspend/dispatch make-response) → any

make-response : (((request? . -> . any) . -> . string?) . -> . response/c)

Calls make-response with a function (embed/url) that, when called with a procedure
from request? to any/c will generate a URL, that when invoked will call the function with
the request? object and return the result to the caller of send/suspend/dispatch. There-
fore, if you pass embed/url the identity function, send/suspend/dispatch devolves into
send/suspend:

(define (send/suspend response-generator)

(send/suspend/dispatch

(lambda (embed/url)

(response-generator (embed/url (lambda (x) x))))))

Use send/suspend/dispatch when there are multiple ‘logical’ continuations of a page.
For example, we could either add to a number or subtract from it:

(define (count-dot-com i)

(count-dot-com

(send/suspend/dispatch

(lambda (embed/url)

`(html

(head (title "Count!"))

(body

(h2 (a ([href

,(embed/url

(lambda (req)

(sub1 i)))])

"-"))

(h1 ,(number->string i))

(h2 (a ([href

,(embed/url

(lambda (req)

(add1 i)))])

"+"))))))))

Notice that in this example the result of the handlers are returned to the continuation
of send/suspend/dispatch. However, it is very common that the return value of
send/suspend/dispatch is irrevelant in your application and you may think of it as “em-
bedding” value-less callbacks. Here is the same example in this style:

(define (count-dot-com i)

11

(send/suspend/dispatch

(lambda (embed/url)

`(html

(head (title "Count!"))

(body

(h2 (a ([href

,(embed/url

(lambda (req)

(count-dot-com (sub1 i))))])

"-"))

(h1 ,(number->string i))

(h2 (a ([href

,(embed/url

(lambda (req)

(count-dot-com (add1 i))))])

"+")))))))

(send/suspend/url/dispatch make-response) → any

make-response : (((request? . -> . any) . -> . url?) . -> . response/c)

Like send/suspend/dispatch, but with a URL struct.

(send/forward make-response) → request?

make-response : (string? . -> . response/c)

Calls clear-continuation-table!, then send/suspend.

Use this if the user can logically go ‘forward’ in your application, but cannot go backward.

(send/finish response) → void?

response : response/c

Calls clear-continuation-table!, then send/back.

Use this if the user is truly ‘done’ with your application. For example, it may be used to
display the post-logout page:

(send/finish

`(html (head (title "Logged out"))

(body (p "Thank you for using the services "

"of the Add Two Numbers, Inc."))))

(redirect/get) → request?

12

Calls send/suspend with redirect-to.

This implements the Post-Redirect-Get pattern. Use this to prevent the Refresh button from
duplicating effects, such as adding items to a database.

(redirect/get/forget) → request?

Calls send/forward with redirect-to.

current-servlet-continuation-expiration-handler : (parameter/c expiration-handler/c)

Holds the expiration-handler/c to be used when a continuation captured in this context
is expired, then looked up.

Example:

(parameterize

([current-servlet-continuation-expiration-handler

(lambda (req)

`(html (head (title "Custom Expiration!"))))])

(send/suspend

....))

(clear-continuation-table!) → void?

Calls the servlet’s manager’s clear-continuation-table! function. Normally, this
deletes all the previously captured continuations.

(with-errors-to-browser send/finish-or-back

thunk) → any

send/finish-or-back : (response/c . -> . request?)

thunk : (-> any)

Calls thunk with an exception handler that generates an HTML error page and calls
send/finish-or-back .

Example:

(with-errors-to-browser

send/back

(lambda ()

(/ 1 (get-number (request-number)))))

(adjust-timeout! t) → void?

13

t : number?

Calls the servlet’s manager’s adjust-timeout! function.

Warning: This is deprecated and will be removed in a future release.

(continuation-url? u)

→ (or/c false/c (list/c number? number? number?))

u : url?

Checks if u is a URL that refers to a continuation, if so returns the instance id, continuation
id, and nonce.

2.4 Web Cells

(require web-server/servlet/web-cells)

The web-server/servlet/web-cells library provides the interface to Web cells.

A Web cell is a kind of state defined relative to the frame tree. The frame-tree is a mirror of
the user’s browsing session. Every time a continuation is invoked, a new frame (called the
current frame) is created as a child of the current frame when the continuation was captured.

You should use Web cells if you want an effect to be encapsulated in all interactions linked
from (in a transitive sense) the HTTP response being generated. For more information on
their semantics, consult the paper "Interaction-Safe State for the Web".

(web-cell? v) → boolean?

v : any/c

Determines if v is a web-cell.

(make-web-cell v) → web-cell?

v : any/c

Creates a web-cell with a default value of v .

(web-cell-ref wc) → any/c

wc : web-cell?

Looks up the value of wc found in the nearest frame.

14

http://www.cs.brown.edu/~sk/Publications/Papers/Published/mk-int-safe-state-web/

(web-cell-shadow wc v) → void

wc : web-cell?

v : any/c

Binds wc to v in the current frame, shadowing any other bindings to wc in the current frame.

Below is an extended example that demonstrates how Web cells allow the creation of
reusable Web abstractions without requiring global transformations of the program into con-
tinuation or store passing style.

#lang web-server/insta

(define (start initial-request)

(define counter1 (make-counter))

(define counter2 (make-counter))

(define include1 (include-counter counter1))

(define include2 (include-counter counter2))

(send/suspend/dispatch

(lambda (embed/url)

`(html

(body (h2 "Double Counters")

(div (h3 "First")

,(include1 embed/url))

(div (h3 "Second")

,(include2 embed/url)))))))

(define (make-counter)

(make-web-cell 0))

(define (include-counter a-counter)

(let/cc k

(let loop ()

(k

(lambda (embed/url)

`(div (h3 ,(number->string (web-cell-ref a-counter)))

(a ([href

,(embed/url

(lambda _

; A new frame has been created

(define last (web-cell-ref a-counter))

; We can inspect the value at the parent

(web-cell-shadow a-counter (add1 last))

; The new frame has been modified

(loop)))])

"+")))))))

15

2.5 Continuation Managers

Since Scheme servlets store their continuations on the server, they take up memory on the
server. Furthermore, garbage collection can not be used to free this memory, because there
are roots outside the system: users’ browsers, bookmarks, brains, and notebooks. Therefore,
some other strategy must be used if memory usage is to be controlled. This functionality is
pluggable through the manager interface.

2.5.1 General

(require web-server/managers/manager)

This module defines the manager interface. It is required by the users and implementers of
managers.

(struct manager (create-instance

adjust-timeout!

clear-continuations!

continuation-store!

continuation-lookup))

create-instance : ((-> void) . -> . number?)

adjust-timeout! : (number? number? . -> . void)

clear-continuations! : (number? . -> . void)

continuation-store! : (number? any/c expiration-handler/c . -> . (list/c number? number?))

continuation-lookup : (number? number? number? . -> . any/c)

create-instance is called to initialize a instance, to hold the continuations of one servlet
session. It is passed a function to call when the instance is expired. It runs the id of the
instance.

adjust-timeout! is a to-be-deprecated function that takes an instance-id and a number. It
is specific to the timeout-based manager and will be removed.

clear-continuations! expires all the continuations of an instance.

continuation-store! is given an instance-id, a continuation value, and a function to
include in the exception thrown if the continuation is looked up and has been expired. The
two numbers returned are a continuation-id and a nonce.

continuation-lookup finds the continuation value associated with the instance-id,
continuation-id, and nonce triple it is given.

(struct (exn:fail:servlet-manager:no-instance exn:fail) (expiration-handler

16

expiration-handler : expiration-handler/c

This exception should be thrown by a manager when an instance is looked up that does not
exist.

(struct (exn:fail:servlet-manager:no-continuation exn:fail) (expiration-handler

expiration-handler : expiration-handler/c

This exception should be thrown by a manager when a continuation is looked up that does
not exist.

2.5.2 No Continuations

(require web-server/managers/none)

This module defines a manager constructor:

(create-none-manager instance-expiration-handler) → manager?

instance-expiration-handler : expiration-handler/c

This manager does not actually store any continuation or instance data. You could use it if
you know your servlet does not use the continuation capturing functions and want the server
to not allocate meta-data structures for each instance.

If you do use a continuation capturing function, the continuation is simply not stored. If the
URL is visited, the instance-expiration-handler is called with the request.

If you are considering using this manager, also consider using the Web Language. (See §3
“Stateless Servlets”.)

2.5.3 Timeouts

(require web-server/managers/timeouts)

This module defines a manager constructor:

(create-timeout-manager instance-exp-handler

instance-timeout

continuation-timeout) → manager?

instance-exp-handler : expiration-handler/c

instance-timeout : number?

continuation-timeout : number?

17

Instances managed by this manager will be expired instance-timeout seconds after the
last time it is accessed. If an expired instance is looked up, the exn:fail:servlet-

manager:no-instance exception is thrown with instance-exp-handler as the expi-
ration handler.

Continuations managed by this manager will be expired continuation-timeout sec-
onds after the last time it is accessed. If an expired continuation is looked up, the
exn:fail:servlet-manager:no-continuation exception is thrown with instance-

exp-handler as the expiration handler, if no expiration-handler was passed to
continuation-store!.

adjust-timeout! corresponds to reset-timer! on the timer responsible for the servlet
instance.

This manager has been found to be... problematic... in large-scale deployments of the Web
Server .

2.5.4 LRU

(require web-server/managers/lru)

This module defines a manager constructor:

(create-LRU-manager instance-expiration-handler

check-interval

collect-interval

collect?

[#:initial-count initial-count

#:inform-p inform-p]) → manager?

instance-expiration-handler : expiration-handler/c

check-interval : integer?

collect-interval : integer?

collect? : (-> boolean?)

initial-count : integer? = 1

inform-p : (integer? . -> . void) = (lambda _ (void))

Instances managed by this manager will be expired if there are no continuations associ-
ated with them, after the instance is unlocked. If an expired instance is looked up, the
exn:fail:servlet-manager:no-instance exception is thrown with instance-exp-

handler as the expiration handler.

Continuations managed by this manager are given a "Life Count" of initial-count ini-
tially. If an expired continuation is looked up, the exn:fail:servlet-manager:no-

continuation exception is thrown with instance-exp-handler as the expiration han-

18

dler, if no expiration-handler was passed to continuation-store!.

Every check-interval seconds collect? is called to determine if the collection routine
should be run. Every collect-interval seconds the collection routine is run.

Every time the collection routine runs, the "Life Count" of every continuation is decremented
by 1. If a continuation’s count reaches 0, it is expired. The inform-p function is called if
any continuations are expired, with the number of continuations expired.

The recommended usage of this manager is codified as the following function:

(make-threshold-LRU-manager instance-expiration-handler

memory-threshold)

→ manager?

instance-expiration-handler : expiration-handler/c

memory-threshold : number?

This creates an LRU manager with the following behavior: The memory limit is set to
memory-threshold bytes. Continuations start with 24 life points. Life points are de-
ducted at the rate of one every 10 minutes, or one every 5 seconds when the memory limit
is exceeded. Hence the maximum life time for a continuation is 4 hours, and the minimum
is 2 minutes.

If the load on the server spikes—as indicated by memory usage—the server will quickly
expire continuations, until the memory is back under control. If the load stays low, it will
still efficiently expire old continuations.

19

3 Stateless Servlets

#lang web-server

3.1 Example

A stateless servlet should provide the following exports:

interface-version : (one-of/c 'stateless)

This indicates that the servlet is a stateless servlet.

stuffer : (stuffer/c serializable? bytes?)

This is the stuffer that will be used for the servlet.

If it is not provided, it defaults to default-stuffer.

manager : manager?

This is the manager that will be used for the servlet.

If it is not provided, it defaults to (create-none-manager #f).

(start initial-request) → response/c

initial-request : request?

This function is called when an instance of this servlet is started. The argument is the HTTP
request that initiated the instance.

An example 'stateless servlet module:

#lang web-server

(provide interface-version stuffer start)

(define interface-version 'stateless)

(define stuffer

(stuffer-chain

serialize-stuffer

(md5-stuffer (build-path (find-system-path 'home-dir) ".urls"))))

(define (start req)

`(html (body (h2 "Look ma, no state!"))))

20

These servlets have an extensive API available to them: net/url, web-

server/http, web-server/http/bindings, web-server/lang/abort-resume, web-
server/lang/web, web-server/lang/native, web-server/lang/web-param, web-
server/lang/web-cells, web-server/lang/file-box, web-server/lang/soft,
web-server/dispatch, and web-server/stuffers. Some of these are documented in
the subsections that follow.

3.2 Serializable Continuations

(require web-server/lang/abort-resume)

The main purpose of the stateless language is to provide serializable continuations to your
servlet.

(call-with-serializable-current-continuation response-generator)

→ any

response-generator : (continuation? . -> . any)

Captures the current continuation in a serializable way and calls response-generator

with it, returning the result.

This potentially uses resources of the current servlet’s manager if serial->native and
native->serial were used to capture an untransformable context.

(serial->native expr)

serial->native informs the serializing runtime that expr is potentially a call to an un-
transformed context. This sets up the necessary information for native->serial to signal
to call-with-serializable-current-continuation to capture the native (and thus
unserializable) section of the context and store it on the server.

(native->serial expr)

native->serial informs the serializing runtime that expr marks first expression after
returning from an untransformed context. This captures the untransformed context such
that call-with-serializable-current-continuation can store it on the server and
reference it from serializable continuations.

For example,

(build-list

3

(lambda (i)

21

(call-with-serializable-current-continuation

(lambda (k) (serialize k)))))

will fail at runtime because build-list is not transformed. However,

(serial->native

(build-list

3

(lambda (i)

(native->serial

(call-with-serializable-current-continuation

(lambda (k) (serialize k)))))))

will succeed and k will reference a cell in the current servlet’s manager that stores the part
of the continuation in build-list.

3.3 Native Interfaces

(require web-server/lang/native)

It is sometimes inconvenient to use serial->native and native->serial throughout
your program. This module provides a macro for creating wrappers.

(define-native (native arg-spec ...) original)

arg-spec : ho

arg-spec : _

Builds an interface around original named native such that calls to native are wrapped
in serial->native and all arguments marked with ho in arg-spec are assumed to proce-
dures and are wrapped in native->serial.

For example,

(define-native (build-list/native _ ho) build-list)

is equivalent to

(define (build-list/native fst snd)

(serial->native

(build-list

fst

(lambda args

(native->serial

22

(apply snd args))))))

3.4 Stateless Web Interaction

(require web-server/lang/web)

(send/suspend/url response-generator) → request?

response-generator : (url? . -> . response/c)

Captures the current continuation. Serializes it and stuffs it into a URL. Calls response-
generator with this URL and delivers the response to the client. If the URL is invoked the
request is returned to this continuation.

(send/suspend response-generator) → request?

response-generator : (string? . -> . response/c)

Like send/suspend/url but with a string URL representation.

(send/suspend/hidden response-generator) → request?

response-generator : (url? xexpr/c . -> . response/c)

Captures the current continuation. Serializes it and stuffs it into a hidden INPUT form ele-
ment. Calls response-generator with this URL and form field and delivers the response
to the client. If the URL is invoked with form data containing the hidden form, the request
is returned to this continuation.

(send/suspend/url/dispatch make-response) → any

make-response : (((request? . -> . any) . -> . url?) . -> . response/c)

Calls make-response with a function that, when called with a procedure from request?

to any/c will generate a URL, that when invoked will call the function with the request?
object and return the result to the caller of send/suspend/dispatch.

(send/suspend/dispatch make-response) → request?

make-response : (((request? . -> . any) . -> . string?) . -> . response/c)

Like send/suspend/url/dispatch but with a string URL representation.

(redirect/get) → request?

See web-server/servlet/web.

23

3.5 Stateless Web Cells

(require web-server/lang/web-cells)

The web-server/lang/web-cells library provides the same API as web-

server/servlet/web-cells, but in a way compatible with the Web Language.
The one difference is that make-web-cell is syntax, rather than a function.

(web-cell? v) → boolean?

v : any/c

(make-web-cell default-expr)

(web-cell-ref wc) → any/c

wc : web-cell?

(web-cell-shadow wc v) → void

wc : web-cell?

v : any/c

See web-server/servlet/web-cells.

3.6 File Boxes

(require web-server/lang/file-box)

As mentioned earlier, it is dangerous to rely on the store in Web Language servlets, due to
the deployment scenarios available to them. This module provides a simple API to replace
boxes in a safe way.

(file-box? v) → boolean?

v : any/c

Checks if v is a file-box.

(file-box p v) → file-box?

p : path-string?

v : serializable?

Creates a file-box that is stored at p , with the default contents of v .

(file-unbox fb) → serializable?

fb : file-box?

Returns the value inside fb

24

(file-box-set? fb) → boolean?

fb : file-box?

Returns #t if fb contains a value.

(file-box-set! fb v) → void

fb : file-box?

v : serializable?

Saves v in the file represented by fb .

Warning: If you plan on using a load-balancer, make sure your file-boxes are on a shared
medium.

3.7 Stateless Web Parameters

(require web-server/lang/web-param)

It is not easy to use parameterize in the Web Language. This module provides (roughly)
the same functionality in a way that is serializable. Like other serializable things in the Web
Language, they are sensitive to source code modification.

(make-web-parameter default)

Expands to the definition of a web-parameter with default as the default value. A web-
parameter is a procedure that, when called with zero arguments, returns default or the last
value web-parameterized in the dynamic context of the call.

(web-parameter? v) → boolean?

v : any/c

Checks if v appears to be a web-parameter.

(web-parameterize ([web-parameter-expr value-expr] ...) expr ...)

Runs (begin expr ...) such that the web-parameters that the web-parameter-exprs
evaluate to are bound to the value-exprs. From the perspective of the value-exprs, this
is like let.

25

3.8 Soft State

(require web-server/lang/soft)

Sometimes you want to reference a large data-structure from a stateless program without
the data-structure being serialized and increasing the size of the serialization. This module
provides support for this scenario.

(soft-state? v) → boolean?

v : any/c

Determines if v is a soft state record.

(make-soft-state thnk) → soft-state?

thnk : (-> any/c)

Creates a piece of soft state that is computed by thnk . This value is serializable.

(soft-state-ref ss) → any/c

ss : soft-state?

Extracts the value associated with ss . If the value is not available (perhaps because of
garbage collection, deserialization in an uninitialized process, etc), then the thunk associated
with ss is invoked and the value is cached.

(soft-state expr ...)

Equivalent to (make-soft-state (lambda () expr ...)).

Here’s an example servlet that uses soft state:

#lang web-server

(provide interface-version start)

(define interface-version 'stateless)

(define softie

(soft-state

(printf "Doing a long computation...∼n")
(sleep 1)))

(define (start req)

(soft-state-ref softie)

(printf "Done∼n")

26

(start

(send/suspend

(lambda (k-url)

`(html (body (a ([href ,k-url]) "Done")))))))

When this is run and the link is clicked a few times, the output is:

$ plt-web-server -p 8080

Doing a long computation...

Done

Done

Done

Done

If the server is restarted or the hostname in the URL is changed to a different host with the
same code, and the URL is clicked:

^Cuser break

$ plt-web-server -p 8080

Doing a long computation...

Done

3.9 Stuffers

(require web-server/stuffers)

The web-server language provides serializable continuations. The serialization function-
ality is abstracted into stuffers that control how it operates. You can supply your own (built
with these functions) when you write a stateless servlet.

3.9.1 Basic Combinators

(require web-server/stuffers/stuffer)

(struct stuffer (in out))

in : (any/c . -> . any/c)

out : (any/c . -> . any/c)

A stuffer is essentially an invertible function captured in this structure. The following should
hold:

(out (in x)) = x

(in (out x)) = x

27

(stuffer/c dom rng) → contract?

dom : any/c

rng : any/c

Constructs a contract for a stuffer where in has the contract (-> dom rng) and out has
the contract (-> rng dom).

id-stuffer : (stuffer/c any/c any/c)

The identitiy stuffer.

(stuffer-compose g f) → (stuffer/c any/c any/c)

g : (stuffer/c any/c any/c)

f : (stuffer/c any/c any/c)

Composes f and g , i.e., applies f then g for in and g then f for out.

(stuffer-sequence f g) → (stuffer/c any/c any/c)

f : (stuffer/c any/c any/c)

g : (stuffer/c any/c any/c)

stuffer-compose with arguments swapped.

(stuffer-if c f) → (stuffer/c bytes? bytes?)

c : (bytes? . -> . boolean?)

f : (stuffer/c bytes? bytes?)

Creates a stuffer that stuffs with f if c is true on the input to in. Similarly, applies f during
out if it was applied during in (which is recorded by prepending a byte.)

(stuffer-chain x ...) → stuffer?

x : (or/c stuffer? (bytes? . -> . boolean?))

Applies stuffer-sequence and stuffer-if to successive tails of x .

3.9.2 Serialization

(require web-server/stuffers/serialize)

serialize-stuffer : (stuffer/c serializable? bytes?)

28

A stuffer that uses serialize and write/bytes and deserialize and read/bytes.

3.9.3 Base64 Encoding

(require web-server/stuffers/base64)

base64-stuffer : (stuffer/c bytes? bytes?)

A stuffer that uses base64-encode and base64-decode.

Useful for getting URL-safe bytes.

3.9.4 GZip Compression

(require web-server/stuffers/gzip)

gzip-stuffer : (stuffer/c bytes? bytes?)

A stuffer that uses gzip/bytes and gunzip/bytes.

Warning: You should compose this with base64-stuffer to get URL-safe bytes.

3.9.5 Key/Value Storage

The web-server/stuffers/hash stuffers rely on a key/value store.

(require web-server/stuffers/store)

(struct store (write read))

write : (bytes? bytes? . -> . void)

read : (bytes? . -> . bytes?)

The following should hold:

(begin (write k v) (read k)) = v

(dir-store root) → store?

root : path-string?

A store that stores key key’s value in a file located at

29

(build-path

root

(bytes->string/utf-8 key))

It should be easy to use this interface to create store for databases like SQLite, CouchDB, or
BerkeleyDB.

3.9.6 Hash-addressed Storage

(require web-server/stuffers/hash)

hash-fun/c : contract?

Equivalent to (-> bytes? bytes?).

(hash-stuffer H store) → (stuffer/c bytes? bytes?)

H : hash-fun/c

store : store?

A content-addressed storage stuffer that stores input bytes, input, in store with the key
(H input) and returns the key. Similarly, on out the original bytes are looked up.

(md5-stuffer root) → (stuffer/c bytes? bytes?)

root : path-string?

Equivalent to (hash-stuffer md5 (dir-store root))

3.9.7 HMAC-SHA1 Signing

(require web-server/stuffers/hmac-sha1)

(HMAC-SHA1 kb db) → bytes?

kb : bytes?

db : bytes?

Performs a HMAC-SHA1 calculation on db using kb as the key. The result is guaranteed to
be 20 bytes. (You could curry this to use it with hash-stuffer, but there is little value in
doing so over md5.)

(HMAC-SHA1-stuffer kb) → (stuffer/c bytes? bytes?)

30

kb : bytes?

A stuffer that signs input using HMAC-SHA1 with kb as the key. The result of the stuffer is
the hash prepended to the input data. When the stuffer is run in reverse, it checks if the first
20 bytes are the correct has for the rest of the data.

Warning: You should compose this with base64-stuffer to get URL-safe bytes.

Warning: Without explicit provision, it is possible for users to modify the continuations
they are sent through the other stuffers. This stuffer allows the servlet to certify that stuffed
data was truly generated by the servlet. Therefore, you should use this if you are not using
the hash-stuffers.

Warning: This stuffer does not encrypt the data in anyway, so users can still observe the
stuffed values.

3.9.8 Helpers

(require web-server/lang/stuff-url)

(is-url-too-big? v) → boolean?

v : bytes?

Determines if stuffing v into the current servlet’s URL would result in a URL that is too big
for Internet Explorer. (IE only supports URLs up to 2048 characters.)

(make-default-stuffer root) → (stuffer/c serializable? bytes?)

root : path-string?

Constructs a stuffer that serializes, then if the URL is too big, compresses (and base64-
encodes), if the URL is still too big then it stores it in an MD5-indexed database rooted at
root .

Equivalent to:

(stuffer-chain

serialize-stuffer

is-url-too-big?

(stuffer-chain

gzip-stuffer

base64-stuffer)

is-url-too-big?

(md5-stuffer root))

31

http://www.boutell.com/newfaq/misc/urllength.html

default-stuffer : (stuffer/c serializable? bytes?)

Equivalent to:

(make-default-stuffer

(build-path

(find-system-path 'home-dir)

".urls"))

3.10 Usage Considerations

A stateless servlet has the following process performed on it automatically:

• All uses of letrec are removed and replaced with equivalent uses of let and imper-
ative features.

• The program is converted into ANF (Administrative Normal Form), making all con-
tinuations explicit.

• All continuations and continuations marks are recorded in the continuation marks of
the expression they are the continuation of.

• All calls to external modules are identified and marked.

• All uses of call/cc are removed and replaced with equivalent gathering of the con-
tinuations through the continuation marks installed earlier.

• The program is defunctionalized with a serializable data-structure for each lambda.

This process allows the continuations captured by your servlet to be serialized. This means
they may be stored on the client’s browser or the server’s disk. Thus, your servlet has no
cost to the server other than execution. This is very attractive if you’ve used Scheme servlets
and had memory problems.

This process is defined on all of PLT Scheme and occurs after macro-expansion, so you are
free to use all interesting features of PLT Scheme. However, there are some considerations
you must make.

First, this process drastically changes the structure of your program. It will create an im-
mense number of lambdas and structures your program did not normally contain. The per-
formance implication of this has not been studied with PLT Scheme.

Second, the defunctionalization process is sensitive to the syntactic structure of your pro-
gram. Therefore, if you change your program in a trivial way, for example, changing a

32

http://en.wikipedia.org/wiki/Administrative_normal_form

constant, then all serialized continuations will be obsolete and will error when deserializa-
tion is attempted. This is a feature, not a bug! It is a small price to pay for protection from
the sorts of errors that would occur if your program were changed in a meaningful way.

Third, the values in the lexical scope of your continuations must be serializable for the con-
tinuations itself to be serializable. This means that you must use define-serializable-
struct rather than define-struct, and take care to use modules that do the same. Simi-
larly, you may not use parameterize, because parameterizations are not serializable.

Fourth, and related, this process only runs on your code, not on the code you require. Thus,
your continuations—to be serializable—must not be in the context of another module. For
example, the following will not work:

(define requests

(map (lambda (rg) (send/suspend/url rg))

response-generators))

because map is not transformed by the process. However, if you defined your own map func-
tion, there would be no problem. Another solution is to store the map part of the continuation
on the server with serial->native and native->serial:

(define requests

(serial->native

(map (lambda (rg) (native->serial (send/suspend/url rg)))

response-generators)))

Fifth, the store is not serialized. If you rely on the store you will be taking huge risks. You
will be assuming that the serialized continuation is invoked on the same server before the
server is restarted or the memory is garbage collected.

This process is derived from the ICFP papers Continuations from Generalized Stack Inspec-
tion by Pettyjohn et al. in 2005 and Automatically RESTful Web Applications, Or Marking
Modular Serializable Continuations by Jay McCarthy in 2009. We thank Greg Pettyjohn for
his initial implementation of this algorithm.

33

http://www.cs.brown.edu/~sk/Publications/Papers/Published/pcmkf-cont-from-gen-stack-insp/
http://www.cs.brown.edu/~sk/Publications/Papers/Published/pcmkf-cont-from-gen-stack-insp/

4 HTTP: Hypertext Transfer Protocol

(require web-server/http)

The Web Server implements many HTTP RFCs that are provided by this module.

4.1 Requests

(require web-server/http/request-structs)

(struct header (field value))

field : bytes?

value : bytes?

Represents a header of field to value.

(headers-assq id heads) → (or/c false/c header?)

id : bytes?

heads : (listof header?)

Returns the header with a field equal to id from heads or #f.

(headers-assq* id heads) → (or/c false/c header?)

id : bytes?

heads : (listof header?)

Returns the header with a field case-insensitively equal to id from heads or #f.

You almost always want to use this, rather than headers-assq because Web browsers may
send headers with arbitrary casing.

(struct binding (id))

id : bytes?

Represents a binding of id.

(struct (binding:form binding) (value))

value : bytes?

Represents a form binding of id to value.

34

(struct (binding:file binding) (filename headers content))

filename : bytes?

headers : (listof header?)

content : bytes?

Represents the uploading of the file filename with the id id and the content content,
where headers are the additional headers from the MIME envelope the file was in. (For
example, the #"Content-Type" header may be included by some browsers.)

(bindings-assq id binds) → (or/c false/c binding?)

id : bytes?

binds : (listof binding?)

Returns the binding with an id equal to id from binds or #f.

(struct request (method

uri

headers/raw

bindings/raw

post-data/raw

host-ip

host-port

client-ip))

method : bytes?

uri : url?

headers/raw : (listof header?)

bindings/raw : (listof binding?)

post-data/raw : (or/c false/c bytes?)

host-ip : string?

host-port : number?

client-ip : string?

An HTTP method request to uri from client-ip to the server at host-ip:host-port
with headers/raw headers, bindings/raw GET and POST queries and post-data/raw

POST data.

You are unlikely to need to construct a request struct.

Here is an example typical of what you will find in many applications:

(define (get-number req)

(match

(bindings-assq

#"number"

35

(request-bindings/raw req))

[(? binding:form? b)

(string->number

(bytes->string/utf-8

(binding:form-value b)))]

[_

(get-number (request-number))]))

4.2 Bindings

(require web-server/http/bindings)

These functions, while convenient, could introduce subtle bugs into your application. Ex-
amples: that they are case-insensitive could introduce a bug; if the data submitted is not in
UTF-8 format, then the conversion to a string will fail; if an attacker submits a form field
as if it were a file, when it is not, then the request-bindings will hold a bytes? object
and your program will error; and, for file uploads you lose the filename. Therefore, we
recommend against their use, but they are provided for compatibility with old code.

(request-bindings req)

→ (listof (or/c (cons/c symbol? string?)

(cons/c symbol? bytes?)))

req : request?

Translates the request-bindings/raw of req by interpreting bytes? as string?s, ex-
cept in the case of binding:file bindings, which are left as is. Ids are then translated into
lowercase symbols.

(request-headers req) → (listof (cons/c symbol? string?))

req : request?

Translates the request-headers/raw of req by interpreting bytes? as string?s. Ids are
then translated into lowercase symbols.

(extract-binding/single id binds) → string?

id : symbol?

binds : (listof (cons/c symbol? string?))

Returns the single binding associated with id in the a-list binds if there is exactly one
binding. Otherwise raises exn:fail.

(extract-bindings id binds) → (listof string?)

36

id : symbol?

binds : (listof (cons/c symbol? string?))

Returns a list of all the bindings of id in the a-list binds .

(exists-binding? id binds) → boolean?

id : symbol?

binds : (listof (cons/c symbol? string))

Returns #t if binds contains a binding for id . Otherwise, #f.

Here is an example typical of what you will find in many applications:

(define (get-number req)

(string->number

(extract-binding/single

'number

(request-bindings req))))

4.3 Responses

(require web-server/http/response-structs)

(struct response/basic (code message seconds mime headers))

code : number?

message : bytes?

seconds : number?

mime : bytes?

headers : (listof header?)

A basic HTTP response containing no body. code is the response code, message the mes-
sage, seconds the generation time, mime the MIME type of the file, and extras are the
extra headers, in addition to those produced by the server.

Example:

(make-response/basic

301 #"Moved Permanently"

(current-seconds) TEXT/HTML-MIME-TYPE

(list (make-header #"Location"

#"http://www.plt-scheme.org/downloads")))

(struct (response/full response/basic) (body))

37

body : (listof bytes?)

As with response/basic, except with body as the response body.

Example:

(make-response/full

301 #"Moved Permanently"

(current-seconds) TEXT/HTML-MIME-TYPE

(list (make-header #"Location"

#"http://www.plt-scheme.org/downloads"))

(list #"<html><body><p>"

#"Please go to <a href=\""

#"http://www.plt-scheme.org/downloads"

#"\">here instead."

#"</p></body></html>"))

(struct (response/incremental response/basic) (generator))

generator : ((() () #:rest (listof bytes?) . ->* . any) . -> . any)

As with response/basic, except with generator as a function that is called to generate
the response body, by being given an output-response function that outputs the content
it is called with. If the output-response function is called with arguments of zero length
(when concatenated), then the output port is flushed with flush-output.

Here is a short example:

(make-response/incremental

200 #"OK" (current-seconds)

#"application/octet-stream"

(list (make-header #"Content-Disposition"

#"attachment; filename=\"file\""))

(lambda (output-response)

(output-response #"Some content")

(output-response)

(output-response #"Even" #"more" #"content!")

(output-response #"Now we're done")))

response/c : contract?

Equivalent to

(or/c response/basic?

(cons/c bytes? (listof (or/c string? bytes?)))

xexpr/c)

38

(make-xexpr-response xexpr

[#:code code

#:message message

#:seconds seconds

#:mime-type mime-type

#:headers headers]) → response/full?

xexpr : xexpr/c

code : number? = 200

message : bytes? = #"Okay"

seconds : number? = (current-seconds)

mime-type : bytes? = TEXT/HTML-MIME-TYPE

headers : (listof header?) = empty

Equivalent to

(make-response/full

code message seconds mime-type headers

(list (string->bytes/utf-8 (xexpr->string xexpr))))

(normalize-response close? response)

→ (or/c response/full? response/incremental?)

close? : boolean?

response : response/c

Coerces response into a full response, filling in additional details where appropriate.

TEXT/HTML-MIME-TYPE : bytes?

Equivalent to #"text/html; charset=utf-8".

Warning: If you include a Content-Length header in a response that is inaccurate, there will
be an error in transmission that the server will not catch.

4.4 Placing Cookies

(require web-server/http/cookie)

This module provides functions to create cookies and responses that set them.

39

(make-cookie name

value

[#:comment comment

#:domain domain

#:max-age max-age

#:path path

#:secure? secure?]) → cookie?

name : string?

value : string?

comment : (or/c false/c string?) = #f

domain : (or/c false/c valid-domain?) = #f

max-age : (or/c false/c exact-nonnegative-integer?) = #f

path : (or/c false/c string?) = #f

secure? : (or/c false/c boolean?) = #f

Constructs a cookie with the appropriate fields.

(cookie->header c) → header?

c : cookie?

Constructs a header that sets the cookie.

(xexpr-response/cookies cookies xexpr) → response/full?

cookies : (listof cookie?)

xexpr : xexpr/c

Constructs a response using xexpr that sets all the cookies in cookies .

Examples:

(define time-cookie

(make-cookie "time" (number->string (current-seconds))))

(define id-cookie

(make-cookie "id" "joseph" #:secure? #t))

(redirect-to

"http://localhost/logged-in"

see-other

#:headers

(map cookie->header

(list time-cookie id-cookie)))

(send/suspend

(lambda (k-url)

40

(xexpr-response/cookies

(list time-cookie id-cookie)

`(html (head (title "Cookie Example"))

(body (h1 "You're cookie'd!"))))))

Warning: When using cookies, make sure you follow the advice of the MIT Cookie Eaters,
or you will be susceptible to dangerous attacks.

4.5 Extracting Cookies

(require web-server/http/cookie-parse)

(struct client-cookie (name value domain path))

name : string?

value : string?

domain : (or/c false/c valid-domain?)

path : (or/c false/c string?)

While server cookies are represented with cookie?s, cookies that come from the client are
represented with a client-cookie structure.

(request-cookies req) → (listof client-cookie?)

req : request?

Extracts the cookies from req ’s headers.

Examples:

(define (start req)

(define cookies (request-cookies req))

(define id-cookie

(findf (lambda (c)

(string=? "id" (client-cookie-name c)))

cookies))

(if id-cookie

(hello (client-cookie-value id-cookie))

(redirect-to

(url->string (request-uri req))

see-other

#:headers

(list

(cookie->header (make-cookie "id" "joseph"))))))

41

http://cookies.lcs.mit.edu/

(define (hello who)

`(html (head (title "Hello!"))

(body

(h1 "Hello "

,who))))

4.6 Redirect

(require web-server/http/redirect)

(redirect-to uri

[perm/temp
#:headers headers]) → response/c

uri : non-empty-string/c

perm/temp : redirection-status? = temporarily

headers : (listof header?) = (list)

Generates an HTTP response that redirects the browser to uri , while including the headers
in the response.

Example: (redirect-to "http://www.add-three-numbers.com" permanently)

(redirection-status? v) → boolean?

v : any/c

Determines if v is one of the following values.

permanently : redirection-status?

A redirection-status? for permanent redirections.

temporarily : redirection-status?

A redirection-status? for temporary redirections.

see-other : redirection-status?

A redirection-status? for "see-other" redirections.

42

4.7 Basic Authentication

(require web-server/http/basic-auth)

An implementation of HTTP Basic Authentication.

(make-basic-auth-header realm) → header?

realm : string?

Returns a header that instructs the Web browser to request a username and password from
the client using Basic authentication with realm as the realm.

(request->basic-credentials req)

→ (or/c false/c (cons/c bytes? bytes?))

req : request?

Returns a pair of the username and password from the authentication header in req if they
are present, or #f.

Example:

#lang web-server/insta

(define (start req)

(match (request->basic-credentials req)

[(cons user pass)

`(html (head (title "Basic Auth Test"))

(body (h1 "User: " ,(bytes->string/utf-8 user))

(h1 "Pass: " ,(bytes->string/utf-8 pass))))]

[else

(make-response/basic

401 #"Unauthorized" (current-seconds) TEXT/HTML-MIME-TYPE

(list

(make-basic-auth-header

(format "Basic Auth Test: ∼a" (gensym)))))]))

4.8 Digest Authentication

(require web-server/http/digest-auth)

An implementation of HTTP Digest Authentication.

43

(make-digest-auth-header realm

private-key

opaque) → header?

realm : string?

private-key : string?

opaque : string?

Returns a header that instructs the Web browser to request a username and password from
the client using Digest authentication with realm as the realm, private-key as the server’s
contribution to the nonce, and opaque as the opaque data passed through the client.

(request->digest-credentials req)

→ (or/c false/c (listof (cons/c symbol? string?)))

req : request?

Returns the Digest credentials from req (if they appear) as an association list.

username*realm->password/c : contract?

Used to look up the password for a user is a realm.

Equivalent to (-> string? string? string?).

username*realm->digest-HA1/c : contract?

Used to compute the user’s secret hash.

Equivalent to (-> string? string? bytes?).

(password->digest-HA1 lookup-password)

→ username*realm->digest-HA1/c

lookup-password : username*realm->password/c

Uses lookup-password to find the password, then computes the secret hash of it.

(make-check-digest-credentials lookup-HA1)

→ (string? (listof (cons/c symbol? string?)) . -> . boolean?)

lookup-HA1 : username*realm->digest-HA1/c

Constructs a function that checks whether particular Digest credentials (the second argument
of the returned function) are correct given the HTTP method provided as the first argument
and the secret hash computed by lookup-HA1 .

44

This is will result in an exception if the Digest credentials are missing portions.

Example:

#lang web-server/insta

(require scheme/pretty)

(define private-key "private-key")

(define opaque "opaque")

(define (start req)

(match (request->digest-credentials req)

[#f

(make-response/basic

401 #"Unauthorized" (current-seconds) TEXT/HTML-MIME-TYPE

(list (make-digest-auth-header

(format "Digest Auth Test: ∼a" (gensym))

private-key opaque)))]

[alist

(define check

(make-check-digest-credentials

(password->digest-HA1 (lambda (username realm) "pass"))))

(define pass?

(check "GET" alist))

`(html (head (title "Digest Auth Test"))

(body

(h1 ,(if pass? "Pass!" "No Pass!"))

(pre ,(pretty-format alist))))]))

45

5 URL-Based Dispatch

(require web-server/dispatch)

The library allows the creation of two-way mappings between permanent URLs and request-
handling procedures. This library was

inspired by the
(planet

untyped/dispatch)

package.5.1 Using web-server/dispatch

Suppose you are writing a blog application and want pretty URLs for different views of the
site. You would define some URL dispatching rules as follows:

> (define-values (blog-dispatch blog-url)

(dispatch-rules

[("") list-posts]

[("posts" (string-arg)) review-post]

[("archive" (integer-arg) (integer-arg)) review-archive]

[else list-posts]))

And define your request handlers as follows:

> (define (list-posts req) `(list-posts))

> (define (review-post req p) `(review-post ,p))

> (define (review-archive req y m) `(review-archive ,y ,m))

Now when a request is sent to your application, it will be directed to the appropriate handler:

> (define (url->request u)

(make-request #"GET" (string->url u) empty

empty #f "1.2.3.4" 80 "4.3.2.1"))

> (blog-dispatch

(url->request "http://www.chrlsnchrg.com"))

(list-posts)

> (blog-dispatch

(url->request "http://www.chrlsnchrg.com/"))

(list-posts)

> (blog-dispatch

(url->request

"http://www.chrlsnchrg.com/posts/Extracurricular-Activity"))

(review-post "Extracurricular-Activity")

> (blog-dispatch

(url->request "http://www.chrlsnchrg.com/archive/1984/10"))

(review-archive 1984 10)

> (blog-dispatch

46

(url->request "http://www.chrlsnchrg.com/contact"))

(list-posts)

You can also generate these pretty URLs from procedure calls:

> (blog-url list-posts)

"/"

> (blog-url review-post "Another-Saturday-Night")

"/posts/Another-Saturday-Night"

> (blog-url review-archive 1984 11)

"/archive/1984/11"

After mastering the world of blogging software, you decide to put the ubiquitous Add-Two-
Numbers.com out of business with Sum.com:

> (define-values (sum-dispatch sum-url)

(dispatch-rules

[((integer-arg) ...) sum]

[else (lambda (req) (sum req empty))]))

> (define (sum req is)

(apply + is))

> (sum-dispatch (url->request "http://www.sum.com/"))

0

> (sum-dispatch (url->request "http://www.sum.com/2"))

2

> (sum-dispatch (url->request "http://www.sum.com/2/3/4"))

9

> (sum-dispatch (url->request "http://www.sum.com/5/10/15/20"))

50

> (sum-url sum empty)

"/"

> (sum-url sum (list 1))

"/1"

> (sum-url sum (list 2 3 5 7))

"/2/3/5/7"

5.2 API Reference

(dispatch-rules

[dispatch-pattern dispatch-fun]

...

[else else-fun])

47

(dispatch-rules

[dispatch-pattern dispatch-fun]

...)

else-fun : (request? . -> . response/c)

dispatch-fun : (request? any/c -> . response/c)

Returns two values: the first is a dispatching function with the contract (-> request?

response/c) that calls the appropriate dispatch-fun based on the first dispatch-

pattern that matches the request’s URL; the second is a URL-generating function with the
contract (-> procedure? any/c ... string?) that generates a URL using dispatch-
pattern for the dispatch-fun given as its first argument.

If else-fun is left out, one is provided that calls (next-dispatcher) to signal to the Web
Server that this dispatcher does not apply.

dispatch-pattern = ()

| (string . dispatch-pattern)

| (bidi-match-expander dispatch-pattern)

| (bidi-match-expander . dispatch-pattern)

(dispatch-case

[dispatch-pattern dispatch-fun]

...

[else else-fun])

(dispatch-case

[dispatch-pattern dispatch-fun]

...)

else-fun : (request? . -> . response/c)

dispatch-fun : (request? any/c -> . response/c)

Returns a dispatching function as described by dispatch-rules.

(dispatch-url

[dispatch-pattern dispatch-fun]

...)

dispatch-fun : (request? any/c -> . response/c)

Returns a URL-generating function as described by dispatch-rules.

(serve/dispatch dispatch) → void

dispatch : (request? . -> . response/c)

48

Calls serve/servlet with appropriate arguments so that every request is handled by dis-

patch .

5.3 Built-in URL patterns

web-server/dispatch builds in a few useful URL component patterns.

(number-arg)

A bi-directional match expander that parses a number? from the URL and generates a URL
with a number’s encoding as a string.

(integer-arg)

A bi-directional match expander that parses a integer? from the URL and generates a URL
with a integer’s encoding as a string.

(real-arg)

A bi-directional match expander that parses a real? from the URL and generates a URL
with a real’s encoding as a string.

(string-arg)

A bi-directional match expander that parses a string? from the URL and generates a URL
containing the string.

(symbol-arg)

A bi-directional match expander that parses a symbol? from the URL and generates a URL
with a symbol’s encoding as a string.

5.4 Extending web-server/dispatch

(require web-server/dispatch/extend)

You can create new URL component patterns by defining bi-directional match expanders.

(define-bidi-match-expander id in-xform out-xform)

49

Binds id to a bi-directional match expander where in-xform is a match expander (defined
by define-match-expander) that is used when parsing URLs and out-xform is one used
when generating URLs.

bidi-match-going-in?

A syntax parameter used by bi-directional match expanders to determine if a URL is being
parsed or generated.

When defining new patterns, you may find it useful to use these helper functions:

(define-coercion-match-expander id test? coerce)

Binds id to a match expander that expands (id x) to (? test? (app coerce x)) (i.e.,
uses test? to determine if the pattern matches and coerce to transform the binding.)

(make-coerce-safe? coerce) → (any/c . -> . boolean?)

coerce : (any/c . -> . any/c)

Returns a function that returns #t if coerce would not throw an exception or return #f on
its input.

Examples:
> (define string->number? (make-coerce-safe? string->number))

> (string->number? "1")

#t

> (string->number? "1.2")

#t

> (string->number? "+inf.0")

#t

> (string->number? "one")

#f

50

6 Formlets: Functional Form Abstraction

(require web-server/formlets)

The Web Server provides a kind of Web form abstraction called a formlet. Formlets originate
in the work of the
Links research
group in their paper
The Essence of
Form Abstraction.

6.1 Basic Formlet Usage

Suppose we want to create an abstraction of entering a date in an HTML form. The following
formlet captures this idea:

(define date-formlet

(formlet

(div

"Month:" ,{input-int . => . month}

"Day:" ,{input-int . => . day})

(list month day)))

The first part of the formlet syntax is the template of an X-expression that is the rendering
of the formlet. It can contain elements like ,(=> formlet name) where formlet is a
formlet expression and name is an identifier bound in the second part of the formlet syntax.

This formlet is displayed (with formlet-display) as the following X-expression forest
(list):

(list

'(div "Month:" (input ([name "input_0"]))

"Day:" (input ([name "input_1"]))))

date-formlet not only captures the rendering of the form, but also the request processing
logic. If we send it an HTTP request with bindings for "input_0" to "10" and "input_1"

to "3", with formlet-process, then it returns:

(list 10 3)

which is the second part of the formlet syntax, where month has been replaced with the in-
teger represented by the "input_0" and day has been replaced with the integer represented
by the "input_1".

The real power of formlet is that they can be embedded within one another. For instance,
suppose we want to combine two date forms to capture a travel itinerary. The following
formlet does the job:

(define travel-formlet

(formlet

51

http://groups.inf.ed.ac.uk/links/
http://groups.inf.ed.ac.uk/links/formlets/
http://groups.inf.ed.ac.uk/links/formlets/

(div

"Name:" ,{input-string . => . name}

(div

"Arrive:" ,{date-formlet . => . arrive}

"Depart:" ,{date-formlet . => . depart})

(list name arrive depart))))

(Notice that date-formlet is embedded twice.) This is rendered as:

(list

'(div

"Name:"

(input ([name "input_0"]))

(div

"Arrive:"

(div "Month:" (input ([name "input_1"]))

"Day:" (input ([name "input_2"])))

"Depart:"

(div "Month:" (input ([name "input_3"]))

"Day:" (input ([name "input_4"]))))))

Observe that formlet-display has automatically generated unique names for each input
element. When we pass bindings for these names to formlet-process, the following list
is returned:

(list "Jay"

(list 10 3)

(list 10 6))

The rest of the manual gives the details of formlet usage and extension.

6.2 Syntactic Shorthand

(require web-server/formlets/syntax)

Most users will want to use the syntactic shorthand for creating formlets.

(formlet rendering yields-expr)

Constructs a formlet with the specified rendering and the processing resulting in the
yields-expr expression. The rendering form is a quasiquoted X-expression, with two
special caveats:

,{=> formlet-expr name} embeds the formlet given by formlet-expr ; the result of
this processing this formlet is available in the yields-expr as name .

52

(#%# xexpr ...) renders an X-expression forest.

6.3 Functional Usage

(require web-server/formlets/lib)

The syntactic shorthand abbreviates the construction of formlets with the following library.
These combinators may be used directly to construct low-level formlets, such as those for
new INPUT element types. Refer to §6.4 “Predefined Formlets” for example low-level form-
lets using these combinators.

xexpr-forest/c : contract?

Equivalent to (listof xexpr/c)

(formlet/c content) → contract?

content : any/c

Equivalent to (-> integer? (values xexpr-forest/c (-> (listof binding?)

(coerce-contract 'formlet/c content)) integer?)).

A formlet’s internal representation is a function from an initial input number to an X-
expression forest rendering, a processing function, and the next allowable input number.

(pure value) → (formlet/c any/c)

value : any/c

Constructs a formlet that has no rendering and always returns value in the processing stage.

(cross f g) → (formlet/c any/c)

f : (formlet/c (any/c . -> . any/c))

g : (formlet/c any/c)

Constructs a formlet with a rendering equal to the concatenation of the renderings of formlets
f and g ; a processing stage that applies g ’s processing result to f ’s processing result.

(cross* f g ...) → (formlet/c any/c)

f : (formlet/c (() () #:rest (listof any/c) . ->* . any/c))

g : (formlet/c any/c)

Equivalent to cross lifted to many arguments.

53

(xml-forest r) → (formlet/c procedure?)

r : xexpr-forest/c

Constructs a formlet with the rendering r and the identity procedure as the processing step.

(xml r) → (formlet/c procedure?)

r : xexpr/c

Equivalent to (xml-forest (list r)).

(text r) → (formlet/c procedure?)

r : string?

Equivalent to (xml r).

(tag-xexpr tag attrs inner) → (formlet/c any/c)

tag : symbol?

attrs : (listof (list/c symbol? string?))

inner : (formlet/c any/c)

Constructs a formlet with the rendering (list (list* tag attrs inner-

rendering)) where inner-rendering is the rendering of inner and the processing
stage identical to inner .

(formlet-display f) → xexpr-forest/c

f : (formlet/c any/c)

Renders f .

(formlet-process f r) → any/c

f : (formlet/c any/c)

r : request?

Runs the processing stage of f on the bindings in r .

6.4 Predefined Formlets

(require web-server/formlets/input)

These formlets are the main combinators for form input.

54

(make-input render) → (formlet/c (or/c false/c binding?))

render : (string? . -> . xexpr/c)

This formlet is rendered with render , which is passed the input name, and results in the
extracted binding.

(text-input [#:value value

#:size size

#:max-length max-length

#:read-only? read-only?

#:attributes attrs])
→ (formlet/c (or/c false/c binding?))

value : (or/c false/c bytes?) = #f

size : (or/c false/c exact-nonnegative-integer?) = #f

max-length : (or/c false/c exact-nonnegative-integer?) = #f

read-only? : boolean? = #f

attrs : (listof (list/c symbol? string?)) = empty

This formlet renders using an INPUT element with the TEXT type and the attributes given
in the arguments.

(password-input [#:value value

#:size size

#:max-length max-length

#:read-only? read-only?

#:attributes attrs])
→ (formlet/c (or/c false/c binding?))

value : (or/c false/c bytes?) = #f

size : (or/c false/c exact-nonnegative-integer?) = #f

max-length : (or/c false/c exact-nonnegative-integer?) = #f

read-only? : boolean? = #f

attrs : (listof (list/c symbol? string?)) = empty

This formlet renders using an INPUT element with the PASSWORD type and the attributes
given in the arguments.

(checkbox value checked? [#:attributes attrs])
→ (formlet/c (or/c false/c binding?))

value : bytes?

checked? : boolean?

attrs : (listof (list/c symbol? string?)) = empty

55

This formlet renders using a INPUT elemen with the CHECKBOX type and the attributes
given in the arguments.

(required f) → (formlet/c bytes?)

f : (formlet/c (or/c false/c binding?))

Constructs a formlet that extracts the binding:form-value from the binding produced by
f , or errors.

(default def f) → (formlet/c bytes?)

def : bytes?

f : (formlet/c (or/c false/c binding?))

Constructs a formlet that extracts the binding:form-value from the binding produced by
f , or returns def .

(to-string f) → (formlet/c string?)

f : (formlet/c bytes?)

Converts f ’s output to a string. Equivalent to (cross (pure bytes->string/utf-8)

f).

(to-number f) → (formlet/c number?)

f : (formlet/c string?)

Converts f ’s output to a number. Equivalent to (cross (pure string->number) f).

(to-symbol f) → (formlet/c symbol?)

f : (formlet/c string?)

Converts f ’s output to a symbol. Equivalent to (cross (pure string->symbol) f).

(to-boolean f) → (formlet/c boolean?)

f : (formlet/c bytes?)

Converts f ’s output to a boolean, if it is equal to #"on".

input-string : (formlet/c string?)

Equivalent to (to-string (required (text-input))).

56

input-int : (formlet/c integer?)

Equivalent to (to-number input-string).

input-symbol : (formlet/c symbol?)

Equivalent to (to-symbol input-string).

6.5 Utilities

(require web-server/formlets/servlet)

A few utilities are provided for using formlets in Web applications.

(send/formlet f [#:wrap wrapper]) → any/c

f : (formlet/c any/c)

wrapper : (xexpr/c . -> . response/c)

= (lambda (form-xexpr)

`(html (head (title "Form Entry"))

(body ,form-xexpr)))

Uses send/suspend to send f ’s rendering (wrapped in a FORM tag whose action is the
continuation URL (wrapped again by wrapper)) to the client. When the form is submitted,
the request is passed to the processing stage of f .

(embed-formlet embed/url f) → xexpr/c

embed/url : embed/url/c

f : (formlet/c any/c)

Like send/formlet, but for use with send/suspend/dispatch.

57

7 Templates: Separation of View

(require web-server/templates)

The Web Server provides a powerful Web template system for separating the presentation
logic of a Web application and enabling non-programmers to contribute to PLT-based Web
applications. Although all the

examples here
generate HTML,
the template
language and the §6
“Text
Preprocessing” it is
based on can be
used to generate any
text-based format:
C, SQL, form
emails, reports, etc.

7.1 Static

Suppose we have a file "static.html" with the contents:

<html>

<head><title>Fastest Templates in the West!</title></head>

<body>

<h1>Bang!</h1>

<h2>Bang!</h2>

</body>

</html>

If we write the following in our code:

(include-template "static.html")

Then the contents of "static.html" will be read at compile time and compiled into a
Scheme program that returns the contents of "static.html" as a string:

"<html>\n <head><title>Fastest Templates in the

West!</title></head>\n <body>\n <h1>Bang!</h1>\n <h2>Bang!</h2>\n </body>\n</html>"

7.2 Dynamic

include-template gives the template access to the complete lexical context of the includ-
ing program. This context can be accessed via the §2 “@ Syntax” syntax. For example, if
"simple.html" contains:

<html>

<head><title>Fastest @thing in the West!</title></head>

<body>

<h1>Bang!</h1>

<h2>Bang!</h2>

</body>

</html>

58

Then

(let ([thing "Templates"])

(include-template "simple.html"))

evaluates to the same content as the static example.

There are no constraints on how the lexical context of the template is populated. For instance,
you can built template abstractions by wrapping the inclusion of a template in a function:

(define (fast-template thing)

(include-template "simple.html"))

(fast-template "Templates")

(fast-template "Noodles")

evalutes to two strings with the predictable contents:

<html>

<head><title>Fastest Templates in the West!</title></head>

<body>

<h1>Bang!</h1>

<h2>Bang!</h2>

</body>

</html>

and

<html>

<head><title>Fastest Noodles in the West!</title></head>

<body>

<h1>Bang!</h1>

<h2>Bang!</h2>

</body>

</html>

Furthermore, there are no constraints on the Scheme used by templates: they can use macros,
structs, continuation marks, threads, etc. However, Scheme values that are ultimately re-
turned must be printable by the §6 “Text Preprocessing”. For example, consider the follow-
ing outputs of the title line of different calls to fast-template:

• (fast-template 'Templates)

<head><title>Fastest Templates in the West!</title></head>

• (fast-template 42)

<head><title>Fastest 42 in the West!</title></head>

59

• (fast-template (list "Noo" "dles"))

<head><title>Fastest Noodles in the West!</title></head>

• (fast-template (lambda () "Thunks"))

<head><title>Fastest Thunks in the West!</title></head>

• (fast-template (delay "Laziness"))

<head><title>Fastest Laziness in the West!</title></head>

7.3 Gotchas

To obtain an @ character in template output, you must escape the it, because it is the escape
character of the §2 “@ Syntax” syntax. For example, to obtain:

<head><title>Fastest @s in the West!</title></head>

You must write:

<head><title>Fastest @"@"s in the West!</title></head>

as your template: literal @s must be replaced with @"@". (Note that the double-quotes are
basically a Scheme expression, which can be used for longer strings too.)

The §2 “@ Syntax” will read Scheme identifiers, so it does not terminate identifiers on
punctuations or XML angle brackets. So,

<head><title>Fastest @thing in the @place!</title></head>

will complain that the identifier place!</title></head> is undefined. You can subvert
this by explicitly delimiting the identifer:

<head><title>Fastest @thing in the @|place|!</title></head>

Another gotcha is that since the template is compiled into a Scheme program, only its results
will be printed. For example, suppose we have the template:

<table>

@for[([c clients])]{

<tr><td>@(car c), @(cdr c)</td></tr>

}

</table>

If this is included in a lexical context with clients bound to

(list (cons "Young" "Brigham") (cons "Smith" "Joseph"))

60

then the template will be printed as:

<table>

</table>

because for does not return the value of the body. Suppose that we change the template to
use for/list (which combines them into a list):

<table>

@for/list[([c clients])]{

<tr><td>@(car c), @(cdr c)</td></tr>

}

</table>

Now the result is:

<table>

</tr>

</tr>

</table>

because only the final expression of the body of the for/list is included in the result. We
can capture all the sub-expressions by using list in the body:

<table>

@for/list[([c clients])]{

@list{

<tr><td>@(car c), @(cdr c)</td></tr>

}

}

</table>

Now the result is:

<table>

<tr><td>Young, Brigham</td></tr>

<tr><td>Smith, Joseph</td></tr>

</table>

The templating library provides a syntactic form to deal with this issue for you called in:

<table>

@in[c clients]{

<tr><td>@(car c), @(cdr c)</td></tr>

}

</table>

Notice how it also avoids the absurd amount of punctuation on line two.

61

7.4 HTTP Responses

The quickest way to generate an HTTP response from a template is using the list response
type:

(list #"text/html" (include-template "static.html"))

If you want more control then you can generate a response/full struct:

(make-response/full

200 #"Okay"

(current-seconds) TEXT/HTML-MIME-TYPE

empty

(list (include-template "static.html")))

Finally, if you want to include the contents of a template inside a larger X-expression :

`(html ,(include-template "static.html"))

will result in the literal string being included (and entity-escaped). If you actually want the
template to be unescaped, then create a cdata structure:

`(html ,(make-cdata #f #f (include-template "static.html")))

7.5 API Details

(include-template path)

Compiles the template at path using the §2 “@ Syntax” syntax within the enclosing lexical
context.

Example:

(include-template "static.html")

(in x xs e ...)

Expands into

(for/list ([x xs])

(begin/text e ...))

Template Example:

62

@in[c clients]{

<tr><td>@(car c), @(cdr c)</td></tr>

}

Scheme Example:

(in c clients "<tr><td>" (car c) ", " (cdr c) "</td></tr>")

7.6 Conversion Example

Al Church has been maintaining a blog with PLT Scheme for some years and would like to
convert to web-server/templates.

The data-structures he uses are defined as:

(define-struct post (title body))

(define posts

(list

(make-post

"(Y Y) Works: The Why of Y"

"Why is Y, that is the question.")

(make-post

"Church and the States"

"As you may know, I grew up in DC, not technically a state.")))

Actually, Al Church-encodes these posts, but for explanatory reasons, we’ll use structs.

He has divided his code into presentation functions and logic functions. We’ll look at the
presentation functions first.

The first presentation function defines the common layout of all pages.

(define (template section body)

`(html

(head (title "Al's Church: " ,section))

(body

(h1 "Al's Church: " ,section)

(div ([id "main"])

,@body))))

One of the things to notice here is the unquote-splicing on the body argument. This
indicates that the body is list of X-expressions. If he had accidentally used only unquote

then there would be an error in converting the return value to an HTTP response.

(define (blog-posted title body k-url)

63

`((h2 ,title)

(p ,body)

(h1 (a ([href ,k-url]) "Continue"))))

Here’s an example of simple body that uses a list of X-expressions to show the newly posted
blog entry, before continuing to redisplay the main page. Let’s look at a more complicated
body:

(define (blog-posts k-url)

(append

(apply append

(for/list ([p posts])

`((h2 ,(post-title p))

(p ,(post-body p)))))

`((h1 "New Post")

(form ([action ,k-url])

(input ([name "title"]))

(input ([name "body"]))

(input ([type "submit"]))))))

This function shows a number of common patterns that are required by X-expressions. First,
append is used to combine different X-expression lists. Second, apply append is used
to collapse and combine the results of a for/list where each iteration results in a list
of X-expressions. We’ll see that these patterns are unnecessary with templates. Another
annoying patterns shows up when Al tries to add CSS styling and some JavaScript from
Google Analytics to all the pages of his blog. He changes the template function to:

(define (template section body)

`(html

(head

(title "Al's Church: " ,section)

(style ([type "text/css"])

"body {margin: 0px; padding: 10px;}"

"#main {background: #dddddd;}"))

(body

(script

([type "text/javascript"])

,(make-cdata

#f #f

"var gaJsHost = ((\"https:\" =="

"document.location.protocol)"

"? \"https://ssl.\" : \"http://www.\");"

"document.write(unescape(\"%3Cscript src='\" + gaJsHost"

"+ \"google-analytics.com/ga.js' "

"type='text/javascript'%3E%3C/script%3E\"));"))

(script

64

([type "text/javascript"])

,(make-cdata

#f #f

"var pageTracker = _gat._getTracker(\"UA-YYYYYYY-Y\");"

"pageTracker._trackPageview();"))

(h1 "Al's Church: " ,section)

(div ([id "main"])

,@body)))) Some of these
problems go away
by using here
strings, as described
in the
documentation on
§12.6.6 “Reading
Strings”.

The first thing we notice is that encoding CSS as a string is rather primitive. Encoding
JavaScript with strings is even worse for two reasons: first, we are more likely to need to
manually escape characters such as "; second, we need to use a CDATA object, because
most JavaScript code uses characters that "need" to be escaped in XML, such as &, but most
browsers will fail if these characters are entity-encoded. These are all problems that go away
with templates.

Before moving to templates, let’s look at the logic functions:

(define (extract-post req)

(define binds

(request-bindings req))

(define title

(extract-binding/single 'title binds))

(define body

(extract-binding/single 'body binds))

(set! posts

(list* (make-post title body)

posts))

(send/suspend

(lambda (k-url)

(template "Posted" (blog-posted title body k-url))))

(display-posts))

(define (display-posts)

(extract-post

(send/suspend

(lambda (k-url)

(template "Posts" (blog-posts k-url))))))

(define (start req)

(display-posts))

To use templates, we need only change template, blog-posted, and blog-posts:

(define (template section body)

(list TEXT/HTML-MIME-TYPE

65

(include-template "blog.html")))

(define (blog-posted title body k-url)

(include-template "blog-posted.html"))

(define (blog-posts k-url)

(include-template "blog-posts.html"))

Each of the templates are given below:

"blog.html":

<html>

<head>

<title>Al's Church: @|section|</title>

<style type="text/css">

body {

margin: 0px;

padding: 10px;

}

#main {

background: #dddddd;

}

</style>

</head>

<body>

<script type="text/javascript">

var gaJsHost = (("https:" == document.location.protocol) ?

"https://ssl." : "http://www.");

document.write(unescape("%3Cscript src='" + gaJsHost +

"google-analytics.com/ga.js'

type='text/javascript'%3E%3C/script%3E"));

</script>

<script type="text/javascript">

var pageTracker = _gat._getTracker("UA-YYYYYYY-Y");

pageTracker._trackPageview();

</script>

<h1>Al's Church: @|section|</h1>

<div id="main">

@body

</div>

</body>

</html>

66

Notice that this part of the presentation is much simpler, because the CSS and JavaScript can
be included verbatim, without resorting to any special escape-escaping patterns. Similarly,
since the body is represented as a string, there is no need to remember if splicing is necessary.

"blog-posted.html":

<h2>@|title|</h2>

<p>@|body|</p>

<h1>Continue</h1>

"blog-posts.html":

@in[p posts]{

<h2>@(post-title p)</h2>

<p>@(post-body p)</p>

}

<h1>New Post</h1>

<form action="@|k-url|">

<input name="title" />

<input name="body" />

<input type="submit" />

</form>

Compare this template with the original presentation function: there is no need to worry
about managing how lists are nested: the defaults just work.

67

8 Troubleshooting and Tips

8.1 Why are my servlets not updating on the server when I change the
code on disk?

By default, the server uses make-cached-url->servlet to load servlets from the disk.
As it loads them, they are cached and the disk is not referred to for future requests. This
ensures that there is a single namespace for each servlet, so that different instances can share
resources, such as database connections, and communicate through the store. The default
configuration of the server (meaning the dispatcher sequence used when you load a configu-
ration file) provides a special URL to localhost that will reset the cache: "/conf/refresh-
servlets". If you want the server to reload your changed servlet code, then GET this URL
and the server will reload the servlet on the next request.

8.2 What special considerations are there for security with the Web
Server?

The biggest problem is that a naive usage of continuations will allow continuations to subvert
authentication mechanisms. Typically, all that is necessary to execute a continuation is its
URL. Thus, URLs must be as protected as the information in the continuation.

Consider if you link to a public site from a private continuation URL: the Referrer field in
the new HTTP request will contain the private URL. Furthermore, if your HTTP traffic is in
the clear, then these URLs can be easily poached.

One solution to this is to use a special cookie as an authenticator. This way, if a URL escapes,
it will not be able to be used, unless the cookie is present. For advice about how to do this
well, see Dos and Don’ts of Client Authentication on the Web from the MIT Cookie Eaters.

Note: It may be considered a great feature that URLs can be shared this way, because dele-
gation is easily built into an application via URLs.

8.3 IE ignores my CSS or behaves strange in other ways

In quirks mode, IE does not parse your page as XML, in particular it will not recognize many
instances of "empty tag shorthand", e.g. "", whereas the Web Server uses
xml to format XML, which uses empty tag shorthand by default. You can change the default
with the empty-tag-shorthand parameter: (empty-tag-shorthand 'never).

68

http://cookies.lcs.mit.edu/pubs/webauth.html

Index
adjust-timeout!, 13
API Details, 62
API Reference, 47
Base64 Encoding, 29
base64-stuffer, 29
Basic Authentication, 43
Basic Combinators, 27
Basic Formlet Usage, 51
bi-directional match expander, 50
bidi-match-going-in?, 50
binding, 34
binding-id, 34
binding:file, 35
binding:file-content, 35
binding:file-filename, 35
binding:file-headers, 35
binding:file?, 35
binding:form, 34
binding:form-value, 34
binding:form?, 34
binding?, 34
Bindings, 36
bindings-assq, 35
Built-in URL patterns, 49
call-with-serializable-current-

continuation, 21
checkbox, 55
clear-continuation-table!, 13
client-cookie, 41
client-cookie-domain, 41
client-cookie-name, 41
client-cookie-path, 41
client-cookie-value, 41
client-cookie?, 41
Command-line Tools, 7
Common Contracts, 9
Continuation Managers, 16
continuation-url?, 14
Conversion Example, 63
cookie->header, 40

create-LRU-manager, 18
create-none-manager, 17
create-timeout-manager, 17
cross, 53
cross*, 53
current-servlet-continuation-

expiration-handler, 13
default, 56
default-stuffer, 32
define-bidi-match-expander, 49
define-coercion-match-expander, 50
define-native, 22
Digest Authentication, 43
dir-store, 29
dispatch-case, 48
dispatch-rules, 47
dispatch-url, 48
Dynamic, 58
embed-formlet, 57
embed/url/c, 9
exists-binding?, 37
exn:fail:servlet-manager:no-

continuation, 17
exn:fail:servlet-manager:no-

continuation-expiration-handler,
17

exn:fail:servlet-manager:no-

continuation?, 17
exn:fail:servlet-manager:no-

instance, 16
exn:fail:servlet-manager:no-

instance-expiration-handler,
16

exn:fail:servlet-manager:no-

instance?, 16
expiration-handler/c, 9
Extending web-server/dispatch, 49
extract-binding/single, 36
extract-bindings, 36
Extracting Cookies, 41
File Boxes, 24
file-box, 24
file-box-set!, 25

69

file-box-set?, 25
file-box?, 24
file-unbox, 24
formlet, 52
formlet, 53
formlet-display, 54
formlet-process, 54
formlet/c, 53
Formlets: Functional Form Abstraction, 51
Functional Usage, 53
General, 16
Gotchas, 60
GZip Compression, 29
gzip-stuffer, 29
Hash-addressed Storage, 30
hash-fun/c, 30
hash-stuffer, 30
header, 34
header-field, 34
header-value, 34
header?, 34
headers-assq, 34
headers-assq*, 34
Helpers, 31
HMAC-SHA1, 30
HMAC-SHA1 Signing, 30
HMAC-SHA1-stuffer, 30
HTTP Responses, 62
HTTP: Hypertext Transfer Protocol, 34
id-stuffer, 28
IE ignores my CSS or behaves strange in

other ways, 68
in, 62
include-template, 62
input-int, 57
input-string, 56
input-symbol, 57
Instant Servlets, 2
integer-arg, 49
interface-version, 20
interface-version, 8
is-url-too-big?, 31

k-url?, 9
Key/Value Storage, 29
LRU, 18
make-basic-auth-header, 43
make-binding, 34
make-binding:file, 35
make-binding:form, 34
make-check-digest-credentials, 44
make-client-cookie, 41
make-coerce-safe?, 50
make-cookie, 40
make-default-stuffer, 31
make-digest-auth-header, 44
make-exn:fail:servlet-manager:no-

continuation, 17
make-exn:fail:servlet-manager:no-

instance, 16
make-header, 34
make-input, 55
make-manager, 16
make-request, 35
make-response/basic, 37
make-response/full, 37
make-response/incremental, 38
make-soft-state, 26
make-store, 29
make-stuffer, 27
make-threshold-LRU-manager, 19
make-web-cell, 14
make-web-cell, 24
make-web-parameter, 25
make-xexpr-response, 39
manager, 20
manager, 16
manager, 8
manager-adjust-timeout!, 16
manager-clear-continuations!, 16
manager-continuation-lookup, 16
manager-continuation-store!, 16
manager-create-instance, 16
manager?, 16
md5-stuffer, 30

70

Native Interfaces, 22
native->serial, 21
No Continuations, 17
no-web-browser, 2
normalize-response, 39
number-arg, 49
password->digest-HA1, 44
password-input, 55
permanently, 42
Placing Cookies, 39
plt-web-server, 7
Predefined Formlets, 54
pure, 53
real-arg, 49
Redirect, 42
redirect-to, 42
redirect/get, 12
redirect/get, 23
redirect/get/forget, 13
redirection-status?, 42
request, 35
request->basic-credentials, 43
request->digest-credentials, 44
request-bindings, 36
request-bindings/raw, 35
request-client-ip, 35
request-cookies, 41
request-headers, 36
request-headers/raw, 35
request-host-ip, 35
request-host-port, 35
request-method, 35
request-post-data/raw, 35
request-uri, 35
request?, 35
Requests, 34
required, 56
response-generator/c, 9
response/basic, 37
response/basic-code, 37
response/basic-headers, 37
response/basic-message, 37

response/basic-mime, 37
response/basic-seconds, 37
response/basic?, 37
response/c, 38
response/full, 37
response/full-body, 37
response/full?, 37
response/incremental, 38
response/incremental-generator, 38
response/incremental?, 38
Responses, 37
Running Web Servlets, 2
see-other, 42
send/back, 10
send/finish, 12
send/formlet, 57
send/forward, 12
send/suspend, 10
send/suspend, 23
send/suspend/dispatch, 11
send/suspend/dispatch, 23
send/suspend/hidden, 23
send/suspend/url, 23
send/suspend/url, 10
send/suspend/url/dispatch, 23
send/suspend/url/dispatch, 12
serial->native, 21
Serializable Continuations, 21
Serialization, 28
serialize-stuffer, 28
serve/dispatch, 48
serve/servlet, 5
Simple Single Servlet Servers, 2
Soft State, 26
soft-state, 26
soft-state-ref, 26
soft-state?, 26
start, 8
start, 20
Stateful Servlets, 8
Stateless Servlets, 20
Stateless Web Cells, 24

71

Stateless Web Interaction, 23
Stateless Web Parameters, 25
Static, 58
static-files-path, 2
store, 29
store-read, 29
store-write, 29
store?, 29
string-arg, 49
struct:binding, 34
struct:binding:file, 35
struct:binding:form, 34
struct:client-cookie, 41
struct:exn:fail:servlet-

manager:no-continuation, 17
struct:exn:fail:servlet-

manager:no-instance, 16
struct:header, 34
struct:manager, 16
struct:request, 35
struct:response/basic, 37
struct:response/full, 37
struct:response/incremental, 38
struct:store, 29
struct:stuffer, 27
stuffer, 20
stuffer, 27
stuffer-chain, 28
stuffer-compose, 28
stuffer-if, 28
stuffer-in, 27
stuffer-out, 27
stuffer-sequence, 28
stuffer/c, 28
stuffer?, 27
Stuffers, 27
stuffers, 27
symbol-arg, 49
Syntactic Shorthand, 52
tag-xexpr, 54
Templates: Separation of View, 58
temporarily, 42

text, 54
text-input, 55
TEXT/HTML-MIME-TYPE, 39
Timeouts, 17
to-boolean, 56
to-number, 56
to-string, 56
to-symbol, 56
Troubleshooting and Tips, 68
URL-Based Dispatch, 46
Usage Considerations, 32
username*realm->digest-HA1/c, 44
username*realm->password/c, 44
Using web-server/dispatch, 46
Utilities, 57
Web Cells, 14
Web Interaction, 10
web-cell-ref, 24
web-cell-ref, 14
web-cell-shadow, 24
web-cell-shadow, 15
web-cell?, 24
web-cell?, 14
web-parameter?, 25
web-parameterize, 25
web-server, 20
web-server/dispatch, 46
web-server/dispatch/extend, 49
web-server/formlets, 51
web-server/formlets/input, 54
web-server/formlets/lib, 53
web-server/formlets/servlet, 57
web-server/formlets/syntax, 52
web-server/http, 34
web-server/http/basic-auth, 43
web-server/http/bindings, 36
web-server/http/cookie, 39
web-server/http/cookie-parse, 41
web-server/http/digest-auth, 43
web-server/http/redirect, 42
web-server/http/request-structs, 34
web-server/http/response-structs,

72

37
web-server/insta, 2
web-server/lang/abort-resume, 21
web-server/lang/file-box, 24
web-server/lang/native, 22
web-server/lang/soft, 26
web-server/lang/stuff-url, 31
web-server/lang/web, 23
web-server/lang/web-cells, 24
web-server/lang/web-param, 25
web-server/managers/lru, 18
web-server/managers/manager, 16
web-server/managers/none, 17
web-server/managers/timeouts, 17
web-server/servlet, 8
web-server/servlet-env, 2
web-server/servlet/servlet-

structs, 9
web-server/servlet/web, 10
web-server/servlet/web-cells, 14
web-server/stuffers, 27
web-server/stuffers/base64, 29
web-server/stuffers/gzip, 29
web-server/stuffers/hash, 30
web-server/stuffers/hmac-sha1, 30
web-server/stuffers/serialize, 28
web-server/stuffers/store, 29
web-server/stuffers/stuffer, 27
web-server/templates, 58
Web: PLT Web Applications, 1
What special considerations are there for se-

curity with the Web Server?, 68
Why are my servlets not updating on the

server when I change the code on disk?,
68

with-errors-to-browser, 13
xexpr-forest/c, 53
xexpr-response/cookies, 40
xml, 54
xml-forest, 54

73

	1 Running Web Servlets
	1.1 Instant Servlets
	1.2 Simple Single Servlet Servers
	1.3 Command-line Tools

	2 Stateful Servlets
	2.1 Example
	2.2 Common Contracts
	2.3 Web Interaction
	2.4 Web Cells
	2.5 Continuation Managers
	2.5.1 General
	2.5.2 No Continuations
	2.5.3 Timeouts
	2.5.4 LRU

	3 Stateless Servlets
	3.1 Example
	3.2 Serializable Continuations
	3.3 Native Interfaces
	3.4 Stateless Web Interaction
	3.5 Stateless Web Cells
	3.6 File Boxes
	3.7 Stateless Web Parameters
	3.8 Soft State
	3.9 Stuffers
	3.9.1 Basic Combinators
	3.9.2 Serialization
	3.9.3 Base64 Encoding
	3.9.4 GZip Compression
	3.9.5 Key/Value Storage
	3.9.6 Hash-addressed Storage
	3.9.7 HMAC-SHA1 Signing
	3.9.8 Helpers

	3.10 Usage Considerations

	4 HTTP: Hypertext Transfer Protocol
	4.1 Requests
	4.2 Bindings
	4.3 Responses
	4.4 Placing Cookies
	4.5 Extracting Cookies
	4.6 Redirect
	4.7 Basic Authentication
	4.8 Digest Authentication

	5 URL-Based Dispatch
	5.1 Using blueIdentifierColorweb-server/dispatch
	5.2 API Reference
	5.3 Built-in URL patterns
	5.4 Extending blueIdentifierColorweb-server/dispatch

	6 Formlets: Functional Form Abstraction
	6.1 Basic Formlet Usage
	6.2 Syntactic Shorthand
	6.3 Functional Usage
	6.4 Predefined Formlets
	6.5 Utilities

	7 Templates: Separation of View
	7.1 Static
	7.2 Dynamic
	7.3 Gotchas
	7.4 HTTP Responses
	7.5 API Details
	7.6 Conversion Example

	8 Troubleshooting and Tips
	8.1 Why are my servlets not updating on the server when I change the code on disk?
	8.2 What special considerations are there for security with the Web Server?
	8.3 IE ignores my CSS or behaves strange in other ways

	Index

