
mzc: PLT Compilation and Packaging
Version 4.2.4

January 28, 2010

The mzc tool supports various PLT Scheme compilation and packaging tasks.

1

Contents

1 Running mzc 4

2 Compiling Modified Modules to Bytecode 5

2.1 Bytecode Files . 5

2.2 Dependency Files . 6

2.3 Scheme Compilation Manager API . 6

2.4 Compilation Manager Hook for Syntax Transformers 9

3 Creating and Distributing Stand-Alone Executables 10

3.1 Stand-Alone Executables from Scheme Code 10

3.1.1 Scheme API for Creating Executables 11

3.2 Distributing Stand-Alone Executables . 18

3.2.1 Scheme API for Distributing Executables 19

3.2.2 Scheme API for Bundling Distributions 19

3.3 Installation-Specific Launchers for Scheme Code 20

3.3.1 Creating Launchers . 20

3.3.2 Launcher Path and Platform Conventions 22

3.3.3 Launcher Configuration . 24

3.3.4 Launcher Creation Signature . 25

3.3.5 Launcher Creation Unit . 26

4 Packaging Library Collections 27

4.1 Scheme API for Packaging . 29

5 Compiling and Linking C Extensions 30

5.1 Scheme API for 3m Transformation . 30

2

6 Embedding Scheme Modules via C 32

7 Decompiling Bytecode 33

7.1 Scheme API for Decompiling . 34

7.2 Scheme API for Parsing Bytecode . 34

7.2.1 Prefix . 36

7.2.2 Forms . 37

7.2.3 Expressions . 40

7.2.4 Syntax Objects . 46

7.3 Scheme API for Marshaling Bytecode . 48

8 Compiling to Raw Bytecode 49

9 Compiling to Native Code via C 50

10 Scheme API for Compilation 51

10.1 Bytecode Compilation . 51

10.2 Compilation via C . 53

10.3 Loading compiler support . 54

10.4 Options for the Compiler . 54

10.5 The Compiler as a Unit . 57

10.5.1 Signatures . 57

10.5.2 Main Compiler Unit . 58

10.5.3 Options Unit . 58

10.5.4 Compiler Inner Unit . 59

Index 60

3

1 Running mzc

The main action of mzc is determined through one of the following command-line flags:

• �make (the default), -k or �make-collection : Compiles Scheme modules and all
transitive imports to bytecode. See §2 “Compiling Modified Modules to Bytecode”.

• �exe, �gui-exe, or �exe-dir : Creates an executable to run a Scheme module, or
assembles all support libraries to move an executable to a new filesystem. See §3.1
“Stand-Alone Executables from Scheme Code”.

• �collection-plt or �plt : packages Scheme code for installation into a different
PLT Scheme installation. See §4 “Packaging Library Collections”. PLaneT is usually
a better alternative.

• �cc, �ld, �xform or -x : Compiles, links or transforms (for GC cooperation) C
code to extend the PLT Scheme runtime system. See §5 “Compiling and Linking C
Extensions”. Using the scheme/foreign FFI is often better; see FFI: PLT Scheme
Foreign Interface.

• �c-mods : Creates C source to embed Scheme modules into an executable that also
embeds PLT Scheme. See §6 “Embedding Scheme Modules via C”.

• �expand : Pretty-prints the macro-expanded form of a Scheme program.

• �decompile : Parses a bytecode file and prints its content as quasi-Scheme. See §7
“Decompiling Bytecode”.

• �zo, -z, or �collection-zo : Compiles Scheme code to bytecode, without follow-
ing transitive imports. See §8 “Compiling to Raw Bytecode”. This mode is rarely
useful.

• �extension, -e, �c-source, or -c : Compiles Scheme code to a native-code exten-
sion via C. See §9 “Compiling to Native Code via C”. This mode is rarely useful.

4

2 Compiling Modified Modules to Bytecode

The default mode for mzc is to accept filenames for Scheme modules to be compiled to
bytecode format. Modules are re-compiled only if the source Scheme file is newer than the
bytecode file, or if any imported module is recompiled.

2.1 Bytecode Files

A file "〈name 〉.〈ext 〉" is compiled to bytecode that is saved as
"compiled/〈name 〉_〈ext 〉.zo" relative to the file. As a result, the bytecode file is
normally used automatically when "〈name 〉.〈ext 〉" is required as a module, since the
underlying load/use-compiled operation detects such a bytecode file.

For example, in a directory that contains the following files:

• "a.scm":

#lang scheme

(require "b.scm" "c.scm")

(+ b c)

• "b.scm":

#lang scheme

(provide b)

(define b 1)

• "c.scm":

#lang scheme

(provide c)

(define c 1)

then

mzc a.scm

triggers the creation of "compiled/a_ss.zo", "compiled/b_ss.zo", and
"compiled/c_ss.zo". A subsequent

mzscheme a.scm

loads bytecode from the generated ".zo" files, paying attention to the ".scm" sources only
to confirm that each ".zo" file has a later timestamp.

In contrast,

5

mzc b.scm c.scm

would create only "compiled/b_scm.zo" and "compiled/c_scm.zo", since neither
"b.scm" nor "c.scm" imports "a.scm".

2.2 Dependency Files

In addition to a bytecode file, mzc creates a file "compiled/〈name 〉_〈ext 〉.dep" that
records dependencies of the compiled module on other module files. Using this dependency
information, a re-compilation request via mzc can consult both the source file’s timestamp
and the timestamps for the sources and bytecode of imported modules. Furthermore, im-
ported modules are themselves compiled as necessary, including updating the bytecode and
dependency files for the imported modules, transitively.

Continuing the mzc a.scm example from the previous section, the mzc creates
"compiled/a_scm.dep", "compiled/b_scm.dep", and "compiled/c_scm.dep" at the
same time as the ".zo" files. The "compiled/a_scm.dep" file records the dependency of
"a.scm" on "b.scm", "c.scm" and the scheme library. If the "b.scm" file is modified (so
that its timestamp changes), then running

mzc a.scm

again rebuilds "compiled/a_ss.zo" and "compiled/b_ss.zo".

For module files that are within library collections, setup-plt uses the same ".zo" and
".dep" conventions and files as mzc, so the two tools can be used together.

2.3 Scheme Compilation Manager API

(require compiler/cm)

The compiler/cm module implements the compilation and dependency management used
by mzc and setup-plt.

(make-compilation-manager-load/use-compiled-handler)

→ (path? (or/c symbol? false/c) . -> . any)

Returns a procedure suitable as a value for the current-load/use-compiled parame-
ter. The returned procedure passes it arguments on to the current-load/use-compiled

procedure that is installed when make-compilation-manager-load/use-compiled-

handler is called, but first it automatically compiles a source file to a ".zo" file if

• the file is expected to contain a module (i.e., the second argument to the handler is a

6

symbol);

• the value of each of (current-eval), (current-load), and (namespace-

module-registry (current-namespace)) is the same as when make-

compilation-manager-load/use-compiled-handler was called;

• the value of use-compiled-file-paths contains the first path that was present
when make-compilation-manager-load/use-compiled-handler was called;

• the value of current-load/use-compiled is the result of this procedure; and

• one of the following holds:

– the source file is newer than the ".zo" file in the first sub-directory listed in
use-compiled-file-paths (at the time that make-compilation-manager-
load/use-compiled-handler was called)

– no ".dep" file exists next to the ".zo" file;

– the version recorded in the ".dep" file does not match the result of (version);

– one of the files listed in the ".dep" file has a ".zo" timestamp newer than the
one recorded in the ".dep" file.

After the handler procedure compiles a ".zo" file, it creates a corresponding ".dep" file
that lists the current version, plus the ".zo" timestamp for every file that is required by the
module in the compiled file. Additional dependencies can be installed during compilation
via compiler/cm-accomplice.

The handler caches timestamps when it checks ".dep" files, and the cache is maintained
across calls to the same handler. The cache is not consulted to compare the immediate
source file to its ".zo" file, which means that the caching behavior is consistent with the
caching of the default module name resolver (see current-module-name-resolver).

If use-compiled-file-paths contains an empty list when make-compilation-

manager-load/use-compiled-handler is called, then exn:fail:contract exception
is raised.

Do not install the result of make-compilation-manager-load/use-compiled-handler
when the current namespace contains already-loaded versions of modules that may need to
be recompiled—unless the already-loaded modules are never referenced by not-yet-loaded
modules. References to already-loaded modules may produce compiled files with inconsis-
tent timestamps and/or ".dep" files with incorrect information.

(managed-compile-zo file [read-src-syntax]) → void?

file : path-string?

read-src-syntax : (any/c input-port? . -> . syntax?)

= read-syntax

7

Compiles the given module source file to a ".zo", installing a compilation-manager han-
dler while the file is compiled (so that required modules are also compiled), and creating a
".dep" file to record the timestamps of immediate files used to compile the source (i.e., files
required in the source).

If file is compiled from source, then read-src-syntax is used in the same way as read-
syntax to read the source module. The normal read-syntax is used for any required files,
however.

(trust-existing-zos) → boolean?

(trust-existing-zos trust?) → void?

trust? : any/c

A parameter that is intended for use by setup-plt when installing with pre-built ".zo"
files. It causes a compilation-manager load/use-compiled handler to “touch” out-of-date
".zo" files instead of re-compiling from source.

(make-caching-managed-compile-zo read-src-syntax)

→ (path-string? . -> . void?)

read-src-syntax : (any/c input-port? . -> . syntax?)

Returns a procedure that behaves like managed-compile-zo (providing the same read-

src-syntax each time), but a cache of timestamp information is preserved across calls to
the procedure.

(manager-compile-notify-handler) → (path? . -> . any)

(manager-compile-notify-handler notify) → void?

notify : (path? . -> . any)

A parameter for a procedure of one argument that is called whenever a compilation starts.
The argument to the procedure is the file’s path.

(manager-trace-handler) → (string? . -> . any)

(manager-trace-handler notify) → void?

notify : (string? . -> . any)

A parameter for a procedure of one argument that is called to report compilation-manager
actions, such as checking a file. The argument to the procedure is a string.

(manager-skip-file-handler) → (-> path? (or/c number? #f))

(manager-skip-file-handler proc) → void?

proc : (-> path? (or/c number? #f))

8

A parameter whose value is called for each file that is loaded and needs recompilation. If
the procedure returns a number, then the file is skipped (i.e., not compiled), and the number
is used as the timestamp for the file’s bytecode. If the procedure returns #f, then the file is
compiled as usual. The default is (lambda (x) #f).

(file-date-in-collection p) → (or/c number? #f)

p : path?

Calls file-date-in-paths with p and (current-library-collection-paths).

(file-date-in-paths p paths) → (or/c number? #f)

p : path?

paths : (listof path?)

This is a function intended to be used with manager-skip-file-handler. It returns the
date of the .ss or .zo file (whichever is newer) for any path that is inside the paths argu-
ment, and #f for any other path.

2.4 Compilation Manager Hook for Syntax Transformers

(require compiler/cm-accomplice)

(register-external-file file) → void?

file : (and path? complete-path?)

Logs a message (see log-message) at level 'info. The message data is a file-

dependency prefab structure type with one field whose value is file .

A compilation manager implemented by compiler/cm looks for such messages to register
an external dependency. The compilation manager records (in a ".dep" file) the path as
contributing to the implementation of the module currently being compiled. Afterward, if
the registered file is modified, the compilation manager will know to recompile the module.

The include macro, for example, calls this procedure with the path of an included file as it
expands an include form.

9

3 Creating and Distributing Stand-Alone Executables

Whether bytecode or native code, the compiled code produced by mzc relies on PLT Scheme
executables to provide run-time support to the compiled code. However, mzc can also pack-
age code together with its run-time support to form a complete executable, and then the
executable can be packaged into a distribution that works on other machines.

3.1 Stand-Alone Executables from Scheme Code

The command-line flag �exe directs mzc to embed a module, from source or byte code, into
a copy of the mzscheme executable. (Under Unix, the embedding executable is actually a
copy of a wrapper executable.) The created executable invokes the embedded module on
startup. The �gui-exe flag is similar, but it copies the mred executable. If the embedded
module refers to other modules via require, then the other modules are also included in the
embedding executable.

For example, the command

mzc �gui-exe hello hello.ss

produces either "hello.exe" (Windows), "hello.app" (Mac OS X), or "hello" (Unix),
which runs the same as invoking the "hello.ss" module in mred.

Library modules or other files that are referenced dynamically—through eval, load, or
dynamic-require—are not automatically embedded into the created executable. Such
modules can be explicitly included using mzc’s �lib flag. Alternately, use define-

runtime-path to embed references to the run-time files in the executable; the files are then
copied and packaged together with the executable when creating a distribution (as described
in §3.2 “Distributing Stand-Alone Executables”).

Modules that are implemented directly by extensions—i.e., extensions that are automatically
loaded from (build-path "compiled" "native" (system-library-subpath)) to
satisfy a require—are treated like other run-time files: a generated executable uses them
from their original location, and they are copied and packaged together when creating a
distribution.

The �exe and �gui-exe flags work only with module-based programs. The com-

piler/embed library provides a more general interface to the embedding mechanism.

A stand-alone executable is “stand-alone” in the sense that you can run it without starting
mzscheme, mred, or DrScheme. However, the executable depends on PLT Scheme shared
libraries, and possibly other run-time files declared via define-runtime-path. The exe-
cutable can be packaged with support libraries to create a distribution, as described in §3.2
“Distributing Stand-Alone Executables”.

10

3.1.1 Scheme API for Creating Executables

(require compiler/embed)

The compiler/embed library provides a function to embed Scheme code into a copy of
MzScheme or MrEd, thus creating a stand-alone Scheme executable. To package the ex-
ecutable into a distribution that is indpendent of your PLT installation, use assemble-

distribution from compiler/distribute.

Embedding walks the module dependency graph to find all modules needed by some initial
set of top-level modules, compiling them if needed, and combining them into a “module
bundle.” In addition to the module code, the bundle extends the module name resolver, so
that modules can be required with their original names, and they will be retrieved from the
bundle instead of the filesystem.

The create-embedding-executable function combines the bundle with an executable
(MzScheme or MrEd). The write-module-bundle function prints the bundle to the current
output port, instead; this stream can be loaded directly by a running program, as long as the
read-accept-compiled parameter is true.

(create-embedding-executable

dest

[#:modules mod-list

#:literal-files literal-files

#:literal-expression literal-sexp

#:literal-expressions literal-sexps

#:cmdline cmdline

#:mred? mred?

#:variant variant

#:aux aux

#:collects-path collects-path

#:launcher? launcher?

#:verbose? verbose?

#:compiler compile-proc

#:expand-namespace expand-namespace

#:src-filter src-filter

#:on-extension ext-proc

#:get-extra-imports extras-proc])
→ void?

dest : path-string?

mod-list : (listof (list/c (or/c symbol? (one-of/c #t #f))

module-path?))

= null

literal-files : (listof path-string?) = null

literal-sexp : any/c = #f

11

literal-sexps : list? = (if literal-sexp

(list literal-sexp)

null)

cmdline : (listof string?) = null

mred? : any/c = #f

variant : (one-of/c 'cgc '3m) = (system-type 'gc)

aux : (listof (cons/c symbol? any/c)) = null

collects-path : (or/c false/c

path-string?

(listof path-string?))

= #f

launcher? : any/c = #f

verbose? : any/c = #f

compile-proc : (any/c . -> . compiled-expression?)

= (lambda (e)

(parameterize ([current-namespace

expand-namespace])

(compile e)))

expand-namespace : namespace? = (current-namespace)

src-filter : (path? . -> . any) = (lambda (p) #t)

ext-proc : (or/c false/c (path-string? boolean? . -> . any))

= #f

extras-proc : (path? compiled-module?

. -> . (listof module-path?))

= (lambda (p m) null)

Copies the MzScheme (if mred? is #f) or MrEd (otherwise) binary, embedding code into
the copied executable to be loaded on startup. Under Unix, the binary is actually a wrapper
executable that execs the original; see also the 'original-exe? tag for aux .

The embedding executable is written to dest , which is overwritten if it exists already (as a
file or directory).

The embedded code consists of module declarations followed by additional (arbitrary) code.
When a module is embedded, every module that it imports is also embedded. Library mod-
ules are embedded so that they are accessible via their lib paths in the initial namespace ex-
cept as specified in mod-list , other modules (accessed via local paths and absolute paths)
are embedded with a generated prefix, so that they are not directly accessible.

The #:modules argument mod-list designates modules to be embedded, as described
below. The #:literal-files and #:literal-expressions arguments specify literal
code to be copied into the executable: the content of each file in literal-files is copied
in order (with no intervening space), followed by each element of literal-sexps . The
literal-files files or literal-sexps list can contain compiled bytecode, and it’s pos-
sible that the content of the literal-files files only parse when concatenated; the files
and expression are not compiled or inspected in any way during the embedding process. Be-
ware that the initial namespace contains no bindings; use compiled expressions to bootstrap

12

the namespace. If literal-sexp is #f, no literal expression is included in the executable.
The #:literal-expression (singular) argument is for backward compatibility.

The #:cmdline argument cmdline contains command-line strings that are prefixed onto
any actual command-line arguments that are provided to the embedding executable. A
command-line argument that evaluates an expression or loads a file will be executed after
the embedded code is loaded.

Each element of the #:modules argument mod-list is a two-item list, where the first item
is a prefix for the module name, and the second item is a module path datum (that’s in the
format understood by the default module name resolver). The prefix can be a symbol, #f to
indicate no prefix, or #t to indicate an auto-generated prefix. For example,

'((#f "m.ss"))

embeds the module m from the file "m.ss", without prefixing the name of the module; the
literal-sexpr argument to go with the above might be '(require m).

Modules are normally compiled before they are embedded into the target executable; see
also #:compiler and #:src-filter below. When a module declares run-time paths via
define-runtime-path, the generated executable records the path (for use both by imme-
diate execution and for creating a distribution that contains the executable).

The optional #:aux argument is an association list for platform-specific options (i.e., it is a
list of pairs where the first element of the pair is a key symbol and the second element is the
value for that key). See also build-aux-from-path. The currently supported keys are as
follows:

• 'icns (Mac OS X) : An icon file path (suffix ".icns") to use for the executable’s
desktop icon.

• 'ico (Windows) : An icon file path (suffix ".ico") to use for the executable’s desktop
icon; the executable will have 16x16, 32x32, and 48x48 icons at 4-bit, 8-bit, and 32-
bit (RBBA) depths; the icons are copied and generated from any 16x16, 32x32, and
48x48 icons in the ".ico" file.

• 'creator (Mac OS X) : Provides a 4-character string to use as the application signa-
ture.

• 'file-types (Mac OS X) : Provides a list of association lists, one for each type of
file handled by the application; each association is a two-element list, where the first
(key) element is a string recognized by Finder, and the second element is a plist value
(see xml/plist). See "drscheme.filetypes" in the "drscheme" collection for
an example.

• 'uti-exports (Mac OS X) : Provides a list of association lists, one for each Uniform
Type Identifier (UTI) exported by the executable; each association is a two-element
list, where the first (key) element is a string recognized in a UTI declaration, and the

13

second element is a plist value (see xml/plist). See "drscheme.utiexports" in
the "drscheme" collection for an example.

• 'resource-files (Mac OS X) : extra files to copy into the "Resources" directory
of the generated executable.

• 'framework-root (Mac OS X) : A string to prefix the executable’s path
to the MzScheme and MrEd frameworks (including a separating slash); note
that when the prefix starts "@executable_path/" works for a MzScheme-
based application, the corresponding prefix start for a MrEd-based application is
"@executable_path/../../../"; if #f is supplied, the executable’s framework
path is left as-is, otherwise the original executable’s path to a framework is converted
to an absolute path if it was relative.

• 'dll-dir (Windows) : A string/path to a directory that contains PLT DLLs needed
by the executable, such as "pltmzsch〈version 〉.dll", or a boolean; a path can be
relative to the executable; if #f is supplied, the path is left as-is; if #t is supplied,
the path is dropped (so that the DLLs must be in the system directory or the user’s
PATH); if no value is supplied the original executable’s path to DLLs is converted to
an absolute path if it was relative.

• 'subsystem (Windows) : A symbol, either 'console for a console application or
'windows for a consoleless application; the default is 'console for a MzScheme-
based application and 'windows for a MrEd-based application; see also 'single-

instance?, below.

• 'single-instance? (Windows) : A boolean for MrEd-based apps; the default is #t,
which means that the app looks for instances of itself on startup and merely brings the
other instance to the front; #f means that multiple instances are expected.

• 'forget-exe? (Windows, Mac OS X) : A boolean; #t for a launcher (see launcher?
below) does not preserve the original executable name for (find-system-path

'exec-file); the main consequence is that library collections will be found rela-
tive to the launcher instead of the original executable.

• 'original-exe? (Unix) : A boolean; #t means that the embedding uses the original
MzScheme or MrEd executable, instead of a wrapper binary that execs the original;
the default is #f.

If the #:collects-path argument is #f, then the created executable maintains its built-
in (relative) path to the main "collects" directory—which will be the result of (find-
system-path 'collects-dir) when the executable is run—plus a potential list of
other directories for finding library collections—which are used to initialize the current-

library-collection-paths list in combination with PLTCOLLECTS environment vari-
able. Otherwise, the argument specifies a replacement; it must be either a path, string, or
non-empty list of paths and strings. In the last case, the first path or string specifies the
main collection directory, and the rest are additional directories for the collection search

14

path (placed, in order, after the user-specific "collects" directory, but before the main
"collects" directory; then the search list is combined with PLTCOLLECTS, if it is defined).

If the #:launcher? argument is #t, then no modules should be null, literal-files
should be null, literal-sexp should be #f, and the platform should be Windows or
Mac OS X. The embedding executable is created in such a way that (find-system-path
'exec-file) produces the source MzScheme or MrEd path instead of the embedding ex-
ecutable (but the result of (find-system-path 'run-file) is still the embedding exe-
cutable).

The #:variant argument indicates which variant of the original binary to use for embed-
ding. The default is (system-type 'gc); see also current-launcher-variant.

The #:compiler argument is used to compile the source of modules to be included in the
executable (when a compiled form is not already available). It should accept a single ar-
gument that is a syntax object for a module form. The default procedure uses compile

parameterized to set the current namespace to expand-namespace .

The #:expand-namespace argument selects a namespace for expanding extra modules (and
for compiling using the default compile-proc). Extra-module expansion is needed to de-
tect run-time path declarations in included modules, so that the path resolutions can be di-
rected to the current locations (and, ultimately, redirected to copies in a distribution).

The #:src-filter argument takes a path and returns true if the corresponding file source
should be included in the embedding executable in source form (instead of compiled form),
#f otherwise. The default returns #f for all paths. Beware that the current output port may
be redirected to the result executable when the filter procedure is called.

If the #:on-extension argument is a procedure, the procedure is called when the traversal
of module dependencies arrives at an extension (i.e., a DLL or shared object). The default,
#f, causes a reference to a single-module extension (in its current location) to be embedded
into the executable. The procedure is called with two arguments: a path for the extension,
and a #f (for historical reasons).

The #:get-extra-imports argument takes a source pathname and compiled module for
each module to be included in the executable. It returns a list of quoted module paths (abso-
lute, as opposed to relative to the module) for extra modules to be included in the executable
in addition to the modules that the source module requires. For example, these modules
might correspond to reader extensions needed to parse a module that will be included as
source, as long as the reader is referenced through an absolute module path.

15

(make-embedding-executable dest

mred?

verbose?

mod-list

literal-files

literal-sexp

cmdline

[aux
launcher?

variant]) → void?

dest : path-string?

mred? : any/c

verbose? : any/c

mod-list : (listof (list/c (or/c symbol? (one-of/c #t #f))

module-path?))

literal-files : (listof path-string?)

literal-sexp : any/c

cmdline : (listof string?)

aux : (listof (cons/c symbol? any/c)) = null

launcher? : any/c = #f

variant : (one-of/c 'cgc '3m) = (system-type 'gc)

Old (keywordless) interface to create-embedding-executable.

(write-module-bundle verbose?

mod-list

literal-files

literal-sexp) → void?

verbose? : any/c

mod-list : (listof (list/c (or/c symbol? (one-of/c #t #f))

module-path?))

literal-files : (listof path-string?)

literal-sexp : any/c

Like make-embedding-executable, but the module bundle is written to the current output
port instead of being embedded into an executable. The output of this function can be read
to load and instantiate mod-list and its dependencies, adjust the module name resolver
to find the newly loaded modules, evaluate the forms included from literal-files , and
finally evaluate literal-sexpr. The read-accept-compiled parameter must be true to
read the stream.

(embedding-executable-is-directory? mred?) → boolean

mred? : any/c

16

Indicates whether MzScheme/MrEd executables for the current platform correspond to di-
rectories from the user’s perspective. The result is currently #f for all platforms.

(embedding-executable-is-actually-directory? mred?) → boolean?

mred? : any/c

Indicates whether MzScheme/MrEd executables for the current platform actually correspond
to directories. The result is #t under Mac OS X when mred? is #t, #f otherwise.

(embedding-executable-put-file-extension+style+filters mred?)

→ (or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

mred? : any/c

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If MzScheme/MrEd launchers for the current platform were directories form the user’s per-
spective, the style result is suitable for use with get-directory, and the extension

result may be a string indicating a required extension for the directory name.

(embedding-executable-add-suffix path

mred?) → path-string?

path : path-string?

mred? : any/c

Adds a suitable executable suffix, if it’s not present already.

Executable Creation Signature

(require compiler/embed-sig)

compiler:embed^ : signature

Includes the identifiers provided by compiler/embed.

Executable Creation Unit

(require compiler/embed-unit)

17

compiler:embed@ : unit?

A unit that imports nothing and exports compiler:embed^.

3.2 Distributing Stand-Alone Executables

The command-line flag �exe-dir directs mzc to combine a stand-alone executable (cre-
ated via �exe or �gui-exe) with all of the shared libraries that are needed to run it, along
with any run-time files declared via define-runtime-path. The resulting package can be
moved to other machines that run the same operating system.

After the �exe-dir flag, supply a directory to contain the combined files for a distribution.
Each command-line argument is an executable to include in the distribution, so multiple
executables can be packaged together. For example, under Windows,

mzc �exe-dir geetings hello.exe goodbye.exe

creates a directory "greetings" (if the directory doesn’t exist already), and it copies the
executables "hello.exe" and "goodbye.exe" into "greetings". It also creates a "lib"
sub-directory in "greetings" to contain DLLs, and it adjusts the copied "hello.exe" and
"goodbye.exe" to use the DLLs in "lib".

The layout of files within a distribution directory is platform-specific:

• Under Windows, executables are put directly into the distribution directory, and DLLs
and other run-time files go into a "lib" sub-directory.

• Under Mac OS X, �gui-exe executables go into the distribution directory, �exe exe-
cutables go into a "bin" subdirectory, and frameworks (i.e., shared libraries) go into
a "lib" sub-directory along with other run-time files. As a special case, if the distri-
bution has a single �gui-exe executable, then the "lib" directory is hidden inside
the application bundle.

• Under Unix, executables go into a "bin" subdirectory, shared libraries (if any) go
into a "lib" subdirectory along with other run-time files, and wrapped executables
are placed into a "lib/plt" subdirectory with version-specific names. This layout
is consistent with Unix installation conventions; the version-specific names for shared
libraries and wrapped executables means that distributions can be safely unpacked into
a standard place on target machines without colliding with an existing PLT Scheme
installation or other executables created by mzc.

A distribution also has a "collects" directory that is used as the main library collec-
tion directory for the packaged executables. By default, the directory is empty. Use mzc’s
++copy-collects flag to supply a directory whose content is copied into the distribution’s

18

"collects" directory. The ++copy-collects flag can be used multiple times to supply
multiple directories.

When multiple executables are disrtibuted together, then separately creating the executables
with �exe and �gui-exe can generate multiple copies of collection-based libraries that are
used by multiple executables. To share the library code, instead, specify a target directory
for library copies using the �collects-dest flag with �exe and �gui-exe, and specify
the same directory for each executable (so that the set of libraries used by all executables are
pooled together). Finally, when packaging the distribution with �exe-dir, use the ++copy-
collects flag to include the copied libraries in the distribution.

3.2.1 Scheme API for Distributing Executables

(require compiler/distribute)

The compiler/distribute library provides a function to perform the same work as mzc
�exe or mzc �gui-exe.

(assemble-distribution dest-dir

exec-files

[#:collects-path path

#:copy-collects dirs]) → void?

dest-dir : path-string?

exec-files : (listof path-string?)

path : (or/c false/c (and/c path-string? relative-path?)) = #f

dirs : (listof path-string?) = null

Copies the executables in exec-files to the directory dest-dir , along with DLLs, frame-
works, and/or shared libraries that the executables need to run a different machine.

The arrangement of the executables and support files in dest-dir depends on the platform.
In general assemble-distribution tries to do the Right Thing.

If a #:collects-path argument is given, it overrides the default location of the main "col-
lects" directory for the packaged executables. It should be relative to the dest-dir direc-
tory (typically inside it).

The content of each directory in the #:copy-collects argument is copied into the main
"collects" directory for the packaged executables.

3.2.2 Scheme API for Bundling Distributions

(require compiler/bundle-dist)

19

The compiler/bundle-dist library provides a function to pack a directory (usually as-
sembled by assemble-distribution) into a distribution file. Under Windows, the result
is a ".zip" archive; under Mac OS X, it’s a ".dmg" disk image; under Unix, it’s a ".tgz"
archive.

(bundle-directory dist-file dir [for-exe?]) → void?

dist-file : file-path?

dir : file-path?

for-exe? : any/c = #f

Packages dir into dist-file . If dist-file has no extension, a file extension is added
automatcially (using the first result of bundle-put-file-extension+style+filters).

The created archive contains a directory with the same name as dir—except under Mac OS
X when for-exe? is true and dir contains a single a single file or directory, in which case
the created disk image contains just the file or directory. The default for for-exe? is #f.

Archive creation fails if dist-file exists.

(bundle-put-file-extension+style+filters)

→ (or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively to select a distribution-file name.

3.3 Installation-Specific Launchers for Scheme Code

(require launcher/launcher)

The launcher/launcher library provides functions for creating launchers, which are sim-
ilar to stand-alone executables, but sometimes smaller because they depend permanently on
the local PLT Scheme installation. In the case of Unix, in particular, a launcher is simply a
shell script. The mzc tool provides no direct support for creating launchers.

3.3.1 Creating Launchers

(make-mred-launcher args dest [aux]) → void?

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

20

Creates the launcher dest , which starts MrEd with the command-line arguments specified
as strings in args . Extra arguments passed to the launcher at run-time are appended (modulo
special Unix/X flag handling, as described below) to this list and passed on to MrEd. If dest
exists already, as either a file or directory, it is replaced.

The optional aux argument is an association list for platform-specific options (i.e., it is a list
of pairs where the first element of the pair is a key symbol and the second element is the value
for that key). See also build-aux-from-path. See create-embedding-executable for
a list that applies to both stand-alone executables and launchers under Windows and Mac OS
X MrEd; the following additional associations apply to launchers:

• 'independent? (Windows) — a boolean; #t creates an old-style launcher that is
independent of the MzScheme or MrEd binary, like setup-plt.exe. No other aux
associations are used for an old-style launcher.

• 'exe-name (Mac OS X, 'script-3m or 'script-cgc variant) — provides the base
name for a '3m-/'cgc-variant launcher, which the script will call ignoring args . If
this name is not provided, the script will go through the MrEd executable as usual.

• 'relative? (all platforms) — a boolean, where #t means that the generated launcher
should find the base MrEd executable through a relative path.

For Unix/X, the script created by make-mred-launcher detects and handles X Windows
flags specially when they appear as the initial arguments to the script. Instead of appending
these arguments to the end of args , they are spliced in after any X Windows flags already
listed listed in args . The remaining arguments (i.e., all script flags and arguments after the
last X Windows flag or argument) are then appended after the spliced args .

(make-mzscheme-launcher args dest [aux]) → void?

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

Like make-mred-launcher, but for starting MzScheme. Under Mac OS X, the 'exe-name
aux association is ignored.

(make-mred-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

Calls make-mred-launcher with arguments that start the MrEd program implemented
by file in collection : (list "-l-" (string-append collection "/" file)).

21

The aux argument to make-mred-launcher is generated by stripping the suffix (if any)
from file , adding it to the path of collection , and passing the result to build-aux-

from-path.

(make-mzscheme-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

Like make-mred-program-launcher, but for make-mzscheme-launcher.

(install-mred-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Same as

(make-mred-program-launcher

file collection

(mred-program-launcher-path name))

(install-mzscheme-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Same as

(make-mzscheme-program-launcher

file collection

(mzscheme-program-launcher-path name))

3.3.2 Launcher Path and Platform Conventions

(mred-program-launcher-path name) → path?

22

name : string?

Returns a pathname for an executable in the PLT Scheme installation called something like
name . For Windows, the ".exe" suffix is automatically appended to name . For Unix,
name is changed to lowercase, whitespace is changed to -, and the path includes the "bin"
subdirectory of the PLT Scheme installation. For Mac OS X, the ".app" suffix is appended
to name .

(mzscheme-program-launcher-path name) → path?

name : string?

Returns the same path as (mred-program-launcher-path name) for Unix and Win-
dows. For Mac OS X, the result is the same as for Unix.

(mred-launcher-is-directory?) → boolean?

Returns #t if MrEd launchers for the current platform are directories from the user’s per-
spective. For all currently supported platforms, the result is #f.

(mzscheme-launcher-is-directory?) → boolean?

Like mred-launcher-is-directory?, but for MzScheme launchers.

(mred-launcher-is-actually-directory?) → boolean?

Returns #t if MrEd launchers for the current platform are implemented as directories from
the filesystem’s perspective. The result is #t for Mac OS X, #f for all other platforms.

(mzscheme-launcher-is-actually-directory?) → boolean?

Like mred-launcher-is-actuall-directory?, but for MzScheme launchers. The result
is #f for all platforms.

(mred-launcher-add-suffix path-string?) → path?

path-string? : path

Returns a path with a suitable executable suffix added, if it’s not present already.

(mzscheme-launcher-add-suffix path-string?) → path?

path-string? : path

Like mred-launcher-add-suffix, but for MzScheme launchers.

23

(mred-launcher-put-file-extension+style+filters)

→ (or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If MrEd launchers for the current platform were directories form the user’s perspective, the
style result is suitable for use with get-directory, and the extension result may be a
string indicating a required extension for the directory name.

(mzscheme-launcher-put-file-extension+style+filters)

→ (or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Like mred-launcher-get-file-extension+style+filters, but for MzScheme
launchers.

3.3.3 Launcher Configuration

(mred-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

Returns #t if the MrEd launcher dest does not need to be updated, assuming that dest is
a launcher and its arguments have not changed.

(mzscheme-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

Analogous to mred-launcher-up-to-date?, but for a MzScheme launcher.

(build-aux-from-path path) → (listof (cons/c symbol? any/c))

path : path-string?

Creates an association list suitable for use with make-mred-launcher or create-

embedding-executable. It builds associations by adding to path suffixes, such as
".icns", and checking whether such a file exists.

24

The recognized suffixes are as follows:

• ".icns"→ 'icns file for use under Mac OS X

• ".ico"→ 'ico file for use under Windows

• ".lch"→ 'independent? as #t (the file content is ignored) for use under Windows

• ".creator"→ 'creator as the initial four characters in the file for use under Mac
OS X

• ".filetypes" → 'file-types as read content (a single S-expression), and
'resource-files as a list constructed by finding "CFBundleTypeIconFile" en-
tries in 'file-types (and filtering duplicates); for use under Mac OS X

• ".utiexports"→ 'uti-exports as read content (a single S-expression); for use
under Mac OS X

(current-launcher-variant) → symbol?

(current-launcher-variant variant) → void?

variant : symbol?

A parameter that indicates a variant of MzScheme or MrEd to use for launcher creation and
for generating launcher names. The default is the result of (system-type 'gc). Under
Unix and Windows, the possibilities are 'cgc and '3m. Under Mac OS X, the 'script-3m
and 'script-cgc variants are also available for MrEd launchers.

(available-mred-variants) → (listof symbol?)

Returns a list of symbols corresponding to available variants of MrEd in the current PLT
Scheme installation. The list normally includes at least one of '3m or 'cgc— whichever
is the result of (system-type 'gc)—and may include the other, as well as 'script-3m
and/or 'script-cgc under Mac OS X.

(available-mzscheme-variants) → (listof symbol?)

Returns a list of symbols corresponding to available variants of MzScheme in the current
PLT Scheme installation. The list normally includes at least one of '3m or 'cgc—whichever
is the result of (system-type 'gc)—and may include the other.

3.3.4 Launcher Creation Signature

(require launcher/launcher-sig)

25

launcher^ : signature

Includes the identifiers provided by launcher/launcher.

3.3.5 Launcher Creation Unit

(require launcher/launcher-unit)

launcher@ : unit?

A unit that imports nothing and exports launcher^.

26

4 Packaging Library Collections
Before creating a
".plt" archive to
distribute, consider
instead posting your
package on PLaneT.

The command-line flags �plt and �collection-plt direct mzc to create an archive for
distributing library files to PLT Scheme users. A distribution archive usually has the suffix
".plt", which DrScheme recognizes as an archive to provide automatic unpacking facili-
ties. The setup-plt program also supports ".plt" unpacking.

An archive contains the following elements:

• A set of files and directories to be unpacked, and flags indicating whether they are to
be unpacked relative to the PLT Scheme add-ons directory (which is user-specific),
the PLT Scheme installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line to mzc,
either directly with �plt or in the form of collection names with �collection-plt.

The �at-plt flag indicates that the files and directories should be unpacked relative
to the user’s add-ons directory, unless the user specifies the PLT Scheme installation
directory when unpacking. The �collection-plt flag implies �at-plt. The �all-
users flag overrides �at-plt, and it indicates that the files and directories should be
unpacked relative to the PLT Scheme installation directory, always.

• A flag for each file indicating whether it overwrites an existing file when the archive is
unpacked; the default is to leave the old file in place, but mzc’s �replace flag enables
replacing for all files in the archive.

• A list of collections to be set-up (via Setup PLT) after the archive is unpacked; mzc’s
++setup flag adds a collection name to the archive’s list, but each collection for �
collection-plt is added automatically.

• A name for the archive, which is reported to the user by the unpacking interface; mzc’s
�plt-name flag sets the archive’s name, but a default name is determined automati-
cally for �collection-plt.

• A list of required collections (with associated version numbers) and a list of conflicting
collections; mzc always names the "mzscheme" collection in the required list (using
the collection’s pack-time version), mzc names each packed collection in the conflict
list (so that a collection is not unpacked on top of a different version of the same
collection), and mzc extracts other requirements and conflicts from the "info.ss"

files of collections for �collection-plt.

Use the �plt flag to specify individual directories and files for the archive. Each file and
directory must be specified with a relative path. By default, if the archive is unpacked with
DrScheme, the user will be prompted for a target directory, and if setup-plt is used to un-
pack the archive, the files and directories will be unpacked relative to the current directory. If
the �at-plt flag is provided to mzc, the files and directories will be unpacked relative to the
user’s PLT Scheme add-ons directory, instead. Finally, if the �all-users flag is provided

27

http://planet.plt-scheme.org/

to mzc, the files and directories will be unpacked relative to the PLT Scheme installation
directory, instead.

Use the �collection-plt flag to pack one or more collections; sub-collections can be des-
ignated by using a / as a path separator on all platforms. In this mode, mzc automatically
uses paths relative to the PLT Scheme installation or add-ons directory for the archived files,
and the collections will be set-up after unpacking. In addition, mzc consults each collection’s
"info.ss" file, as described below, to determine the set of required and conflicting collec-
tions. Finally, mzc consults the first collection’s "info.ss" file to obtain a default name
for the archive. For example, the following command creates a "sirmail.plt" archive for
distributing a "sirmail" collection:

mzc �collection-plt sirmail.plt sirmail

When packing collections, mzc checks the following fields of each collection’s "info.ss"
file (see §5 “"info.ss" File Format”):

• requires — A list of the form (list (list coll vers) ...) where each coll
is a non-empty list of relative-path strings, and each vers is a (possibly empty) list
of exact integers. The indicated collections must be installed at unpacking time, with
version sequences that match as much of the version sequence specified in the corre-
sponding vers.

A collection’s version is indicated by a version field in it’s "info.ss" file, and the
default version is the empty list. The version sequence generalized major and minor
version numbers. For example, version '(2 5 4 7) of a collection can be used when
any of '(), '(2), '(2 5), '(2 5 4), or '(2 5 4 7) is required.

• conflicts — A list of the form (list coll ...) where each coll is a non-
empty list of relative-path strings. The indicated collections must not be installed at
unpacking time.

For example, the "info.ss" file in the "sirmail" collection might contain the following
info declaration:

#lang setup/infotab

(define name "SirMail")

(define mred-launcher-libraries (list "sirmail.ss"))

(define mred-launcher-names (list "SirMail"))

(define requires (list (list "mred")))

Then, the "sirmail.plt" file (created by the command-line example above) will contain
the name “SirMail.” When the archive is unpacked, the unpacker will check that the MrEd
collection is installed (not just MzScheme), and that MrEd has the same version as when
"sirmail.plt" was created.

28

4.1 Scheme API for Packaging

Although mzc’s command-line interface is sufficient for most purposes, see the setup/pack
library for a more general interface for constructing archives.

29

5 Compiling and Linking C Extensions

A dynamic extension is a shared library (a.k.a. DLL) that extends PLT Scheme using the
C API. An extension can be loaded explicitly via load-extension, or it can be loaded
implicitly through require or load/use-compiled in place of a source file when the
extension is located at

(build-path "compiled" "native" (system-library-subpath)

(path-add-suffix file (system-type 'so-suffix)))

relative to file .

For information on writing extensions, see Inside: PLT Scheme C API.

Three mzc modes help for building extensions:

• �cc : Runs the host system’s C compiler, automatically supplying flags to locate the
PLT Scheme header files and to compile for inclusion in a shared library.

• �ld : Runs the host system’s C linker, automatically supplying flags to locate and link
to the PLT Scheme libraries and to generate a shared library.

• �xform : Transforms C code that is written without explicit GC-cooperation hooks
to cooperate with PLT Scheme’s 3m garbage collector; see §1 “Overview” in Inside:
PLT Scheme C API.

Compilation and linking build on the dynext/compile and dynext/link libraries. The
following mzc flags correspond to setting or accessing parameters for those libraries: �tool,
�compiler, �ccf, �ccf, �ccf-clear, �ccf-show, �linker, ++ldf, �ldf, �ldf-clear,
�ldf-show, ++ldl, �ldl-show, ++cppf, ++cppf ++cppf-clear, and �cppf-show.

The �3m flag specifies that the extension is to be loaded into the 3m variant of PLT Scheme.
The �cgc flag specifies that the extension is to be used with the CGC. The default depends
on mzc: �3m if mzc itself is running in 3m, �cgc if mzc itself is running in CGC.

5.1 Scheme API for 3m Transformation

(require compiler/xform)

(xform quiet?

input-file

output-file

include-dirs

[#:keep-lines? keep-lines?]) → any/c

30

quiet? : any/c

input-file : path-string?

output-file : path-string?

include-dirs : (listof path-string?)

keep-lines? : boolean? = #f

Transforms C code that is written without explicit GC-cooperation hooks to cooperate with
PLT Scheme’s 3m garbage collector; see §1 “Overview” in Inside: PLT Scheme C API.

The arguments are as for compile-extension; in addition keep-lines? can be #t to
generate GCC-style annotations to connect the generated C code with the original source
locations.

The file generated by xform can be compiled via compile-extension.

31

6 Embedding Scheme Modules via C

The �c-mods mode for mzc takes a set of Scheme modules and generates a C source file
that can be used as part of program that embeds the PLT Scheme run-time system. See §1.3
“Embedding MzScheme into a Program” in Inside: PLT Scheme C API for an explanation
of embedding programs.

The generated source file embeds the specified modules, and it defines a declare_modules
function that puts the module declarations into a namespace. Thus, using the output of mzc
�c-mods, a program can embed PLT Scheme with a set of modules so that it does not need
a "collects" directory to load modules at run time.

32

7 Decompiling Bytecode

The �decompile mode for mzc takes a bytecode file (which usually has the file extension
".zo") and converts it back to an approximation of Scheme code. Decompiled bytecode
is mostly useful for checking the compiler’s transformation and optimization of the source
program.

Many forms in the decompiled code, such as module, define, and lambda, have the same
meanings as always. Other forms and transformations are specific to the rendering of byte-
code, and they reflect a specific execution model:

• Top-level variables, variables defined within the module, and variables imported from
other modules are prefixed with _, which helps expose the difference between uses of
local variables versus other variables. Variables imported from other modules, more-
over, have a suffix that indicates the source module.

Non-local variables are always accessed indirectly though an implicit #%globals or
#%modvars variable that resides on the value stack (which otherwise contains local
variables). Variable accesses are further wrapped with #%checked when the compiler
cannot prove that the variable will be defined before the access.

Uses of core primitives are shown without a leading _, and they are never wrapped
with #%checked.

• Local-variable access may be wrapped with #%sfs-clear, which indicates that the
variable-stack location holding the variable will be cleared to prevent the variable’s
value from being retained by the garbage collector.

Mutable variables are converted to explicitly boxed values using #%box, #%unbox,
and #%set-boxes! (which works on multiple boxes at once). A set!-rec-values

operation constructs mutually-recursive closures and simultaneously updates the cor-
responding variable-stack locations that bind the closures. A set!, set!-values, or
set!-rec-values form is always used on a local variable before it is captured by a
closure; that ordering reflects how closures capture values in variable-stack locations,
as opposed to stack locations.

• In a lambda form, if the procedure produced by the lambda has a name (accessible
via object-name) and/or source-location information, then it is shown as a quoted
constant at the start of the procedure’s body. Afterward, if the lambda form captures
any bindings from its context, those bindings are also shown in a quoted constant.
Neither constant corresponds to a computation when the closure is called, though the
list of captured bindings corresponds to a closure allocation when the lambda form
itself is evaluated.

A lambda form that closes over no bindings is wrapped with #%closed plus an iden-
tifier that is bound to the closure. The binding’s scope covers the entire decompiled
output, and it may be referenced directly in other parts of the program; the binding
corresponds to a constant closure value that is shared, and it may even contain cyclic
references to itself or other constant closures.

33

• A form (#%apply-values proc expr) is equivalent to (call-with-values

(lambda () expr) proc), but the run-time system avoids allocating a closure for
expr .

• Some applications of core primitives are annotated with #%in, which indicates that
the JIT compiler will inline the operation. (Inlining information is not part of the
bytecode, but is instead based on an enumeration of primitives that the JIT is known
to handle specially.) Operations from scheme/flonum and scheme/unsafe/ops are
always inlined, so #%in is not shown for them.

• Some applications of flonum operations from scheme/flonum and
scheme/unsafe/ops are annotated with #%flonum, indicating a place where
the JIT compiler might avoid allocation for intermediate flonum results. A single
#%flonum by itself is not useful, but a #%flonum operation that consumes a #%flonum
or #%from-flonum argument indicates a potential performance improvement. A
#%from-flonum wraps an identifier that is bound by let with a #%as-flonum

around its value, which indicates a local binding that can avoid boxing (when used as
an argument to an operation that can work with unboxed values).

• A #%decode-syntax form corresponds to a syntax object. Future improvements to
the decompiler will convert such syntax objects to a readable form.

7.1 Scheme API for Decompiling

(require compiler/decompile)

(decompile top) → any/c

top : compilation-top?

Consumes the result of parsing bytecode and returns an S-expression (as described above)
that represents the compiled code.

7.2 Scheme API for Parsing Bytecode

(require compiler/zo-parse)

(zo-parse in) → compilation-top?

in : input-port?

Parses a port (typically the result of opening a ".zo" file) containing bytecode. Beware that
the structure types used to represent the bytecode are subject to frequent changes across PLT
Scheme versons.

34

The parsed bytecode is returned in a compilation-top structure. For a compiled module,
the compilation-top structure will contain a mod structure. For a top-level sequence, it
will normally contain a seq or splice structure with a list of top-level declarations and
expressions.

The bytecode representation of an expression is closer to an S-expression than a traditional,
flat control string. For example, an if form is represented by a branch structure that has
three fields: a test expression, a “then” expression, and an “else” expression. Similarly, a
function call is represented by an application structure that has a list of argument expres-
sions.

Storage for local variables or intermediate values (such as the arguments for a function call)
is explicitly specified in terms of a stack. For example, execution of an application struc-
ture reserves space on the stack for each argument result. Similarly, when a let-one struc-
ture (for a simple let) is executed, the value obtained by evaluating the right-hand side
expression is pushed onto the stack, and then the body is evaluated. Local variables are
always accessed as offsets from the current stack position. When a function is called, its
arguments are passed on the stack. A closure is created by transferring values from the stack
to a flat closure record, and when a closure is applied, the saved values are restored on the
stack (though possibly in a different order and likely in a more compact layout than when
they were captured).

When a sub-expression produces a value, then the stack pointer is restored to its location
from before evaluating the sub-expression. For example, evaluating the right-hand size for
a let-one structure may temporarily push values onto the stack, but the stack is restored to
its pre-let-one position before pushing the resulting value and continuing with the body.
In addition, a tail call resets the stack pointer to the position that follows the enclosing
function’s arguments, and then the tail call continues by pushing onto the stack the arguments
for the tail-called function.

Values for global and module-level variables are not put directly on the stack, but instead
stored in “buckets,” and an array of accessible buckets is kept on the stack. When a closure
body needs to access a global variable, the closure captures and later restores the bucket
array in the same way that it captured and restores a local variable. Mutable local variables
are boxed similarly to global variables, but individual boxes are referenced from the stack
and closures.

Quoted syntax (in the sense of quote-syntax) is treated like a global variable, because it
must be instantiated for an appropriate phase. A prefix structure within a compilation-
top or mod structure indicates the list of global variables and quoted syntax that need to be
instantiated (and put into an array on the stack) before evaluating expressions that might use
them.

35

7.2.1 Prefix

(struct compilation-top (max-let-depth prefix code)

#:transparent)

max-let-depth : exact-nonnegative-integer?

prefix : prefix?

code : (or/c form? indirect? any/c)

Wraps compiled code. The max-let-depth field indicates the maximum stack depth that
code creates (not counting the prefix array). The prefix field describes top-level vari-
ables, module-level variables, and quoted syntax-objects accessed by code. The code field
contains executable code; it is normally a form, but a literal value is represented as itself.

(struct prefix (num-lifts toplevels stxs)

#:transparent)

num-lifts : exact-nonnegative-integer?

toplevels : (listof (or/c #f symbol? global-bucket? module-variable?))

stxs : (listof stx?)

Represents a “prefix” that is pushed onto the stack to initiate evaluation. The prefix is an
array, where buckets holding the values for toplevels are first, then a bucket for another
array if stxs is non-empty, then num-lifts extra buckets for lifted local procedures.

In toplevels, each element is one of the following:

• a #f, which indicates a dummy variable that is used to access the enclosing mod-
ule/namespace at run time;

• a symbol, which is a reference to a variable defined in the enclosing module;

• a global-bucket, which is a top-level variable (appears only outside of modules); or

• a module-variable, which indicates a variable imported from another module.

The variable buckets and syntax objects that are recorded in a prefix are accessed by
toplevel and topsyntax expression forms.

(struct global-bucket (name)

#:transparent)

name : symbol?

Represents a top-level variable, and used only in a prefix.

36

(struct module-variable (modidx sym pos phase)

#:transparent)

modidx : module-path-index?

sym : symbol?

pos : exact-integer?

phase : (or/c 0 1)

Represents a top-level variable, and used only in a prefix. The pos may record the vari-
able’s offset within its module, or it can be -1 if the variable is always located by name. The
phase indicates the phase level of the definition within its module.

(struct stx (encoded)

#:transparent)

encoded : wrapped?

Wraps a syntax object in a prefix.

7.2.2 Forms

(struct form ()

#:transparent)

A supertype for all forms that can appear in compiled code (including exprs), except for
literals that are represented as themselves and indirect structures to create cycles.

(struct (def-values form) (ids rhs)

#:transparent)

ids : (listof toplevel?)

rhs : (or/c expr? seq? indirect? any/c)

Represents a define-values form. Each element of ids will reference via the prefix either
a top-level variable or a local module variable.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct (def-syntaxes form) (ids rhs prefix max-let-depth)

#:transparent)

ids : (listof toplevel?)

rhs : (or/c expr? seq? indirect? any/c)

prefix : prefix?

max-let-depth : exact-nonnegative-integer?

37

(struct (def-for-syntax form) (ids rhs prefix max-let-depth)

#:transparent)

ids : (listof toplevel?)

rhs : (or/c expr? seq? indirect? any/c)

prefix : prefix?

max-let-depth : exact-nonnegative-integer?

Represents a define-syntaxes or define-values-for-syntax form. The rhs expres-
sion has its own prefix, which is pushed before evaluating rhs; the stack is restored after
obtaining the result values. The max-let-depth field indicates the maximum size of the
stack that will be created by rhs (not counting prefix).

(struct (req form) (reqs dummy)

#:transparent)

reqs : syntax?

dummy : toplevel?

Represents a top-level #%require form (but not one in a module form) with a sequence of
specifications reqs. The dummy variable is used to access to the top-level namespace.

(struct (seq form) (forms)

#:transparent)

forms : (listof (or/c form? indirect? any/c))

Represents a begin form, either as an expression or at the top level (though the latter is more
commonly a splice form). When a seq appears in an expression position, its forms are
expressions.

After each form in forms is evaluated, the stack is restored to its depth from before evaluat-
ing the form.

(struct (splice form) (forms)

#:transparent)

forms : (listof (or/c form? indirect? any/c))

Represents a top-level begin form where each evaluation is wrapped with a continuation
prompt.

After each form in forms is evaluated, the stack is restored to its depth from before evaluat-
ing the form.

38

(struct (mod form) (name

self-modidx

prefix

provides

requires

body

syntax-body

unexported

max-let-depth

dummy

lang-info

internal-context)

#:transparent)

name : symbol?

self-modidx : module-path-index?

prefix : prefix?

provides : (listof (list/c (or/c exact-integer? #f)

(listof provided?)

(listof provided?)))

requires : (listof (cons/c (or/c exact-integer? #f)

(listof module-path-index?)))

body : (listof (or/c form? indirect? any/c))

syntax-body : (listof (or/c def-syntaxes? def-for-syntax?))

unexported : (list/c (listof symbol?) (listof symbol?)

(listof symbol?))

max-let-depth : exact-nonnegative-integer?

dummy : toplevel?

lang-info : (or/c #f (vector/c module-path? symbol? any/c))

internal-context : (or/c #f #t syntax?)

Represents a module declaration. The body forms use prefix, rather than any prefix in
place for the module declaration itself (and each syntax-body has its own prefix).

The provides and requires lists are each an association list from phases to exports or
imports. In the case of provides, each phase maps to two lists: one for exported variables,
and another for exported syntax. In the case of requires, each phase maps to a list of
imported module paths.

The body field contains the module’s run-time code, and syntax-body contains the mod-
ule’s compile-time code. After each form in body or syntax-body is evaluated, the stack
is restored to its depth from before evaluating the form.

The unexported list contains lists of symbols for unexported definitions that can be ac-
cessed through macro expansion. The first list is phase-0 variables, the second is phase-0
syntax, and the last is phase-1 variables.

39

The max-let-depth field indicates the maximum stack depth created by body forms (not
counting the prefix array). The dummy variable is used to access to the top-level namespace.

The lang-info value specifies an optional module path that provides information about the
module’s implementation language.

The internal-module-context value describes the lexical context of the body of the
module. This value is used by module->namespace. A #f value means that the context
is unavailable or empty. A #t value means that the context is computed by re-importing all
required modules. A syntax-object value embeds an arbitrary lexical context.

(struct provided (name

src

src-name

nom-mod

src-phase

protected?

insp)

#:transparent)

name : symbol?

src : (or/c module-path-index? #f)

src-name : symbol?

nom-mod : (or/c module-path-index? #f)

src-phase : (or/c 0 1)

protected? : boolean?

insp : (or #t #f (void))

Describes an individual provided identifier within a mod instance.

7.2.3 Expressions

(struct (expr form) ()

#:transparent)

A supertype for all expression forms that can appear in compiled code, except for literals
that are represented as themselves, indirect structures to create cycles, and some seq

structures (which can appear as an expression as long as it contains only other things that
can be expressions).

40

(struct (lam expr) (name

flags

num-params

param-types

rest?

closure-map

closure-types

max-let-depth

body)

#:transparent)

name : (or/c symbol? vector?)

flags : (listof (or/c 'preserves-marks 'is-method 'single-result))

num-params : exact-nonnegative-integer?

param-types : (listof (or/c 'val 'ref 'flonum))

rest? : boolean?

closure-map : (vectorof exact-nonnegative-integer?)

closure-types : (listof (or/c 'val/ref 'flonum))

max-let-depth : exact-nonnegative-integer?

body : (or/c expr? seq? indirect? any/c)

Represents a lambda form. The name field is a name for debugging purposes. The num-

params field indicates the number of arguments accepted by the procedure, not counting a
rest argument; the rest? field indicates whether extra arguments are accepted and collected
into a “rest” variable. The param-types list contains num-params symbols indicating the
type of each argumet, either 'val for a normal argument, 'ref for a boxed argument (rep-
resenting a mutable local variable), or 'flonum for a flonum argument. The closure-map
field is a vector of stack positions that are captured when evaluating the lambda form to
create a closure. The closure-types field provides a corresponding list of types, but no
distinction is made between normal values and boxed values; also, this information is redun-
dant, since it can be inferred by the bindings referenced though closure-map.

When the function is called, the rest-argument list (if any) is pushed onto the stack, then the
normal arguments in reverse order, then the closure-captured values in reverse order. Thus,
when body is run, the first value on the stack is the first value captured by the closure-map
array, and so on.

The max-let-depth field indicates the maximum stack depth created by body plus the ar-
guments and closure-captured values pushed onto the stack. The body field is the expression
for the closure’s body.

(struct (closure expr) (code gen-id)

#:transparent)

code : lam?

gen-id : symbol?

41

A lambda form with an empty closure, which is a procedure constant. The procedure con-
stant can appear multiple times in the graph of expressions for bytecode, and the code field
can refer back to the same closure through an indirect for a recursive constant proce-
dure; the gen-id is different for each such constant.

(struct indirect (v)

#:mutable

#:prefab)

v : closure?

An indirection used in expression positions to form cycles.

(struct (case-lam expr) (name clauses)

#:transparent)

name : (or/c symbol? vector?)

clauses : (listof lam?)

Represents a case-lambda form as a combination of lambda forms that are tried (in order)
based on the number of arguments given.

(struct (let-one expr) (rhs body flonum?)

#:transparent)

rhs : (or/c expr? seq? indirect? any/c)

body : (or/c expr? seq? indirect? any/c)

flonum? : boolean?

Pushes an uninitialized slot onto the stack, evaluates rhs and puts its value into the slot, and
then runs body. If flonum? is #t, then rhs must produce a flonum, and the slot must be
accessed by localrefs that expect a flonum.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs. Note
that the new slot is created before evaluating rhs.

(struct (let-void expr) (count boxes? body)

#:transparent)

count : exact-nonnegative-integer?

boxes? : boolean?

body : (or/c expr? seq? indirect? any/c)

Pushes count uninitialized slots onto the stack and then runs body. If boxes? is #t, then
the slots are filled with boxes that contain #<undefined>.

42

(struct (install-value expr) (count pos boxes? rhs body)

#:transparent)

count : exact-nonnegative-integer?

pos : exact-nonnegative-integer?

boxes? : boolean?

rhs : (or/c expr? seq? indirect? any/c)

body : (or/c expr? seq? indirect? any/c)

Runs rhs to obtain count results, and installs them into existing slots on the stack in order,
skipping the first pos stack positions. If boxes? is #t, then the values are put into existing
boxes in the stack slots.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct (let-rec expr) (procs body)

#:transparent)

procs : (listof lam?)

body : (or/c expr? seq? indirect? any/c)

Represents a letrec form with lambda bindings. It allocates a closure shell for each
lambda form in procs, installs each onto the stack in previously allocated slots in reverse
order (so that the closure shell for the last element of procs is installed at stack position
0), fills out each shell’s closure (where each closure normally references some other just-
created closures, which is possible because the shells have been installed on the stack), and
then evaluates body.

(struct (boxenv expr) (pos body)

#:transparent)

pos : exact-nonnegative-integer?

body : (or/c expr? seq? indirect? any/c)

Skips pos elements of the stack, setting the slot afterward to a new box containing the slot’s
old value, and then runs body. This form appears when a lambda argument is mutated using
set! within its body; calling the function initially pushes the value directly on the stack, and
this form boxes the value so that it can be mutated later.

(struct (localref expr) (unbox? pos clear? other-clears? flonum?)

#:transparent)

unbox? : boolean?

pos : exact-nonnegative-integer?

clear? : boolean?

other-clears? : boolean?

flonum? : boolean?

43

Represents a local-variable reference; it accesses the value in the stack slot after the first pos
slots. If unbox? is #t, the stack slot contains a box, and a value is extracted from the box.
If clear? is #t, then after the value is obtained, the stack slot is cleared (to avoid retaining
a reference that can prevent reclamation of the value as garbage). If other-clears? is #t,
then some later reference to the same stack slot may clear after reading. If flonum? is #t,
the slot holds to a flonum value.

(struct (toplevel expr) (depth pos const? ready?)

#:transparent)

depth : exact-nonnegative-integer?

pos : exact-nonnegative-integer?

const? : boolean?

ready? : boolean?

Represents a reference to a top-level or imported variable via the prefix array. The depth
field indicates the number of stack slots to skip to reach the prefix array, and pos is the offset
into the array.

If const? is #t, then the variable definitely will be defined, and its value stays constant. If
ready? is #t, then the variable definitely will be defined (but its value might change in the
future). If const? and ready? are both #f, then a check is needed to determine whether the
variable is defined.

(struct (topsyntax expr) (depth pos midpt)

#:transparent)

depth : exact-nonnegative-integer?

pos : exact-nonnegative-integer?

midpt : exact-nonnegative-integer?

Represents a reference to a quoted syntax object via the prefix array. The depth field
indicates the number of stack slots to skip to reach the prefix array, and pos is the offset into
the array. The midpt value is used internally for lazy calculation of syntax information.

(struct (application expr) (rator rands)

#:transparent)

rator : (or/c expr? seq? indirect? any/c)

rands : (listof (or/c expr? seq? indirect? any/c))

Represents a function call. The rator field is the expression for the function, and rands are
the argument expressions. Before any of the expressions are evaluated, (length rands)

uninitialized stack slots are created (to be used as temporary space).

(struct (branch expr) (test then else)

#:transparent)

44

test : (or/c expr? seq? indirect? any/c)

then : (or/c expr? seq? indirect? any/c)

else : (or/c expr? seq? indirect? any/c)

Represents an if form.

After test is evaluated, the stack is restored to its depth from before evaluating test.

(struct (with-cont-mark expr) (key val body)

#:transparent)

key : (or/c expr? seq? indirect? any/c)

val : (or/c expr? seq? indirect? any/c)

body : (or/c expr? seq? indirect? any/c)

Represents a with-continuation-mark expression.

After each of key and val is evaluated, the stack is restored to its depth from before evalu-
ating key or val.

(struct (beg0 expr) (seq)

#:transparent)

seq : (listof (or/c expr? seq? indirect? any/c))

Represents a begin0 expression.

After each expression in seq is evaluated, the stack is restored to its depth from before
evaluating the expression.

(struct (varref expr) (toplevel)

#:transparent)

toplevel : toplevel?

Represents a #%variable-reference form.

(struct (assign expr) (id rhs undef-ok?)

#:transparent)

id : toplevel?

rhs : (or/c expr? seq? indirect? any/c)

undef-ok? : boolean?

Represents a set! expression that assigns to a top-level or module-level variable. (Assign-
ments to local variables are represented by install-value expressions.)

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

45

(struct (apply-values expr) (proc args-expr)

#:transparent)

proc : (or/c expr? seq? indirect? any/c)

args-expr : (or/c expr? seq? indirect? any/c)

Represents (call-with-values (lambda () args-expr) proc), which is handled
specially by the run-time system.

(struct (primval expr) (id)

#:transparent)

id : exact-nonnegative-integer?

Represents a direct reference to a variable imported from the run-time kernel.

7.2.4 Syntax Objects

(struct wrapped (datum wraps certs)

#:transparent)

datum : any/c

wraps : (listof wrap?)

certs : list?

Represents a syntax object, where wraps contain the lexical information and certs is cer-
tificate information. When the datum part is itself compound, its pieces are wrapped, too.

(struct wrap ()

#:transparent)

A supertype for lexical-information elements.

(struct (lexical-rename wrap) (alist)

#:transparent)

alist : (listof (cons/c identifier? identifier?))

A local-binding mapping from symbols to binding-set names.

(struct (phase-shift wrap) (amt src dest)

#:transparent)

amt : exact-integer?

src : module-path-index?

46

dest : module-path-index?

Shifts module bindings later in the wrap set.

(struct (module-rename wrap) (phase

kind

set-id

unmarshals

renames

mark-renames

plus-kern?)

#:transparent)

phase : exact-integer?

kind : (or/c 'marked 'normal)

set-id : any/c

unmarshals : (listof make-all-from-module?)

renames : (listof module-binding?)

mark-renames : any/c

plus-kern? : boolean?

Represents a set of module and import bindings.

(struct all-from-module (path phase src-phase exceptions prefix)

#:transparent)

path : module-path-index?

phase : (or/c exact-integer? #f)

src-phase : (or/c exact-integer? #f)

exceptions : (listof symbol?)

prefix : symbol?

Represents a set of simple imports from one module within a module-rename.

(struct module-binding (path

mod-phase

import-phase

id

nominal-path

nominal-phase

nominal-id)

#:transparent)

path : module-path-index?

mod-phase : (or/c exact-integer? #f)

import-phase : (or/c exact-integer? #f)

id : symbol?

47

nominal-path : module-path-index?

nominal-phase : (or/c exact-integer? #f)

nominal-id : (or/c exact-integer? #f)

Represents a single identifier import (i.e., the general case) within a module-rename.

7.3 Scheme API for Marshaling Bytecode

(require compiler/zo-marshal)

(zo-marshal top) → bytes?

top : compilation-top?

Consumes a representation of bytecode and generates a byte string for the marshaled byte-
code. Currently, syntax objects are not supported, including in req for a top-level #%re-
quire.

48

8 Compiling to Raw Bytecode

The �zo/-z mode for mzc is an improverished form of the default �make/-k mode (which
is described in §2 “Compiling Modified Modules to Bytecode”), because it does not track
import dependencies. It does, however, support compilation of non-module source.

By default, the generated bytecode is placed in the same directory as the source file—which
is not where it will be found automatically when loading the source. Use the �auto-dir flag
to redirect the output to a "compiled" subdirectory, where it will be found automatically
when loading the source file.

Outside of a module, top-level define-syntaxes, module, #%require, define-values-
for-syntax, and and begin expressions are handled specially by mzc �zo: the compile-
time portion of the expression is evaluated, because it might affect later expressions. (The
-m or �module flag turns off this special handling.)

For example, when compiling the file containing

(require scheme/class)

(define f (class% object% (super-new)))

the class form from the scheme/class library must be bound in the compilation names-
pace at compile time. Thus, the require expression is both compiled (to appear in the
output code) and evaluated (for further computation).

Many definition forms expand to define-syntaxes. For example, define-signature
expands to define-syntaxes. In �zo mode, mzc detects define-syntaxes and other
expressions after expansion, so top-level define-signature expressions affect the compi-
lation of later expressions, as a programmer would expect.

In contrast, a load or eval expression in a source file is compiled—but not evaluated!—as
the source file is compiled. Even if the load expression loads syntax or signature definitions,
these will not be loaded as the file is compiled. The same is true of application expressions
that affect the reader, such as (read-case-sensitive #t). The -p or �prefix flag for
mzc takes a file and loads it before compiling the source files specified on the command line.

In general, a better solution is to put all code to compile into a module and use mzc in its
default mode.

49

9 Compiling to Native Code via C

The �extension/-e mode for mzc is similar to the �zo mode, except that the compiled form
of the module is a native-code shared library instead of bytecode. Native code is generated
with the help of the host system’s C compiler. This mode is rarely useful, because the just-
in-time (JIT) compiler that is built into PLT Scheme provides better performance with lower
overhead on the platforms where it is supported (see §17 “Performance”).

As with �zo mode, the generated shared library by default is placed in the same directory as
the source file—which is not where it will be found automatically when loading the source.
Use the �auto-dir flag to redirect the output to a (build-path "compiled" "native"

(system-library-subpath)) subdirectory, where it will be found automatically when
loading the source file.

The �c-source/-c mode for mzc is like the �extension/-e mode, except that compilation
stops with the generation of C code.

All of the C compiler and linker flags that apply to �cc and �ld mode also apply to �

extension mode; see §5 “Compiling and Linking C Extensions”. In addition, a few
flag provide some control over the Scheme-to-C compiler: �no-prop, �inline, �no-

prim, �stupid, �unsafe-disable-interrupts, �unsafe-skip-tests, and �unsafe-

fixnum-arithmetic. Use mzc �help for an explanation of each flag.

50

10 Scheme API for Compilation

(require compiler/compiler)

The compiler/compiler library provides the functionality of mzc for compilation to byte-
code and via C, but through a Scheme API.

10.1 Bytecode Compilation

((compile-zos expr

[#:module? module?

#:verbose? verbose?])
scheme-files

dest-dir) → void?

expr : any/c

module? : any/c = #f

verbose? : any/c = #f

scheme-files : (listof path-string?)

dest-dir : (or/c path-string? false/c (one-of/c 'auto))

Supplying just expr returns a compiler that is initialized with the expression expr, as de-
scribed below.

The compiler takes a list of Scheme files and compiles each of them to bytecode, placing the
resulting bytecode in a ".zo" file within the directory specified by dest-dir . If dest-dir
is #f, each bytecode result is placed in the same directory as its source file. If dest-dir is
'auto, each bytecode file is placed in a "compiled" subdirectory relative to the source; the
directory is created if necessary.

If expr is anything other than #f, then a namespace is created for compiling the files that
are supplied later, and expr is evaluated to initialize the created namespace. For example,
expr might load a set of macros. In addition, the expansion-time part of each expression
later compiled is evaluated in the namespace before being compiled, so that the effects are
visible when compiling later expressions.

If expr is #f, then no compilation namespace is created (the current namespace is used), and
expressions in the files are assumed to compile independently (so there’s no need to evaluate
the expansion-time part of an expression to compile).

Typically, expr is #f for compiling module files, and it is (void) for compiling files with
top-level definitions and expressions.

If module? is #t, then the given files are read and compiled as modules (so there is no
dependency on the current namespace’s top-level environment).

51

If verbose? is #t, the output file for each given file is reported through the current output
port.

(compile-collection-zos collection

...+

[#:skip-path skip-path

#:skip-doc-sources? skip-docs?]) → void?

collection : string?

skip-path : (or/c path-string? #f) = #f

skip-docs? : any/c = #f

Compiles the specified collection’s files to ".zo" files. The ".zo" files are placed into
the collection’s "compiled" directory. By default, all files with the extension ".ss" or
".scm" in a collection are compiled, as are all such files within subdirectories, execept that
any file or directory whose path starts with scheme-path is skipped. (“Starts with” means
that the simplified path p ’s byte-string form after (simplify-path p #f)starts with the
byte-string form of (simplify-path skip-path #f).)

The collection compiler reads the collection’s "info.ss" file (see §5 “"info.ss" File
Format”) to obtain further instructions for compiling the collection. The following fields are
used:

• name : The name of the collection as a string, used only for status and error reporting.

• compile-omit-paths : A list of immediate file and directory paths that should not
be compiled. Alternatively, this field’s value 'all, which is equivalent to specifying
all files and directories in the collection (to effectively ignore the collection for com-
pilation). Automatically omitted files and directories are "compiled", "doc", and
those whose names start with ..

Files that are required by other files, however, are always compiled in the process of
compiling the requiring file—even when the required file is listed with this field or
when the field’s value is 'all.

• compile-omit-files : A list of filenames (without directory paths); that are not
compiled, in addition to the contents of compile-omit-paths. Do not use this field;
it is for backward compatibility.

• scribblings : A list of pairs, each of which starts with a path for documentation
source. The sources (and the files that they require) are compiled in the same way as
".ss" and ".scm" files, unless the provided skip-docs? argument is a true value.

The compilation process for an individual file is driven by managed-compile-zo from
compiler/cm.

52

(compile-directory-zos path

info

[#:verbose verbose?

#:skip-path skip-path

#:skip-doc-sources? skip-docs?]) → void?

path : path-string?

info : ()

verbose? : any/c = #f

skip-path : (or/c path-string? #f) = #f

skip-docs? : any/c = #f

Like compile-collection-zos, but compiles the given directory rather than a collection.
The info function behaves like the result of get-info to supply "info.ss" fields, instead
of using an "info.ss" file (if any) in the directory.

10.2 Compilation via C

((compile-extensions expr)

scheme-files

dest-dir) → void?

expr : any/c

scheme-files : (listof path-string?)

dest-dir : (or/c path-string? false/c (one-of/c 'auto))

Like compile-zos, but the scheme-files are compiled to native-code extensions via C.
If dest-dir is 'auto, each extension file (".dll", ".so", or ".dylib") is placed in
a subdirectory relative to the source produced by (build-path "compiled" "native"

(system-library-subpath)); the directory is created if necessary.

((compile-extensions-to-c expr)

scheme-files

dest-dir) → void?

expr : any/c

scheme-files : (listof path-string?)

dest-dir : (or/c path-string? false/c (one-of/c 'auto))

Like compile-extensions, but only ".c" files are produced, not extensions.

(compile-c-extensions c-files dest-dir) → void?

c-files : (listof path-string?)

dest-dir : (or/c path-string? false/c (one-of/c 'auto))

53

Compiles each ".c" file (usually produced with compile-extensions-to-c) in c-files
to an extension. The dest-dir argument is handled as in compile-extensions.

10.3 Loading compiler support

The compiler unit loads certain tools on demand via dynamic-require and get-info. If
the namespace used during compilation is different from the namespace used to load the
compiler, or if other load-related parameters are set, then the following parameter can be
used to restore settings for dynamic-require.

(current-compiler-dynamic-require-wrapper)

→ ((-> any) . -> . any)

(current-compiler-dynamic-require-wrapper proc) → void?

proc : ((-> any) . -> . any)

A parameter whose value is a procedure that takes a thunk to apply. The default wrapper sets
the current namespace (via parameterize) before calling the thunk, using the namespace
in which the compiler/compiler library was originally instantiated.

10.4 Options for the Compiler

(require compiler/option)

The compiler/option module provides options (in the form of parameters) that control
the compiler’s behaviors.

More options are defined by the dynext/compile and dynext/link libraries, which con-
trol the actual C compiler and linker that are used for compilation via C.

(somewhat-verbose) → boolean?

(somewhat-verbose on?) → void?

on? : any/c

A #t value for the parameter causes the compiler to print the files that it compiles and
produces. The default is #f.

(verbose) → boolean?

(verbose on?) → void?

on? : any/c

A #t value for the parameter causes the compiler to print verbose messages about its opera-

54

tions. The default is #f.

(setup-prefix) → string?

(setup-prefix str) → void?

str : string?

A parameter that specifies a string to embed in public function names when compiling via
C. This is used mainly for compiling extensions with the collection name so that cross-
extension conflicts are less likely in architectures that expose the public names of loaded
extensions. The default is "".

(clean-intermediate-files) → boolean?

(clean-intermediate-files clean?) → void?

clean? : any/c

A #f value for the parameter keeps intermediate ".c" and ".o" files generated during com-
pilation via C. The default is #t.

(compile-subcollections) → (one-of/c #t #f)

(compile-subcollections cols) → void?

cols : (one-of/c #t #f)

A parameter that specifies whether sub-collections are compiled by compile-collection-
zos. The default is #t.

(compile-for-embedded) → boolean?

(compile-for-embedded embed?) → void?

embed? : any/c

A #t values for this parameter creates ".c" files and object files to be linked directly with
an embedded PLT Scheme run-time system, instead of ".c" files and object files to be
dynamically loaded into PLT Scheme as an extension. The default is #f.

(propagate-constants) → boolean?

(propagate-constants prop?) → void?

prop? : any/c

A parameter to control the compiler’s constant propagating when compiling via C. The de-
fault is #t.

(assume-primitives) → boolean?

(assume-primitives assume?) → void?

assume? : any/c

55

A #t parameter value effectively adds (require mzscheme) to the beginning of the pro-
gram. This parameter is useful only when compiling non-module code. The default is #f.

(stupid) → boolean?

(stupid allow?) → void?

allow? : any/c

A parameter that allow obvious non-syntactic errors, such as ((lambda () 0) 1 2 3),
when compiling via C. The default is #f.

(vehicles) → symbol?

(vehicles mode) → void?

mode : symbol?

A parameter that controls how closures are compiled via C. The possible values are:

• 'vehicles:automatic : automatic grouping

• 'vehicles:functions : groups within a procedure

• 'vehicles:monolithic : groups randomly

(vehicles:monoliths) → exact-nonnegative-integer?

(vehicles:monoliths count) → void?

count : exact-nonnegative-integer?

A parameter that determines the number of random groups for 'vehicles:monolithic
mode.

(seed) → exact-nonnegative-integer?

(seed val) → void?

val : exact-nonnegative-integer?

Sets the randomizer seed for 'vehicles:monolithic mode.

(max-exprs-per-top-level-set) → exact-nonnegative-integer?

(max-exprs-per-top-level-set n) → void?

n : exact-nonnegative-integer?

A parameter that determines the number of top-level Scheme expressions crammed into one
C function when compiling via C. The default is 25.

(unpack-environments) → boolean?

56

(unpack-environments unpack?) → void?

unpack? : any/c

Setting this parameter to #f might help compilation via C for register-poor architectures.
The default is #t.

(debug) → boolean?

(debug on?) → void?

on? : any/c

A #t creates a "debug.txt" debugging file when compiling via C. The default is #f.

(test) → boolean?

(test on?) → void?

on? : any/c

A #t value for this parameter causes compilation via C to ignore top-level expressions with
syntax errors. The default is #f.

10.5 The Compiler as a Unit

10.5.1 Signatures

(require compiler/sig)

compiler^ : signature

Includes all of the names exported by compiler/compiler.

compiler:option^ : signature

Includes all of the names exported by compiler/option.

compiler:inner^ : signature

The high-level compiler/compiler interface relies on a low-level implementation of the
extension compiler, which is available from compiler/comp-unit as implementing the
compiler:inner^ signature.

(eval-compile-prefix expr) → void?

57

expr : any/c

Evaluates expr . Future calls to compile-extension or compile-

extension-to-c see the effects of the evaluation.

(compile-extension scheme-source dest-dir) → void?

scheme-source : path-string?

dest-dir : path-string?

Compiles a single Scheme file to an extension.

(compile-extension-to-c scheme-source

dest-dir) → void?

scheme-source : path-string?

dest-dir : path-string?

Compiles a single Scheme file to a ".c" file.

(compile-c-extension c-source dest-dir) → void?

c-source : path-string?

dest-dir : path-string?

Compiles a single ".c" file to an extension.

10.5.2 Main Compiler Unit

(require compiler/compiler-unit)

compiler@ : unit?

Provides the exports of compiler/compiler in unit form, where C-compiler operations are
imports to the unit.

The unit imports compiler:option^, dynext:compile^, dynext:link^, and
dynext:file^. It exports compiler^.

10.5.3 Options Unit

(require compiler/option-unit)

compiler:option@ : unit?

Provides the exports of compiler/option in unit form. It imports no signatures, and ex-
ports compiler:option^.

58

10.5.4 Compiler Inner Unit

(require compiler/comp-unit)

comp@ : unit?

The unit imports compiler:option^, dynext:compile^, dynext:link^, and
dynext:file^. It exports compiler:inner^.

59

Index
".plt", 27
++copy-collects, 18
++cppf, 30
++cppf, 30
++cppf-clear, 30
++ldf, 30
++ldl, 30
++setup, 27
�3m, 30
�all-users, 27
�at-plt, 27
�auto-dir, 49
�auto-dir, 50
�c-mods, 4
�c-source, 4
�cc, 4
�ccf, 30
�ccf, 30
�ccf-clear, 30
�ccf-show, 30
�cgc, 30
�collection-plt, 27
�collection-plt, 4
�collection-zo, 4
�collects-dest, 19
�compiler, 30
�cppf-show, 30
�decompile, 4
�exe, 4
�exe-dir, 4
�expand, 4
�extension, 4
�gui-exe, 4
�inline, 50
�ld, 4
�ldf, 30
�ldf-clear, 30
�ldf-show, 30
�ldl-show, 30
�linker, 30

�make, 4
�make-collection, 4
�no-prim, 50
�no-prop, 50
�plt, 4
�plt-name, 27
�replace, 27
�stupid, 50
�tool, 30
�unsafe-disable-interrupts, 50
�unsafe-fixnum-arithmetic, 50
�unsafe-skip-tests, 50
�xform, 4
�zo, 4
-c, 4
-e, 4
-k, 4
-x, 4
-z, 4
all-from-module, 47
all-from-module-exceptions, 47
all-from-module-path, 47
all-from-module-phase, 47
all-from-module-prefix, 47
all-from-module-src-phase, 47
all-from-module?, 47
application, 44
application-rands, 44
application-rator, 44
application?, 44
apply-values, 46
apply-values-args-expr, 46
apply-values-proc, 46
apply-values?, 46
assemble-distribution, 19
assign, 45
assign-id, 45
assign-rhs, 45
assign-undef-ok?, 45
assign?, 45
assume-primitives, 55
available-mred-variants, 25

60

available-mzscheme-variants, 25
beg0, 45
beg0-seq, 45
beg0?, 45
boxenv, 43
boxenv-body, 43
boxenv-pos, 43
boxenv?, 43
branch, 44
branch-else, 44
branch-test, 44
branch-then, 44
branch?, 44
build-aux-from-path, 24
bundle-directory, 20
bundle-put-file-

extension+style+filters, 20
Bytecode Compilation, 51
Bytecode Files, 5
case-lam, 42
case-lam-clauses, 42
case-lam-name, 42
case-lam?, 42
clean-intermediate-files, 55
closure, 41
closure-code, 41
closure-gen-id, 41
closure?, 41
comp@, 59
Compilation Manager Hook for Syntax

Transformers, 9
Compilation via C, 53
compilation-top, 36
compilation-top-code, 36
compilation-top-max-let-depth, 36
compilation-top-prefix, 36
compilation-top?, 36
compile-c-extension, 58
compile-c-extensions, 53
compile-collection-zos, 52
compile-directory-zos, 53
compile-extension, 58

compile-extension-to-c, 58
compile-extensions, 53
compile-extensions-to-c, 53
compile-for-embedded, 55
compile-omit-files, 52
compile-omit-paths, 52
compile-subcollections, 55
compile-zos, 51
Compiler Inner Unit, 59
compiler/bundle-dist, 19
compiler/cm, 6
compiler/cm-accomplice, 9
compiler/comp-unit, 59
compiler/compiler, 51
compiler/compiler-unit, 58
compiler/decompile, 34
compiler/distribute, 19
compiler/embed, 11
compiler/embed-sig, 17
compiler/embed-unit, 17
compiler/option, 54
compiler/option-unit, 58
compiler/sig, 57
compiler/xform, 30
compiler/zo-marshal, 48
compiler/zo-parse, 34
compiler:embed@, 18
compiler:embed^, 17
compiler:inner^, 57
compiler:option@, 58
compiler:option^, 57
compiler@, 58
compiler^, 57
Compiling and Linking C Extensions, 30
Compiling Modified Modules to Bytecode, 5
Compiling to Native Code via C, 50
Compiling to Raw Bytecode, 49
create-embedding-executable, 11
Creating and Distributing Stand-Alone Exe-

cutables, 10
Creating Launchers, 20
current-compiler-dynamic-require-

61

wrapper, 54
current-launcher-variant, 25
debug, 57
decompile, 34
Decompiling Bytecode, 33
def-for-syntax, 38
def-for-syntax-ids, 38
def-for-syntax-max-let-depth, 38
def-for-syntax-prefix, 38
def-for-syntax-rhs, 38
def-for-syntax?, 38
def-syntaxes, 37
def-syntaxes-ids, 37
def-syntaxes-max-let-depth, 37
def-syntaxes-prefix, 37
def-syntaxes-rhs, 37
def-syntaxes?, 37
def-values, 37
def-values-ids, 37
def-values-rhs, 37
def-values?, 37
Dependency Files, 6
Distributing Stand-Alone Executables, 18
dynamic extension, 30
Embedding Scheme Modules via C, 32
embedding-executable-add-suffix, 17
embedding-executable-is-actually-

directory?, 17
embedding-executable-is-

directory?, 16
embedding-executable-put-file-

extension+style+filters, 17
eval-compile-prefix, 57
Executable Creation Signature, 17
Executable Creation Unit, 17
expr, 40
expr?, 40
Expressions, 40
file-date-in-collection, 9
file-date-in-paths, 9
form, 37
form?, 37

Forms, 37
global-bucket, 36
global-bucket-name, 36
global-bucket?, 36
indirect, 42
indirect-v, 42
indirect?, 42
install-mred-program-launcher, 22
install-mzscheme-program-launcher,

22
install-value, 43
install-value-body, 43
install-value-boxes?, 43
install-value-count, 43
install-value-pos, 43
install-value-rhs, 43
install-value?, 43
Installation-Specific Launchers for Scheme

Code, 20
lam, 41
lam-body, 41
lam-closure-map, 41
lam-closure-types, 41
lam-flags, 41
lam-max-let-depth, 41
lam-name, 41
lam-num-params, 41
lam-param-types, 41
lam-rest?, 41
lam?, 41
Launcher Configuration, 24
Launcher Creation Signature, 25
Launcher Creation Unit, 26
Launcher Path and Platform Conventions, 22
launcher/launcher, 20
launcher/launcher-sig, 25
launcher/launcher-unit, 26
launcher@, 26
launcher^, 26
let-one, 42
let-one-body, 42
let-one-flonum?, 42

62

let-one-rhs, 42
let-one?, 42
let-rec, 43
let-rec-body, 43
let-rec-procs, 43
let-rec?, 43
let-void, 42
let-void-body, 42
let-void-boxes?, 42
let-void-count, 42
let-void?, 42
lexical-rename, 46
lexical-rename-alist, 46
lexical-rename?, 46
Loading compiler support, 54
localref, 43
localref-clear?, 43
localref-flonum?, 43
localref-other-clears?, 43
localref-pos, 43
localref-unbox?, 43
localref?, 43
Main Compiler Unit, 58
make-all-from-module, 47
make-application, 44
make-apply-values, 46
make-assign, 45
make-beg0, 45
make-boxenv, 43
make-branch, 44
make-caching-managed-compile-zo, 8
make-case-lam, 42
make-closure, 41
make-compilation-manager-

load/use-compiled-handler, 6
make-compilation-top, 36
make-def-for-syntax, 38
make-def-syntaxes, 37
make-def-values, 37
make-embedding-executable, 16
make-expr, 40
make-form, 37

make-global-bucket, 36
make-indirect, 42
make-install-value, 43
make-lam, 41
make-let-one, 42
make-let-rec, 43
make-let-void, 42
make-lexical-rename, 46
make-localref, 43
make-mod, 39
make-module-binding, 47
make-module-rename, 47
make-module-variable, 37
make-mred-launcher, 20
make-mred-program-launcher, 21
make-mzscheme-launcher, 21
make-mzscheme-program-launcher, 22
make-phase-shift, 46
make-prefix, 36
make-primval, 46
make-provided, 40
make-req, 38
make-seq, 38
make-splice, 38
make-stx, 37
make-toplevel, 44
make-topsyntax, 44
make-varref, 45
make-with-cont-mark, 45
make-wrap, 46
make-wrapped, 46
managed-compile-zo, 7
manager-compile-notify-handler, 8
manager-skip-file-handler, 8
manager-trace-handler, 8
max-exprs-per-top-level-set, 56
mod, 39
mod-body, 39
mod-dummy, 39
mod-internal-context, 39
mod-lang-info, 39
mod-max-let-depth, 39

63

mod-name, 39
mod-prefix, 39
mod-provides, 39
mod-requires, 39
mod-self-modidx, 39
mod-syntax-body, 39
mod-unexported, 39
mod?, 39
module-binding, 47
module-binding-id, 47
module-binding-import-phase, 47
module-binding-mod-phase, 47
module-binding-nominal-id, 47
module-binding-nominal-path, 47
module-binding-nominal-phase, 47
module-binding-path, 47
module-binding?, 47
module-rename, 47
module-rename-kind, 47
module-rename-mark-renames, 47
module-rename-phase, 47
module-rename-plus-kern?, 47
module-rename-renames, 47
module-rename-set-id, 47
module-rename-unmarshals, 47
module-rename?, 47
module-variable, 37
module-variable-modidx, 37
module-variable-phase, 37
module-variable-pos, 37
module-variable-sym, 37
module-variable?, 37
mred-launcher-add-suffix, 23
mred-launcher-is-actually-

directory?, 23
mred-launcher-is-directory?, 23
mred-launcher-put-file-

extension+style+filters, 24
mred-launcher-up-to-date?, 24
mred-program-launcher-path, 22
mzc: PLT Compilation and Packaging, 1
mzscheme-launcher-add-suffix, 23

mzscheme-launcher-is-actually-

directory?, 23
mzscheme-launcher-is-directory?, 23
mzscheme-launcher-put-file-

extension+style+filters, 24
mzscheme-launcher-up-to-date?, 24
mzscheme-program-launcher-path, 23
name, 52
Options for the Compiler, 54
Options Unit, 58
Packaging Library Collections, 27
phase-shift, 46
phase-shift-amt, 46
phase-shift-dest, 46
phase-shift-src, 46
phase-shift?, 46
Prefix, 36
prefix, 36
prefix-num-lifts, 36
prefix-stxs, 36
prefix-toplevels, 36
prefix?, 36
primval, 46
primval-id, 46
primval?, 46
propagate-constants, 55
provided, 40
provided-insp, 40
provided-name, 40
provided-nom-mod, 40
provided-protected?, 40
provided-src, 40
provided-src-name, 40
provided-src-phase, 40
provided?, 40
register-external-file, 9
req, 38
req-dummy, 38
req-reqs, 38
req?, 38
Running mzc, 4
Scheme API for 3m Transformation, 30

64

Scheme API for Bundling Distributions, 19
Scheme API for Compilation, 51
Scheme API for Creating Executables, 11
Scheme API for Decompiling, 34
Scheme API for Distributing Executables, 19
Scheme API for Marshaling Bytecode, 48
Scheme API for Packaging, 29
Scheme API for Parsing Bytecode, 34
Scheme Compilation Manager API, 6
scribblings, 52
seed, 56
seq, 38
seq-forms, 38
seq?, 38
set-indirect-v!, 42
setup-prefix, 55
Signatures, 57
somewhat-verbose, 54
splice, 38
splice-forms, 38
splice?, 38
Stand-Alone Executables from Scheme

Code, 10
struct:all-from-module, 47
struct:application, 44
struct:apply-values, 46
struct:assign, 45
struct:beg0, 45
struct:boxenv, 43
struct:branch, 44
struct:case-lam, 42
struct:closure, 41
struct:compilation-top, 36
struct:def-for-syntax, 38
struct:def-syntaxes, 37
struct:def-values, 37
struct:expr, 40
struct:form, 37
struct:global-bucket, 36
struct:indirect, 42
struct:install-value, 43
struct:lam, 41

struct:let-one, 42
struct:let-rec, 43
struct:let-void, 42
struct:lexical-rename, 46
struct:localref, 43
struct:mod, 39
struct:module-binding, 47
struct:module-rename, 47
struct:module-variable, 37
struct:phase-shift, 46
struct:prefix, 36
struct:primval, 46
struct:provided, 40
struct:req, 38
struct:seq, 38
struct:splice, 38
struct:stx, 37
struct:toplevel, 44
struct:topsyntax, 44
struct:varref, 45
struct:with-cont-mark, 45
struct:wrap, 46
struct:wrapped, 46
stupid, 56
stx, 37
stx-encoded, 37
stx?, 37
Syntax Objects, 46
test, 57
The Compiler as a Unit, 57
toplevel, 44
toplevel-const?, 44
toplevel-depth, 44
toplevel-pos, 44
toplevel-ready?, 44
toplevel?, 44
topsyntax, 44
topsyntax-depth, 44
topsyntax-midpt, 44
topsyntax-pos, 44
topsyntax?, 44
trust-existing-zos, 8

65

Uniform Type Identifier, 13
unpack-environments, 56
varref, 45
varref-toplevel, 45
varref?, 45
vehicles, 56
vehicles:monoliths, 56
verbose, 54
with-cont-mark, 45
with-cont-mark-body, 45
with-cont-mark-key, 45
with-cont-mark-val, 45
with-cont-mark?, 45
wrap, 46
wrap?, 46
wrapped, 46
wrapped-certs, 46
wrapped-datum, 46
wrapped-wraps, 46
wrapped?, 46
write-module-bundle, 16
xform, 30
zo-marshal, 48
zo-parse, 34

66

	1 Running mzc
	2 Compiling Modified Modules to Bytecode
	2.1 Bytecode Files
	2.2 Dependency Files
	2.3 Scheme Compilation Manager API
	2.4 Compilation Manager Hook for Syntax Transformers

	3 Creating and Distributing Stand-Alone Executables
	3.1 Stand-Alone Executables from Scheme Code
	3.1.1 Scheme API for Creating Executables

	3.2 Distributing Stand-Alone Executables
	3.2.1 Scheme API for Distributing Executables
	3.2.2 Scheme API for Bundling Distributions

	3.3 Installation-Specific Launchers for Scheme Code
	3.3.1 Creating Launchers
	3.3.2 Launcher Path and Platform Conventions
	3.3.3 Launcher Configuration
	3.3.4 Launcher Creation Signature
	3.3.5 Launcher Creation Unit

	4 Packaging Library Collections
	4.1 Scheme API for Packaging

	5 Compiling and Linking C Extensions
	5.1 Scheme API for 3m Transformation

	6 Embedding Scheme Modules via C
	7 Decompiling Bytecode
	7.1 Scheme API for Decompiling
	7.2 Scheme API for Parsing Bytecode
	7.2.1 Prefix
	7.2.2 Forms
	7.2.3 Expressions
	7.2.4 Syntax Objects

	7.3 Scheme API for Marshaling Bytecode

	8 Compiling to Raw Bytecode
	9 Compiling to Native Code via C
	10 Scheme API for Compilation
	10.1 Bytecode Compilation
	10.2 Compilation via C
	10.3 Loading compiler support
	10.4 Options for the Compiler
	10.5 The Compiler as a Unit
	10.5.1 Signatures
	10.5.2 Main Compiler Unit
	10.5.3 Options Unit
	10.5.4 Compiler Inner Unit

	Index

