
Net: PLT Networking Libraries
Version 4.2.4

January 28, 2010

1

Contents

1 URLs and HTTP 6

1.1 URL Structure . 6

1.2 URL Functions . 7

1.3 URL Unit . 12

1.4 URL Signature . 12

2 URI Codec: Encoding and Decoding URIs 13

2.1 Functions . 13

3 FTP: Client Downloading 17

3.1 Functions . 17

3.2 FTP Unit . 18

3.3 FTP Signature . 19

4 Send URL: Opening a Web Browser 20

5 SMTP: Sending E-Mail 23

5.1 SMTP Functions . 23

5.2 SMTP Unit . 25

5.3 SMTP Signature . 25

6 sendmail: Sending E-Mail 26

6.1 Sendmail Functions . 26

6.2 Sendmail Unit . 27

6.3 Sendmail Signature . 27

7 Headers: Parsing and Constructing 29

2

7.1 Functions . 29

7.2 Header Unit . 33

7.3 Header Signature . 33

8 IMAP: Reading Mail 34

8.1 Connecting and Selecting Mailboxes . 34

8.2 Selected Mailbox State . 36

8.3 Manipulating Messages . 39

8.4 Querying and Changing (Other) Mailboxes 41

8.5 IMAP Unit . 43

8.6 IMAP Signature . 43

9 POP3: Reading Mail 44

9.1 Exceptions . 46

9.2 Example Session . 47

9.3 POP3 Unit . 48

9.4 POP3 Signature . 48

10 MIME: Decoding Internet Data 49

10.1 Message Decoding . 49

10.2 Exceptions . 52

10.3 MIME Unit . 53

10.4 MIME Signature . 53

11 Base 64: Encoding and Decoding 54

11.1 Functions . 54

11.2 Base64 Unit . 55

3

11.3 Base64 Signature . 55

12 Quoted-Printable: Encoding and Decoding 56

12.1 Functions . 56

12.2 Exceptions . 57

12.3 Quoted-Printable Unit . 57

12.4 -Printable Signature . 57

13 DNS: Domain Name Service Queries 58

13.1 Functions . 58

13.2 DNS Unit . 59

13.3 DNS Signature . 59

14 NNTP: Newsgroup Protocol 60

14.1 Connection and Operations . 60

14.2 Exceptions . 62

14.3 NNTP Unit . 63

14.4 NNTP Signature . 63

15 TCP: Unit and Signature 64

15.1 TCP Signature . 64

15.2 TCP Unit . 66

16 TCP Redirect: tcp^ via Channels 67

17 SSL Unit: tcp^ via SSL 68

18 CGI Scripts 69

18.1 CGI Functions . 69

4

18.2 CGI Unit . 71

18.3 CGI Signature . 72

19 Cookie: HTTP Client Storage 73

19.1 Functions . 73

19.2 Examples . 75

19.2.1 Creating a cookie . 75

19.2.2 Parsing a cookie . 75

19.3 Cookie Unit . 76

19.4 Cookie Signature . 76

Index 78

5

1 URLs and HTTP

(require net/url)

The net/url library provides utilities to parse and manipulate URIs, as specified in RFC
2396 [RFC2396], and to use the HTTP protocol.

To access the text of a document from the web, first obtain its URL as a string. Convert
the address into a url structure using string->url. Then, open the document using get-

pure-port or get-impure-port, depending on whether or not you wish to examine its
MIME headers. At this point, you have a regular input port with which to process the
document, as with any other file.

Currently the only supported protocols are "http" and sometimes "file".

1.1 URL Structure

(require net/url-structs)

The URL structure types are provided by the net/url-structs library, and re-exported by
net/url.

(struct url (scheme

user

host

port

path-absolute?

path

query

fragment))

scheme : (or/c false/c string?)

user : (or/c false/c string?)

host : (or/c false/c string?)

port : (or/c false/c exact-nonnegative-integer?)

path-absolute? : boolean?

path : (listof path/param?)

query : (listof (cons/c symbol? (or/c false/c string?)))

fragment : (or/c false/c string?)

The basic structure for all URLs, which is explained in RFC 3986 [RFC3986]. The following
diagram illustrates the parts:

http://sky@www:801/cgi-bin/finger;xyz?name=shriram;host=nw#top

{-1} {2} {3} {4}{�-5����-} {6} {��7������-} {8}

6

1 = scheme, 2 = user, 3 = host, 4 = port,

5 = path (two elements), 6 = param (of second path element),

7 = query, 8 = fragment

The strings inside the user, path, query, and fragment fields are represented directly as
Scheme strings, without URL-syntax-specific quoting. The procedures string->url and
url->string translate encodings such as %20 into spaces and back again.

By default, query associations are parsed with either ; or & as a separator, and they are
generated with & as a separator. The current-alist-separator-mode parameter adjusts
the behavior.

An empty string at the end of the path list corresponds to a URL that ends in a
slash. For example, the result of (string->url "http://www.drscheme.org/a/")

has a path field with strings "a" and "", while the result of (string->url

"http://www.drscheme.org/a") has a path field with only the string "a".

When a "file" URL is represented by a url structure, the path field is mostly a list of
path elements. For Unix paths, the root directory is not included in path; its presence
or absence is implicit in the path-absolute? flag. For Windows paths, the first element
typically represents a drive, but a UNC path is represented by a first element that is "" and
then successive elements complete the drive components that are separated by / or \.

(struct path/param (path param))

path : (or/c string? (one-of/c 'up 'same))

param : (listof string?)

A pair that joins a path segment with its params in a URL.

1.2 URL Functions

An HTTP connection is created as a pure port or a impure port. A pure port is one from
which the MIME headers have been removed, so that what remains is purely the first content
fragment. An impure port is one that still has its MIME headers.

(string->url str) → url?

str : string?

Parses the URL specified by str into a url struct. The string->url procedure uses form-
urlencoded->alist when parsing the query, so it is sensitive to the current-alist-

separator-mode parameter for determining the association separator.

If str starts with "file:", then the path is always parsed as an absolute path, and the

7

parsing details depend on file-url-path-convention-type:

• 'unix : If "file:" is followed by // and a non-/, then the first element after the //
is parsed as a host (and maybe port); otherwise, the first element starts the path, and
the host is "".

• 'windows : If "file:" is followed by //, then the // is stripped; the remainder
parsed as a Windows path. The host is always "" and the port is always #f.

(combine-url/relative base relative) → url?

base : url?

relative : string?

Given a base URL and a relative path, combines the two and returns a new URL as per the
URL combination specification. They are combined according to the rules in RFC 3986
[RFC3986].

This function does not raise any exceptions.

(netscape/string->url str) → url?

str : string?

Turns a string into a URL, applying (what appear to be) Netscape’s conventions on automat-
ically specifying the scheme: a string starting with a slash gets the scheme "file", while
all others get the scheme "http".

(url->string URL) → string?

URL : url?

Generates a string corresponding to the contents of a url struct. For a "file:" URL, the
URL must not be relative, the result always starts file://, and the interpretation of the path
depends on the value of file-url-path-convention-type:

• 'unix : Elements in URL are treated as path elements. Empty strings in the path list
are treated like 'same.

• 'windows : If the first element is "" then the next two elements define the UNC root,
and the rest of the elements are treated as path elements. Empty strings in the path list
are treated like 'same.

The url->string procedure uses alist->form-urlencoded when formatting the query,
so it is sensitive to the current-alist-separator-mode parameter for determining the
association separator. The default is to separate associations with a &.

8

(path->url path) → url?

path : (or/c path-string? path-for-some-system?)

Converts a path to a url.

(url->path URL [kind]) → path-for-some-system?

URL : url?

kind : (one-of/c 'unix 'windows)

= (system-path-convention-type)

Converts URL , which is assumed to be a "file" URL, to a path.

(file-url-path-convention-type) → (one-of/c 'unix 'windows)

(file-url-path-convention-type kind) → void?

kind : (one-of/c 'unix 'windows)

Determines the default conversion to and from strings for "file" URLs. See string->url
and url->string.

(get-pure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

(head-pure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

(delete-pure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

Initiates a GET/HEAD/DELETE request for URL and returns a pure port corresponding to
the body of the response. The optional list of strings can be used to send header lines to the
server.

The GET method is used to retrieve whatever information is identified by URL .

The HEAD method is identical to GET, except the server must not return a message body.
The meta-information returned in a response to a HEAD request should be identical to the
information in a response to a GET request.

The DELETE method is used to delete the entity identified by URL .

The "file" scheme for URLs is handled only by get-pure-port, which uses open-

input-file, does not handle exceptions, and ignores the optional strings.

9

(get-impure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

(head-impure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

(delete-impure-port URL [header]) → input-port?

URL : url?

header : (listof string?) = null

Like get-pure-port, etc., but the resulting impure port contains both the returned headers
and the body. The "file" URL scheme is not handled by these functions.

(post-pure-port URL post [header]) → input-port?

URL : url?

post : bytes?

header : (listof string?) = null

(put-pure-port URL post [header]) → input-port?

URL : url?

post : bytes?

header : (listof string?) = null

Initiates a POST/PUT request for URL and sends the post byte string. The result is a pure
port, which contains the body of the response is returned. The optional list of strings can be
used to send header lines to the server.

(post-impure-port URL post [header]) → input-port?

URL : url?

post : bytes?

header : (listof string?) = null

(put-impure-port URL post [header]) → input-port?

URL : url?

post : bytes?

header : (listof string?) = null

Like post-pure-port and put-pure-port, but the resulting impure port contains both
the returned headers and body.

(display-pure-port in) → void?

in : input-port?

Writes the output of a pure port, which is useful for debugging purposes.

10

(purify-port in) → string?

in : input-port?

Purifies a port, returning the MIME headers, plus a leading line for the form
HTTP/〈vers〉 〈code〉 〈message〉, where 〈vers〉 is something like 1.0 or 1.1, 〈code〉 is an
exact integer for the response code, and 〈message〉 is arbitrary text without a return or new-
line.

The net/head library provides procedures, such as extract-field for manipulating the
header.

Since web servers sometimes return mis-formatted replies, purify-port is liberal in what
it accepts as a header. as a result, the result string may be ill formed, but it will either be the
empty string, or it will be a string matching the following regexp:

#rx"^HTTP/.*?(\r\n\r\n|\n\n|\r\r)"

(call/input-url URL connect handle) → any

URL : url?

connect : (url? . -> . input-port?)

handle : (input-port? . -> . any)

(call/input-url URL connect handle header) → any

URL : url?

connect : (url? (listof string?) . -> . input-port?)

handle : (input-port? . -> . any)

header : (listof string?)

Given a URL and a connect procedure like get-pure-port to convert the URL to an input
port (either a pure port or impure port), calls the handle procedure on the port and closes
the port on return. The result of the handle procedure is the result of call/input-url.

When a header argument is supplied, it is passed along to the connect procedure.

The connection is made in such a way that the port is closed before call/input-url re-
turns, no matter how it returns. In particular, it is closed if handle raises an exception, or if
the connection process is interruped by an asynchronous break exception.

(current-proxy-servers)

→ (listof (list/c string? string? (integer-in 0 65535)))

(current-proxy-servers mapping) → void?

mapping : (listof (list/c string? string? (integer-in 0 65535)))

A parameter that determines a mapping of proxy servers used for connections. Each mapping
is a list of three elements:

11

• the URL scheme, such as "http";

• the proxy server address; and

• the proxy server port number.

Currently, the only proxiable scheme is "http". The default mapping is the empty list (i.e.,
no proxies).

1.3 URL Unit

(require net/url-unit)

url@ : unit?

Imports tcp^, exports url^.

1.4 URL Signature

(require net/url-sig)

url^ : signature

Includes everything exported by the net/url module.

12

2 URI Codec: Encoding and Decoding URIs

(require net/uri-codec)

The net/uri-codec module provides utilities for encoding and decoding strings using the
URI encoding rules given in RFC 2396 [RFC2396], and to encode and decode name/value
pairs using the application/x-www-form-urlencoded mimetype given the in HTML
4.0 specification. There are minor differences between the two encodings.

The URI encoding uses allows a few characters to be represented as-is: a through z, A
through Z, 0-9, -, _, ., !, ∼, *, ', (and). The remaining characters are encoded as
%〈xx〉, where 〈xx〉 is the two-character hex representation of the integer value of the character
(where the mapping character–integer is determined by US-ASCII if the integer is less than
128).

The encoding, in line with RFC 2396’s recommendation, represents a character as-is, if
possible. The decoding allows any characters to be represented by their hex values, and
allows characters to be incorrectly represented as-is.

The rules for the application/x-www-form-urlencoded mimetype given in the HTML
4.0 spec are:

• Control names and values are escaped. Space characters are replaced by +, and
then reserved characters are escaped as described in RFC 1738, section 2.2: Non-
alphanumeric characters are replaced by %〈xx〉 representing the ASCII code of the
character. Line breaks are represented as CRLF pairs: %0D%0A. Note that RFC 2396
supersedes RFC 1738 [RFC1738].

• The control names/values are listed in the order they appear in the document. The
name is separated from the value by = and name/value pairs are separated from each
other by either ; or &. When encoding, ; is used as the separator by default. When
decoding, both ; and & are parsed as separators by default.

These rules differs slightly from the straight encoding in RFC 2396 in that + is allowed,
and it represents a space. The net/uri-codec library follows this convention, encoding a
space as + and decoding + as a space. In addtion, since there appear to be some brain-dead
decoders on the web, the library also encodes !,∼, ', (, and) using their hex representation,
which is the same choice as made by the Java’s URLEncoder.

2.1 Functions

(uri-encode str) → string?

str : string?

13

Encode a string using the URI encoding rules.

(uri-decode str) → string?

str : string?

Decode a string using the URI decoding rules.

(uri-path-segment-encode str) → string?

str : string?

Encodes a string according to the rules in [RFC3986] for path segments.

(uri-path-segment-decode str) → string?

str : string?

Decodes a string according to the rules in [RFC3986] for path segments.

(uri-userinfo-encode str) → string?

str : string?

Encodes a string according to the rules in [RFC3986] for the userinfo field.

(uri-userinfo-decode str) → string?

str : string?

Decodes a string according to the rules in [RFC3986] for the userinfo field.

(form-urlencoded-encode str) → string?

str : string?

Encode a string using the application/x-www-form-urlencoded encoding rules. The
result string contains no non-ASCII characters.

(form-urlencoded-decode str) → string?

str : string?

Decode a string encoded using the application/x-www-form-urlencoded encoding
rules.

(alist->form-urlencoded alist) → string?

alist : (listof (cons/c symbol? string?))

14

Encode an association list using the application/x-www-form-urlencoded encoding
rules.

The current-alist-separator-mode parameter determines the separator used in the re-
sult.

(form-urlencoded->alist str)

→ (listof (cons/c symbol? string?))

str : string

Decode a string encoded using the application/x-www-form-urlencoded encoding
rules into an association list. All keys are case-folded for conversion to symbols.

The current-alist-separator-mode parameter determines the way that separators are
parsed in the input.

(current-alist-separator-mode)

→ (one-of/c 'amp 'semi 'amp-or-semi 'semi-or-amp)

(current-alist-separator-mode mode) → void?

mode : (one-of/c 'amp 'semi 'amp-or-semi 'semi-or-amp)

A parameter that determines the separator used/recognized between associations in form-

urlencoded->alist, alist->form-urlencoded, url->string, and string->url.

The default value is 'amp-or-semi, which means that both & and ; are treated as separators
when parsing, and & is used as a separator when encoding. The other modes use/recognize
only of the separators.

Examples:
> (define ex '((x . "foo") (y . "bar") (z . "baz")))

> (current-alist-separator-mode 'amp) ; try 'amp...

> (form-urlencoded->alist "x=foo&y=bar&z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (form-urlencoded->alist "x=foo;y=bar;z=baz")

((x . "foo;y=bar;z=baz"))

> (alist->form-urlencoded ex)

"x=foo&y=bar&z=baz"

> (current-alist-separator-mode 'semi) ; try 'semi...

> (form-urlencoded->alist "x=foo;y=bar;z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (form-urlencoded->alist "x=foo&y=bar&z=baz")

((x . "foo&y=bar&z=baz"))

> (alist->form-urlencoded ex)

"x=foo;y=bar;z=baz"

> (current-alist-separator-mode 'amp-or-semi) ; try 'amp-or-semi...

15

> (form-urlencoded->alist "x=foo&y=bar&z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (form-urlencoded->alist "x=foo;y=bar;z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (alist->form-urlencoded ex)

"x=foo&y=bar&z=baz"

> (current-alist-separator-mode 'semi-or-amp) ; try 'semi-or-amp...

> (form-urlencoded->alist "x=foo&y=bar&z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (form-urlencoded->alist "x=foo;y=bar;z=baz")

((x . "foo") (y . "bar") (z . "baz"))

> (alist->form-urlencoded ex)

"x=foo;y=bar;z=baz"

16

3 FTP: Client Downloading

(require net/ftp)

The net/ftp library provides utilities for FTP client operations.

The library was written by Micah Flatt.

3.1 Functions

(ftp-connection? v) → boolean?

v : any/c

Returns #t if v represents an FTP connection as returned by ftp-establish-connection,
#f otherwise.

(ftp-establish-connection server

port-no

user

passwd) → ftp-connection?

server : string?

port-no : (integer-in 0 65535)

user : string?

passwd : string?

Establishes an FTP connection with the given server using the supplied username and pass-
word.

The username and password strings are encoded to bytes using the current locale’s encoding.

(ftp-close-connection ftp-conn) → void?

ftp-conn : ftp-connection?

Closes an FTP connection.

(ftp-cd ftp-conn new-dir) → void?

ftp-conn : ftp-connection?

new-dir : string?

Changes the current directory on the FTP server to new-dir . The new-dir argument is
not interpreted at all, but simply passed on to the server (encoded using the current locale’s
encoding); it must not contain a newline.

17

(ftp-directory-list ftp-conn)

→ (listof (list/c (one-of/c "-" "d" "l")

string?

string?))

ftp-conn : ftp-connection?

Returns a list of files and directories in the current directory of the server, assuming that the
server provides directory information in the quasi-standard Unix format.

Each file or directory is represented by a list of three strings. The first string is either "-",
"d", or "l", depending on whether the items is a file, directory, or link, respectively. The
second item is the file’s date; to convert this value to seconds consistent with file-seconds,
pass the date string to ftp-make-file-seconds, below. The third string is the name of the
file or directory.

All strings are decoded from bytes using the current locale’s encoding.

(ftp-make-file-seconds ftp-date) → exact-integer?

ftp-date : string?

Takes a date string produced by ftp-directory-list and converts it to seconds (which
can be used with seconds->date).

(ftp-download-file ftp-conn local-dir file) → void?

ftp-conn : ftp-connection?

local-dir : path-string?

file : string?

Downloads file from the server’s current directory and puts it in local-dir using the
same name. If the file already exists in the local directory, it is replaced, but only after the
transfer succeeds (i.e., the file is first downloaded to a temporary file, then moved into place
on success).

3.2 FTP Unit

(require net/ftp-unit)

ftp@ : unit?

Imports nothing, exports ftp^.

18

3.3 FTP Signature

(require net/ftp-sig)

ftp^ : signature

Includes everything exported by the net/ftp module.

19

4 Send URL: Opening a Web Browser

(require net/sendurl)

Provides send-url for opening a URL in the user’s chosen web browser.

See also browser/external, which requires scheme/gui, but can prompt the user for a
browser if no browser preference is set.

(send-url str

[separate-window?
#:escape escape?]) → void?

str : string?

separate-window? : any/c = #t

escape? : any/c = #t

Opens str , which represents a URL, in a platform-specific manner. For some platforms and
configurations, the separate-window? parameter determines if the browser creates a new
window to display the URL or not.

Under Windows, send-url normally uses shell-execute to launch a browser. (If the
URL appears to contain a fragment, it may use an intermediate redirecting file due to a bug
in IE7.)

Under Mac OS X, send-url runs osascript to start the user’s chosen browser.

Under Unix, send-url uses the value of the external-browser parameter to select a
browser.

The url string is usually escaped to avoid dangerous shell characters (quotations, dollar
signs, backslashes, and non-ASCII). Note that it is a good idea to encode URLs before
passing them to this function. Also note that the encoding is meant to make the URL work
in shell quotes: URLs can still hold characters like #, ?, and &, so the external-browser

should use quotations.

(send-url/file path

[separate-window?
#:fragment fragment

#:query query]) → void?

path : path-string?

separate-window? : any/c = #t

fragment : (or/c string? false/c) = #f

query : (or/c string? false/c) = #f

Similar to send-url, but accepts a path to a file to be displayed by the browser. Use this

20

function when you want to display a local file: it takes care of the peculiarities of constructing
the correct file:// URL, and uses send-url to display the file. If you need to use an
anchor fragment or a query string, use the corresponding keyword arguments.

(send-url/contents contents

[separate-window?
#:fragment fragment

#:query query

#:delete-at seconds]) → void?

contents : string?

separate-window? : any/c = #t

fragment : (or/c string? false/c) = #f

query : (or/c string? false/c) = #f

seconds : (or/c number? false/c) = #f

Similar to send-url/file, but it consumes the contents of a page to show, and displayes it
from a temporary file.

If delete-at is a number, the temporary file is removed after this many seconds. The
deletion happens in a thread, so if mzscheme exits before that it will not happen — when this
function is called it scans old generated files (this happens randomly, not on every call) and
removes them to avoid cluttering the temporary directory. If delete-at is #f, no delayed
deletion happens, but old temporary files are still deleted as described above.

(external-browser) → browser-preference?

(external-browser cmd) → void?

cmd : browser-preference?

A parameter that, under Unix, determines the browser started send-url.

The parameter is initialized to the value of the 'external-browser preference.

The parameter value can be any of the symbols in unix-browser-list, #f to indicate that
the preference is unset, or a pair of strings. If the preference is unset, send-url uses the
first of the browsers from unix-browser-list for which the executable is found. If the
parameter is a pair of strings, then a command line is constructed by concatenating in order
the first string, the URL string, and the second string.

If the preferred or default browser can’t be launched, send-url fails. See get-preference
and put-preferences for details on setting preferences.

(browser-preference? a) → boolean?

a : any/c

Returns #t if v is a valid browser preference, #f otherwise. See external-browser for

21

more information.

unix-browser-list : (listof symbol?)

A list of symbols representing Unix executable names that may be tried in order by send-

url. The send-url function internally includes information on how to launch each exe-
cutable with a URL.

22

5 SMTP: Sending E-Mail

(require net/smtp)

The net/smtp module provides tools for sending electronic mail messages using SMTP.
The client must provide the address of an SMTP server; in contrast, the net/sendmail

module uses a pre-configured sendmail on the local system.

The net/head library defines the format of a header string, which is used by send-smtp-

message. The net/head module also provides utilities to verify the formatting of a mail
address. The procedures of the net/smtp module assume that the given string arguments
are well-formed.

5.1 SMTP Functions

(smtp-send-message server-address

from

to

header

message

[#:port-no port-no/k

#:auth-user user

#:auth-passwd pw

#:tcp-connect connect

#:tls-encode encode

port-no]) → void?

server-address : string?

from : string?

to : (listof string?)

header : string?

message : (listof (or/c string? bytes?))

port-no/k : (integer-in 0 65535) = 25

user : (or/c string? false/c) = #f

pw : (or/c string? false/c) = #f

connect : ((string? (integer-in 0 65535))

. ->* . (input-port? output-port?))

= tcp-connect

encode : (or/c false/c

((input-port? output-port?

#:mode (one-of/c 'connect)

#:encrypt (one-of/c 'tls)

#:close-original? (one-of/c #t))

. ->* . (input-port? output-port?)))

= #f

port-no : (integer-in 0 65535) = port-no/k

23

Connects to the server at server-address and port-no to send a message. The from

argument specifies the mail address of the sender, and to is a list of recipient addresses
(including “To:”, “CC”, and “BCC” recipients).

The header argument is the complete message header, which should already include
“From:”, “To:”, and “CC:” fields consistent with the given sender and recipients. See also
the net/head library for header-creating utilities.

The message argument is the body of the message, where each string or byte string in the
list corresponds to a single line of message text. No string in message should contain a
carriage return or linefeed character.

The optional port-no argument—which can be specified either with the #:port-no key-
word or, for backward compatibility, as an extra argument after keywords—specifies the IP
port to use in contacting the SMTP server.

The optional #:auth-user and #:auth-passwd keyword argument supply a username and
password for authenticated SMTP (using the AUTH PLAIN protocol).

The optional #:tcp-connect keyword argument supplies a connection procedure to be used
in place of tcp-connect. For example, use ssl-connect to connect to the server via SSL.

If the optional #:tls-encode keyword argument supplies a procedure instead of #f, then
the ESMTP STARTTLS protocol is used to initiate SSL communication with the server. The
procedure given as the #:tls-encode argument should be like ports->ssl-ports; it will be
called as

(encode r w #:mode 'connect #:encrypt 'tls #:close-original? #t)

and it should return two values: an input port and an export port. All further SMTP commu-
nication uses the returned ports.

For encrypted communication, normally either ssl-connect should be supplied for
#:tcp-connect, or ports->ssl-ports should be supplied for #:tls-encode—one or
the other (depending on what the server expects), rather than both.

(smtp-sending-end-of-message) → (-> any)

(smtp-sending-end-of-message proc) → void?

proc : (-> any)

A parameter that determines a send-done procedure to be called after smtp-send-message
has completely sent the message. Before the send-done procedure is called, breaking the
thread that is executing smtp-send-message cancels the send. After the send-done proce-
dure is called, breaking may or may not cancel the send (and probably will not).

24

5.2 SMTP Unit

(require net/smtp-unit)

smtp@ : unit?

Imports nothing, exports smtp^.

5.3 SMTP Signature

(require net/smtp-sig)

smtp^ : signature

Includes everything exported by the net/smtp module.

25

6 sendmail: Sending E-Mail

(require net/sendmail)

The net/sendmail module provides tools for sending electronic mail messages using a
sendmail program on the local system. See also the net/smtp package, which sends mail
via SMTP.

All strings used in mail messages are assumed to conform to their corresponding SMTP
specifications, except as noted otherwise.

6.1 Sendmail Functions

(send-mail-message/port from

subject

to

cc

bcc

extra-header ...) → output-port?

from : string?

subject : string?

to : (listof string?)

cc : (listof string?)

bcc : (listof string?)

extra-header : string?

The first argument is the header for the sender, the second is the subject line, the third a list of
“To:” recipients, the fourth a list of “CC:” recipients, and the fifth a list of “BCC:” recipients.
Additional arguments argument supply other mail headers, which must be provided as lines
(not terminated by a linefeed or carriage return) to include verbatim in the header.

The return value is an output port into which the client must write the message. Clients are
urged to use close-output-port on the return value as soon as the necessary text has been
written, so that the sendmail process can complete.

The from argument can be any value; of course, spoofing should be used with care.

26

(send-mail-message from

subject

to

cc

bcc

body

extra-header ...) → void?

from : string?

subject : string?

to : (listof string?)

cc : (listof string?)

bcc : (listof string?)

body : (listof string?)

extra-header : string?

Like send-mail-message/port, but with body as a list of strings, each providing a line
of the message body.

Lines that contain a single period do not need to be quoted.

(struct (no-mail-recipients exn) ())

Raised when no mail recipients were specified for send-mail-message/port.

6.2 Sendmail Unit

(require net/sendmail-unit)

sendmail@ : unit?

Imports nothing, exports sendmail^.

6.3 Sendmail Signature

(require net/sendmail-sig)

sendmail^ : signature

27

Includes everything exported by the net/sendmail module.

28

7 Headers: Parsing and Constructing

(require net/head)

The net/head module provides utilities for parsing and constructing RFC 822 headers
[RFC822], which are used in protocols such as HTTP, SMTP, and NNTP.

A header is represented as a string or byte string containing CRLF-delimited lines. Each
field within the header spans one or more lines. In addition, the header ends with two CRLFs
(because the first one terminates the last field, and the second terminates the header).

7.1 Functions

empty-header : string?

The string "\r\n\r\n", which corresponds to the empty header. This value is useful for
building up headers with insert-field and append-headers.

(validate-header candidate) → void?

candidate : (or string? bytes?)

Checks that candidate matches RFC 822. If it does not, an exception is raised.

(extract-field field header) → (or/c string? bytes? false/c)

field : (or/c string? bytes?)

header : (or/c string? bytes?)

Returns the header content for the specified field, or #f if the field is not in the header. The
field string should not end with ":", and it is used case-insensitively. The returned string
will not contain the field name, color separator, or CRLF terminator for the field; however,
if the field spans multiple lines, the CRLFs separating the lines will be intact.

The field and header arguments must be both strings or both byte strings, and the result
(if not #f) is of the same type.

Example:
> (extract-field "TO" (insert-field "to" "me@localhost"

empty-header))

"me@localhost"

(extract-all-fields header)

29

→ (listof (cons/c (or/c string? bytes?)

(or/c string? bytes?)))

header : (or/c string? bytes?)

Returns an association-list version of the header; the case of the field names is preserved, as
well as the order and duplicate uses of a field name.

The result provides strings if header is a string, byte strings if header is a byte string.

(remove-field field header) → (or/c string? bytes?)

field : (or/c string? bytes?)

header : (or/c string? bytes?)

Creates a new header by removing the specified field from header (or the first instance of
the field, if it occurs multiple times). If the field is not in header , then the return value is
header .

The field and header arguments must be both strings or both byte strings, and the result
is of the same type.

(insert-field field value header) → (or/c string? bytes?)

field : (or/c string? bytes?)

value : (or/c string? bytes?)

header : (or/c string? bytes?)

Creates a new header by prefixing the given header with the given field -value pair. The
value string should not contain a terminating CRLF, but a multi-line value (perhaps created
with data-lines->data) may contain separator CRLFs.

The field , value , and header arguments must be all strings or all byte strings, and the
result is of the same type.

(replaces-field field value header) → (or/c string? bytes?)

field : (or/c string? bytes?)

value : (or/c string? bytes? false/c)

header : (or/c string? bytes?)

Composes remove-field and (if value is not #f) insert-field.

(append-headers header1 header2) → (or/c string? bytes?)

header1 : (or/c string? bytes?)

header2 : (or/c string? bytes?)

Appends two headers.

30

The header1 and header2 arguments must be both strings or both byte strings, and the
result is of the same type.

(standard-message-header from

to

cc

bcc

subject) → string?

from : string?

to : (listof string?)

cc : (listof string?)

bcc : (listof string?)

subject : string?

Creates a standard mail header given the sender, various lists of recipients, a subject. A
"Date" field is added to the header automatically, using the current time.

The BCC recipients do not actually appear in the header, but they’re accepted anyway to
complete the abstraction.

(data-lines->data listof) → string?

listof : string?

Merges multiple lines for a single field value into one string, adding CRLF-TAB separators.

(extract-addresses line kind)

→ (or/c (listof string?)

(listof (list/c string? string? string?)))

line : string?

kind : (one-of/c 'name 'address

'full 'all)

Parses string as a list of comma-delimited mail addresses, raising an exception if the list is
ill-formed. This procedure can be used for single-address strings, in which case the returned
list contains only one address.

The kind argument specifies which portion of an address should be returned:

• 'name — the free-form name in the address, or the address itself if no name is avail-
able.

Examples:
> (extract-addresses "John Doe <doe@localhost>" 'name)

("John Doe")

> (extract-addresses "doe@localhost (Johnny Doe)" 'name)

31

("Johnny Doe")

> (extract-addresses "doe@localhost" 'name)

("doe@localhost")

> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"

'name)

("\"Doe, John\"" "jane")

• 'address — just the mailing address, without any free-form names.

Examples:
> (extract-addresses "John Doe <doe@localhost>" 'address)

("doe@localhost")

> (extract-addresses "doe@localhost (Johnny Doe)" 'address)

("doe@localhost")

> (extract-addresses "doe@localhost" 'address)

("doe@localhost")

> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"

'address)

("doe@localhost" "jane")

• 'full — the full address, essentially as it appears in the input, but normalized.

Examples:
> (extract-addresses "John Doe < doe@localhost >" 'full)

("John Doe <doe@localhost>")

> (extract-addresses " doe@localhost (Johnny Doe)" 'full)

("doe@localhost (Johnny Doe)")

> (extract-addresses "doe@localhost" 'full)

("doe@localhost")

> (extract-addresses " \"Doe, John\" <doe@localhost>, jane"

'full)

("\"Doe, John\" <doe@localhost>" "jane")

• 'all — a list containing each of the three possibilities: free-form name, address, and
full address (in that order).

Examples:
> (extract-addresses "John Doe <doe@localhost>" 'all)

(("John Doe" "doe@localhost" "John Doe <doe@localhost>"))

> (extract-addresses "doe@localhost (Johnny Doe)" 'all)

(("Johnny Doe" "doe@localhost" "doe@localhost (Johnny Doe)"))

> (extract-addresses "doe@localhost" 'all)

(("doe@localhost" "doe@localhost" "doe@localhost"))

> (define r

(extract-addresses " \"John\" <doe@localhost>, jane"

'all))

> (length r)

2

> (car r)

32

("\"John\"" "doe@localhost" "\"John\" <doe@localhost>")

> (cadr r)

("jane" "jane" "jane")

(assemble-address-field addrs) → string?

addrs : (listof string?)

Creates a header field value from a list of addresses. The addresses are comma-separated,
and possibly broken into multiple lines.

Example:
> (assemble-address-field '("doe@localhost"

"Jane <jane@elsewhere>"))

"doe@localhost, Jane <jane@elsewhere>"

7.2 Header Unit

(require net/head-unit)

head@ : unit?

Imports nothing, exports head^.

7.3 Header Signature

(require net/head-sig)

head^ : signature

Includes everything exported by the net/head module.

33

8 IMAP: Reading Mail

(require net/imap)

The net/imap module provides utilities for the client side of Internet Message Access Pro-
tocol version 4rev1 [RFC2060].

8.1 Connecting and Selecting Mailboxes

(imap-connection? v) → boolean?

v : any/c

Return #t if v is a IMAP-connection value (which is opaque), #f otherwise.

(imap-connect server

username

password

mailbox) → imap-connection?

exact-nonnegative-integer?

exact-nonnegative-integer?

server : string?

username : (or/c string? bytes?)

password : (or/c string? bytes?)

mailbox : (or/c string? bytes?)

Establishes an IMAP connection to the given server using the given username and password,
and selects the specified mailbox. The first result value reprsents the connection.

The second and third return values indicate the total number of messages in the mailbox and
the number of recent messages (i.e., messages received since the mailbox was last selected),
respectively.

See also imap-port-number.

A user’s primary mailbox is always called "INBOX". (Capitalization doesn’t matter for that
mailbox name.)

Updated message-count and recent-count values are available through imap-messages and
imap-recent. See also imap-new? and imap-reset-new!.

(imap-port-number) → (integer-in 0 65535)

(imap-port-number k) → void?

34

k : (integer-in 0 65535)

A parameter that determines the server port number. The initial value is 143.

(imap-connect* in

out

username

password

mailbox) → imap-connection?

exact-nonnegative-integer?

exact-nonnegative-integer?

in : input-port?

out : output-port?

username : (or/c string? bytes?)

password : (or/c string? bytes?)

mailbox : (or/c string? bytes?)

Like imap-connect, but given input and output ports (e.g., ports for an SSL session) instead
of a server address.

(imap-disconnect imap) → void?

imap : imap-connection?

Closes an IMAP connection. The close may fail due to a communication error.

(imap-force-disconnect imap) → void?

imap : imap-connection?

Closes an IMAP connection forcefully (i.e., without send a close message to the server). A
forced disconnect never fails.

(imap-reselect imap mailbox) → exact-nonnegative-integer?

exact-nonnegative-integer?

imap : imap-connection?

mailbox : (or/c string? bytes?)

De-selects the mailbox currently selected by the connection and selects the specified mail-
box, returning the total and recent message counts for the new mailbox. Expunge and
message-state information is removed.

Do not use this procedure to poll a mailbox to see whether there are any new messages. Use
imap-noop, imap-new?, and imap-reset-new! instead.

35

(imap-examine imap mailbox) → exact-nonnegative-integer?

exact-nonnegative-integer?

imap : imap-connection?

mailbox : (or/c string? bytes?)

Like imap-reselect, but the mailbox is selected as read-only.

8.2 Selected Mailbox State

(imap-noop imap) → exact-nonnegative-integer?

exact-nonnegative-integer?

imap : imap-connection?

Sends a “no-op” message to the server, typically to keep the session alive. As for many
commands, the server may report message-state updates or expunges, which are recorded in
imap .

The return information is the same as for imap-reselect.

(imap-poll imap) → void?

imap : imap-connection?

Does not send a request to the server, but checks for asynchronous messages from the server
that update the message count, to report expunges, etc.

(imap-messages imap) → exact-nonnegative-integer?

imap : imap-connection?

Returns the number of messages in the selected mailbox. The server can update this count
during most any interaction.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-recent imap) → exact-nonnegative-integer?

imap : imap-connection?

Returns the number of “recent” messages in the currently selected mailbox, as most recently
reported by the server. The server can update this count during most any interaction.

This operation does not communicate with the server. It merely reports the result of previous
communication.

36

(imap-unseen imap) → (or/c exact-nonnegative-integer? false/c)

imap : imap-connection?

Returns the number of “unseen” messages in the currently selected mailbox, as most recently
reported by the server. The server can update this count during most any interaction. Old
IMAP servers might not report this value, in which case the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-uidnext imap) → (or/c exact-nonnegative-integer? false/c)

imap : imap-connection?

Returns the predicted next uid for a message in the currently selected mailbox, as most
recently reported by the server. The server can update this count during most any interaction.
Old IMAP servers might not report this value, in which case the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-uidvalidity imap)

→ (or/c exact-nonnegative-integer? false/c)

imap : imap-connection?

Returns an id number that changes when all uids become invalid. The server cannot update
this number during a session. Old IMAP servers might not report this value, in which case
the result is #f.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-new? imap) → boolean?

imap : imap-connection?

Returns #t if the server has reported an increase in the message count for the currently
mailbox since the last call to imap-reset-new!. Selecting a mailbox implicitly calls imap-
reset-new!.

This operation does not communicate with the server. It merely reports the result of previous
communication.

(imap-reset-new! imap) → void?

imap : imap-connection?

37

Resets the new flag for the session; see imap-new?. This operation does not communicate
with the server.

(imap-get-expunges imap) → (listof exact-nonnegative-integer?)

imap : imap-connection?

Returns pending expunge notifications from the server for the selected mailbox in terms of
message positions (not uids), and clears the pending notifications. The result list is sorted,
ascending.

This operation does not communicate with the server. It merely reports the result of previous
communication.

The server can notify the client of newly deleted messages during most other commands,
but not asynchronously between commands. Furthermore, the server cannot report new
deletions during imap-get-messages or imap-store operations.

Before calling any IMAP operation that works in terms of message numbers, pending ex-
punge notifications must be handled by calling imap-get-expunges.

(imap-pending-expunges? imap) → boolean?

imap : imap-connection?

Returns #f if imap-get-expunges would return an empty list, #t otherwise.

(imap-get-updates imap)

→ (listof (cons/c exact-nonnegative-integer?

(listof pair?)))

imap : imap-connection?

Returns information must like imap-get-messages, but includes information reported
asynchronously by the server (e.g., to notify a client with some other client changes a mes-
sage attribute). Instead of reporting specific requested information for specific messages, the
result is associates message positions to field-value association lists. The result list is sorted
by message position, ascending.

This operation does not communicate with the server. It merely reports the result of previous
communication. It also clears the update information from the connection after reporting it.

When a server reports information that supersedes old reported information for a message,
or if the server reports that a message has been deleted, then old information for the message
is dropped. Similarly, if imap-get-messages is used to explicitly obtain information, any
redundant (or out-of-date) information is dropped.

A client need not use imap-get-updates ever, but accumulated information for the con-

38

nection consumes space.

(imap-pending-updates? imap) → boolean?

imap : imap-connection?

Returns #f if imap-get-updates would return an list, #t otherwise.

8.3 Manipulating Messages

(imap-get-messages imap msg-nums fields) → (listof list?)

imap : imap-connection?

msg-nums : (listof exact-nonnegative-integer?)

fields : (listof (one-of/c 'uid

'header

'body

'flags))

Downloads information for a set of messages. The msg-nums argument specifies a set of
messages by their message positions (not their uids). The fields argument specifies the
type of information to download for each message. The available fields are:

• 'uid — the value is an integer

• 'header — the value is a header (a string, but see net/head)

• 'body — the value is a byte string, with CRLF-separated lines

• 'flags — the value is a list of symbols that correspond to IMAP flags; see imap-

flag->symbol

The return value is a list of entry items in parallel to msg-nums . Each entry is itself a list
containing value items in parallel to fields .

Pending expunges must be handled before calling this function; see imap-get-expunges.

Example:
> (imap-get-message imap '(1 3 5) '(uid header))

((107 #"From: larry@stooges.com ...") (110 #"From: moe@stooges.com

...") (112 #"From: curly@stooges.com ..."))

(imap-flag->symbol flag) → symbol?

flag : symbol?

39

(symbol->imap-flag sym) → symbol?

sym : symbol?

An IMAP flag is a symbol, but it is generally not a convenient one to use within a Scheme
program, because it usually starts with a backslash. The imap-flag->symbol and symbol-
>imap-flag procedures convert IMAP flags to convenient symbols and vice-versa:

symbol IMAP flag
message flags: 'seen '|\Seen|

'answered '|\Answered|

'flagged '|\Flagged|

'deleted '|\Deleted|

'draft '|\Draft|

'recent '|\Recent|

mailbox flags: 'noinferiors '|\Noinferiors|

'noselect '|\Noselect|

'marked '|\Marked|

'unmarked '|\Unmarked|

'hasnochildren '|\HasNoChildren|

'haschildren '|\HasChildren|

The imap-flag->symbol and symbol->imap-flag functions act like the identity function
when any other symbol is provided.

(imap-store imap mode msg-nums imap-flags) → void?

imap : imap-connection?

mode : (one-of/c '+ '- '!)

msg-nums : (listof exact-nonnegative-integer?)

imap-flags : (listof symbol?)

Sets flags for a set of messages. The mode argument specifies how flags are set:

• '+ — add the given flags to each message

• '- — remove the given flags from each message

• '! — set each message’s flags to the given set

The msg-nums argument specifies a set of messages by their message positions (not their
uids). The flags argument specifies the imap flags to add/remove/install.

Pending expunges must be handled before calling this function; see imap-get-expunges.
The server will not report back message-state changes (so they will not show up through
imap-get-updates).

Examples:

40

> (imap-store imap '+ '(1 2 3) (list (symbol->imap-flag 'deleted)))

; marks the first three messages to be deleted

> (imap-expunge imap)

; permanently removes the first three messages (and possibly

; others) from the currently-selected mailbox

(imap-expunge imap) → void?

imap : imap-connection?

Purges every message currently marked with the '|\Deleted| flag from the mailbox.

8.4 Querying and Changing (Other) Mailboxes

(imap-copy imap msg-nums dest-mailbox) → void?

imap : imap-connection?

msg-nums : (listof exact-nonnegative-integer?)

dest-mailbox : (or/c string? bytes?)

Copies the specified messages from the currently selected mailbox to the specified mailbox.

Pending expunges must be handled before calling this function; see imap-get-expunges.

(imap-append imap mailbox message) → void?

imap : imap-connection?

mailbox : string?

message : (or/c string? bytes?)

Adds a new message (containing message) to the given mailbox.

(imap-status imap mailbox statuses) → list?

imap : imap-connection?

mailbox : (or/c string? bytes?)

statuses : (listof symbol?)

Requests information about a mailbox from the server, typically not the currently selected
mailbox.

The statuses list specifies the request, and the return value includes one value for each
symbol in statuses . The allowed status symbols are:

• 'messages — number of messages

41

• 'recent — number of recent messages

• 'unseen — number of unseen messages

• 'uidnext — uid for next received message

• 'uidvalidity — id that changes when all uids are changed

Use imap-messages to get the message count for the currently selected mailbox, etc. Use
imap-new? and imap-reset-new! to detect when new messages are available in the cur-
rently selected mailbox.

(imap-mailbox-exists? imap mailbox) → boolean?

imap : imap-connection?

mailbox : (or/c string? bytes?)

Returns #t if mailbox exists, #f otherwise.

(imap-create-mailbox imap mailbox) → void?

imap : imap-connection?

mailbox : (or/c string? bytes?)

Creates mailbox . (It must not exist already.)

(imap-list-child-mailboxes imap

mailbox

[delimiter])
→ (listof (list/c (listof symbol?) bytes?))

imap : imap-connection?

mailbox : (or/c string? bytes? false/c)

delimiter : (or/c string? bytes?)

= (imap-get-hierarchy-delimiter)

Returns information about sub-mailboxes of mailbox ; if mailbox is #f, information about
all top-level mailboxes is returned. The delimiter is used to parse mailbox names from
the server to detect hierarchy.

The return value is a list of mailbox-information lists. Each mailbox-information list con-
tains two items:

• a list of imap flags for the mailbox

• the mailbox’s name

42

(imap-get-hierarchy-delimiter imap) → bytes?

imap : imap-connection?

Returns the server-specific string that is used as a separator in mailbox path names.

(imap-mailbox-flags imap mailbox) → (listof symbol?)

imap : imap-connection?

mailbox : (or/c string? bytes?)

Returns a list of IMAP flags for the given mailbox. See also imap-flag->symbol.

8.5 IMAP Unit

(require net/imap-unit)

imap@ : unit?

Imports nothing, exports imap^.

8.6 IMAP Signature

(require net/imap-sig)

imap^ : signature

Includes everything exported by the net/imap module.

43

9 POP3: Reading Mail

(require net/pop3)

The net/pop3 module provides tools for the Post Office Protocol version 3 [RFC977].

(struct communicator (sender receiver server port state))

sender : output-port?

receiver : input-port?

server : string?

port : (integer-in 0 65535)

state : (one-of/c 'disconnected 'authorization 'transaction)

Once a connection to a POP-3 server has been established, its state is stored in a communi-
cator instance, and other procedures take communicator instances as an argument.

(connect-to-server server [port-number]) → communicator?

server : string?

port-number : (integer-in 0 65535) = 110

Connects to server at port-number .

(disconnect-from-server communicator) → void?

communicator : communicator?

Disconnects communicator from the server, and sets communicator ’s state to 'discon-

nected.

(authenticate/plain-text user

passwd

communicator) → void?

user : string?

passwd : string?

communicator : communicator?

Authenticates using user and passwd . If authentication is successful, communicator ’s
state is set to 'transaction.

(get-mailbox-status communicator) → exact-nonnegative-integer?

exact-nonnegative-integer?

communicator : communicator?

Returns the number of messages and the number of octets in the mailbox.

44

(get-message/complete communicator

message-number)

→ (listof string?) (listof string?)

communicator : communicator?

message-number : exact-integer?

Given a message number, returns a list of message-header lines and list of message-body
lines.

(get-message/headers communicator

message-number)

→ (listof string?) (listof string?)

communicator : communicator?

message-number : exact-integer?

Given a message number, returns a list of message-header lines.

(get-message/body communicator

message-number)

→ (listof string?) (listof string?)

communicator : communicator?

message-number : exact-integer?

Given a message number, returns a list of message-body lines.

(delete-message communicator

message-number) → void?

communicator : communicator?

message-number : exact-integer?

Deletes the specified message.

(get-unique-id/single communicator

message-number) → string?

communicator : communicator?

message-number : exact-integer?

Gets the server’s unique id for a particular message.

(get-unique-id/all communicator)

→ (listof (cons/c exact-integer? string?))

45

communicator : communicator?

Gets a list of unique id’s from the server for all the messages in the mailbox. The car of
each item in the result list is the message number, and the cdr of each item is the message’s
id.

(make-desired-header tag-string) → regexp?

tag-string : string?

Takes a header field’s tag and returns a regexp to match the field

(extract-desired-headers header desireds) → (listof string?)

header : (listof string?)

desireds : (listof regexp?)

Given a list of header lines and of desired regexps, returns the header lines that match any of
the desireds .

9.1 Exceptions

(struct (pop3 exn) ())

The supertype of all POP3 exceptions.

(struct (cannot-connect pop3) ())

Raised when a connection to a server cannot be established.

(struct (username-rejected pop3) ())

Raised if the username is rejected.

(struct (password-rejected pop3) ())

Raised if the password is rejected.

(struct (not-ready-for-transaction pop3) (communicator))

communicator : communicator?

Raised when the communicator is not in transaction mode.

46

(struct (not-given-headers pop3) (communicator message))

communicator : communicator?

message : exact-integer?

Raised when the server does not respond with headers for a message as requested.

(struct (illegal-message-number pop3) (communicator message))

communicator : communicator?

message : exact-integer?

Raised when the client specifies an illegal message number.

(struct (cannot-delete-message exn) (communicator message))

communicator : communicator?

message : exact-integer?

Raised when the server is unable to delete a message.

(struct (disconnect-not-quiet pop3) (communicator))

communicator : communicator?

Raised when the server does not gracefully disconnect.

(struct (malformed-server-response pop3) (communicator))

communicator : communicator?

Raised when the server produces a mal-formed response.

9.2 Example Session

> (require net/pop3)

> (define c (connect-to-server "cs.rice.edu"))

> (authenticate/plain-text "scheme" "********" c)

> (get-mailbox-status c)

196

816400

> (get-message/headers c 100)

("Date: Thu, 6 Nov 1997 12:34:18 -0600 (CST)"

"Message-Id: <199711061834.MAA11961@new-world.cs.rice.edu>"

"From: Shriram Krishnamurthi <shriram@cs.rice.edu>"

....

47

"Status: RO")

> (get-message/complete c 100)

("Date: Thu, 6 Nov 1997 12:34:18 -0600 (CST)"

"Message-Id: <199711061834.MAA11961@new-world.cs.rice.edu>"

"From: Shriram Krishnamurthi <shriram@cs.rice.edu>"

....

"Status: RO")

("some body" "text" "goes" "." "here" "." "")

> (get-unique-id/single c 205)

no message numbered 205 available for unique id
> (list-tail (get-unique-id/all c) 194)

((195 . "e24d13c7ef050000") (196 . "3ad2767070050000"))

> (get-unique-id/single c 196)

"3ad2767070050000"

> (disconnect-from-server c)

9.3 POP3 Unit

(require net/pop3-unit)

pop3@ : unit?

Imports nothing, exports pop3^.

9.4 POP3 Signature

(require net/pop3-sig)

pop3^ : signature

Includes everything exported by the net/pop3 module.

48

10 MIME: Decoding Internet Data

(require net/mime)

The net/mime library provides utilities for parsing and creating MIME encodings as de-
scribed in RFC 2045 through RFC 2049.

The library was written by Francisco Solsona.

10.1 Message Decoding

(mime-analyze message-in part?) → message?

message-in : (or/c bytes? input-port)

part? : any/c

Parses message-in and returns the parsed result as a message instance.

(struct message (version entity fields))

version : real?

entity : entity

fields : (listof string?)

A decoded MIME message. The version is 1.0 by default. The entity field represents the
message data. The fields field contains one string for each field in the message header.

(struct entity (type

subtype

charset

encoding

disposition

params

id

description

other

fields

parts

body))

type : symbol?

subtype : symbol?

charset : symbol?

encoding : symbol?

disposition : disposition?

49

params : (listof (cons/c symbol? string?))

id : string?

description : string?

other : (listof string?)

fields : (listof string?)

parts : (listof message?)

body : (output-port? . -> . void?)

Represents the content of a message or a sub-part.

Standard values for the type field include 'text, 'image, 'audio, 'video, 'applica-
tion, 'message, and 'multipart.

Standard values for the subtype field depend on the type field, and include the following:

'text 'plain [RFC1521, NSB]
'richtext [RFC1521, NSB]
'tab-separated-values [Lindner]

'multipart 'mixed [RFC1521, NSB]
'alternative [RFC1521, NSB]
'digest [RFC1521, NSB]
'parallel [RFC1521, NSB]
'appledouble [MacMime, Faltstrom]
'header-set [Crocker]

'message 'rfc822 [RFC1521, NSB]
'partial [RFC1521, NSB]
'external-body [RFC1521, NSB]
'news [RFC 1036, Spencer]

'application 'octet-stream [RFC1521, NSB]
'postscript [RFC1521, NSB]
'oda [RFC1521, NSB]
'atomicmail [atomicmail, NSB]
'andrew-inset [andrew-inset, NSB]
'slate [slate, Crowley]
'wita [Wang Info Transfer, Campbell]
'dec-dx [Digital Doc Trans, Campbell]
'dca-rft [IBM Doc Content Arch, Campbell]
'activemessage [Shapiro]
'rtf [Lindner]
'applefile [MacMime, Faltstrom]
'mac-binhex40 [MacMime, Faltstrom]
'news-message-id [RFC1036, Spencer]
'news-transmission [RFC1036, Spencer]
'wordperfect5.1 [Lindner]
'pdf [Lindner]
'zip [Lindner]

50

'macwriteii [Lindner]
'msword [Lindner]
'remote-printing [RFC1486,MTR]

'image 'jpeg [RFC1521, NSB]
'gif [RFC1521, NSB]
'ief [RFC1314]
'tiff [MTR]

'audio 'basic [RFC1521, NSB]
'video 'mpeg [RFC1521, NSB]

'quicktime [Lindner]

Standard values for the charset field include 'us-ascii, which is the default.

Standard values for the encoding field are '7bit, '8bit, 'binary, 'quoted-printable,
and 'base64. The default is '7bit.

The params field contains a list of parameters from other MIME headers.

The id field is taken from the "Content-Id" header field.

The description field is taken from the "Content-description" header field.

The other field contains additional (non-standard) field headers whose field names start
with "Content-".

The fields field contains additional field headers whose field names do not start with
"Content-".

The parts contains sub-parts from multipart MIME messages. This list is non-empty only
when type is 'multipart or 'message.

The body field represents the body as a function that consumes an output out and writes the
decoded message to the port. No bytes are written if type is 'multipart or 'message. All
of the standard values of encoding are supported. The procedure only works once (since
the encoded body is pulled from a stream).

(struct disposition (type

filename

creation

modification

read

size

params))

type : symbol?

filename : (or/c string? false/c)

creation : (or/c string? false/c)

51

modification : (or/c string? false/c)

read : (or/c string? false/c)

size : (or/c exact-nonnegative-integer? false/c)

params : (listof (cons/c symbol? string?))

Represents a "Content-Disposition" header as defined in RFC 2183.

Standard values for the type field include 'inline and 'attachment.

The filename field is drawn from the "filename" parameter of the "Content-

Disposition" header, if included in the message.

The creation, modification, and read fields represent file timestamps as drawn
from the "creation-date", "modification-date", and "read-date" attributes of the
"Content-Disposition" header, if included in the message.

The size field is drawn from the "size" parameter of the "Content-Disposition"

header, if included in the message.

The params field stores any additional attribute bindings of the "Content-Disposition"
header, if included in the message.

10.2 Exceptions

(struct mime-error ())

The supertype of all MIME exceptions.

(struct (unexpected-termination mime-error) (msg))

msg : string?

Raised when an end-of-file is reached while parsing the headers of a MIME entity. It usually
means that the message does not conform to RFC 2045 and friends.

(struct (missing-multipart-boundary-parameter mime-error) ())

Raised when a multipart type is specified, but no "Boundary" parameter is given or an
end-of-file is encountered before the boundary.

(struct (malformed-multipart-entity mime-error) (msg))

msg : string?

Similar to unexpected-termination, but used only while scanning parts of a multipart

52

message.

(struct (empty-mechanism mime-error) ())

Raised when no transport encoding mechanism was provided with the "Content-

Transfer-Encoding" field.

(struct (empty-type mime-error) ())

Raised when no type is specified for "Content-Type", or when the specification is incor-
rectly formatted.

(struct (empty-subtype mime-error) ())

Raised when no sub-type is specified for "Content-Type", or when the specification is
incorrectly formatted.

(struct (empty-disposition-type mime-error) ())

Raised when type specified for the "Content-Disposition" field, or when the specifica-
tion is incorrectly formatted.

10.3 MIME Unit

(require net/mime-unit)

mime@ : unit?

Imports nothing, exports mime^.

10.4 MIME Signature

(require net/mime-sig)

mime^ : signature

Includes everything exported by the net/mime module.

53

11 Base 64: Encoding and Decoding

(require net/base64)

The net/base64 library provides utilities for Base 64 (mime-standard) encoding and de-
coding.

11.1 Functions

(base64-encode bstr) → bytes?

bstr : bytes?

Consumes a byte string and returns its Base 64 encoding as a new byte string. The returned
string is broken into 72-byte lines separated by CRLF combinations, and always ends with
a CRLF combination unless the input is empty.

(base64-decode bstr) → bytes?

bstr : bytes?

Consumes a byte string and returns its Base 64 decoding as a new byte string.

(base64-encode-stream in out [newline-bstr]) → void?

in : input-port?

out : output-port?

newline-bstr : bytes? = #"\n"

Reads bytes from in and writes the encoded result to out , breaking the output into 72-
character lines separated by newline-bstr , and ending with newline-bstr unless the
input stream is empty. Note that the default newline-bstr is just #"\n", not #"\r\n".
The procedure returns when it encounters an end-of-file from in .

(base64-decode-stream in out) → void?

in : input-port?

out : output-port?

Reads a Base 64 encoding from in and writes the decoded result to out . The procedure
returns when it encounters an end-of-file or Base 64 terminator = from in .

54

11.2 Base64 Unit

(require net/base64-unit)

base64@ : unit?

Imports nothing, exports base64^.

11.3 Base64 Signature

(require net/base64-sig)

base64^ : signature

Includes everything exported by the net/base64 module.

55

12 Quoted-Printable: Encoding and Decoding

(require net/qp)

The net/qp library provides utilities for quoted-printable (mime-standard) encoding and
decoding from RFC 2045 section 6.7.

The library was written by Francisco Solsona.

12.1 Functions

(qp-encode bstr) → bytes?

bstr : bytes?

Consumes a byte string and returns its quoted printable representation as a new string. The
encoded string uses #"\r\n" where necessary to create shorter lines.

(qp-decode bstr) → bytes?

bstr : bytes?

Consumes a byte string and returns its un-quoted printable representation as a new string.
Non-soft line breaks are preserved in whatever form they exist (CR, LR, or CRLF) in the
input string.

(qp-encode-stream in out [newline-bstr]) → void?

in : input-port?

out : output-port?

newline-bstr : bytes? = #"\n"

Reads characters from in and writes the quoted printable encoded result to out .

The newline-bstr argument is used for soft line-breaks (after =). Note that the default
newline-bstr is just #"\n", not #"\r\n".

Other line breaks are preserved in whatever form they exist (CR, LR, or CRLF) in the input
stream.

(qp-decode-stream in out) → void?

in : input-port?

out : output-port?

Reads characters from in and writes de-quoted-printable result to out . Non-soft line breaks

56

are preserved in whatever form they exist (CR, LR, or CRLF) in the input stream.

12.2 Exceptions

(struct qp-error ())

(struct (qp-wrong-input qp-error) ())

(struct (qp-wrong-line-size qp-error) ())

None of these are used anymore, but the bindings are preserved for backward compatibility.

12.3 Quoted-Printable Unit

(require net/qp-unit)

qp@ : unit?

Imports nothing, exports qp^.

12.4 -Printable Signature

(require net/qp-sig)

qp^ : signature

Includes everything exported by the net/qp module.

57

13 DNS: Domain Name Service Queries

(require net/dns)

The net/dns library provides utilities for looking up hostnames.

Thanks to Eduardo Cavazos and Jason Crowe for repairs and improvements.

13.1 Functions

(dns-get-address nameserver address) → string?

nameserver : string?

address : string?

Consults the specified nameserver (normally a numerical address like "128.42.1.30") to
obtain a numerical address for the given Internet address.

The query record sent to the DNS server includes the "recursive" bit, but dns-get-address
also implements a recursive search itself in case the server does not provide this optional
feature.

(dns-get-name nameserver address) → string?

nameserver : string?

address : string?

Consults the specified nameserver (normally a numerical address like "128.42.1.30") to
obtain a name for the given numerical address.

(dns-get-mail-exchanger nameserver address) → string?

nameserver : string?

address : string?

Consults the specified nameserver to obtain the address for a mail exchanger the given
mail host address. For example, the mail exchanger for "ollie.cs.rice.edu" might be
"cs.rice.edu".

(dns-find-nameserver) → (or/c string? false/c)

Attempts to find the address of a nameserver on the present system. Under Unix, this proce-
dure parses "/etc/resolv.conf" to extract the first nameserver address. Under Windows,
it runs nslookup.exe.

58

13.2 DNS Unit

(require net/dns-unit)

dns@ : unit?

Imports nothing, exports dns^.

13.3 DNS Signature

(require net/dns-sig)

dns^ : signature

Includes everything exported by the net/dns module.

59

14 NNTP: Newsgroup Protocol

(require net/nntp)

The net/nntp module provides tools to access Usenet group via NNTP [RFC977].

14.1 Connection and Operations

(struct communicator (sender receiver server port))

sender : output-port?

receiver : input-port?

server : string?

port : (integer-in 0 65535)

Once a connection to a Usenet server has been established, its state is stored in a communi-
cator, and other procedures take communicators as an argument.

(connect-to-server server [port-number]) → communicator?

server : string?

port-number : (integer-in 0 65535) = 119

Connects to server at port-number .

(disconnect-from-server communicator) → void?

communicator : communicator?

Disconnects an NNTP communicator.

(open-news-group communicator newsgroup)

→ exact-nonnegative-integer?

exact-nonnegative-integer?

exact-nonnegative-integer?

communicator : communicator?

newsgroup : string?

Selects the newsgroup of an NNTP connection. The returned values are the total number of
articles in the group, the first available article, and the last available article.

(authenticate-user communicator

username

password) → void?

60

communicator : communicator?

username : string?

password : string?

Tries to authenticate a user with the original authinfo command (uses cleartext). The pass-
word argument is ignored if the server does not ask for it.

(head-of-message communicator

message-index) → (listof string?)

communicator : communicator?

message-index : exact-nonnegative-integer?

Given a message number, returns its header lines.

(body-of-message communicator

message-index) → (listof string?)

communicator : communicator?

message-index : exact-nonnegative-integer?

Given a message number, returns the body of the message.

(newnews-since communicator message-index) → (listof string?)

communicator : communicator?

message-index : exact-nonnegative-integer?

Implements the NEWNEWS command (often disabled on servers).

((generic-message-command command

ok-code)

communicator

message-index) → (listof string?)

command : string?

ok-code : exact-integer?

communicator : communicator?

message-index : exact-nonnegative-integer?

Useful primitive for implementing head-of-message, body-of-message and other simi-
lar commands.

(make-desired-header tag-string) → regexp?

tag-string : string?

Takes a header field’s tag and returns a regexp to match the field

61

(extract-desired-headers header desireds) → (listof string?)

header : (listof string?)

desireds : (listof regexp?)

Given a list of header lines and of desired regexps, returns the header lines that match any of
the desireds .

14.2 Exceptions

(struct (nntp exn) ())

The supertype of all NNTP exceptions.

(struct (unexpected-response nntp) (code text))

code : exact-integer?

text : string?

Raised whenever an unexpected response code is received. The text field holds the response
text sent by the server.

(struct (bad-status-line nntp) (line))

line : string?

Raised for mal-formed status lines.

(struct (premature-close nntp) (communicator))

communicator : communicator?

Raised when a remote server closes its connection unexpectedly.

(struct (bad-newsgroup-line nntp) (line))

line : string?

Raised when the newsgroup line is improperly formatted.

(struct (non-existent-group nntp) (group))

group : string?

Raised when the server does not recognize the name of the requested group.

62

(struct (article-not-in-group nntp) (article))

article : exact-integer?

Raised when an article is outside the server’s range for that group.

(struct (no-group-selected nntp) ())

Raised when an article operation is used before a group has been selected.

(struct (article-not-found nntp) (article))

article : exact-integer?

Raised when the server is unable to locate the article.

(struct (authentication-rejected nntp) ())

Raised when the server reject an authentication attempt.

14.3 NNTP Unit

(require net/nntp-unit)

nntp@ : unit?

Imports nothing, exports nntp^.

14.4 NNTP Signature

(require net/nntp-sig)

nntp^ : signature

Includes everything exported by the net/nntp module.

63

15 TCP: Unit and Signature

The net/tcp-sig and net/tcp-unit libraries define a tcp^ signature and tcp@ imple-
mentation, where the implementation uses scheme/tcp.

Some units in the "net" collection import tcp^, so that they can be used with transports
other than plain TCP. For example, url@ imports tcp^.

See also tcp-redirect and make-ssl-tcp@.

15.1 TCP Signature

(require net/tcp-sig)

tcp^ : signature

(tcp-listen port-no

[max-allow-wait
reuse?

hostname]) → tcp-listener?

port-no : (and/c exact-nonnegative-integer?

(integer-in 1 65535))

max-allow-wait : exact-nonnegative-integer? = 4

reuse? : any/c = #f

hostname : (or/c string? false/c) = #f

Like tcp-listen from scheme/tcp.

(tcp-connect hostname

port-no

[local-hostname
local-port-no]) → input-port? output-port?

hostname : string?

port-no : (and/c exact-nonnegative-integer?

(integer-in 1 65535))

local-hostname : (or/c string? false/c) = #f

local-port-no : (or/c (and/c exact-nonnegative-integer?

(integer-in 1 65535))

false/c)

= #f

Like tcp-connect from scheme/tcp.

64

(tcp-connect/enable-break hostname

port-no

[local-hostname]
local-port-no)

→ input-port? output-port?

hostname : string?

port-no : (and/c exact-nonnegative-integer?

(integer-in 1 65535))

local-hostname : (or/c string? false/c) = #f

local-port-no : (or/c (and/c exact-nonnegative-integer?

(integer-in 1 65535))

false/c)

Like tcp-connect/enable-break from scheme/tcp.

(tcp-accept listener) → input-port? output-port?

listener : tcp-listener?

Like tcp-accept from scheme/tcp.

(tcp-accept/enable-break listener) → input-port? output-port?

listener : tcp-listener?

Like tcp-accept/enable-break from scheme/tcp.

(tcp-accept-ready? listener) → boolean?

listener : tcp-listener?

Like tcp-accept-ready? from scheme/tcp.

(tcp-close listener) → void?

listener : tcp-listener?

Like tcp-close from scheme/tcp.

(tcp-listener? v) → boolean?

v : any/c

Like tcp-listener? from scheme/tcp.

(tcp-abandon-port tcp-port) → void?

tcp-port : port?

Like tcp-abandon-port from scheme/tcp.

(tcp-addresses tcp-port [port-numbers?])
→ (or/c (values string? string?)

(values string? (integer-in 1 65535)

string? (integer-in 1 65535)))

65

tcp-port : port?

port-numbers? : any/c = #f

Like tcp-addresses from scheme/tcp.

15.2 TCP Unit

(require net/tcp-unit)

tcp@ : unit?

Imports nothing and exports tcp^, implemented using scheme/tcp.

66

16 TCP Redirect: tcp^ via Channels

(require net/tcp-redirect)

The net/tcp-redirect library provides a function for directing some TCP port numbers
to use buffered channels instead of the TCP support from scheme/tcp.

(tcp-redirect port-numbers) → unit?

port-numbers : (listof (integer-in 0 65535))

Returns a unit that implements tcp^. For port numbers not listed in port-numbers , the
unit’s implementations are the scheme/tcp implementations.

For the port numbers listed in port-numbers and for connections to "127.0.0.1", the
unit’s implementation does not use TCP connections, but instead uses internal buffered chan-
nels. Such channels behave exactly as TCP listeners and ports.

67

17 SSL Unit: tcp^ via SSL

(require net/ssl-tcp-unit)

The net/ssl-tcp-unit library provides a function for creating a tcp^ implementation
with openssl functionality.

(make-ssl-tcp@ server-cert-file

server-key-file

server-root-cert-files

server-suggest-auth-file

client-cert-file

client-key-file

client-root-cert-files) → unit?

server-cert-file : (or/c path-string? false/c)

server-key-file : (or/c path-string? false/c)

server-root-cert-files : (or/c (listof path-string?) false/c)

server-suggest-auth-file : path-string?

client-cert-file : (or/c path-string? false/c)

client-key-file : (or/c path-string? false/c)

client-root-cert-files : (listof path-string?)

Returns a unit that implements tcp^ using the SSL functions from openssl. The arguments
to make-ssl-tcp@ control the certificates and keys uses by server and client connections:

• server-cert-file — a PEM file for a server’s certificate; #f means no certificate
(which is unlikely to work with any SSL client)

• server-key-file — a private key PEM to go with server-cert-file ; #f means
no key (which is likely renders a certificate useless)

• server-root-cert-files — a list of PEM files for trusted root certificates; #f
disables verification of peer client certificates

• server-suggest-auth-file — PEM file for root certificates to be suggested to
peer clients that must supply certificates

• client-cert-file — a PEM file for a client’s certificate; #f means no certificate
(which is usually fine)

• client-key-file — a private key PEM to go with client-cert-file ; #f means
no key (which is likely renders a certificate useless)

• client-root-cert-files — a list of PEM files for trusted root certificates; #f
disables verification of peer server certificates

68

18 CGI Scripts

(require net/cgi)

The net/cgi module provides tools for scripts that follow the Common Gateway Interface
[CGI].

The net/cgi library expects to be run in a certain context as defined by the CGI standard.
This means, for instance, that certain environment variables will be bound.

Unfortunately, not all CGI environments provide this. For instance, the FastCGI library, de-
spite its name, does not bind the environment variables required of the standard. Users of
FastCGI will need to bind REQUEST_METHOD and possibly also QUERY_STRING to success-
fully employ the CGI library. The FastCGI library ought to provide a way to extract the
values bound to these variables; the user can then put these into the CGI program’s environ-
ment using the putenv function.

A CGI binding is an association of a form item with its value. Some form items, such as
checkboxes, may correspond to multiple bindings. A binding is a tag-string pair, where a tag
is a symbol or a string.

18.1 CGI Functions

(get-bindings)

→ (listof (cons/c (or/c symbol? string?) string?))

(get-bindings/post)

→ (listof (cons/c (or/c symbol? string?) string?))

(get-bindings/get)

→ (listof (cons/c (or/c symbol? string?) string?))

Returns the bindings that corresponding to the options specified by the user. The get-

bindings/post and get-bindings/get variants work only when POST and GET forms
are used, respectively, while get-bindings determines the kind of form that was used and
invokes the appropriate function.

These functions respect current-alist-separator-mode.

(extract-bindings key? bindings) → (listof string?)

key? : (or/c symbol? string?)

bindings : (listof (cons/c (or/c symbol? string?) string?))

Given a key and a set of bindings, determines which ones correspond to a given key. There
may be zero, one, or many associations for a given key.

69

(extract-binding/single key? bindings) → string?

key? : (or/c symbol? string?)

bindings : (listof (cons/c (or/c symbol? string?) string?))

Like extract-bindings, but for a key that has exactly one association.

(output-http-headers) → void?

Outputs all the HTTP headers needed for a normal response. Only call this function if you
are not using generate-html-output or generate-error-output.

(generate-html-output title

body

[text-color
bg-color

link-color

vlink-color

alink-color]) → void?

title : string?

body : (listof string?)

text-color : string? = "#000000"

bg-color : string? = "#ffffff"

link-color : string? = "#cc2200"

vlink-color : string? = "#882200"

alink-color : string? = "#444444"

Outputs an response: a title and a list of strings for the body.

The last five arguments are each strings representing a HTML color; in order, they represent
the color of the text, the background, un-visited links, visited links, and a link being selected.

(string->html str) → string?

str : string?

Converts a string into an HTML string by applying the appropriate HTML quoting conven-
tions.

(generate-link-text str html-str) → string?

str : string?

html-str : string?

Takes a string representing a URL, a HTML string for the anchor text, and generates HTML

70

corresponding to an anchor.

(generate-error-output strs) → any

strs : (listof string?)

The procedure takes a list of HTML strings representing the body, prints them with the
subject line "Internal error", and exits via exit.

(get-cgi-method) → (one-of/c "GET" "POST")

Returns either "GET" or "POST" when invoked inside a CGI script, unpredictable otherwise.

(bindings-as-html listof) → (listof string?)

listof : (cons/c (or/c symbol? string?) string?)

Converts a set of bindings into a list of HTML strings, which is useful for debugging.

(struct cgi-error ())

A supertype for all exceptions thrown by the net/cgi library.

(struct (incomplete-%-suffix cgi-error) (chars))

chars : (listof char?)

Raised when a % in a query is followed by an incomplete suffix. The characters of the
suffix—excluding the %—are provided by the exception.

(struct (invalid-%-suffix cgi-error) (char))

char : char?

Raised when the character immediately following a % in a query is invalid.

18.2 CGI Unit

(require net/cgi-unit)

cgi@ : unit?

Imports nothing, exports cgi^.

71

18.3 CGI Signature

(require net/cgi-sig)

cgi^ : signature

Includes everything exported by the net/cgi module.

72

19 Cookie: HTTP Client Storage

(require net/cookie)

The net/cookie library provides utilities for using cookies as specified in RFC 2109
[RFC2109].

19.1 Functions

(cookie? v) → boolean?

v : any/c

Returns #t if v represents a cookie, #f otherwise.

(valid-domain? v) → boolean?

v : any/c

Returns #t if v represents a valid domain, #f otherwise.

(set-cookie name value) → cookie?

name : string?

value : string?

Creates a new cookie, with default values for required fields.

(cookie:add-comment cookie comment) → cookie?

cookie : cookie?

comment : string?

Modifies cookie with a comment, and also returns cookie .

(cookie:add-domain cookie domain) → cookie?

cookie : cookie?

domain : valid-domain?

Modifies cookie with a domain, and also returns cookie . The domain must match a prefix
of the request URI.

(cookie:add-max-age cookie seconds) → cookie?

cookie : cookie?

73

seconds : exact-nonnegative-integer?

Modifies cookie with a maximum age, and also returns cookie . The seconds argument
is number of seconds that a client should retain the cookie.

(cookie:add-path cookie path) → cookie?

cookie : cookie?

path : valid-path?

Modifies cookie with a path, and also returns cookie .

(cookie:secure cookie secure) → cookie?

cookie : cookie?

secure : boolean?

Modifies cookie with a security flag, and also returns cookie .

(cookie:version cookie version) → cookie?

cookie : cookie?

version : exact-nonnegative-integer?

Modifies cookie with a version, and also returns cookie . The default is the only known
incarnation of HTTP cookies: 1.

(print-cookie cookie) → string?

cookie : cookie?

Prints cookie to a string. Empty fields do not appear in the output except when there is a
required default.

(get-cookie name cookies) → (listof string?)

name : string?

cookies : string?

Returns a list with all the values (strings) associated with name .

The method used to obtain the "Cookie" header depends on the web server. It may be an en-
vironment variable (CGI), or you may have to read it from the input port (FastCGI), or maybe
it comes in an initial-request structure, etc. The get-cookie and get-cookie/single

procedure can be used to extract fields from a "Cookie" field value.

(get-cookie/single name cookies) → (or/c string? false/c)

name : string?

74

cookies : string?

Like get-cookie, but returns the just first value string associated to name , or #f if no
association is found.

(struct (cookie-error exn:fail) ())

Raised for errors when handling cookies.

19.2 Examples

19.2.1 Creating a cookie

(let ((c (cookie:add-max-age

(cookie:add-path

(set-cookie "foo" "bar")

"/servlets")

3600)))

(print-cookie c))

Produces

"foo=bar; Max-Age=3600; Path=/servlets; Version=1"

To use this output in a “regular” CGI, instead of the last line use:

(display (format "Set-Cookie: ∼a" (print-cookie c)))

and to use with the PLT Web Server, use:

(make-response/full code message (current-seconds) mime

(list (make-header #"Set-Cookie" (string-

>bytes/utf-8 (print-cookie c))))

body)

19.2.2 Parsing a cookie

Imagine your Cookie header looks like this:

> (define cookies

"test2=2; test3=3; xfcTheme=theme6; xfcTheme=theme2")

Then, to get the values of the xfcTheme cookie, use

75

> (get-cookie "xfcTheme" cookies)

("theme6" "theme2")

> (get-cookie/single "xfcTheme" cookies)

"theme6"

If you try to get a cookie that simply is not there:

> (get-cookie/single "foo" cookies)

#f

> (get-cookie "foo" cookies)

()

Note that not having a cookie is normally not an error. Most clients won’t have a cookie set
then first arrive at your site.

19.3 Cookie Unit

(require net/cookie-unit)

cookie@ : unit?

Imports nothing, exports cookie^.

19.4 Cookie Signature

(require net/cookie-sig)

cookie^ : signature

Includes everything exported by the net/cookie module.

76

Bibliography

[CGI] “Common Gateway Interface (CGI/1.1).”
http://hoohoo.ncsa.uiuc.edu/cgi/

[RFC822] David Crocker, “Standard for the Format of ARPA Internet Text Mes-
sages,” RFC, 1982. http://www.ietf.org/rfc/rfc0822.txt

[RFC977] Brian Kantor and Phil Lapsley, “Network News Transfer Protocol,” RFC,
1986. http://www.ietf.org/rfc/rfc0977.txt

[RFC1738] T. Berners-Lee, L. Masinter, and M. McCahill, “Uniform Resource Loca-
tors (URL),” RFC, 1994. http://www.ietf.org/rfc/rfc1738.txt

[RFC1939] J. Myers and M. Rose, “Post Office Protocol - Version 3,” RFC, 1996.
http://www.ietf.org/rfc/rfc1939.txt

[RFC2060] M. Crispin, “Internet Message Access Protocol - Version 4rev1,” RFC,
1996. http://www.ietf.org/rfc/rfc2060.txt

[RFC2109] D. Kristol and L. Montulli, “HTTP State Management Mechanism,” RFC,
1997. http://www.ietf.org/rfc/rfc2109.txt

[RFC2396] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifiers (URI): Generic Syntax,” RFC, 1998.
http://www.ietf.org/rfc/rfc2396.txt

[RFC3986] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” RFC, 2005.
http://www.ietf.org/rfc/rfc3986.txt

77

http://hoohoo.ncsa.uiuc.edu/cgi/
http://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc0977.txt
http://www.ietf.org/rfc/rfc1738.txt
http://www.ietf.org/rfc/rfc1939.txt
http://www.ietf.org/rfc/rfc2060.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3986.txt

Index
-Printable Signature, 57
alist->form-urlencoded, 14
append-headers, 30
article-not-found, 63
article-not-found-article, 63
article-not-found?, 63
article-not-in-group, 63
article-not-in-group-article, 63
article-not-in-group?, 63
assemble-address-field, 33
authenticate-user, 60
authenticate/plain-text, 44
authentication-rejected, 63
authentication-rejected?, 63
bad-newsgroup-line, 62
bad-newsgroup-line-line, 62
bad-newsgroup-line?, 62
bad-status-line, 62
bad-status-line-line, 62
bad-status-line?, 62
Base 64: Encoding and Decoding, 54
Base64 Signature, 55
Base64 Unit, 55
base64-decode, 54
base64-decode-stream, 54
base64-encode, 54
base64-encode-stream, 54
base64@, 55
base64^, 55
binding, 69
bindings-as-html, 71
body-of-message, 61
browser-preference?, 21
call/input-url, 11
cannot-connect, 46
cannot-connect?, 46
cannot-delete-message, 47
cannot-delete-message-

communicator, 47
cannot-delete-message-message, 47

cannot-delete-message?, 47
CGI Functions, 69
CGI Scripts, 69
CGI Signature, 72
CGI Unit, 71
cgi-error, 71
cgi-error?, 71
cgi@, 71
cgi^, 72
combine-url/relative, 8
communicator, 60
communicator, 44
communicator-port, 60
communicator-port, 44
communicator-receiver, 60
communicator-receiver, 44
communicator-sender, 44
communicator-sender, 60
communicator-server, 60
communicator-server, 44
communicator-state, 44
communicator?, 60
communicator?, 44
connect-to-server, 44
connect-to-server, 60
Connecting and Selecting Mailboxes, 34
Connection and Operations, 60
Cookie Signature, 76
Cookie Unit, 76
cookie-error, 75
cookie-error?, 75
Cookie: HTTP Client Storage, 73
cookie:add-comment, 73
cookie:add-domain, 73
cookie:add-max-age, 73
cookie:add-path, 74
cookie:secure, 74
cookie:version, 74
cookie?, 73
cookie@, 76
cookie^, 76
Creating a cookie, 75

78

current-alist-separator-mode, 15
current-proxy-servers, 11
data-lines->data, 31
delete-impure-port, 10
delete-message, 45
delete-pure-port, 9
disconnect-from-server, 44
disconnect-from-server, 60
disconnect-not-quiet, 47
disconnect-not-quiet-communicator,

47
disconnect-not-quiet?, 47
display-pure-port, 10
disposition, 51
disposition-creation, 51
disposition-filename, 51
disposition-modification, 51
disposition-params, 51
disposition-read, 51
disposition-size, 51
disposition-type, 51
disposition?, 51
DNS Signature, 59
DNS Unit, 59
dns-find-nameserver, 58
dns-get-address, 58
dns-get-mail-exchanger, 58
dns-get-name, 58
DNS: Domain Name Service Queries, 58
dns@, 59
dns^, 59
empty-disposition-type, 53
empty-disposition-type?, 53
empty-header, 29
empty-mechanism, 53
empty-mechanism?, 53
empty-subtype, 53
empty-subtype?, 53
empty-type, 53
empty-type?, 53
entity, 49
entity-body, 49

entity-charset, 49
entity-description, 49
entity-disposition, 49
entity-encoding, 49
entity-fields, 49
entity-id, 49
entity-other, 49
entity-params, 49
entity-parts, 49
entity-subtype, 49
entity-type, 49
entity?, 49
Example Session, 47
Examples, 75
Exceptions, 62
Exceptions, 52
Exceptions, 46
Exceptions, 57
external-browser, 21
extract-addresses, 31
extract-all-fields, 29
extract-binding/single, 70
extract-bindings, 69
extract-desired-headers, 46
extract-desired-headers, 62
extract-field, 29
file-url-path-convention-type, 9
form-urlencoded->alist, 15
form-urlencoded-decode, 14
form-urlencoded-encode, 14
FTP Signature, 19
FTP Unit, 18
ftp-cd, 17
ftp-close-connection, 17
ftp-connection?, 17
ftp-directory-list, 18
ftp-download-file, 18
ftp-establish-connection, 17
ftp-make-file-seconds, 18
FTP: Client Downloading, 17
ftp@, 18
ftp^, 19

79

Functions, 29
Functions, 54
Functions, 73
Functions, 58
Functions, 17
Functions, 56
Functions, 13
generate-error-output, 71
generate-html-output, 70
generate-link-text, 70
generic-message-command, 61
get-bindings, 69
get-bindings/get, 69
get-bindings/post, 69
get-cgi-method, 71
get-cookie, 74
get-cookie/single, 74
get-impure-port, 10
get-mailbox-status, 44
get-message/body, 45
get-message/complete, 45
get-message/headers, 45
get-pure-port, 9
get-unique-id/all, 45
get-unique-id/single, 45
head-impure-port, 10
head-of-message, 61
head-pure-port, 9
head@, 33
head^, 33
header, 29
Header Signature, 33
Header Unit, 33
Headers: Parsing and Constructing, 29
illegal-message-number, 47
illegal-message-number-

communicator, 47
illegal-message-number-message, 47
illegal-message-number?, 47
IMAP Signature, 43
IMAP Unit, 43
imap-append, 41

imap-connect, 34
imap-connect*, 35
imap-connection?, 34
imap-copy, 41
imap-create-mailbox, 42
imap-disconnect, 35
imap-examine, 36
imap-expunge, 41
imap-flag->symbol, 39
imap-force-disconnect, 35
imap-get-expunges, 38
imap-get-hierarchy-delimiter, 43
imap-get-messages, 39
imap-get-updates, 38
imap-list-child-mailboxes, 42
imap-mailbox-exists?, 42
imap-mailbox-flags, 43
imap-messages, 36
imap-new?, 37
imap-noop, 36
imap-pending-expunges?, 38
imap-pending-updates?, 39
imap-poll, 36
imap-port-number, 34
imap-recent, 36
imap-reselect, 35
imap-reset-new!, 37
imap-status, 41
imap-store, 40
imap-uidnext, 37
imap-uidvalidity, 37
imap-unseen, 37
IMAP: Reading Mail, 34
imap@, 43
imap^, 43
impure port, 7
incomplete-%-suffix, 71
incomplete-%-suffix-chars, 71
incomplete-%-suffix?, 71
insert-field, 30
invalid-%-suffix, 71
invalid-%-suffix-char, 71

80

invalid-%-suffix?, 71
make-article-not-found, 63
make-article-not-in-group, 63
make-authentication-rejected, 63
make-bad-newsgroup-line, 62
make-bad-status-line, 62
make-cannot-connect, 46
make-cannot-delete-message, 47
make-cgi-error, 71
make-communicator, 44
make-communicator, 60
make-cookie-error, 75
make-desired-header, 46
make-desired-header, 61
make-disconnect-not-quiet, 47
make-disposition, 51
make-empty-disposition-type, 53
make-empty-mechanism, 53
make-empty-subtype, 53
make-empty-type, 53
make-entity, 49
make-illegal-message-number, 47
make-incomplete-%-suffix, 71
make-invalid-%-suffix, 71
make-malformed-multipart-entity, 52
make-malformed-server-response, 47
make-message, 49
make-mime-error, 52
make-missing-multipart-boundary-

parameter, 52
make-nntp, 62
make-no-group-selected, 63
make-no-mail-recipients, 27
make-non-existent-group, 62
make-not-given-headers, 47
make-not-ready-for-transaction, 46
make-password-rejected, 46
make-path/param, 7
make-pop3, 46
make-premature-close, 62
make-qp-error, 57
make-qp-wrong-input, 57

make-qp-wrong-line-size, 57
make-ssl-tcp@, 68
make-unexpected-response, 62
make-unexpected-termination, 52
make-url, 6
make-username-rejected, 46
malformed-multipart-entity, 52
malformed-multipart-entity-msg, 52
malformed-multipart-entity?, 52
malformed-server-response, 47
malformed-server-response-

communicator, 47
malformed-server-response?, 47
Manipulating Messages, 39
message, 49
Message Decoding, 49
message-entity, 49
message-fields, 49
message-version, 49
message?, 49
MIME Signature, 53
MIME Unit, 53
mime-analyze, 49
mime-error, 52
mime-error?, 52
MIME: Decoding Internet Data, 49
mime@, 53
mime^, 53
missing-multipart-boundary-

parameter, 52
missing-multipart-boundary-

parameter?, 52
net/base64, 54
net/base64-sig, 55
net/base64-unit, 55
net/cgi, 69
net/cgi-sig, 72
net/cgi-unit, 71
net/cookie, 73
net/cookie-sig, 76
net/cookie-unit, 76
net/dns, 58

81

net/dns-sig, 59
net/dns-unit, 59
net/ftp, 17
net/ftp-sig, 19
net/ftp-unit, 18
net/head, 29
net/head-sig, 33
net/head-unit, 33
net/imap, 34
net/imap-sig, 43
net/imap-unit, 43
net/mime, 49
net/mime-sig, 53
net/mime-unit, 53
net/nntp, 60
net/nntp-sig, 63
net/nntp-unit, 63
net/pop3, 44
net/pop3-sig, 48
net/pop3-unit, 48
net/qp, 56
net/qp-sig, 57
net/qp-unit, 57
net/sendmail, 26
net/sendmail-sig, 27
net/sendmail-unit, 27
net/sendurl, 20
net/smtp, 23
net/smtp-sig, 25
net/smtp-unit, 25
net/ssl-tcp-unit, 68
net/tcp-redirect, 67
net/tcp-sig, 64
net/tcp-unit, 66
net/uri-codec, 13
net/url, 6
net/url-sig, 12
net/url-structs, 6
net/url-unit, 12
Net: PLT Networking Libraries, 1
netscape/string->url, 8
newnews-since, 61

nntp, 62
NNTP Signature, 63
NNTP Unit, 63
NNTP: Newsgroup Protocol, 60
nntp?, 62
nntp@, 63
nntp^, 63
no-group-selected, 63
no-group-selected?, 63
no-mail-recipients, 27
no-mail-recipients?, 27
non-existent-group, 62
non-existent-group-group, 62
non-existent-group?, 62
not-given-headers, 47
not-given-headers-communicator, 47
not-given-headers-message, 47
not-given-headers?, 47
not-ready-for-transaction, 46
not-ready-for-transaction-

communicator, 46
not-ready-for-transaction?, 46
open-news-group, 60
output-http-headers, 70
Parsing a cookie, 75
password-rejected, 46
password-rejected?, 46
path->url, 9
path/param, 7
path/param-param, 7
path/param-path, 7
path/param?, 7
pop3, 46
POP3 Signature, 48
POP3 Unit, 48
POP3: Reading Mail, 44
pop3?, 46
pop3@, 48
pop3^, 48
post-impure-port, 10
post-pure-port, 10
premature-close, 62

82

premature-close-communicator, 62
premature-close?, 62
print-cookie, 74
pure port, 7
purify-port, 11
put-impure-port, 10
put-pure-port, 10
qp-decode, 56
qp-decode-stream, 56
qp-encode, 56
qp-encode-stream, 56
qp-error, 57
qp-error?, 57
qp-wrong-input, 57
qp-wrong-input?, 57
qp-wrong-line-size, 57
qp-wrong-line-size?, 57
qp@, 57
qp^, 57
Querying and Changing (Other) Mailboxes,

41
Quoted-Printable Unit, 57
Quoted-Printable: Encoding and Decoding,

56
remove-field, 30
replaces-field, 30
Selected Mailbox State, 36
Send URL: Opening a Web Browser, 20
send-mail-message, 27
send-mail-message/port, 26
send-url, 20
send-url/contents, 21
send-url/file, 20
Sendmail Functions, 26
Sendmail Signature, 27
Sendmail Unit, 27
sendmail: Sending E-Mail, 26
sendmail@, 27
sendmail^, 27
set-cookie, 73
SMTP Functions, 23
SMTP Signature, 25

SMTP Unit, 25
smtp-send-message, 23
smtp-sending-end-of-message, 24
SMTP: Sending E-Mail, 23
smtp@, 25
smtp^, 25
SSL Unit: tcp^ via SSL, 68
standard-message-header, 31
string->html, 70
string->url, 7
struct:article-not-found, 63
struct:article-not-in-group, 63
struct:authentication-rejected, 63
struct:bad-newsgroup-line, 62
struct:bad-status-line, 62
struct:cannot-connect, 46
struct:cannot-delete-message, 47
struct:cgi-error, 71
struct:communicator, 44
struct:communicator, 60
struct:cookie-error, 75
struct:disconnect-not-quiet, 47
struct:disposition, 51
struct:empty-disposition-type, 53
struct:empty-mechanism, 53
struct:empty-subtype, 53
struct:empty-type, 53
struct:entity, 49
struct:illegal-message-number, 47
struct:incomplete-%-suffix, 71
struct:invalid-%-suffix, 71
struct:malformed-multipart-entity,

52
struct:malformed-server-response,

47
struct:message, 49
struct:mime-error, 52
struct:missing-multipart-

boundary-parameter, 52
struct:nntp, 62
struct:no-group-selected, 63
struct:no-mail-recipients, 27

83

struct:non-existent-group, 62
struct:not-given-headers, 47
struct:not-ready-for-transaction,

46
struct:password-rejected, 46
struct:path/param, 7
struct:pop3, 46
struct:premature-close, 62
struct:qp-error, 57
struct:qp-wrong-input, 57
struct:qp-wrong-line-size, 57
struct:unexpected-response, 62
struct:unexpected-termination, 52
struct:url, 6
struct:username-rejected, 46
symbol->imap-flag, 40
TCP Redirect: tcp^ via Channels, 67
TCP Signature, 64
TCP Unit, 66
tcp-abandon-port, 65
tcp-accept, 65
tcp-accept-ready?, 65
tcp-accept/enable-break, 65
tcp-addresses, 65
tcp-close, 65
tcp-connect, 64
tcp-connect/enable-break, 65
tcp-listen, 64
tcp-listener?, 65
tcp-redirect, 67
TCP: Unit and Signature, 64
tcp@, 66
tcp^, 64
unexpected-response, 62
unexpected-response-code, 62
unexpected-response-text, 62
unexpected-response?, 62
unexpected-termination, 52
unexpected-termination-msg, 52
unexpected-termination?, 52
unix-browser-list, 22
URI Codec: Encoding and Decoding URIs,

13
uri-decode, 14
uri-encode, 13
uri-path-segment-decode, 14
uri-path-segment-encode, 14
uri-userinfo-decode, 14
uri-userinfo-encode, 14
url, 6
URL Functions, 7
URL Signature, 12
URL Structure, 6
URL Unit, 12
url->path, 9
url->string, 8
url-fragment, 6
url-host, 6
url-path, 6
url-path-absolute?, 6
url-port, 6
url-query, 6
url-scheme, 6
url-user, 6
url?, 6
url@, 12
url^, 12
URLs and HTTP, 6
username-rejected, 46
username-rejected?, 46
valid-domain?, 73
validate-header, 29

84

	1 URLs and HTTP
	1.1 URL Structure
	1.2 URL Functions
	1.3 URL Unit
	1.4 URL Signature

	2 URI Codec: Encoding and Decoding URIs
	2.1 Functions

	3 FTP: Client Downloading
	3.1 Functions
	3.2 FTP Unit
	3.3 FTP Signature

	4 Send URL: Opening a Web Browser
	5 SMTP: Sending E-Mail
	5.1 SMTP Functions
	5.2 SMTP Unit
	5.3 SMTP Signature

	6 sendmail: Sending E-Mail
	6.1 Sendmail Functions
	6.2 Sendmail Unit
	6.3 Sendmail Signature

	7 Headers: Parsing and Constructing
	7.1 Functions
	7.2 Header Unit
	7.3 Header Signature

	8 IMAP: Reading Mail
	8.1 Connecting and Selecting Mailboxes
	8.2 Selected Mailbox State
	8.3 Manipulating Messages
	8.4 Querying and Changing (Other) Mailboxes
	8.5 IMAP Unit
	8.6 IMAP Signature

	9 POP3: Reading Mail
	9.1 Exceptions
	9.2 Example Session
	9.3 POP3 Unit
	9.4 POP3 Signature

	10 MIME: Decoding Internet Data
	10.1 Message Decoding
	10.2 Exceptions
	10.3 MIME Unit
	10.4 MIME Signature

	11 Base 64: Encoding and Decoding
	11.1 Functions
	11.2 Base64 Unit
	11.3 Base64 Signature

	12 Quoted-Printable: Encoding and Decoding
	12.1 Functions
	12.2 Exceptions
	12.3 Quoted-Printable Unit
	12.4 -Printable Signature

	13 DNS: Domain Name Service Queries
	13.1 Functions
	13.2 DNS Unit
	13.3 DNS Signature

	14 NNTP: Newsgroup Protocol
	14.1 Connection and Operations
	14.2 Exceptions
	14.3 NNTP Unit
	14.4 NNTP Signature

	15 TCP: Unit and Signature
	15.1 TCP Signature
	15.2 TCP Unit

	16 TCP Redirect: IdentifierColorblacktcp'136 via Channels
	17 SSL Unit: IdentifierColorblacktcp'136 via SSL
	18 CGI Scripts
	18.1 CGI Functions
	18.2 CGI Unit
	18.3 CGI Signature

	19 Cookie: HTTP Client Storage
	19.1 Functions
	19.2 Examples
	19.2.1 Creating a cookie
	19.2.2 Parsing a cookie

	19.3 Cookie Unit
	19.4 Cookie Signature

	Index

