Plugins: Extending DrScheme

Version 4.2.3

Robert Bruce Findler

December 1, 2009

(require drscheme/tool-1ib)

This manual describes DrScheme’s tools interface. It assumes familiarity with PLT Scheme,
as described in Guide: PLT Scheme, DrScheme, as described in DrScheme: PLT Program-
ming Environment, and the Framework, as described in Framework: PLT GUI Application
Framework.

Contents

|1 Implementing DrScheme Tools|

2 Adding Languages to DrScheme|

2.1 Adding Module-based Languages to DrScheme|

2.2 Adding Arbitrary Languages to DrScheme|.

2.3 Language Extensions|

|3__Creating New Kinds of DrScheme Frames|

[4__Extending the Existing DrScheme Classes|

[Expanding the User’s Program Text and Breaking|

6 Editor Modes

|7 #lang-specific tools|

|8 Language-specific capabilities|

9 drscheme:get/extend|

10 drscheme:unitl

11 drscheme:language|

12 drscheme:language-configuration|

|13 drscheme:debug|

|14 drscheme:rep|

11

12

13

14

15

16

17

20

33

59

62

66

1S drscheme: frame|

|16 drscheme:help-desk|

17 drscheme:evall

74

79

80

84

86

Thanks

Thanks especially to Eli Barzilay, John Clements, Matthias Felleisen, Cormac Flanagan,
Matthew Flatt, Max Hailperin, Philippe Meunier, Christian Queinnec, PLT at large, and
many others for their feedback and help.

1 Implementing DrScheme Tools

Tools are designed for major extensions in DrScheme’s functionality. To extend the appear-
ance or the functionality the DrScheme window (say, to annotate programs in certain ways,
to add buttons to the DrScheme frame or to add additional languages to DrScheme) use a
tool. The Macro Stepper, the Syntax Checker, the Stepper, and the teaching languages are
all implemented as tools.

When DrScheme starts up, it looks for tools by reading fields in the info.ss file of each
collection and the newest version of each PLaneT package installed on the system. (Techni-
cally, DrScheme looks in a cache of the info.ss files contents created by setup-plt. Be sure
to re-run setup-plt if you change the contents of the info.ss files). DrScheme checks for
these fields:

* tools: (listof (listof string [subcollection-name]))
* tool-names: (listof (union #f string))

¢ tool-icons:

(listof (union #f
string[relative-pathname]
(cons string[filename]
(listof stringl[collection-name]))))

* tool-urls: (1listof (union #f string [url]))

The tools field names a list of tools in this collection. Each tool is specified as a collection
path, relative to the collection where the info.ss file resides. As an example, if there is
only one tool named tool. ss, this suffices:

(define tools (list (list "tool.ss')))

If the tool-icons or tool-names fields are present, they must be the same length as
tools. The tool-icons specifies the path to an icon for each tool and the name of each
tool. If it is #£, no tool is shown. If it is a relative pathname, it must refer to a bitmap and if
it is a list of strings, it is treated the same as the arguments to 1ib, inside require.

This bitmap and the name show up in the about box, Help Desk’s bug report form, and the
splash screen as the tool is loaded at DrScheme’s startup.

Each of tools files must contain a module that provides tool@, which must be bound to
a unit. The unit must import the drscheme:tool” signature, which is provided by the
tool.ss library in the drscheme collection. The drscheme:tool~ signature contains all
of the names listed in this manual. The unit must export the drscheme:tool-exports”
signature.

The drscheme:tool-exports™ signature contains two names: phasel and phase2.
These names must be bound to thunks. After all of the tools are loaded, all of the phasel
functions are called and then all of the phase2 functions are called. Certain primitives can
only be called during the dynamic extent of those calls.

This mechanism is designed to support DrScheme’s drscheme:language:language<y>
extension capabilities. That is, this mechanism enables two tools to cooperate via new ca-
pabilities of languages. The first phase is used for adding functionality that each language
must support and the second is used for creating instances of languages. As an example, a
tool may require certain specialized language-specific information. It uses phasel to extend
the drscheme: language: language<J> interface and supply a default implementation of
the interface extension. Then, other languages that are aware of the extension can supply
non-default implementations of the additional functionality.

Phase 1 functions:

* drscheme:language:extend-language-interface

* drscheme:unit:add-to-program-editor-mixin

Phase 2 functions:

¢ drscheme:language-configuration:add-language
¢ drscheme:language:get-default-mixin

¢ drscheme:language:get-language-extensions

If the tool raises an error as it is loaded, invoked, or as the phasel or phase2 thunks are
called, DrScheme catches the error and displays a message box. Then, DrScheme continues
to start up, without the tool.

For example, if the info.ss file in a collection contains:

#lang setup/infotab
(define name "Tool Name')
(define tools (list (list "tool.ss')))

then the same collection would be expected to contain a tool.ss file. It might contain
something like this:

#lang scheme/gui
(require drscheme/tool)

(provide tool@)

(define tool@
(unit
(import drscheme:tool™)
(export drscheme:tool-exports™)
(define (phasel) (message-box "tool example" 'phasel"))
(define (phase2) (message-box "tool example" 'phase2"))
(message-box "tool example" "unit invoked")))

This tool just opens a few windows to indicate that it has been loaded and that the phasel
and phase2 functions have been called.

2 Adding Languages to DrScheme

2.1 Adding Module-based Languages to DrScheme

If a language can be implemented as a module (see module for details) and the standard
language settings are sufficient, simply create an info.ss file in the collection where the
module is saved. Include these definitions:

* drscheme-language-modules: This must be bound to a list of collection path spec-
ifications or strings, one for each language in the collection. Each collection path
specification is the quoted form of what might appear as an argument to require,
using the 1ib argument (but without the 1ib). The strings represent relative paths
starting at the directory containing the info.ss file. They are interpreted like string
arguments to require.

* drscheme-language-positions: This must be bound to a list of language positions.
Each language position corresponds to the position of the language in language dialog.
Each language position is a list of strings whose length must be at least two.

¢ drscheme-language-numbers: This is optional. If present, it must be a list of a list
of numbers. Each list corresponds to a single language from this collection. Each
number indicates a sorting order in the language dialog for the corresponding string
in drscheme-language-positions. If absent, it defaults to a list of zeros that has the
same length as drscheme-language-positions. This will rarely be correct.

* drscheme-language-one-line-summaries: This is optional. If present, it must be a
list of strings. Each string is displayed at the bottom of the language dialog when the
corresponding language is selected.

* drscheme-language-urls: This is optional. If present, it must be a list whose ele-
ments are either strings or #f. Clicking the corresponding language’s name in the
interactions window opens a web browser to the url.

* drscheme-language-readers: This is optional. If present, it must be bound to a
quoted list of module specifications (that is, a quoted version of the argument to re-
quire). Each specification must be a module that exports a function named read-
syntax. Each of these read-syntax functions must match MzScheme’s read-
syntax primitive’s contract, but may read different concrete syntax.

If the module specification is a plain string, it represents a relative path starting at the
directory containing the info.ss file. It is interpreted like the string arguments to
require.

The lists must have the same length.

As an example, the Essentials of Programming Languages language specification’s info.ss
looks like this:

#lang setup/infotab
(require string-constants)
(define name "EoPL Support")
(define drscheme-language-modules
(1ist "eopl-lang.ss'"))
(define drscheme-language-positions
(list (1ist (string-constant teaching-languages)
"Essentials of Programming Languages")))

This info. ss file indicates that there is a single language in this collection. The module that
implements the language is the eopl-lang. ss file in the same directory as the info. ss file.
Additionally, the language dialog will contain Essentials of Programming Languages
as a potential language. The use of the string constant teaching-languages ensures that
EoPL’s language is placed properly in foreign language versions of DrScheme.

For collections that define multiple (related) languages, if the language-positions contain
multiple strings, the languages whose leading strings match are grouped together. That is, if
two languages have strings:

’("My Text" "First Language")
and
’("My Text" "Second Language")

the two languages will be grouped together in the language dialog.

2.2 Adding Arbitrary Languages to DrScheme

With some additional work, any language that can be compiled to PLT Scheme is supported
by the tools interface, not just those that use standard configurations and module.

Each language is a class that implement the drscheme: language: language<7> interface.
DrScheme also provides two simpler interfaces: drscheme:language:module-based-
language<’,> and drscheme:language:simple-module-based-language<}>, and
mixins drscheme:language:simple-module-based-language->module-based-
language-mixin and drscheme:language:module-based-language->language-
mixin that build implementations of language~s from these simpler interfaces.

Once you have an implementation of the drscheme: language: language™ interface, call
drscheme:language-configuration:add-language to add the language to DrScheme.

Each language comes with its own type, called settings. This can be any type the lan-
guage designer chooses, but to aid documentation, we call it settings here. The settings
type is expected to contain parameters of the language, such as case sensitivity, etc. The

implementor of the language provides a GUI so the user can configure the settings and all of
the language’s operations accept a setting. DrScheme maintains the current settings for each
language.

2.3 Language Extensions

Some tools may require additional functionality from the drscheme: language: language
interface. The drscheme:language:extend-language-interface function and the
drscheme:language:get-default-mixin mixin make this possible.

For example, the MrFlow tool expands a program, analyzes it and then displays sets of
values for each program point. These sets of values should be rendered in the syntax
of the language that MrFlow analyzes. Since MrFlow doesn’t know which languages are
available, it can call drscheme:language:extend-language-interface to extend the
drscheme: language: language<%> interface with a method for rendering sets of values
and provide a default implementation of that method. Tools that know about MrFlow can
then override the value rendering method to provide a language-specific implementation of
value rendering. Additionally, since the drscheme:language:get-default-mixin adds
the default implementation for the value-set rendering method, all languages at least have
some form of value-set rendering.

In some cases, it is important for one tool to avoid depending on another in the manner
above. For example, if a tool that provides a new language provides an implementation for
the MrFlow-specific method, that tool may fail to load if MrFlow is not present (Indeed, with
the tool manager, this can happen to any tool that depends on another in this manner.)

To avoid this problem, consider writing your tool to first check to see if the base method
is available before extending it. For example, if the MrFlow tool provides the render-
value<%> interface, then a tool that overrides that method can first test to see if the super-
class implements that method before overriding it:

(define (my-language-mixin %)
(if (implementation? % mrflow:render-value<y>)
(class %
(define/override ...)
(super-new))

%))

To help test your tool, use the PLTONLYTOOL environment variable to load it in isolation.

10

3 Creating New Kinds of DrScheme Frames

Each frame in DrScheme has certain menus and functionality, most of which is achieved by
using the framework. Additionally, there is one mixin that DrScheme provides to augment
that. It is drscheme:frame:basics-mixin. Be sure to mix it into any new frame class
that you add to DrScheme.

11

4 Extending the Existing DrScheme Classes

Each of the names:

e drscheme:get/extend:
¢ drscheme:get/extend:
e drscheme:get/extend:
e drscheme:get/extend:
e drscheme:get/extend:

e drscheme:get/extend:

extend-interactions-text

extend-definitions-text

extend-interactions-canvas

extend-definitions-canvas

extend-unit-frame

extend-tab

is bound to an extender function. In order to change the behavior of drscheme, you can
derive new classes from the standard classes for the frame, texts, canvases. Each extender
accepts a function as input. The function it accepts must take a class as it’s argument and
return a classes derived from that class as its result. For example:

(drscheme:get/extend:extend-interactions-text

(lambda (super%)
(class super’,
(public methodl)

(define (methodl x) ...)

ce)))

extends the interactions text class with a method named method1.

12

5 Expanding the User’s Program Text and Breaking

Macro-expanding a program may involve arbitrary computation and requires the
setup of the correct language. To aid this, DrScheme’s tool interface provides
drscheme:eval:expand-program to help. Use this method to extract the fully expanded
program text in a particular language.

Because expanding the user’s program may require DrScheme to evaluate arbitrary code
that the user wrote, tools that expand the user’s program should also allow the user to break
the expansion. To help with this, the tools interfaces provides these methods: enable-
evaluation and disable-evaluation. Since your tool will be expanding the program
text, you should be both overriding enable-evaluation and disable-evaluation to
disable your tool and calling them to ensure that only one expansion is happening at a time.

Finally, DrScheme provides the set-breakables method. This method controls what be-
havior the Break button has.

13

6 Editor Modes

DrScheme provides support for multiple editor modes. Tools register modes via
drscheme :modes:add-mode. Each mode is visible in the Modes submenu of the Edit
menu. Initially, DrScheme only supports two modes: scheme mode and text mode.

DrScheme automatically selects a mode for each open file based on the file’s extension. If
the file ends with .txt, DrScheme uses text mode. Otherwise, DrScheme uses Scheme
mode.

14

7 #lang-specific tools

If the result of read-language for a language is a function, DrScheme will query it to
determine if there are any new toolbar buttons to be used when editing files in this language
(when DrScheme’s language is set to the Module language).

Specifically, DrScheme will pass ’drscheme: toolbar-buttons to the function and expect
back a value matching this contract:

(1istof (list/c string?
(is-a?/c bitmap%)
(-> (is-a?/c drscheme:unit:frame<%>) any)))

which is then used to create new toolbar buttons, one for each list in the first. The string is
the label on the button; the bitmap is the icon (it should be 16x16), and the function is called
when the button is clicked.

15

8 Language-specific capabilities

Drscheme’s capability interface provides a mechanism for tools to allow languages to hide
their GUI interface, if the tool does not apply to the language. Tools register capabilities
keyed with symbols via. drscheme:language:register-capability. Once registered,
a tool can query a language, via the capability-value method. The result from this
method controls whether or not the tool shows this part of the GUI for DrScheme.

See drscheme:language:register-capability for a list of the capabilities registered
by default.

16

9 drscheme:get/extend

(drscheme:get/extend:extend-tab mixin) — void?
mixin : (make-mixin-contract drscheme:unit:tab<y>)
(drscheme:get/extend:extend-tab mixin
before?) — void?
mixin : (make-mixin-contract drscheme:unit:tab<)>)
before? . boolean?

This class implements the tabs in drscheme. One is created for each tab in a frame (each
frame always has at least one tab, even if the tab bar is not shown)

The argument, before, controls if the mixin is applied before or after already installed
mixins. If unsupplied, this is the same as supplying #t.

(drscheme:get/extend:extend-interactions-text mixin) — void?
mixin : (make-mixin-contract drscheme:rep:text<i>)
(drscheme:get/extend:extend-interactions-text mixin
before?) — void?
mixin : (make-mixin-contract drscheme:rep:text<y>)
before? . boolean?

This text is used in the bottom window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed
mixins. If unsupplied, this is the same as supplying #t.

(drscheme:get/extend:get-interactions-text)
— (implementation?/c drscheme:rep:text<)>)

Once this function is called, drscheme:get/extend:extend-interactions-text
raises an error, disallowing any more extensions.

(drscheme:get/extend:extend-definitions-text mixin) — void?
mixin : (make-mixin-contract drscheme:unit:definitions-text<)>)
(drscheme:get/extend:extend-definitions-text mixin
before?) — void?
mixin : (make-mixin-contract drscheme:unit:definitions-text<y>)
before? . boolean?

This text is used in the top window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed

17

mixins. If unsupplied, this is the same as supplying #£.

(drscheme:get/extend:get-definitions-text)
— (implementation?/c drscheme:unit:definitions-text<y>)

Once this function is called, drscheme:get/extend: extend-definitions-text raises
an error, disallowing any more extensions.

(drscheme:get/extend:extend-interactions-canvas mixin) — void?
mixin : (make-mixin-contract drscheme:unit:interactions-canvas¥)
(drscheme:get/extend:extend-interactions-canvas mixin
before?)
— void?
mixin : (make-mixin-contract drscheme:unit:interactions-canvas¥)
before? : boolean?

This canvas is used in the bottom window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed
mixins. If unsupplied, this is the same as supplying #£.

(drscheme:get/extend:get-interactions-canvas)
— (subclass?/c drscheme:unit:interactions-canvas)

Once this function is called, drscheme:get/extend:extend-interactions-canvas
raises an error, disallowing any more extensions.

(drscheme:get/extend:extend-definitions-canvas mixin) — void?
mixin : (make-mixin-contract drscheme:unit:definitions-canvas?)
(drscheme:get/extend:extend-definitions-canvas mixin
before?) — void?
mixin : (make-mixin-contract drscheme:unit:definitions-canvas¥)
before? . boolean?

This canvas is used in the top window of drscheme frames.

The argument, before, controls if the mixin is applied before or after already installed
mixins. If unsupplied, this is the same as supplying #£.

(drscheme:get/extend:get-definitions-canvas)
— (subclass?/c drscheme:unit:definitions-canvas)

Once this function is called, drscheme:get/extend:extend-definitions-canvas

18

raises an error, disallowing any more extensions.

(drscheme:get/extend:extend-unit-frame mixin) — void?
mixin : (make-mixin-contract drscheme:unit:frame,)
(drscheme:get/extend:extend-unit-frame mixin
before?) — void?
mixin : (make-mixin-contract drscheme:unit:frame,)
before? : boolean?

This is the frame that implements the main drscheme window.

The argument, before, controls if the mixin is applied before or after already installed
mixins. If unsupplied, this is the same as supplying #£.

(drscheme:get/extend:get-unit-frame)
— (subclass?/c drscheme:unit:frame’,)

Once this function is called, drscheme: get/extend: extend-unit-frame raises an error,
disallowing any more extensions.

19

10 drscheme:unit

drscheme:unit:tab<%> : interface?
implements: drscheme:rep:context<y>

(send a-drscheme:unit:tab break-callback) — void?

Specification: This method is called when the break button is clicked and this
tab is the active tab.

Default implementation: By default, breaks any evaluation that may be happen-
ing at this point.

(send a-drscheme:unit:tab can-close?) — boolean?
Refine this method with augment.
Specification: This method is called to determine if it is okay to close this tab.

Default implementation: Calls the definitions text’s and interactions text’s can-
close? method.

(send a-drscheme:unit:tab disable-evaluation) — void?
Overrides disable-evaluation in drscheme:rep:context<y>.

Disables the Run button, and the Run menu item and locks the interactions
window, and the definitions window.

(send a-drscheme:unit:tab enable-evaluation) — void?
Overrides enable-evaluation in drscheme:rep:context<y>.

Enables the Run button, and the Run menu item and unlocks (via the lock
method) the interactions window and the definitions window.

(send a-drscheme:unit:tab get-breakables)
— (or/c thread? false/c)
(or/c custodian? false/c)

Overrides get-breakables in drscheme:rep: context<y>.

(send a-drscheme:unit:tab get-defs)
— (is-a?/c drscheme:unit:definitions-text<¥%>)

This text is initially the top half of the drscheme window and contains the users
program.

This text defaults to a text), object, but if you change
drscheme:get/extend:extend-definitions-text procedure, it will
use the extended class to create the text.

20

(send a-drscheme:unit:tab get-directory)
— (or/c string? false/c)

Overrides get-directory in drscheme:rep: context<)>.

This is the directory that the file is saved in, or the directory DrScheme started
up in, if the file has not been saved.

(send a-drscheme:unit:tab get-enabled) — boolean?

Indicates if evaluation is currently enabled in this tab. Evaluation is typically
disabled when some evaluation is already running (in another thread).

(send a-drscheme:unit:tab get-frame)
— (is-a?/c drscheme:unit:frame,)

Returns the frame that this tab is inside.

(send a-drscheme:unit:tab get-ints)
— (is-a?/c drscheme:rep:texty)
This text is initially the bottom half of the drscheme window and contains the
users interactions with the REPL.

This text defaults to a drscheme:rep:text), object, but if you use the
drscheme:get/extend:extend-interactions-text procedure, it will use
the extended class to create the text.

(send a-drscheme:unit:tab is-current-tab?) — boolean?

Indicates if this tab is the currently active tab.

(send a-drscheme:unit:tab is-running?) — boolean?

Indicates if the running message in the bottom right of drscheme’s frame should
be “running” or “not running” when this frame is active.

(send a-drscheme:unit:tab on-close) — void?
Refine this method with augment.
Specification: This method is called when the tab is closed.

Default implementation: Calls the definitions text’s on-close and interactions
text’s on-close methods.

(send a-drscheme:unit:tab reset-offer-kill) — void?

Overrides reset-offer-kill in drscheme:rep:context<¥%>.

(send a-drscheme:unit:tab set-breakables thread
custodian) — void?

21

thread : (or/c thread? false/c)
custodian : (or/c custodian? false/c)

Overrides set-breakables in drscheme:rep:context<y>

drscheme:unit:tab’ : class?
superclass: objecty
extends: drscheme:unit:tab<¥>

The base class that implements the tab’s functionality.

(make-object drscheme:unit:tab¥)
— (is-a?/c drscheme:unit:tab¥)

(send a-drscheme:unit:tab clear-annotations) — void?
Overrides clear-annotations in drscheme:rep:context<y>

Clears any error highlighting.

drscheme:unit:program-editor-mixin : (class? . -> . class?)
argument extends/implements: text%
editor:basic<y>

This mixes in the ability to reset the highlighting for error message when the user modifies
the buffer. Use it for editors that have program text where errors can occur.

(send a-drscheme:unit:program-editor after-delete start
len)
— void?
start : number
len : number
Overrides after-delete in texty.
Calls the super method.

Resets an error highlighting.

(send a-drscheme:unit:program-editor after-insert start
len)
— void?
start : number
len : number

22

Overrides after-insert in text}.
Calls the super method.
Resets an error highlighting.

drscheme:unit:interactions-canvas), : class?
superclass: canvas:wide-snip/

(new drscheme:unit:interactions-canvasy, ...superclass-args...)
— (is-a?/c drscheme:unit:interactions-canvasy)

Passes all arguments to super-init.

drscheme:unit:frame’, : class?

superclass: (drscheme:frame:basics-mixin (drscheme:frame:mixin frame:searchable}))
extends: drscheme:unit:frame<y>

This frame inserts the Scheme and Language menus into the menu bar as it is initialized.

(new drscheme:unit:frame), ...superclass-args...)
— (is-a?/c drscheme:unit:frame},)

Passes all arguments to super-init.

(new drscheme:unit:frame’,) — (is-a?/c drscheme:unit:frameY)

Passes all arguments to super-init.

(send a-drscheme:unit:frame add-show-menu-items show-menu)
— void?
show-menu : (is-a?/c menu,)

Overrides <method not found>.

Adds the “Show Definitions”, “Show Interactions” and “Show Contour” menu
items.

(send a-drscheme:unit:frame break-callback) — void?

Specification: This method is called when the user clicks on the break button or
chooses the break menu item.

Default implementation: Breaks the user’s evaluation started by the Run button
(or possibly a queued callback in the user’s eventspace).

23

(send a-drscheme:unit:frame change-to-file file) — void?
file : string?
Loads this file into this already created frame. In normal DrScheme use, this
method is only called if this is the first frame opened and no editing has oc-
curred. It should be safe to call this at anytime, however.

(send a-drscheme:unit:frame edit-menu:between-select-all-and-find)
— void?

Overrides edit-menu:between-select-all-and-find in
frame:standard-menus<%>.

Adds the "Split" and "Collapse" menu items.

(send a-drscheme:unit:frame execute-callback) — void?

Specification: This method is called when the user clicks on the Run button or
chooses the Run menu item.

Default implementation: 1t calls ensure-rep-shown and then it calls do-
many-text-evals passing in the result of get-interactions-text and its
entire range, unless the first two characters are #! in which case, it skips the first
line.

(send a-drscheme:unit:frame file-menu:between-open-and-revert)
— void?

Overrides file-menu:between-open-and-revert in
drscheme:frame:basics-mixin.

Calls the super method and adds a separator-menu-itemy to the menu.

(send a-drscheme:unit:frame file-menu:between-print-and-close)
— void?

Overrides file-menu:between-print-and-close in
drscheme:frame:basics-mixin.

Adds a menu item for printing the interactions.

(send a-drscheme:unit:frame file-menu:between-save-as-and-print)
— void?

Overrides file-menu:between-save-as-and-print in frame:standard-
menus<%>.

Adds a submenu that contains various save options:

¢ save definitions as text

* save interactions

24

¢ save interactions as

e save interactions as text

and adds a separator item.

(send a-drscheme:unit:frame file-menu:print-string) — void?
Overrides file-menu:print-string in frame: standard-menus<y>.

returns "Definitions"

(send a-drscheme:unit:frame file-menu:save-as-string) — void?
Overrides file-menu:save-as-string in frame: standard-menus<y>.

Returns "Definitions".

(send a-drscheme:unit:frame file-menu:save-string) — void?
Overrides file-menu:save-string in frame: standard-menus<%>.

Returns "Definitions".

(send a-drscheme:unit:frame get-break-button)
— (is-a?/c button})

Returns the break button. Mostly used for test suites.

(send a-drscheme:unit:frame get-button-panel)
— (is-a?/c horizontal-panel,)

This panel goes along the top of the drscheme window and has buttons for im-
portant actions the user frequently executes.

A tool can add a button to this panel to make some new functionality easily
accessible to the user.

See also mrlib’s switchable-button}.

(send a-drscheme:unit:frame get-canvas)
— (is-a?/c editor-canvas)

Overrides get-canvas in frame:editor<y>.

Returns the result of get-definitions-canvas.

(send a-drscheme:unit:frame get-canvas)) — (is-a?/c canvas})
Overrides get-canvas, in frame:editor<y>.

Returns the result of drscheme:get/extend:get-definitions-canvas.

(send a-drscheme:unit:frame get-definitions/interactions-panel-parent)
— (is-a?/c vertical-panel})

25

(send a-drscheme:unit:frame get-definitions/interactions-panel-parent)
— void?

Specification: This method is provided so that tools can add area-
container<y>s to the drscheme frame. Override this method so that it returns
a child of the super-classes’s result and insert new children in between.

Default implementation: First case:
Returns the result of get-area-container

Second case:

(send a-drscheme:unit:frame get-editor) — (is-a?/c editor<y>)
Overrides get-editor in frame:editor<y>.

Returns the result of get-definitions-text.

(send a-drscheme:unit:frame get-editory,) — (is-a?/c editor<y>)
Overrides get-editory, in frame:editor<y>.

Returns the result of drscheme:get/extend:get-definitions-text.

(send a-drscheme:unit:frame get-execute-button)
— (is-a?/c button%)

Returns the Run button. Mostly used for test suites.

(send a-drscheme:unit:frame get-text-to-search)
— (is-a?/c text:searching},)

Overrides get-text-to-search in frame: searchable-text-mixin.

returns the text that is active in the last canvas passed to make-searchable

(send a-drscheme:unit:frame make-searchable canvas) — void?
canvas : (is-a7/c drscheme:unit:interactions-canvas?)

stores the canvas, until get-text-to-search is called.

(send a-drscheme:unit:frame on-close) — void?
Overrides on-close in frame: standard-menus<%>.

Sends the result of get-interactions-text the shutdown and on-close
methods.

Calls the super method.

(send a-drscheme:unit:frame on-size) — void?

Overrides on-size in window<%>.

26

Updates the preferences for the window width and height so next time a
drscheme window is opened, it will be this width and height.

(send a-drscheme:unit:frame still-untouched?) — boolean?

Specification: determines if the definitions window has not been modified. Used
in conjunction with change-to-file.

Default implementation: Returns #t if the buffer is empty, it has not been saved
and it is unmodified.

(send a-drscheme:unit:frame update-save-button modified?)
— void?
modified? : any/c
This method hides or shows the save button, based on the modified? argument.

If the save button has not been created yet, it remembers the modified? argu-
ment as an initial visibility for the save button.

This method is called by the set-modified method.

(send a-drscheme:unit:frame update-save-message name) — void?
name : string?

Updates the save message on the drscheme frame. This method is called by the
set-filename method.

(send a-drscheme:unit:frame update-shown) — void?
Overrides <method not found>.

Updates the interactions, definitions, and contour menu items based on the con-
tents of the windows.

drscheme:unit:frame<%> : interface?

(send a-drscheme:unit:frame get-language-menu)
— (is-a?/c menu})

Returns the language-specific menu. This menu is called the
Scheme menu in the Scheme language but is, in general, con-
trolled by the ’drscheme:language-menu-title capability (see
drscheme:language:register-capability for details on capabilities).

(send a-drscheme:unit:frame ensure-defs-shown) — void?

Ensures that the definitions window is visible.

27

(send a-drscheme:unit:frame ensure-rep-hidden) — void?

Makes sure the rep is hidden (by making the definitions window visible).

(send a-drscheme:unit:frame ensure-rep-shown) — void?

Shows the interactions window

(send a-drscheme:unit:frame get-current-tab)
— (is-a?/c drscheme:unit:tab<’>)

Returns the currently active tab.

(send a-drscheme:unit:frame close-current-tab) — void?

Closes the current tab, making some other tab visible. If there is only one tab
open, this method does nothing.

(send a-drscheme:unit:frame get-definitions-canvas)
— (is-a?/c drscheme:unit:definitions-canvas’)

This canvas is the canvas containing the get-definitions-text. Itis initially
the top half of the drscheme window.

This canvas defaults to a drscheme:unit:definitions-canvas?, object, but
if you change the drscheme:get/extend:extend-definitions-canvas
procedure, it will use the class in the parameter to create the canvas.

(send a-drscheme:unit:frame get-definitions-text)
— (is-a?/c drscheme:unit:definitions-text})

Calls result of get-current-tab’s get-defs method.

(send a-drscheme:unit:frame get-insert-menu) — (is-a%?/c menu})

Specification: Returns the Insert menu.

(send a-drscheme:unit:frame get-interactions-canvas)
— (instanceof (derivedfrom drscheme:unit:interactions-canvasy))

This canvas is the canvas containing the get-interactions-text. It is ini-
tially the bottom half of the drscheme window.

This canvas defaults to a drscheme:unit:interactions-canvasy, object,
but if you use the drscheme:get/extend:extend-interactions-canvas
procedure, it will use the extended class to create the canvas.

(send a-drscheme:unit:frame get-interactions-text)
— (instanceof (derivedfrom drscheme:rep:text}))

Calls result of get-current-tab’s get-ints method.

28

(send a-drscheme:unit:frame get-tabs)
— (listof drscheme:unit:tab<¥>)

Returns the list of tabs in this frame.

(send a-drscheme:unit:frame on-tab-change from-tab
to-tab) — void?
from-tab : (is-a?/c drscheme:unit:tab<¥>)
to-tab : (is-a?/c drscheme:unit:tab<i>)
Refine this method with augment.
Specification: Called after a new tab becomes the selected tab in the frame.

Default implementation: The from-tab argument is the previously selected
tab, and the to-tab argument is the newly selected tab.

(send a-drscheme:unit:frame register-capability-menu-item
key
menu)
— void?
key : symbol
menu : (is-a? menu’,)
Registers the menu item that was most recently added as being controlled by the
capability key. This means that the (boolean) value of the capability determines
if the menu item is present in the menu (the capability is checked when the
menus are cliked on).
This assumes that the menu items in this menu are not moved around, except by
the this capability. If they are, things can go funny (i.e., no good checks are in
place).
Note that the capability must be registered separately, via
drscheme:language:register-capability.

(send a-drscheme:unit:frame register-toolbar-button tb) — void?
tb : (is-a?/c switchable-buttoni)

Registers the toolbar button tb. This is required so that the toolbar buttons
properly switch orientation when the toolbar’s position is moved.

(send a-drscheme:unit:frame register-toolbar-buttons tbs)
— void?
tbs : (listof (is-a?/c switchable-button))
Simultaneously registers the toolbar buttons tbs. This is required so that
the toolbar buttons properly switch orientation when the toolbar’s position is
moved.

29

(send a-drscheme:unit:frame unregister-toolbar-button tb)
— void?
tb : (is-a?/c switchable-buttoni)
Unregisters the toolbar button tb. Use this method to ensure that the button is
not referenced by this frame and thus can be gc’d.

drscheme:unit:definitions-text) : class?
superclass: (drscheme:rep:drs-bindings-keymap-mixin (drscheme:unit:program-editor-mixin (schem
extends: drscheme:unit:definitions-text<y>

(new drscheme:unit:definitions-text%)
— (is-a?/c drscheme:unit:definitions-text%)

Passes all arguments to super-init.

(send a-drscheme:unit:definitions-text set-filename) — void?
Overrides <method not found>.

Calls update-save-message.

(send a-drscheme:unit:definitions-text set-modified) — void?
Overrides <method not found>.

Calls update-save-button.

drscheme:unit:definitions-text<%> : interface?

This interface is implemented by the definitions text.

(send a-drscheme:unit:definitions-text after-set-next-settings language-settings)
— void?
language-settings : language-settings

Refine this method with augment.

Specification: Called when the next settings changes. See also get-next-
settings.

Default implementation:

(send a-drscheme:unit:definitions-text begin-metadata-changes)
— void?

30

Augment this method to be notified when DrScheme is changing the buffer to
insert metadata. The metadata is only inserted during saving, so tools that track
changes to DrScheme will need to ignore changes that occur after this method
is called, and before end-metadata-changes is called.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drscheme:unit:definitions-text end-metadata-changes)
— void?

Called when the changes to insert metadata are done, and the editor is back to
its state at the time of the call to begin-metadata-changes.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drscheme:unit:definitions-text get-next-settings)
— language-settings

This method returns the language-settings that will be used when the user next
clicks Run in this DrScheme window.

(send a-drscheme:unit:definitions-text get-port-name-identifier)
— symbol

Returns an identifier that can be used as a port’s name when the editor is not
saved. (If it is saved, the filename of the editor should be used.)

(send a-drscheme:unit:definitions-text get-tab)
— (instanceof drscheme:unit:tab¥)

Returns the editor’s enclosing tab.

(send a-drscheme:unit:definitions-text port-name-matches? id)
— boolean?
id : any
Indicates if the name of a port (which is also saved in the source field of an
exception record) matches this editor.

(send a-drscheme:unit:definitions-text set-needs-execution-message msg)
— void?
msg : string?
Specification: This method, when called, puts this drscheme window in a state
such that interactions submitted to the REPL will trigger a yellow warning mes-
sage. The state is reset when the program is next Run.

Default implementation: Records msg and uses it the next time the user submits
an interaction (unless the Runs first).

31

(send a-drscheme:unit:definitions-text set-next-settings
language-settings
[update-prefs?])
— void?
language-settings : language-settings
update-prefs? : any/c = #t
Changes the language settings for this window. If update-prefs? is a true
value, the preference is changed, which affects newly created windows.

See also after-set-next-settings and get-next-settings.

drscheme:unit:definitions-canvas’, : class?
superclass: editor-canvas’

Initializes the visibility of the save button.

(drscheme:unit:get-program-editor-mixin)
— ((subclass?/c text%) . -> . (subclass?/c text%))

Returns a mixin that must be mixed in to any text} object that might contain program text
(and thus can be in the source field of some syntax object).

See also drscheme:unit:add-to-program-editor-mixin.

(drscheme:unit:add-to-program-editor-mixin mixin) — void?
mixin : ((subclass?/c text)) . -> . (subclass?/c text%))

This function can only be called in phase 1 (see §1 “Implementing DrScheme Tools™ for
details).

Adds mixin to the result of drscheme:unit:get-program-editor-mixin.

(drscheme:unit:open-drscheme-window)

— (is-a?/c drscheme:unit:framel,)
(drscheme:unit:open-drscheme-window filename)
— (is-a?/c drscheme:unit:frame},)

filename : (or/c string? false/c)

Opens a drscheme frame that displays filename, or nothing if filename is #f or not
supplied.

32

11 drscheme:language

drscheme:language: simple-module-based-language<’%> : interface?

This interface represents the bare essentials when defining a module-based language.
Use the drscheme:language:simple-module-based-language->module-based-
language-mixin mixin to construct an implementation of drscheme: language :module-
based-language<%> from an implementation of this interface.

The class drscheme:language:simple-module-based-language provides an imple-
mentation of this interface.

(send a-drscheme:language:simple-module-based-language get-language-numbers)
— (cons number (listof number))

Returns a list of numbers, whose length must be the same as the result of get-
language-position. Each number indicates the sorted order of the language
positions in the language dialog.

(send a-drscheme:language:simple-module-based-language get-language-position)
— (cons string (listof string))

This method is the same as get-language-position.

(send a-drscheme:language:simple-module-based-language get-module)
— s-expression

This method specifies the module that defines the language.

This method replaces front-end/complete-program and front-
end/interaction.

The result is expected to be the module (its initial require) except as value, ie
quoted.

(send a-drscheme:language:simple-module-based-language get-one-line-summary)
— string?

The result of this method is shown in the language dialog when the user selects
this language.

(send a-drscheme:language:simple-module-based-language get-reader)
— (->x () (any/c input-port?) (or/c syntax? eof-object?))

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

33

drscheme:language:simple-module-based-language’, : class?
superclass: object
extends: drscheme:language:simple-module-based-language<}>

(make-object drscheme:language:simple-module-based-language’,
module
language-position
[Ianguage-numbers
one-line-summary
documentation-reference]
reader
language-id)
— (is-a?/c drscheme:language:simple-module-based-languagey)
module : s-expression
language-position : (cons string (listof string))
language-numbers : (cons number (listof number))
= (map (lambda (x) 0) language-position)
one-line-summary : string? = ""
documentation-reference : (or/c false/c something-else) = #f
reader : (->* () (any/c input-port?) (or/c syntax? eof-object?))
language-id : string?
The init args are used as the results of the get-module and get-language-
position methods

(send a-drscheme:language:simple-module-based-language get-language-numbers)
— (cons number (listof number))

Overrides get-language-numbers in drscheme:language:simple-
module-based-language<y>

returns the corresponding init arg.

(send a-drscheme:language:simple-module-based-language get-language-position)
— s-expression

Overrides get-language-position in drscheme:language:simple-
module-based-language<’>

returns the corresponding init arg.

(send a-drscheme:language:simple-module-based-language get-module)
— (cons string (listof string))

Overrides get-module in drscheme:language:simple-module-based-
language<}>

34

returns the corresponding init arg.

(send a-drscheme:language:simple-module-based-language get-one-line-summary)
— string?

Overrides get-one-line-summary in drscheme:language:simple-
module-based-language<’>.

returns the corresponding initialization argument.

(send a-drscheme:language:simple-module-based-language get-reader)
— (->* () (any/c input-port?) (or/c syntax? eof-object?))

Overrides get-reader in drscheme:language:simple-module-based-
language<>.

returns the corresponding init arg.

drscheme:language:simple-module-based-language->module-based-language-mixin : (class? . ->
argument extends/implements: drscheme:language:simple-module-based-language<%>
result implements: drscheme:language:module-based-language<)>

This mixin uses a struct definition for its settings:

(define-struct drscheme:language:simple-settings
(case-sensitive ; boolean?
printing-style ; (symbols ’constructor ’quasiquote ’write
’print)

fraction-style ; (symbols ’mixed-fraction ’mixed-fraction-e
; ’repeating-decimal ’repeating-decimal-e)

show-sharing ; boolean?

insert-newlines ; boolean?

annotations)) ; (symbols ’none ’debug ’debug/profile
; ’test-coverage)

The settings in this structure reflect the settings show in the language configuration dialog for
languages constructed with this mixin. The first controls the input for the language. The rest
specify printing controls for the language. The style ’write is the default style, used in the
MzScheme REPL. The sharing field determines if cycles and sharing in values are displayed
when the value is rendered. The insert newlines field determines if values in the repl are
formatted with write style-line printouts, or with pretty-print multi-line printouts.

(send a-drscheme:language:simple-module-based-language->module-based-language config-panel)
— (case-> (-> settings) (settings -> void))

Overrides <method not found>.

35

Constructs a configuration panel that lets the user configure all of the settings
for this language.

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language default-setting
— settings

Overrides <method not found>.

The defaults for the settings are

* case-sensitiveis #f
* printing-styleis ’write
* show-sharing is #f
* insert-newlines is #t
See also drscheme:language:simple-module-based-language-

>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language default-setting
— boolean?

Overrides <method not found>.

(send a-drscheme:language:simple-module-based-language->module-based-language get-init-code s
— sexpression
settings : settings

Overrides <method not found>.

Creates an s-expression of a module that sets the current-inspector, read-
case-sensitive, and error-value->string parameters. Additionally, it
may load errortrace, if debugging is enabled.

(send a-drscheme:language:simple-module-based-language->module-based-language get-transformer
— s-expression

Overrides <method not found>.

Returns *mzscheme.

(send a-drscheme:language:simple-module-based-language->module-based-language marshall-settin
— writable

Overrides <method not found>.

Constructs a vector from the structure.

36

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language on-execute)
— void?
Overrides <method not found>.
Sets the case sensitivity of the language.
Sets the structure inspector to a new inspector, saving the original inspector for
use during printing.
Sets the global-port-print-handler to print based on the settings struc-
ture, but without any newlines.

If debugging is enabled, it sets the current-eval handler to one that annotates
each evaluated program with debugging annotations. Additionally, it sets the
error-display-handler to show the debugging annotations when an error is
raised.

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language render-value)
— void?
Overrides <method not found>.
Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute)

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language render-value/fo:
— void?
Overrides <method not found>.
Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute)

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language unmarshall-sett

37

— (or/c false/c settings)
Overrides <method not found>.

Builds a settings structure from the vector, or #£ if the vector doesn’t match the
types of the structure.

See also drscheme:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drscheme:language:simple-module-based-language->module-based-language use-mred-launch
— boolean?

Overrides <method not found>.

Returns #t.

drscheme: language :module-based-language<’> : interface?
This interface is for languages that can be implemented with MzScheme modules.

Use the drscheme:language:module-based-language->language-mixin mixin to
construct an implementation of drscheme:language:language<%> from an implemen-
tation of this interface.

(send a-drscheme:language:module-based-language config-panel parent)
— (case-> (-> settings) (settings -> void))
parent : (is-a?/c panel},)

This method is the same as config-panel.

(send a-drscheme:language:module-based-language default-settings)
— settings

This method is the same as default-settings.

(send a-drscheme:language:module-based-language default-settings? settings)
— boolean?
settings : settings

This method is the same as default-settings?.

(send a-drscheme:language:module-based-language get-init-code settings)
— sexp
settings : settings

Returns a module in sexpression form that is used for creating executables. The
module must provide a thunk, called init-code.

38

When either a stand-alone executable or a launcher is created, the module is
required, and init-code is invoked. This procedure is expected to set up the
environment, based on the settings.

(send a-drscheme:language:module-based-language get-language-numbers)
— (cons number (listof number))

This method is the same as get-language-numbers.

(send a-drscheme:language:module-based-language get-language-position)
— (cons string (listof string))

This method is the same as get-language-position.

(send a-drscheme:language:module-based-language get-module)
— s-expression

This method specifies the module that defines the language. It is used to initial-
ize the user’s namespace.

The result is expected to be the module (its initial require) except as value, ie
quoted.

See also get-transformer-module.

(send a-drscheme:language:module-based-language get-one-line-summary)
— string?

The result of this method is shown in the language dialog when the user selects
this language.

(send a-drscheme:language:module-based-language get-reader)
— (->* () (any/c input-port?) (or/c syntax? eof-object?))

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

(send a-drscheme:language:module-based-language get-transformer-module)
— (or/c quoted-module-path #f)

This method specifies the module that defines the transformation language. It is
used to initialize the transformer portion of the user’s namespace.

The result is expected to be the module (its initial require) except as value, ie
quoted or #f.

If the result is #£, no module is required into the transformer part of the names-
pace.

See also get-module.

(send a-drscheme:language:module-based-language marshall-settings settings)

39

— writable
settings : settings

This method is the same as marshall-settings.

(send a-drscheme:language:module-based-language on-execute
settings

run-in-user-thread)
— vod

settings : settings

run-in-user-thread : ((-> void) -> void)

This method is the same as on-execute

(send a-drscheme:language:module-based-language render-value
value

settings

port)
— void?

value : TST

settings : settings

port : port

This method is the same as render-value

(send a-drscheme:language:module-based-language render-value/format
value

settings

port

width)
— void?

value : TST

settings : settings

port . port

width : (or/c number (symbols ’infinity))

This method is the same as render-value/format.

(send a-drscheme:language:module-based-language unmarshall-settings input)
— (or/c settings false/c)
input : writable

This method is the same as unmarshall-settings.

(send a-drscheme:language:module-based-language use-mred-launcher)
— boolean?

This method is called when an executable is created to determine if the exe-
cutable should use the mred or the mzscheme binary.

40

(send a-drscheme:language:module-based-language use-namespace-require/copy?)
— boolean?

Specification: The result of this method controls how the module is attached
to the user’s namespace. If the method returns #t, the mzscheme primitive
namespace-require/copy is used and if it returns #f, namespace-require
is used.

Default implementation: Defaultly returns #£.

drscheme:language :module-based-language->language-mixin : (class? . -> . class?)
argument extends/implements: drscheme:language :module-based-language<%>
result implements: drscheme:language:language<y>

(send a-drscheme:language:module-based-language->language front-end/complete-program)
— (> (or/c sexp/c syntax? eof-object?))

Overrides <method not found>.
Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/interaction.

(send a-drscheme:language:module-based-language->language front-end/interaction)
— (-> (or/c sexp/c syntax? eof-object?))

Overrides <method not found>.
Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/complete-program.

(send a-drscheme:language:module-based-language->language get-language-name)
— string?

Overrides <method not found>.

Returns the last element of the list returned by get-language-position.

(send a-drscheme:language:module-based-language->language on-execute)
— void?
Overrides on-execute in drscheme:language :module-based-
language<}>.
Calls the super method.

Uses namespace-require to install the result of get-module and
Uses namespace-transformer-require to install the result of get-
transformer-module into the user’s namespace.

41

drscheme:language:language<}> : interface?
Implementations of this interface are languages that DrScheme supports.

See §2 “Adding Languages to DrScheme” for an overview of adding languages to DrScheme.

(send a-drscheme:language:language capability-value key) — any
key : symbol

Specification: Returns the language-specific value for some capability. See also
drscheme:language:register-capability.

Default implementation: Defaultly returns the value from:
drscheme:language:get-capability-default.

(send a-drscheme:language:language config-panel parent)
— (case-> (-> settings) (settings -> void))
parent : (is-a?/c panel},)

This method used by the language configuration dialog to construct the "details"
panel for this language. It accepts a parent panel and returns a get/set function

that either updates the GUI to the argument or returns the settings for the current
GUL

(send a-drscheme:language:language create-executable
settings

parent

program-filename)

— void?

settings : settings

parent : (or/c (is-a?/c dialog}) (is-a?/c frame%))
program-filename : string?

This method creates an executable in the given language. The program-
filename is the name of the program to store in the executable and
executable-filename is the name of a file where the executable goes.

See also drscheme:language:create-module-based-stand-alone-
executable and drscheme:language:create-module-based-launcher.

(send a-drscheme:language:language default-settings)
— settings

Specifies the default settings for this language.

(send a-drscheme:language:language default-settings? settings)

42

— boolean?
settings : settings

Return #t if the input settings matches the default settings obtained via
default-settings.

(send a-drscheme:language:language first-opened) — void?

This method is called when the language is initialized, but no program is run. It
is called from the user’s eventspace’s main thread.

See also initialize-console.

(send a-drscheme:language:language front-end/complete-program
port
settings)
— (-> (or/c sexp/c syntax? eof-object?))
port : port
settings : settings
front-end/complete-program method reads, parses, and optionally com-
piles a program in the language. The first argument contains all of the data to
be read (until eof) and the second argument is a value representing the source of
the program (typically an editor, but may also be a string naming a file or some
other value).

The third argument is the current settings for the language. The front-
end/complete-program method is expected to return a thunk that is called
repeatedly to get all of the expressions in the program. When all expressions
have been read, the thunk is expected to return eof.

This method is only called for programs in the definitions window. Notably, it
is not called for programs that are loaded or evaled. See current-load and
current-eval for those.

This method is expected to raise an appropriate exception if the program is
malformed, eg an exn: syntax or exn:read.

This is called on the user’s thread, as is the thunk it returns.

Implementations of this method should not return fully expanded expressions,
since there are two forms of expansion, using either expand or expand-top-
level-with-compile-time-evals and the use of the expanded code dictates
which applies.

See also front-end/interaction and front-end/finished-complete-
program.

(send a-drscheme:language:language front-end/finished-complete-program settings)
— any
settings : settings

43

This method is called when Run is clicked, but only after front-
end/complete-program has been called. Specifically, front-
end/complete-program is first called to get a thunk that reads from
the program. That thunk is called some number of times, eventually returning
eof, or raising an exception. Then, this method is called.

This method is called on the user’s main eventspace thread, and without a
prompt or other control delimiter. It must return without raising an error, or
else the DrScheme window will be wedged.

(send a-drscheme:language:language front-end/interaction
port
settings)
— (> (or/c sexp/c syntax? eof-object?))
port : input-port
settings : settings
This method is just like front-end/complete-program except that it is called
with program fragments, for example the expressions entered in the interactions
window. It is also used in other contexts by tools to expand single expressions.

See also front-end/finished-complete-program.

(send a-drscheme:language:language get-comment-character)
— string? char?

Returns text to be used for the “Insert Large Letters” menu item in DrScheme.
The first result is a prefix to be placed at the beginning of each line and the
second result is a character to be used for each pixel in the letters.

(send a-drscheme:language:language get-language-name)
— string?

Returns the name of the language, as shown in the REPL when executing pro-
grams in the language and in the bottom left of the drscheme window.

(send a-drscheme:language:language get-language-numbers)
— (cons number (listof number))

This method is used in a manner analogous to get-language-position.

Each element in the list indicates how the names at that point in dialog will be
sorted. Names with lower numbers appear first. If two languages are added to
DrScheme with the same strings (as given by the get-language-position
method) the corresponding numbers returned by this method must be the same.
Additionally, no two languages can have the same set of numbers.

(Note: this method should always return the same result, for the same language.)

(send a-drscheme:language:language get-language-position)

44

— (cons string (listof string))

This method returns a list of strings that is used to organize this language with
the other languages. Each entry in that list is a category or subcategory of the
language and the last entry in the list is the name of the language itself. In the
language dialog, each element in the list except for the last will be a nested turn
down triangle on the left of the dialog. The final entry will be the name that
the user can choose to select this language. Names that are the same will be
combined into the same turndown entry.

For example, if one language’s position is:

(1ist "General Category" "Specific Category" "My Lan-
guage")
and another’s is:

(list "General Category" "Specific Category" "My Other
Language")
The language dialog will collapse the first two elements in the list, resulting in
only a pair of nested turn-down triangles, not parallel pairs of nested turn-down
triangles.

(send a-drscheme:language:language get-language-url)
— (or/c string? false/c)

Specification: Returns a url for the language.

Default implementation: If the result isn’t #f, the name of the language is click-
able in the interactions window and clicking takes you to this url.

(send a-drscheme:language:language get-metadata modname
settings)
— string?

modname : symbol?

settings : any/c
This method is only called when get-reader-module returns an sexp.
It is expected to return a string that contains N lines, where N is the result of
calling get-metadata-lines. The string is prefixed to the buffer before the

file is saved by DrScheme, and removed from the buffer after it is opened in
DrScheme.

The string is expect to be a prefix to the file that sets up a reader for files in this
language, using #reader.

The modname argument’s printed form is the same as the file’s name, but with-
out the path, and without an extension. The settings argument is the current
language’s settings value.

See also metadata->settings, get-metadata-lines, and get-reader-
module.

45

(send a-drscheme:language:language get-metadata-lines)
— number

This method is only called when get-reader-module returns an sexp.

The result of the method is a count of the number of lines in the strings that get-
metadata returns. The get-metadata function does not necessarily return the
same string each time it is called (see metadata->settings) but it is expected
to always return a string with a fixed number of lines, as indicated by the result
of this method.

(send a-drscheme:language:language get-one-line-summary)
— string?

Specification: The result of this method is shown in the language dialog when
the user selects this language.

Default implementation:

(send a-drscheme:language:language get-reader-module)
— (or/c sexp-representing-a-require-spec false/c)

The result of this method is used when saving or loading files.

If the result is a sexp, saved files get a prefix inserted at the beginning (the
prefix is determined by calling get-metadata). When the file is then loaded,
DrScheme recognizes this prefix and sets the language back to match the saved
file.

See also metadata->settings, get-metadata-lines, and get-metadata.

(send a-drscheme:language:language get-style-delta)
— (or/c #f (is-a?/c style-delta’) (listof (list/c (is-a?/c style-delta),) number? number?)))

The style delta that this method returns is used in the language dialog and the
DrScheme REPL when the language’s name is printed.
When it is #£, no styling is used.

If the result is a list, each element is expected to be a list of three items, a style-
delta, and two numbers. The style delta will be applied to the corresponding
portion of the name.

(send a-drscheme:language:language marshall-settings settings)
— writable
settings : settings

Translates an instance of the settings type into a scheme object that can be writ-
ten out to disk.

(send a-drscheme:language:language metadata->settings metadata)

46

— settings
metadata : string?

This method is only called when get-reader-module returns an sexp.

When a file is opened in DrScheme, if this language’s get-reader-module
returns an sexp, the prefix of the file (the first N lines, where N is the number
returned by get-metadata-1lines) is scanned for "#reader" followed by the
result of get-reader-module. If that pattern is found, the language is set to
this language. Also, the entire prefix is passed, as a string, to this method which
returns a settings value, used as the settings for this language.

(send a-drscheme:language:language on-execute
settings

run-in-user-thread)

— any

settings : settings

run-in-user-thread : ((-> any) -> any)

The on-execute method is called on DrScheme’s eventspace’s main thread
before any evaluation happens when the Run button is clicked. It is also called
when a new DrScheme tab (or window) is created to initialize the empty inter-
actions window.

Use this method to initialize MzScheme’s §10.3.2 “Parameters” for the user.
When this function is called, the user’s thread has already been created, as
has its custodian. These parameters have been changed from the defaults in
MzScheme:

e current-custodian is set to a new custodian.

e current-namespace has been set to a newly created empty
namespace.This namespace has the following modules copied (with
namespace-attach-module) from DrScheme’s original namespace:

— ’mzscheme
— ’(1lib "mred.ss" '"mred")
* read-curly-brace-as-paren is #t,
* read-square-bracket-as-paren is #t,

* The port-write-handler and port-display-handler have been set
to procedures that call pretty-print and pretty-display instead of
write and display. When pretty-print and pretty-display are
called by these parameters, the pretty-print-columns parameter is set
to ’infinity, so the output looks just like write and display. This is
done so that special scheme values can be displayed as snips.

e The current-print-covert-hook is to a procedure so that snip¥s are
just returned directly to be inserted into the interactions text? object.

47

The output and input ports are set to point to the interactions window with
these parameters: current-input-port, current-output-port, and
current-error-port.

The event-dispatch-handler is set so that DrScheme can perform
some initial setup and close down around the user’s code.

The current-directory and current-load-relative-directory
are set to the directory where the definitions file is saved, or if it isn’t
saved, to the initial directory where DrScheme started up.

The snip-class-list, returned by get-the-snip-class-1list is initial-
ized with all of the snipclasses in DrScheme’s eventspace’s snip-class-list.

The error-print-source-location parameter is set to #f and the
error-display-handler is set to a handler that creates an error mes-
sage from the exception record, with font and color information and inserts
that error message into the definitions window.

The run-in-user-thread arguments accepts thunks and runs them on the
user’s eventspace’s main thread. These thunks must not raise an exceptions
(or drscheme itself will get stuck). In addition, the output ports are not yet
functioning, so print outs should be directed to the original drscheme output
port, if necessary.

(send a-drscheme:language:language order-manuals manuals)

— (list

of bytes?) boolean?

manuals : (listof bytes?)

Returns a sublist of its input, that specifies the manuals (and their order) to
search in. The boolean result indicates if doc.txt files should be searched.

(send a-drscheme:language:language render-value value

— void?
value

settings
port)

¢ TST

settings : settings
port : port

This method is just like render-value/format except that it is expected to
put the entire value on a single line with no newline after the value.

(send a-drscheme:language:language render-value/format

value

settings

port
width)
— void?
value

: TST

48

settings : settings
port . port
width : (or/c number (symbols ’infinity))

This method is used to print values into a port, for display to a user. The final
argument is a maximum width to use (in characters) when formatting the value.

This method is expected to format the value by inserting newlines in appropriate
places and is expected to render a newline after the value.

See also render-value.

(send a-drscheme:language:language unmarshall-settings input)
— (or/c settings false/c)
input : writable

Translates a Scheme value into a settings, returning #£ if that is not possible.

drscheme: language:object/c : contract?

(object-contract
(config-panel (-> (is-a?/c area-container<y%>)
(case-> (-> any/c void?)
(-> any/c))))
(create-executable (-> any/c
(or/c (is-a?/c dialog)) (is-a?/c frame%))
path?
void?))
(default-settings (-> any/c))
(default-settings? (-> any/c boolean?))
(front-end/complete-program (-> input-port?
any/c
(-> any/c)))
(front-end/interaction (-> input-port?
any/c
(-> any/c)))
(get-language-name (-> string?))
(get-language-numbers (-> (cons/c number? (listof number?))))
(get-language-position (-> (cons/c string? (listof string?))))
(get-language-url (-> (or/c false/c string?)))
(get-one-line-summary (-> string?))
(get-comment-character (-> (values string? char?)))
(get-style-delta
(-> (or/c false/c
(is-a?/c style-deltal,)
(listof
(1ist/c (is-a?/c style-deltal,)

49

number?
number?)))))
(marshall-settings (-> any/c printable/c))
(on-execute (-> any/c (-> (-> any) any) any))
(render-value (-> any/c
any/c
output-port?
void?))
(render-value/format (-> any/c
any/c
output-port?
(or/c number? (symbols ’infinity))
any))
(unmarshall-settings (-> printable/c any))

(capability-value
(->d ((s (and/c symbol?
drscheme:language:capability-registered?)))
O
(res (drscheme:language:get-capability-contract s)))))

(drscheme:language:register-capability s
the-contract
default) — void?
s : symbol?
the-contract : contract?
default : the-contract

Registers a new capability with a default value for each language and a contract on the values
the capability might have.

By default, these capabilities are registered as DrScheme starts up:

e ’drscheme:check-syntax-button : boolean? = #t— controls the visiblity of
the check syntax button

e ’drscheme:language-menu-title : string? = (string-constant
scheme-menu-name)— controls the name of the menu just to the right of the
language menu (defaultly named “Scheme”)

e ’drscheme:define-popup : (or/c (cons/c string? string?) false/c)
= (cons "(define" "(define ...)")— specifies the prefix that the define
popup should look for and what label it should have, or #f if it should not appear at
all

¢ ’drscheme:help-context-term : (or/c false/c string?) = #f— speci-

50

fies a context query for documentation searches that are initiated in this language,
can be #f (no change to the user’s setting) or a string to be used as a context query
(note: the context is later maintained as a cookie, "" is different from #f in that it
clears the stored context)

e ’drscheme:special:insert-fraction : boolean? = #t— determines if the
insert fraction menu item in the special menu is visible

* ’drscheme:special:insert-lambda : boolean? = #t— determines if the in-
sert lambda menu item in the special menu is visible

e ’drscheme:special:insert-large-letters : boolean? = #t— determines
if the insert large letters menu item in the special menu is visible

e ’drscheme:special:insert-image : boolean? = #t— determines if the in-
sert image menu item in the special menu is visible

e ’drscheme:special:insert-comment-box : boolean? = #t— determines if
the insert comment box menu item in the special menu is visible

* ’drscheme:special:insert-gui-tool : boolean? = #t— determines if the
insert gui menu item in the special menu is visible

e ’drscheme:special:slideshow-menu-item : boolean? = #t— determines
if the insert pict box menu item in the special menu is visible

* ’drscheme:special:insert-text-box : boolean? = #t— determines if the
insert text box menu item in the special menu is visible

e ’drscheme:special:xml-menus : boolean? = #t— determines if the insert
scheme box, insert scheme splice box, and the insert xml box menu item in the special
menu are visible

¢ ’drscheme:autocomplete-words : (listof string?) = ’()— determines
the list of words that are used when completing words in this language

¢ ’drscheme:tabify-menu-callback : (or/c false/c (-> (is-a?/c
text’) number? number? void?)) = (A (t a b) (send t tabify-
selection a b))—is used as the callback when the “Reindent” or “Reindent All”
menu is selected. The first argument is the editor, and the second and third are a range
in the editor.

(drscheme: language:capability-registered? s) — boolean?
s @ symbol?

Indicates if drscheme: language:register-capability has been called with s.

(drscheme:language:get-capability-default s)

51

— (drscheme:language:get-capability-contract s)
s : (and/c symbol? drscheme:language:capability-registered?)

Returns the default for a particular capability.

(drscheme: language:get-capability-contract s) — contract?
s : (and/c symbol? drscheme:language:capability-registered?)

Returns the contract for a given capability, which was specified when
drscheme:langauge:register-capability was called.

(drscheme:language:add-snip-value test-value
convert-value
[setup-thunk]) — void?
test-value : (-> any/c boolean?)
convert-value : (-> any/c (is-a?/c snip%))
setup-thunk : (-> any/c) = void

Registers a handler to convert values into snips as they are printed in the REPL.

The test-snip argument is called to determine if this handler can convert the value and the
convert-value argument is called to build a snip. The (optional) setup-thunk is called
just after the user’s namespace and other setings are built, but before any of the user’s code
is evaluated.

All three functions are called on the user’s thread and with the user’s settings.

(drscheme: language:extend-language-interface

interface

default-implementation)
— void?

interface : interface?

default-implementation : (make-mixin-contract drscheme:language:language<’>)

This function can only be called in phase 1 (see §1 “Implementing DrScheme Tools™ for
details).

Each language added passed to drscheme:language-configuration:add-language
must implement interface.

The default-implementation is a mixin that provides a default implementation of in-
terface. Languages that are unaware of the specifics of extension use default-
implementation via drscheme:language:get-default-mixin.

52

(drscheme:language:get-default-mixin)
— (make-mixin-contract drscheme: language: 1a_nguage<%>)

This function can only be called in phase 2 (see §1 “Implementing DrScheme Tools™ for
details).

The result of this function is the composite of all of the default-implementation argu-
ments passed to drscheme: language : extend-language-interface.

(drscheme: language: get-language-extensions)
— (listof interface?)

This function can only be called in phase 2 (see §1 “Implementing DrScheme Tools™ for
details).

Returns a list of the interfaces passed to drscheme:language:extend-language-
interface.

(drscheme: language:put-executable parent
program-filename
mode
mred?
title)

— (or/c false/c path?)

parent : (is-a?/c top-level-window<%>)

program-filename : path?

mode : (or/c boolean? (symbols ’launcher ’standalone ’distribution))
mred? : boolean?

title : string?

Calls the MrEd primitive put-file with arguments appropriate for creating an executable
from the file program-filename.

The arguments mred? and mode indicates what type of executable this should be (and the
dialog may be slightly different on some platforms, depending on these arguments). For
historical reasons, #f is allowed for mode as an alias for ’ launcher, and #t is allowed for
mode as an alias for ’stand-alone.

The title argument is used as the title to the primitive put-file or get-directory
primitive.

53

(drscheme:language:create-executable-gui parent
program-name
show-type
show-base)
— (or/c false/c
(1ist/c (symbols ’no-show ’launcher ’stand-alone ’distribution)
(symbols ’no-show ’mred ’mzscheme)
string?))
parent : (or/c false/c (is-a?/c top-level-window<}>))
program-name : (or/c false/c string?)
show-type : (or/c (A (x) (eq? x #t)) (symbols ’launcher ’standalone ’distribution))
show-base : (or/c (A (x) (eq? x #t)) (symbols ’mzscheme ’mred))

Opens a dialog to prompt the user about their choice of executable. If show-type is #t,
the user is prompted about a choice of executable: stand-alone, launcher, or distribution;
otherwise, the symbol determines the type. If show-base is #t, the user is prompted about
a choice of base binary: mzscheme or mred; otherwise the symbol determines the base.

The program-name argument is used to construct the default executable name in a platform-
specific manner.

The parent argument is used for the parent of the dialog.

The result of this function is #f if the user cancel’s the dialog and a list of three items
indicating what options they chose. If either show-type or show-base was not #t, the
corresponding result will be "no-show, otherwise it will indicate the user’s choice.

(drscheme: language: create-module-based-stand-alone-executable
program-filename

executable-filename

module-language-spec
transformer-module-language-spec
init-code

gui?

use-copy?)
— void?

program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c

gui? : boolean?

use-copy? : boolean?

This procedure creates a stand-alone executable in the file executable-filename that runs

54

the program program-filename.

The arguments module-language-spec and transformer-module-language-spec
specify the settings of the initial namespace, both the transformer portion and the regular
portion. Both may be #f to indicate there are no initial bindings.

The init-code argument is an s-expression representing the code for a module. This mod-
ule is expected to provide the identifer init-code, bound to a procedure of no arguments.
That module is required and the init-code procedure is executed to initialize language-
specific settings before the code in program-filename runs.

The gui? argument indicates if a MrEd or MzScheme stand-alone executable is created.

The use-copy? argument indicates if the initial namespace should be populated with
namespace-require/copy or namespace-require.

(drscheme:language:create-module-based-distribution
program-filename

distribution-filename

module-language-spec
transformer-module-language-spec

init-code

gui?

use-copy?)
— void?

program-filename : (or/c path? string?)
distribution-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c

gui? : boolean?

use-copy? : boolean?

Like drscheme:language:create-module-based-stand-alone-executable, but
packages the stand-alone executable into a distribution.

(drscheme:language:create-distribution-for-executable
distribution-filename

gui?

make-executable)
— void?

distribution-filename : (or/c path? string?)

gui? : boolean?

make-executable : (-> path? void?)

55

Creates a distribution where the given make-executable procedure creates the stand-
alone executable to be distributed. The make-executable procedure is given the name
of the executable to create. The gui? argument is needed in case the executable’s name
(which drscheme:language:create-distribution-for-executable must generate)
depends on the type of executable. During the distribution-making process, a progress dialog

is shown to the user, and the user can click an Abort button that sends a break to the current
thread.

(drscheme:language:create-module-based-launcher
program-filename

executable-filename

module-language-spec
transformer-module-language-spec
init-code

gui?

use-copy?)
— void?

program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c

gui? : boolean?

use-copy? : boolean?

This procedure is identical to drscheme:language:create-module-based-stand-
alone-executable, except that it creates a launcher instead of a stand-alone executable.

(drscheme: language:text/pos-text text/pos) — (is-a?/c texth)
text/pos : drscheme:language:text/pos?

Selects the text? from a text/pos.

(drscheme: language:text/pos-start text/pos) — number?
text/pos : drscheme:language:text/pos?

Selects the starting position from a text/pos.

(drscheme:language:text/pos-end text/pos) — number?
text/pos : drscheme:language:text/pos?

Selects the ending position from a text/pos.

56

(drscheme:language:text/pos? val) — boolean?
val : any/c

Returns #t if val is a text/pos, and #f otherwise.

(drscheme: language :make-text/pos text
start
end)

— drscheme:language:text/pos?

text : (is-a?/c text%)
start : number?
end : number?

Constructs a text/pos.

(drscheme:language:simple-settings-case-sensitive simple-settings)
— boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the case-sensitive setting from a simple-settings.

(drscheme:language:simple-settings-printing-style simple-settings)
— (symbols ’constructor ’quasiquote ’write)
simple-settings : drscheme:language:simple-settings?

Extracts the printing-style setting from a simple-settings.

(drscheme:language:simple-settings-fraction-style simple-settings)
— (symbols ’mixed-fraction
’mixed-fraction-e
’repeating-decimal
’repeating-decimal-e)
simple-settings : drscheme:language:simple-settings?

Extracts the fraction-style setting from a simple-settings.

(drscheme:language:simple-settings-show-sharing simple-settings)
— boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the show-sharing setting from a simple-settings.

57

(drscheme:language:simple-settings-insert-newlines simple-settings)
— boolean?
simple-settings : drscheme:language:simple-settings?

Extracts the insert-newline setting from a simple-settings.

(drscheme:language:simple-settings-annotations simple-settings)
— (symbols ’none ’debug ’debug/profile ’test-coverage)
simple-settings : drscheme:language:simple-settings?

Extracts the debugging setting from a simple-settings.

(drscheme:language:simple-settings? val) — boolean?
val : any/c

Determines if val is a simple-settings.

(drscheme:language:make-simple-settings case-sensitive
printing-style
fraction-style
show-sharing
insert-newlines
annotations)

— drscheme:language:simple-settings?

case-sensitive : boolean?

printing-style : (symbols ’constructor ’quasiquote ’write)

fraction-style : (symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-de
show-sharing : boolean?

insert-newlines : boolean?

annotations : (symbols ’none ’debug ’debug/profile ’test-coverage)

Constructs a simple settings.

(drscheme:language:simple-settings->vector simple-settings)
— vector?
simple-settings : drscheme:language:simple-settings?

Constructs a vector whose elements are the fields of simple-settings.

58

12 drscheme:language-configuration

(drscheme: language-configuration:get-languages)
— (listof (is-a?/c drscheme:language:language<%>))

This can only be called after all of the tools initialization phases have completed.

Returns the list of all of the languages installed in DrScheme.

(drscheme: language-configuration:add-language language) — void?
language : (and/c (is-a?/c drscheme:language:language<%>) drscheme:language:object/c)

This function can only be called in phase 2 (see §1 “Implementing DrScheme Tools” for
details).

Adds language to the languages offerend by DrScheme.

(drscheme:language-configuration:get-settings-preferences-symbol)
— symbol?

Returns the symbol that is used to store the user’s language settings. Use as an argument to
either preferences:get or preferences:set.

(drscheme: language-configuration:make-language-settings
language
settings)
— drscheme:language-configuration:language-settings?
language : (or/c (is-a?/c drscheme:language:language<%>) drscheme:language:object/c)
settings : any/c

This is the constructor for a record consisting of two elements, a language and its settings.

The settings is a language-specific record that holds a value describing a parameterization of
the language.

It has two selectors, drscheme:language-configuration:language-settings-
language and drscheme:language-configuration:language-settings-
settings, and a predicate, drscheme:language-configuration:language-
settings?

(drscheme:language-configuration:language-settings-settings 1s)
— any/c

59

1s : drscheme:language-configuration:language-settings?

Extracts the settings field of a language-settings.

(drscheme:language-configuration:language-settings-language 1s)
— (or/c (is-a?/c drscheme:language:language<%>) drscheme:language:object/c)
Is : drscheme:language-configuration:language-settings?

Extracts the language field of a language-settings.

(drscheme:language-configuration:language-settings? val)
— boolean?
val : any/c

Determines if the argument is a language-settings or not.

(drscheme:language-configuration:language-dialog

show-welcome?

language-settings-to-show

[parent])
— (or/c false/c drscheme:language-configuration:language-settings?)
show-welcome? : boolean?

language-settings-to-show : drscheme:language-configuration:language-settings?
parent : (or/c false/c (is-a?/c top-level-window<}>)) = #t

Opens the language configuration dialog. See also drscheme:language-
configuration:fill-language-dialog.

The show-welcome? argument determines if if a “Welcome to DrScheme” message and
some natural language buttons are shown.

The language-settings-to-show argument must be some default language settings that
the dialog is initialized to. If unsure of a default, the currently set language in the user’s
preferences can be obtained via:

(preferences:get (drscheme:language-configuration:get-settings-
preferences-symbol))

The parent argument is used as the parent to the dialog.

The result if #f when the user cancells the dialog, and the selected language if they hit ok.

60

(drscheme:language-configuration:fill-language-dialog

panel

button-panel

language-setting

[re-center

ok-handler])
— drscheme:language-configuration:language-settings?

panel : (is-a?/c vertical-panel,)

button-panel : (is-a?/c area-container<y>)

language-setting : drscheme:language-configuration:language-settings?
re-center : (or/c false/c (is-a?/c top-level-window<}>)) = #f
ok-handler : (-> symbol? void?) = void

This procedure accepts two parent panels and fills them with the contents of the language
dialog. Itis used to include language configuration controls in some larger context in another
dialog.

The panel argument is the main panel where the language controls will be placed. The
function adds buttons to the button-panel to revert a language to its default settings and
to show the details of a language.

The language-setting is the default language to show in the dialog.

The re-center argument is used when the Show Details button is clicked. If that argument
is a top-level-window<%>, the Show Details callback will recenter the window each time
it is clicked. Otherwise, the argument is not used.

ok-handler is a function that is in charge of interfacing the OK button. It should accept
a symbol message: ’enable and ’disable to toggle the button, and ’execute to run
the desired operation. (The language selection dialog also uses an internal ’enable-sync
message.)

61

13 drscheme:debug

drscheme:debug:profile-unit-frame-mixin : (class? . -> . class?)
argument extends/implements: drscheme:frame:<%>
drscheme:unit:frame<y%>

drscheme:debug:profile-interactions-text-mixin : (class? . -> . class?)
argument extends/implements: drscheme:rep:text<y>

drscheme:debug:profile-definitions-text-mixin : (class? . -> . class?)
argument extends/implements: drscheme:unit:definitions-text<%>
texth

(drscheme:debug:error-display-handler/stacktrace

msg

exn

[stack

#:definitions-text defs

#:interactions-text ints])
— any/c

msg . string?

exn : any/c

stack : (or/c false/c (listof srcloc?)) = #f

defs : (or/c #f (is-a?/c drscheme:unit:definitions-text<y>))

= #f
ints : (or/c #f (is-a?/c drscheme:rep:text<)>)) = #f

Displays the error message represented by the string, adding embellishments like those that
appears in the DrScheme REPL, specifically a clickable icon for the stack trace (if the srcloc
location is not empty), and a clickable icon for the source of the error (read & syntax errors
show their source locations and otherwise the first place in the stack trace is shown).

If stack is false, then the stack traces embedded in the exn argument (if any) are used.
Specifically, this function looks for a stacktrace via errortrace-key in the continuation
marks of exn and continuation-mark-set->context.

62

If stack is not false, that stack is added to the stacks already in the exception.

This should be called in the same eventspace and on the same thread as the error.

(drscheme:debug:make-debug-error-display-handler oedh)
— (-> string? (or/c any/c exn?) any)
oedh : (-> string? (or/c any/c exn?) any)

This function implements an error-display-handler in terms of another error-display-handler.
See also MzScheme’s error-display-handler parameter.

If the current-error-port is the definitions window in drscheme, this error handler inserts
some debugging annotations, calls oedh, and then highlights the source location of the run-
time error.

It looks for both stack trace information in the continuation marks both via the
errortrace/errortrace-key module and via continuation-mark-set->context.

(drscheme:debug:hide-backtrace-window) — void?

Hides the backtrace window.

(drscheme:debug:add-prefs-panel) — void?

Adds the profiling preferences panel.

(drscheme:debug:open-and-highlight-in-file debug-info
[edition-pair])

— void?
debug-info : (or/c srcloc? (listof srcloc?))
edition-pair : (or/c #f (cons/c (A (x) (and (weak-box? x)

(let ([v (weak-box-value x)])
(or (not v)
(is-a?/c v editor<¥%>)))))
number?))
= #f

This function opens a DrScheme to display debug-info. Only the src the position and the
span fields of the srcloc are considered.

The edition-pair is used to determine if a warning message is shown when before open-
ing the file. If the edition-pair is not #£, it is compared with the result of get-edition-
number of the editor that is loaded to determine if the file has been edited since the source

63

location was recorded. If so, it puts up a warning dialog message to that effect.

(drscheme:debug: show-backtrace-window/edition-pairs

error-message

dis

editions-pairs

defs

ints)

— void?

error-message : string?

dis : (listof srcloc?)

editions-pairs : (listof (or/c #f (cons/c (A (x) (and (weak-box? x)

(let ([v (weak-box-value x)])

(or (nmot v)

(is-a?/c v editor<¥%>)))))

number?)))
defs : (or/c #f (is-a?/c drscheme:unit:definitions-text<¥%>))
ints : (or/c #f (is-a?/c drscheme:rep:text<y>))

Shows the backtrace window you get when clicking on the bug in DrScheme’s REPL.

The error-message argument is the text of the error, dis is the debug information, ex-
tracted from the continuation mark in the exception record, using errortrace-key.

The editions argument indicates the editions of any editors that are open editing the files
corresponding to the source locations

The defs argument should be non-#f if there are possibly stacktrace frames that contain
unsaved versions of the definitions window from drscheme. Similarly, the ints argument
should be non-#f if there are possibly stacktrace frames that contain unsaved versions of the
interactions window.

Use drscheme:rep: current-rep to get the rep during evaluation of a program.

(drscheme:debug:show-backtrace-window error-message
dis
[rep
defs]) — void?
error-message : string?
dis : (or/c exn?
(listof srcloc?)
(non-empty-listof (cons/c string? (listof srcloc?))))
rep : (or/c #f (is-a?/c drscheme:rep:text<>)) = #f
defs : (or/c #f (is-a?/c drscheme:unit:definitions-text<y>))
= #f

64

Shows the backtrace window you get when clicking on the bug in DrScheme’s REPL.

This function simply calls drscheme:debug:show-backtrace-window/edition-
pairs, using drscheme:debug:srcloc->edition/pair

(drscheme:debug:srcloc->edition/pair srcloc
ints
defs)
— (or/c #f (cons/c (let ([weak-box-containing-an-editor?
(A (x) (and (weak-box? x)
(let ([v (weak-box-value x)])
(or (not wv)

(is-a?/c v editor<¥>)))))1)

weak-box-containing-an-editor?)
number?))
srcloc : srcloc?
ints : (or/c #f (is-a?/c drscheme:rep:text<y>))
defs : (or/c #f (is-a?/c drscheme:unit:definitions-text<%>))

Constructs a edition pair from a source location, returning the current edition of the editor
editing the source location (if any).

The ints and defs arguments are used to map source locations, in the case that the source
location corresponds to the definitions window (when it has not been saved) or the interac-
tions window.

65

14 drscheme:rep

drscheme:rep:text<y> : interface?

drscheme:rep:text), : class?
superclass: scheme:text?,
extends: drscheme:rep:text<y>

This class implements a read-eval-print loop for DrScheme. User submitted evaluations in
DrScheme are evaluated asynchronously, in an eventspace created for the user. No evalua-
tions carried out by this class affect the implementation that uses it.

(make-object drscheme:rep:text’ context)
— (is-a?/c drscheme:rep:texty)
context : (implements drscheme:rep:context<¥%>)

(send a-drscheme:rep:text after-delete) — void?
Overrides after-delete in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drscheme:rep:text after-insert) — void?
Overrides after-insert in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drscheme:rep:text display-results results) — void?
results : (list-of TST)

This displays each of the elements of results in the interactions window, ex-
pect those elements of results that are void. Those are just ignored.

(send a-drscheme:rep:text do-many-evals run-Ioop) — void?
run-loop : (((-> void) -> void) -> void)

Specification: Use this function to evaluate code or run actions that should
mimic the user’s interactions. For example, DrScheme uses this function to
evaluate expressions in the definitions window and expressions submitted at the
prompt.

Default implementation: The function run-Ioop is called. It is expected to
loop, calling it’s argument with a thunk that corresponds to the user’s evaluation.

66

It should call it’s argument once for each expression the user is evaluating. It
should pass a thunk to it’s argument that actually does the users’s evaluation.

(send a-drscheme:rep:text do-many-text-evals
text

start

end

complete-program?)
— void?

text : (is-a?/c text%)

start : int

end : int

complete-program? : any/c

Specification: This function evaluates all of the expressions in a text.

Default implementation: It evaluates all of the expressions in text starting at
start and ending at end, calling do-many-evals to handle the evaluation.

The complete-program? argument determines if the front-end/complete-
program method or the front-end/interaction method is called.

(send a-drscheme:rep:text evaluate-from-port
port

complete-program?

cleanup)
— any

port : input-port?

complete-program? . boolean?

cleanup : (-> void)

Evaluates the program in the port argument. If complete-program? is #t,
this method calls the front-end/complete-program to evaluate the program.
If it is #f, it calls front-end/interaction method. When evaluation fin-
ishes, it calls cleanup on the user’s main thread.

This method must be called from the drscheme main thread.

(send a-drscheme:rep:text after-many-evals) — any
Augments <method not found>.

Called from the drscheme main thread after evaluate-from-port finishes (no
matter how it finishes).

(send a-drscheme:rep:text on-execute run-on-user-thread) — any
run-on-user-thread : (-> any)

Augments <method not found>.

67

Called from the drscheme thread after the language’s on-execute method has
been invoked, and after the special values have been setup (the ones registered
via drscheme: language:add-snip-value).

Use run-on-user-thread to initialize the user’s parameters, etc.

(send a-drscheme:rep:text get-error-range)
— (or/c false/c (list/c (is-a?/c text:basic}) number? number?))

Specification: Indicates the highlighted error range. The state for the error range
is shared across all instances of this class, so there can only be one highlighted
error region at a time.

Default implementation: If #£, no region is highlighted. If a list, the first ele-
ment is the editor where the range is highlighted and the second and third are
the beginning and ending regions, respectively.

(send a-drscheme:rep:text get-user-custodian)
— (or/c false/c custodian?)

This is the custodian controlling the user’s program.

(send a-drscheme:rep:text get-user-eventspace)
— (or/c false/c eventspace?)

This is the user’s eventspace. The result of get-user-thread is the main
thread of this eventspace.

(send a-drscheme:rep:text get-user-language-settings)
— language-settings

Returns the user’s language-settings for the most recently run program. Con-
sider using get-next-settings instead, since the user may have selected a
new language since the program was last run.

(send a-drscheme:rep:text get-user-namespace)
— (or/c false/c namespace?)

Returns the user’s namespace. This method returns a new namespace each time
Run is clicked.

(send a-drscheme:rep:text get-user-thread)
— (or/c false/c thread?)

This method returns the thread that the users code runs in. It is returns a different
result, each time the user runs the program.

It is #f before the first time the user click on the Run button or the evaluation
has been killed.

68

This thread has all of its parameters initialized according to the settings of the
current execution. See §10.3.2 “Parameters” for more information about param-
eters.

(send a-drscheme:rep:text highlight-errors locs
[error-arrows])
— void?
locs : (listof srcloc?)
error-arrows : (or/c #f (listof srcloc?)) = #f

Call this method to highlight errors associated with this repl. See also reset-
highlighting, and highlight-errors/exmn.

This method highlights a series of dis-contiguous ranges in the editor.

It puts the caret at the location of the first error.

(send a-drscheme:rep:text highlight-errors/exn exn) — void?
exn : exn

Highlights the errors associated with the exn (only syntax and read errors — does
not extract any information from the continuation marks)

See also highlight-errors.

(send a-drscheme:rep:text initialize-console) — void?

This inserts the “Welcome to DrScheme” message into the interactions buffer,
calls reset-console, insert-prompt, and clear-undos.

Once the console is initialized, this method calls first-opened. Accordingly,
this method should not be called to initialize a REPL when the user’s evalua-
tion is imminent. That is, this method should be called when new tabs or new
windows are created, but not when the Run button is clicked.

(send a-drscheme:rep:text insert-prompt) — void?

Inserts a new prompt at the end of the text.

(send a-drscheme:rep:text kill-evaluation) — void?

This method is called when the user chooses the kill menu item.

(send a-drscheme:rep:text on-close) — void?
Overrides on-close in editor:basic<y>.
Calls shutdown.

Calls the super method.

(send a-drscheme:rep:text queue-output thnk) — void?
thnk : (-> void?)

69

Specification: This method queues thunks for drscheme’s eventspace in a spe-
cial output-related queue.

(send a-drscheme:rep:text reset-console) — void?

Kills the old eventspace, and creates a new parameterization for it.

(send a-drscheme:rep:text reset-highlighting) — void?

This method resets the highlighting being displayed for this repl. See also:
highlight-errors, and highlight-errors/exn.

(send a-drscheme:rep:text run-in-evaluation-thread f) — void?
f : (-> void)

Specification: This function runs it’s arguments in the user evaluation thread.
This thread is the same as the user’s eventspace main thread.

See also do-many-evals.

Default implementation: Calls £, after switching to the user’s thread.

(send a-drscheme:rep:text shutdown) — void?

Shuts down the user’s program and all windows. Reclaims any resources the
program allocated. It is expected to be called from DrScheme’s main eventspace
thread.

(send a-drscheme:rep:text wait-for-io-to-complete) — void?
This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in DrScheme’s
eventspace

(send a-drscheme:rep:text wait-for-io-to-complete/user)
— void?

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in the user’s eventspace

drscheme:rep:drs-bindings-keymap-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<¥%>

This mixin adds some drscheme-specific keybindings to the editor it is mixed onto.

(send a-drscheme:rep:drs-bindings-keymap get-keymaps)
— (listof (is-a?/c keymap%))

70

Overrides get-keymaps in editor: keymap<y>.
Calls the super method and adds in a keymap with the drscheme-specific key-
bindings:

* f5-Run

* c:x;0 - toggles the focus between the definition and interactions windows.

drscheme:rep:context<%> : interface?

Objects that match this interface provide all of the services that the drscheme:rep:text
class needs to connect with it’s context.

(send a-drscheme:rep:context clear-annotations) — void?

Specification: Call this method to clear any annotations in the text before exe-
cuting or analyzing or other such activities that should process the program.

Tools that annotate the program text should augment this method to clear their
own annotations on the program text.

DrScheme calls this method before a program is run (via the Run button).

Default implementation: Clears any error highlighting in the definitions win-
dow.

(send a-drscheme:rep:context disable-evaluation) — void?

Call this method to disable evaluation GUI evaluation while some evaluation (or
expansion) is taking place on another thread.

Override this method if you add a GUI-based mechanism for initiating evalua-
tion in the frame.

This method is also called when the user switches tabs.

See also enable-evaluation.

(send a-drscheme:rep:context enable-evaluation) — void?

This method must disable the GUI controls that start user-sponsored evaluation.
Itis called once the user starts some evaluation to ensure that only one evaluation
proceeds at a time.

It is also called when the user switches tabs.

See also disable-evaluation.

(send a-drscheme:rep:context ensure-rep-shown rep) — void?
rep : (is-a?/c drscheme:rep:text<i>)

71

This method is called to force the rep window to be visible when, for example,
an error message is put into the rep. Also ensures that the appropriate tab is
visible, if necessary.

(send a-drscheme:rep:context get-breakables)
— (or/c thread? false/c)
(or/c custodian? false/c)

Returns the last values passed to set-breakables.

(send a-drscheme:rep:context get-directory)
— (union string false/c)

The result of this method is used as the initial directory for the user’s program
to be evaluated in.

(send a-drscheme:rep:context needs-execution)
— (or/c string? false/c)

This method should return an explanatory string when the state of the program
that the repl reflects has changed. It should return #f otherwise.

(send a-drscheme:rep:context reset-offer-kill) — void?

The break button typically offers to kill if it has been pushed twice in a row. If
this method is called, however, it ignores any prior clicks.

(send a-drscheme:rep:context set-breakables thread
custodian) — void?
thread : (or/c thread false/c)
custodian : (or/c custodian false/c)

Calling this method with a thread and a custodian means that the next time the
break button is clicked, it will either break the thread or shutdown the custodian.

See also get-breakables.

(send a-drscheme:rep:context update-running running?) — void?
running? : any/c

This method should update some display in the gui that indicates whether or not
evaluation is currently proceeding in the user’s world.

(drscheme:rep:get-welcome-delta) — (is-a?/c style-deltal,)

Returns a style delta that matches the style and color of the phrase “Welcome to” in the
beginning of the interactions window.

72

(drscheme:rep:get-dark-green-delta) — (is-a?/c style-deltal)

Returns a style delta that matches the style and color of the name of a language in the
interactions window.

(drscheme:rep:get-drs-bindings-keymap) — (is-a?/c keymap%)

Returns a keymap that binds various DrScheme-specific keybindings. This keymap is used
in the definitions and interactions window.

Defaultly binds C-x;o to a function that switches the focus between the definitions and inter-
actions windows. Also binds f5 to Execute and f1 to Help Desk.

(drscheme:rep:current-rep)
— (or/c false/c (is-a?/c drscheme:rep:text)))

This is a parameter whose value should not be set by tools. It is initialized to the repl that
controls this evaluation in the user’s thread.

It only returns #£ if the program not running in the context of a repl (eg, the test suite
window).

(drscheme:rep:current-value-port) — (or/c false/c port?)

This is a parameter whose value is a port that prints in the REPL in blue. It is used to print
the values of toplevel expressions in the REPL.

It is only initialized on the user’s thread.

73

15 drscheme:frame

drscheme:frame:name-message’, : class?
superclass: canvas,

This class implements the little filename button in the top-right hand side of drscheme’s
frame.

(make-object drscheme:frame:name-message), parent)
— (is-a?/c drscheme:frame:name-message,)
parent : (is-a?/c area-container<y>)

(send a-drscheme:frame:name-message set-message name
short-name)
— void?
name : (or/c string? false/c)
short-name : string?

Specification: Sets the names that the button shows.

Default implementation: The string short-name is the name that is shown
on the button and name is shown when the button is clicked on, in a separate
window. If name is #f, a message indicating that the file hasn’t been saved is
shown.

drscheme:frame:mixin : (class? . -> . class?)
argument extends/implements: drscheme:frame:basics<)>
frame:text-info<¥%>
frame:editor<%>
result implements: drscheme:frame:<%>

Provides an implementation of drscheme : frame: <%>

drscheme:frame:basics-mixin : (class? . -> . class?)
argument extends/implements: frame:standard-menus<%>
result implements: drscheme:frame:basics<y>

Use this mixin to establish some common menu items across various DrScheme windows.

74

(send a-drscheme:frame:basics edit-menu:between-find-and-preferences)
— void?
Overrides edit-menu:between-find-and-preferences in
frame:standard-menus<y>.
Adds a separator-menu-itemy. Next, adds the "Keybindings" menu item
to the edit menu. Finally, if the current-eventspace-has-standard-
menus? procedure returns #£, creates another separator-menu-itemy.

(send a-drscheme:frame:basics file-menu:between-open-and-revert file-menu)
— void?
file-menu : (is-a?/c menu%,)
Overrides file-menu:between-open-and-revert in frame:standard-
menus<¥%>.
Adds an “Install .plt File...” menu item, which downloads and installs .plt files
from the web, or installs them from the local disk. After that, calls the super
method.

(send a-drscheme:frame:basics file-menu:between-print-and-close file-menu)
— void?
file-menu : (is-a?/c menu})
Overrides file-menu:between-print-and-close in frame:standard-
menus<>.
Calls the super method. Then, creates a menu item for multi-file searching.
Finally, adds a separator-menu-itemy.

(send a-drscheme:frame:basics file-menu:new-callback item
evt)
— void?
item : (is-a?/c menu-itemy)
evt : (is-a?/c control-event},)

Overrides file-menu:new-callback in frame: standard-menus<%>.

Opens a new, empty DrScheme window.

(send a-drscheme:frame:basics file-menu:new-string) — string?
Overrides file-menu:new-string in frame:standard-menus<y>.

Returns the empty string.

(send a-drscheme:frame:basics file-menu:open-callback item
evt)

— void?
item : (is-a?/c menu-item,)

75

evt : (is-a?/c control-event)
Overrides file-menu:open-callback in frame:standard-menus<y>.

Calls handler:edit-file.

(send a-drscheme:frame:basics file-menu:open-string) — string?
Overrides file-menu:open-string in frame: standard-menus<%>.

Returns the empty string.

(send a-drscheme:frame:basics get-additional-important-urls)
— (listof (list string string))

Specification: Each string in the result of this method is added as a menu item
to DrScheme’s “Related Web Sites” menu item. The first string is the name of
the menu item and the second string is a url that, when the menu item is chosen,
is sent to the user’s browser.

Default implementation: Defaultly returns the empty list.

(send a-drscheme:frame:basics help-menu:about-callback item
evt)
— void?
item : (is-a?/c menu-item})
evt : (is-a?/c control-event)
Overrides help-menu:about-callback in frame: standard-menus<%>

Opens an about box for DrScheme.

(send a-drscheme:frame:basics help-menu:about-string)
— string?

Overrides help-menu:about-string in frame:standard-menus<y>.

Returns the string "DrScheme".

(send a-drscheme:frame:basics help-menu:before-about help-menu)
— void?
help-menu : (is-a%/c menu})

Overrides help-menu:before-about in frame: standard-menus<y>.

Adds the Help Desk menu item and the Welcome to DrScheme menu item.

(send a-drscheme:frame:basics help-menu:create-about?)
— boolean?

Overrides help-menu: create-about? in frame: standard-menus<y>.

Returns #t.

76

drscheme: frame:basics<%> : interface?
implements: frame:standard-menus<}>

This interface is the result of the drscheme: frame:basics-mixin

drscheme:frame:<%> : interface?
implements: frame:editor<%>
frame:text-info<¥%>
drscheme: frame:basics<’>

(send a-drscheme:frame: add-show-menu-items show-menu) — void?
show-menu : (is-a?/c menu%)

Specification: This method is called during the construction of the view menu.
This method is intended to be overridden. It is expected to add other Show/Hide
menu items to the show menu.

See also get-show-menu.

Default implementation: Does nothing.

(send a-drscheme:frame: get-show-menu) — (is-a?/c menu})

returns the view menu, for use by the update-shown method.
See also add-show-menu-itemns.

The method (and others) uses the word show to preserve backwards compati-
bility from when the menu itself was named the Show menu.

(send a-drscheme:frame: not-running) — void?

updates the status pane at the bottom of the window to show that evaluation is
not taking place in the user’s program.

(send a-drscheme:frame: running) — void?

updates the status pane at the bottom of the window to show that evaluation is
taking place in the user’s program.

(send a-drscheme:frame: update-shown) — void?

Specification: This method is intended to be overridden. It’s job is to update
the "View'" menu to match the state of the visible windows. In the case of the

71

standard DrScheme window, it change the menu items to reflect the visibility of
the definitions and interaction editor-canvass.

Call this method whenever the state of the show menu might need to change.
See also get-show-menu.

Default implementation: Does nothing.

78

16 drscheme:help-desk

(drscheme:help-desk:help-desk [search-key

search-context]) — any
search-key : (or/c #f string?) = #f

search-context : (or/c #f string? (list/c string? string?))
= #f

if search-key is a string, calls perform-search with search-key and search-
context.

Otherwise, calls send-main-page with no arguments.

79

17 drscheme:eval

(drscheme:eval:set-basic-parameters snipclasses) — void?
snipclasses : (listof (is-a%?/c snip-class%))

sets the parameters that are shared between the repl’s initialization and
drscheme:eval:build-user-eventspace/custodian

Specifically, it sets these parameters:

e current-namespace has been set to a newly created empty namespace. This names-
pace has the following modules copied (with namespace-attach-module) from
DrScheme’s original namespace:

— ’mzscheme

- ‘mred
e read-curly-brace-as-paren is #t,
* read-square-bracket-as-paren is #t,
e error-print-width is set to 250.
e current-ps-setup is set to a newly created ps-setup?’, object.
* The exit-handler is set to a parameter that kills the user’s custodian.

* The snip-class-list, returned by get-the-snip-class-1list is initialized with all of
the snipclasses in DrScheme’s eventspace’s snip-class-list.

(drscheme:eval:get-snip-classes)
— (listof (is-a?/c snip-class?))

Returns a list of all of the snipclasses in the current eventspace.

(drscheme:eval:expand-program input
language-settings
eval-compile-time-part?
init
kill-termination
iter) — void?
input : (or/c port? drscheme:language:text/pos?)
language-settings : drscheme:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)

80

kill-termination : (-> void?)

iter : (-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

Use this function to expand the contents of the definitions window for use with external
program processing tools.

This function uses drscheme:eval:build-user-eventspace/custodian to build the
user’s environment. The arguments language-settings, init, and kill-termination
are passed to drscheme:eval:build-user-eventspace/custodian.

The input argument specifies the source of the program.

The eval-compile-time-part? argument indicates if expand is called or if expand-
top-level-with-compile-time-evals is called when the program is expanded.
Roughly speaking, if your tool will evaluate each expression itself by calling eval then
pass #f. Otherwise, if your tool just processes the expanded program, be sure to pass #t.

This function calls front-end/complete-program to expand the program. Unlike when
the Run is clicked, however, it does not call front-end/finished-complete-program.

The first argument to iter is the expanded program (represented as syntax) or eof. The
iter argument is called for each expression in the expanded program and once more with
eof, unless an error is raised during expansion. It is called from the user’s thread. If an
exception is raised during expansion of the user’s program, iter is not called. Consider
setting the exception-handler during init to handle this situation.

The second argument to iter is a thunk that continues expanding the rest of the contents
of the definitions window. If the first argument to iter was eof, this argument is just the
primitive void.

See also drscheme:eval:expand-program/multiple.

(drscheme:eval:traverse-program/multiple language-settings
init
kill-termination)

— ((or/c port? drscheme:language:text/pos?)

((or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
R

any)

boolean?

.2

void?)

language-settings : drscheme:language-configuration:language-settings?

81

init : (-> void?)
kill-termination : (-> void?)

This function is similar to drscheme: eval:expand-program/multiple The only differ-
ence is that it does not expand the program in the editor; instead the processing function can
decide how to expand the program.

(drscheme:eval:expand-program/multiple
language-settings
eval-compile-time-part?
init
kill-termination)
— (-> (or/c port? drscheme:language:text/pos?)
(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)
boolean?
void?)
language-settings : drscheme:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)
kill-termination : (-> void?)

This function is just like drscheme:eval:expand-program except that it is curried and
the second application can be used multiple times. Use this function if you want to initialize
the user’s thread (and namespace, etc) once but have program text that comes from multiple
sources.

The extra boolean argument to the result function determines if
drscheme:language:language front-end/complete-program<y> or
drscheme:language:language front-end/interaction<%> is called.

(drscheme:eval:build-user-eventspace/custodian

language-settings

init

kill-termination)

— eventspace? custodian?

language-settings : drscheme:language-configuration:language-settings?
init : (-> void?)

kill-termination : (-> void?)

This function creates a custodian and an eventspace (on the new custodian) to expand
the user’s program. It does not kill this custodian, but it can safely be shutdown (with
custodian-shutdown-all) after the expansion is finished.

82

It initializes the user’s eventspace’s main thread with several parameters:

e current-custodian is set to a new custodian.

* In addition, it calls drscheme:eval:set-basic-parameters.

The language-settings argument is the current language and its settings. See
drscheme:language-configuration:make-language-settings for details on that
structure.

If the program is associated with a DrScheme frame, get the frame’s language settings from
the get-next-settings method of drscheme:unit:definitions-text<%>. Also,
the most recently chosen language in the language dialog is saved via the framework’s
preferences. Apply preferences:get to drscheme:language-configuration:get-
settings-preferences-symbol for that language-settings.

The init argument is called after the user’s parameters are all set, but before the program
is run. It is called on the user’s thread. The current-directory and current-load-
relative-directory parameters are not set, so if there are appropriate directories, the
init argument is a good place to set them.

The kill-termination argument is called when the main thread of the eventspace ter-
minates, no matter if the custodian was shutdown, or the thread was killed. This proce-
dure is also called when the thread terminates normally. This procedure is called from a
new, dedicated thread (i. e., not the thread created to do the expansion, nor the thread that
drscheme:eval:build-user-eventspace/custodian was called from.)

83

18 drscheme:modes

(drscheme:modes:add-mode name
surrogate
repl-submit
matches-language)
— drscheme:modes:mode?
name : string?
surrogate : (or/c false/c (is-a?/c mode:surrogate-text<y>))
repl-submit : ((is-a?/c drscheme:rep:text}) number? . -> . boolean?)
matches-language : ((or/c false/c (listof string?)) . -> . boolean?)

Adds a mode to DrScheme. Returns a mode value that identifies the mode.

The first argument, name, is the name of the mode, used in DrScheme’s GUI to allow the
user to select this mode.

The surrogate argument is set to the definitions text and the interactions text (via the
mode:host-text set-surrogate<y> method) whenever this mode is enabled.

The repl-submit procedure is called whenever the user types a return in the interactions
window. It is passed the interactions editor and the position where the last prompt occurs. If
it returns #t, the text after the last prompt is treated as a program fragment and evaluated,
according to the language settings. If it returns #f, the text is assumed to be an incomplete
program fragment, and the keystroke is not treated specially.

The matches-language predicate is called whenever the language changes. If it returns
#t this mode is installed. It is passed the list of strings that correspond to the names of the
language in the language dialog.

Modes are tested in the opposite order that they are added. That is, the last mode to be added
gets tested first when the filename changes or when the language changes.

See also drscheme :modes: get-modes.

(drscheme:modes:mode? val) — boolean?
val : any/c

Determines if val is a mode.

(drscheme:modes:get-modes) — (listof drscheme:modes:mode?)

Returns all of the modes currently added to DrScheme.

84

See also drscheme :modes:add-mode.

(drscheme:modes:mode-name mode) — string?
mode : drscheme:modes:mode?

Extracts the name of the mode.

See also drscheme:modes:add-mode.

(drscheme:modes:mode-surrogate mode)
— (or/c false/c (is-a?/c mode:surrogate-text<%>))
mode : drscheme:modes:mode?

Extracts the surrogate of the mode.

See also drscheme :modes: add-mode.

(drscheme:modes:mode-repl-submit mode) — any
mode : drscheme:modes:mode?

Extracts the repl submission predicate of the mode.

See also drscheme :modes:add-mode.

(drscheme:modes :mode-matches-language mode)
— ((or/c false/c (listof string?)) . -> . boolean?)
mode : drscheme:modes:mode?

Extracts the language matching predicate of the mode.

See also drscheme :modes:add-mode.

85

Index

#lang-specific tools, [T3]
add-show-menu-items, 23
add-show-menu-itens,[77]

Adding Arbitrary Languages to DrScheme, 9]

Adding Languages to DrScheme, [§]
adding languages to DrScheme, [§]
Adding Module-based Languages to
DrScheme, [§]
after-delete,[66]
after-delete,[22]
after-insert, @
after-insert, @
after-many-evals, |€_7|
after—set—next—settings,@
begin-metadata-changes, @
break button, [3]
break-callback, @
break-callback, m
breaking, [T3]
can-close?,[20]
capability-value,[d2]
change-to-file,[24]
clear-annotations,[7]]
clear-annotations,[22]
close-current-tab, 2§
config-panel, 33|
config-panel, 2]

config-panel,[3§|
create-executable, 2]

Creating New Kinds of DrScheme Frames,

il
default-settings, @
default-settings, B;gl
default-settings, |Zf_7|
default-settings?, |Zf_7|
default-settings?, @
default-settings?, @
disable-evaluation, |7_T|
disable-evaluation, m
display-results, |6_3|

do-many-evals, |5_3|
do-many-text-evals,[67]
drscheme-language-modules, [§]
drscheme-language-numbers, [§]
drscheme-language-one-line-summaries, [§]
drscheme-language-positions, [§]
drscheme-language-readers, [§]
drscheme-language-urls, [§]
drscheme/tool-1ib,[l]
drscheme: debug, [62]
drscheme:debug:add-prefs-panel, @
drscheme:debug:error-display-
handler/stacktrace,[62]
drscheme:debug:hide-backtrace-
window, @
drscheme:debug:make-debug-error-
display-handler, [63]
drscheme:debug:open-and-
highlight-in-file,[63
drscheme:debug:profile-
definitions-text-mixin,[62]
drscheme:debug:profile-
interactions-text-mixin, @
drscheme:debug:profile-unit-
frame-mixin, @
drscheme:debug:show-backtrace-
window, [64]
drscheme:debug:show-backtrace-
window/edition-pairs,[64]
drscheme:debug:srcloc-
>edition/pair,[63]
drscheme:eval,
drscheme:eval:build-user-
eventspace/custodian,
drscheme:eval:expand-program,
drscheme:eval:expand-
program/multiple,[82]
drscheme:eval:get-snip-classes,
drscheme:eval:set-basic-
parameters,
drscheme:eval:traverse-
program/multiple, 1]
drscheme: frame, |7_Z|

drscheme: frame: <%>, configuration:language-dialog,

drscheme:frame:basics-mixin,[74] 60

drscheme: frame:basics<%>,[77] drscheme:language-

drscheme: frame:mixin,[74] configuration:language-settings-
drscheme: frame:na_me—message%, language,@

drscheme:get/extend, drscheme:language-

drscheme:get/extend: extend- configuration:language-settings-

definitions-canvas,[I§| settings,[59
drscheme:language-

configuration:language-
settings?,[60]

drscheme: language-
configuration:make-language-

drscheme:get/extend:extend-
definitions-text, |L7|

drscheme:get/extend:extend-
interactions-canvas, @

drscheme:get/extend:extend- .
interactions-text,[I7] settings,[59

drscheme:get/extend:extend-tab, drscheme: language:add-snip-value,

D2
drscheme :get/extend: extend-unit- 4 . 1 bild
frameﬁzl rscheme:language:capability-

registered?,[5]]
drscheme:language:create-
distribution-for-executable,
53]
drscheme:language:create-
executable-gui, |3_Z|
drscheme:language:create-module-
based-distribution,[53]
drscheme:language:create-module-
based-launcher, [56]
drscheme:language:create-module-
based-stand-alone-executable,
54]
drscheme:language:extend-
language-interface, @
drscheme:language:get-capability-

drscheme:get/extend:get-
definitions-canvas,[I§|
drscheme:get/extend:get-
definitions-text, @
drscheme:get/extend:get-
interactions-canvas, ﬂ;gl
drscheme:get/extend:get-
interactions-text,[T7]
drscheme:get/extend:get-unit-
frame,[19]
drscheme:help-desk,
drscheme:help-desk:help-desk, |’7_§|
drscheme:language, @
drscheme:language-configuration, |3;§|
drscheme:language-

configuration:add-language, |3_§| contract,[52]
drscheme: language- drscheme:language:get-capability-
configuration:fill-language- default,[51]
dialog,[6]] drscheme:language:get-default-
drscheme:language- mixin @
n:f iguration:get-languages, drscheme: language: get-language-

extensions, @
drscheme:language:language<’>,
drscheme:language:make-simple-

settings,[5§|
drscheme:language:make-text /pos,

drscheme:language-
configuration:get-settings-
preferences-symbol, @

drscheme:language-

87

drscheme:language:module-based-
language->language-mixin, #]
drscheme:language:module-based-
language<%>,[3§|
drscheme: language:object/c, Pf_gl
drscheme:language:put-executable,
53]
drscheme:language:register-
capability, |3_U|
drscheme:language:simple-module-
based-language’, 34
drscheme:language:simple-module-
based-language->module-based-
language-mixin, @
drscheme:language:simple-module-
based-language<%>,
drscheme:language:simple-settings, [33]
drscheme:language:simple-
settings->vector, @
drscheme:language:simple-
settings-annotations, 58]
drscheme:language:simple-
settings-case-sensitive,
drscheme:language:simple-
settings-fraction-style, |31|
drscheme:language:simple-
settings-insert-newlines, @
drscheme:language:simple-
settings-printing-style, |3_7]
drscheme:language:simple-
settings-show-sharing,
drscheme:language:simple-
settings?, |3_§|
drscheme:language: text/pos-end, |3_3|

drscheme:language: text/pos-start,
56)
drscheme:language: text/pos-text, B_BI
drscheme: language: text/pos?,
drscheme:modes, @
drscheme:modes:add-mode, @
drscheme:modes:get-modes, @
drscheme:modes:mode-matches-
language,[83

88

drscheme
drscheme
drscheme
drscheme
drscheme
drscheme:rep:
drscheme:rep:
drscheme:rep:
drscheme:rep:
mixin,
drscheme:rep:
[Z3]
drscheme:rep:
keymap,Ea
drscheme:rep:
drscheme:rep:

:modes :mode-name, |'8_3]

:modes :mode-repl-submit, @
:modes :mode-surrogate, |'8_-5]
:modes :mode?,[84]

:rep, [66]

context<%>,
current-rep,[73|
current-value-port, |7_3'|
drs-bindings-keymap-

get-dark-green-delta,
get-drs-bindings-

get—welcome—delta,@

text%,@

drscheme:rep:text<%>, |3_3|
drscheme:toolbar-buttons, [T3]
drscheme:unit, 20|

drscheme:unit:

add-to-program-

editor-mixin,[32]

drscheme:unit:
32
drscheme:unit
drscheme:unit:
drscheme:unit:
drscheme:unit
drscheme:unit
mixin, 37
drscheme:unit:
canvas¥h, 23|
drscheme:unit:
window,EZ
drscheme:unit
mixin,gz
drscheme:unit:
drscheme:unit:

definitions-canvasY,

:definitions-text%, 30|

definitions-text<%>,

framel,

:frame<%>,

:get-program-editor-

interactions-

open-drscheme-

:program-editor-

tab%,
tab<%>,[20]

edit-menu:between-find-and-
preferences, 73]

edit-menu:between-select-all-and-

find,[24]
Editor Modes, [T4]

enable-evaluation,[7]] get—canvas,@

enable-evaluation,[20] get—ca_nvas%,
end-metadata-changes, @ get-comment-character, Pf_Zl
ensure-defs-shown,[27| get-current-tab, 2§
ensure-rep-hidden, 2§ get-definitions-canvas, 28]
ensure-rep-shown, 2§ get-definitions-text,[2§|
ensure-rep-shown, [7]] get-definitions/interactions-
evaluate-from-port, [67] panel-parent, 23]
execute-callback,[24 get-defs, [20]
Expanding the User’s Program Text and get-directory,[2]]

Breaking, [T3| get-directory,[72]
expanding user programs, [13| get-editor,[26]
Extending the Existing DrScheme Classes, get-editor¥,[26]

12l get-enabled, 2]
file-menu:between-open-and-revert, get—error—range,@

get—execute—button,@
file-menu:between-open-and-revert, get_frame’@

24 get—init—code,lzgl

file-menu:between-print-and-close, get-init-code, @

get-insert-menu, @
file-menu:between-print-and-close,

get-interactions-canvas, @

@ get—interactions—text,@
file-menu:between-save-as-and- .
. get-ints, @
print, @

get-keymaps, m

file—menu:new—callback,|7_3]
file-menu:new-string, @ ge: —1anguage ment, IZI
file-menu:open-callback, |7_3] g:t:lzgszg::zzz’ %
file-menu: open—string,@ get—la_niuaie—numb,ers P’EI
file—menu:print—string,@ get—la_nguage—numbers’lzgl
file—menu:save—as—string,@ ot-laneua e—numbers’lz_Zl
file—menu:save—string,@ & gnag ’

first-opened,[d3|
front-end/complete-program, @

get-language-numbers, @
get-language-position, 33|
front-end/complete-program, @ get—la_nguage—pos%t}on, |3;9|
front-end/finished-complete- get-language-position, IE
program, 43|
front-end/interaction, 4]
front-end/interaction, 1]
get-additional-important-urls, |7_3|
get-break-button, @
get-breakables, |7_2|
get-breakables, @

get-button-panel, @

get-language-position, [34]
get-language-url, 43
get-metadata, @3]
get-metadata-lines, 46|
get-module, @

get-module, @

get-module, @
get-next-settings, B;fl

&9

get-one-line-summary, @
get-one-line-summary, [39]
get-one-line-summary, 46|
get-one-line-summary, [33]
get-port-name-identifier,[3]]
get-reader, 33|

get-reader, 33

get-reader, 39
get-reader-module, 46|
get-show-menu, [77]
get-style-delta, 46|

get-tab, 3]

get-tabs, 29
get-text-to-search,26
get-transformer-module, @
get-transformer-module, B_gl
get-user-custodian, @
get-user-eventspace, @
get-user-language-settings, |6_§|
get-user-namespace, 68|
get-user-thread, @
help-menu:about-callback, |7_3|
help-menu:about-string, @
help-menu:before-about, @
help-menu:create-about?, |7_3|
highlight-errors, @
highlight-errors/exn,[69
Implementing DrScheme Tools, [3]
initialize-console, |B_g|
insert-prompt, [69
is-current-tab?,[2]]
is-running?, 2]
kill-evaluation,[69]

Language Extensions, [I0]
Language-specific capabilities, [T6]
make-searchable,[26|
marshall-settings,[46|
marshall-settings,[36]
marshall-settings,[39
metadata->settings, 6]
modes, [14]

needs-execution,

90

not-running, [77]
on-close,[26]

on-close,[69)]

on-close,2]]
on-execute,[67]
on-execute,[37]
on-execute, [47]
on-execute, [{]]
on-execute, 40|
on-size,[26
on-tab-change, 29|
order-manuals,
phasel,[3]

phase2, |

Plugins: Extending DrScheme, []
port-name-matches?, |3:f|
queue-output, |6_g|
register-capability-menu-item, @
register-toolbar-button, @
register-toolbar-buttons, |7_9|
render-value, B-_7|
render-value,
render-value,
render-value/format,
render-value/format,
render-value/format,
reset-console, |7_U|
reset-highlighting,[70|
reset-offer-kill, |7_7|
reset-offer-kill,[2]]
run-in-evaluation-thread,[70]
running, [77]

scheme mode, [T4]
set-breakables,[2]]
set-breakables,[72]
set-filename, [30]

set-message, [74]

set-modified, [30]
set-needs-execution-message, |3:1'|
set-next-settings,[32]
shutdown,
still-untouched?,

unmarshall-settings, m
unmarshall-settings,
unmarshall-settings, 49
unregister—toolbar—button,@
update-running,[77]
update-save-button,[27]
update-save-message, [27]
update-shown, [27]

update-shown, [77]
use-mred-launcher, 3§
use-mred-launcher, (]
use-namespace-require/copy?, 1]
View menu, [77]
wait-for-io-to-complete,|/()
wait—for—io—to—complete/user,

91

	1 Implementing DrScheme Tools
	2 Adding Languages to DrScheme
	2.1 Adding Module-based Languages to DrScheme
	2.2 Adding Arbitrary Languages to DrScheme
	2.3 Language Extensions

	3 Creating New Kinds of DrScheme Frames
	4 Extending the Existing DrScheme Classes
	5 Expanding the User's Program Text and Breaking
	6 Editor Modes
	7 #lang-specific tools
	8 Language-specific capabilities
	9 drscheme:get/extend
	10 drscheme:unit
	11 drscheme:language
	12 drscheme:language-configuration
	13 drscheme:debug
	14 drscheme:rep
	15 drscheme:frame
	16 drscheme:help-desk
	17 drscheme:eval
	18 drscheme:modes
	Index

