
File: PLT File Format Libraries
Version 4.2.5

April 2, 2010

1



Contents

1 gzip Compression and File Creation 3

2 gzip Decompression 4

3 zip File Creation 6

4 tar File Creation 7

5 MD5 Message Digest 8

6 GIF File Writing 9

Index 16

2



1 gzip Compression and File Creation

(require file/gzip)

The file/gzip library provides utilities to create archive files in gzip format, or simply to
compress data using the pkzip “deflate” method.

(gzip in-file [out-file ]) → void?

in-file : path-string?

out-file : path-string? = (string-append in-file ".gz")

Compresses data to the same format as the gzip utility, writing the compressed data directly
to a file. The in-file argument is the name of the file to compress. If the file named by
out-file exists, it will be overwritten.

(gzip-through-ports in

out

orig-filename

timestamp) → void?

in : input-port?

out : output-port?

orig-filename : (or/c string? false/c)

timestamp : exact-integer?

Reads the port in for data and compresses it to out , outputting the same format as the
gzip utility. The orig-filename string is embedded in this output; orig-filename can
be #f to omit the filename from the compressed stream. The timestamp number is also
embedded in the output stream, as the modification date of the original file (in Unix seconds,
as file-or-directory-modify-seconds would report under Unix).

(deflate in out) → exact-nonnegative-integer?

exact-nonnegative-integer?

exact-nonnegative-integer?

in : input-port?

out : output-port?

Writes pkzip-format “deflated” data to the port out , compressing data from the port in .
The data in a file created by gzip uses this format (preceded with header information).

The result is three values: the number of bytes read from in , the number of bytes written to
out , and a cyclic redundancy check (CRC) value for the input.

3



2 gzip Decompression

(require file/gunzip)

The file/gunzip library provides utilities to decompress archive files in gzip format, or
simply to deccompress data using the pkzip “inflate” method.

(gunzip file [output-name-filter ]) → void?

file : path-string?

output-name-filter : (string? boolean? . -> . path-string?)

= (lambda (file archive-supplied?) file)

Extracts data that was compressed using the gzip utility (or gzip function), writing the
uncompressed data directly to a file. The file argument is the name of the file containing
compressed data. The default output file name is the original name of the compressed file
as stored in file . If a file by this name exists, it will be overwritten. If no original name is
stored in the source file, "unzipped" is used as the default output file name.

The output-name-filter procedure is applied to two arguments—the default destination
file name and a boolean that is #t if this name was read from file—before the destination
file is created. The return value of the file is used as the actual destination file name (to be
opened with the 'truncate flag of open-output-file).

If the compressed data turns out to be corrupted, the exn:fail exception is raised.

(gunzip-through-ports in out) → void?

in : input-port?

out : output-port?

Reads the port in for compressed data that was created using the gzip utility, writing the
uncompressed data to the port out .

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
unzipping process may peek further into in than needed to decompress the data, but it will
not consume the unneeded bytes.

(inflate in out) → void?

in : input-port?

out : output-port?

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“in-
flated”) data to the port out . The data in a file created by gzip uses this format (preceded
with some header information).

4



If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
inflate process may peek further into in than needed to decompress the data, but it will not
consume the unneeded bytes.

5



3 zip File Creation

(require file/zip)

The file/zip library provides utilities to create zip archive files, which are compatible
with both Windows and Unix (including Mac OS X) unpacking. The actual compression is
implemented by deflate.

(zip zip-file path ...) → void?

zip-file : path-string?

path : path-string?

Creates zip-file , which holds the complete content of all paths. The given paths are all
expected to be relative path names of existing directories and files (i.e., relative to the current
directory). If a nested path is provided as a path , its ancestor directories are also added to the
resulting zip file, up to the current directory (using pathlist-closure). Files are packaged
as usual for zip files, including permission bits for both Windows and Unix (including Mac
OS X). The permission bits are determined by file-or-directory-permissions, which
does not preserve the distinction between owner/group/other permissions. Also, symbolic
links are always followed.

(zip->output paths [out ]) → void?

paths : (listof path-string?)

out : output-port? = (current-output-port)

Zips each of the given paths , and packages it as a zip “file” that is written directly to out .
Unlike zip, the specified paths are included as-is; if a directory is specified, its content is
not automatically added, and nested directories are added without parent directories.

(zip-verbose) → boolean?

(zip-verbose on?) → void?

on? : any/c

A parameter that controls output during a zip operation. Setting this parameter to a true
value causes zip to display to (current-error-port) the filename that is currently being
compressed.

6



4 tar File Creation

(require file/tar)

The file/tar library provides utilities to create archive files in USTAR format, like the
archive that the Unix utility pax generates. The USTAR format imposes limits on path
lengths. The resulting archives contain only directories and files (symbolic links are fol-
lowed), and owner information is not preserved; the owner that is stored in the archive is
always “root.”

(tar tar-file path ...) → exact-nonnegative-integer?

tar-file : path-string?

path : path-string?

Creates tar-file , which holds the complete content of all paths. The given paths are all
expected to be relative path names of existing directories and files (i.e., relative to the current
directory). If a nested path is provided as a path , its ancestor directories are also added to
the resulting tar file, up to the current directory (using pathlist-closure).

(tar->output paths [out ]) → exact-nonnegative-integer?

paths : (listof path?)

out : output-port? = (current-output-port)

Packages each of the given paths in a tar format archive that is written directly to the
out . The specified paths are included as-is; if a directory is specified, its content is not
automatically added, and nested directories are added without parent directories.

(tar-gzip tar-file paths ...) → void?

tar-file : path-string?

paths : path-string?

Like tar, but compresses the resulting file with gzip.

7



5 MD5 Message Digest

(require file/md5)

(md5 in) → bytes?

in : (or/c input-port? bytes? string?)

Produces a byte string containing 32 hexadecimal digits (lowercase) that is the MD5 hash of
the given input stream or byte string.

Example:
> (md5 #"abc")

#"900150983cd24fb0d6963f7d28e17f72"

8



6 GIF File Writing

(require file/gif)

The file/gif library provides functions for writing GIF files to a stream, including GIF
files with multiple images and controls (such as animated GIFs).

A GIF stream is created by gif-start, and then individual images are written with gif-

add-image. Optionally, gif-add-control inserts instructions for rendering the images.
The gif-end function ends the GIF stream.

A GIF stream can be in any one of the following states:

• 'init : no images or controls have been added to the stream

• 'image-or-control : another image or control can be written

• 'image : another image can be written (but not a control, since a control was written)

• 'done : nothing more can be added

(gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream created by gif-write, #f otherwise.

(image-ready-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that is not in 'done mode, #f otherwise.

(image-or-control-ready-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that is in 'init or 'image-or-control mode, #f other-
wise.

(empty-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that in 'init mode, #f otherwise.

(gif-colormap? v) → boolean?

9



v : any/c

Returns #t if v represets a colormap, #f otherwise. A colormap is a list whose size is a
power of 2 between 21 and 28, and whose elements are vectors of size 3 containing colors
(i.e., exact integers between 0 and 255 inclusive).

(color? v) → boolean?

v : any/c

The same as byte?.

(dimension? v) → boolean?

v : any/c

Returns #t if v is an exact integer between 0 and 65535 inclusive, #f otherwise.

(gif-state stream) → symbol?

stream : gif-stream?

Returns the state of stream .

(gif-start out w h bg-color cmap) → gif-stream?

out : output-port?

w : dimension?

h : dimension?

bg-color : color?

cmap : (or/c false/c gif-colormap?)

Writes the start of a GIF file to the given output port, and returns a GIF stream that adds to
the output port.

The width and height determine a virtual space for the overall GIF image. Individual images
added to the GIF stream must fit within this virtual space. The space is initialized by the
given background color.

Finally, the default meaning of color numbers (such as the background color) is determined
by the given colormap, but individual images within the GIF file can have their own col-
ormaps.

A global colormap need not be supplied, in which case a colormap must be supplied for each
image. Beware that the bg-color is ill-defined if a global colormap is not provided.

10



(gif-add-image stream

left

top

width

height

interlaced?

cmap

bstr) → void?

stream : image-ready-gif-stream?

left : dimension?

top : dimension?

width : dimension?

height : dimension?

interlaced? : any/c

cmap : (or/c false/c gif-colormap?)

bstr : bytes?

Writes an image to the given GIF stream. The left , top , width , and height values
specify the location and size of the image within the overall GIF image’s virtual space.

If interlaced? is true, then bstr should provide bytes ininterlaced order instead of top-
to-bottom order. Interlaced order is:

• every 8th row, starting with 0

• every 8th row, starting with 4

• every 4th row, starting with 2

• every 2nd row, starting with 1

If a global color is provided with gif-start, a #f value can be provided for cmap .

The bstr argument specifies the pixel content of the image. Each byte specifies a color
(i.e., an index in the colormap). Each row is provided left-to-right, and the rows provided
either top-to-bottom or in interlaced order (see above). If the image is prefixed with a control
that specifies an transparent index (see gif-add-control), then the corresponding “color”
doesn’t draw into the overall GIF image.

An exception is raised if any byte value in bstr is larger than the colormap’s length, if
the bstr length is not width times height , or if the top , left , width , and height

dimensions specify a region beyond the overall GIF image’s virtual space.

11



(gif-add-control stream

disposal

wait-for-input?

delay

transparent) → void?

stream : image-or-control-ready-gif-stream?

disposal : (one-of/c 'any 'keep 'restore-bg 'restore-prev)

wait-for-input? : any/c

delay : dimension?

transparent : (or/c false/c color?)

Writes an image-control command to a GIF stream. Such a control must appear just before
an image, and it applies to the following image.

The GIF image model involves processing images one by one, placing each image into the
specified position within the overall image’s virtual space. An image-control command can
specify a delay before an image is added (to create animated GIFs), and it also specifies how
the image should be kept or removed from the overall image before proceeding to the next
one (also for GIF animation).

The disposal argument specifies how to proceed:

• 'any : doesn’t matter (perhaps because the next image completely overwrites the
current one)

• 'keep : leave the image in place

• 'restore-bg : replace the image with the background color

• 'restore-prev : restore the overall image content to the content before the image is
added

If wait-for-input? is true, then the display program may wait for some cue from the user
(perhaps a mouse click) before adding the image.

The delay argument specifies a delay in 1/100s of a second.

If the transparent argument is a color, then it determines an index that is used to represent
transparent pixels in the follow image (as opposed to the color specified by the colormap for
the index).

An exception is raised if a control is already added to stream without a corresponding
image.

(gif-add-loop-control stream iteration) → void?

12



stream : empty-gif-stream?

iteration : dimension?

Writes a control command to a GIF stream for which no images or other commands have
already been written. The command causes the animating sequence of images in the GIF to
be repeated ‘iteration-dimension’ times, where 0 can be used to mean “infinity.”

An exception is raise if some control or image has been added to the stream already.

(gif-add-comment stream bstr) → void?

stream : image-or-control-ready-gif-stream?

bstr : bytes?

Adds a generic comment to the GIF stream.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(gif-end stream) → void?

stream : image-or-control-ready-gif-stream?

Finishes writing a GIF file. The GIF stream’s output port is not automatically closed.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(quantize bstr) → bytes? gif-colormap? (or/c false/c color?)

bstr : argb-bytes?

Each image in a GIF stream is limited to 256 colors, including the transparent “color,” if any.
The quantize function converts a 24-bit image (plus alpha channel) into an indexed-color
image, reducing the number of colors if necessary.

Given a set of pixels expressed in ARGB format (i.e., each four bytes is a set of values for
one pixel: alpha, red, blue, and green), quantize produces produces

• bytes for the image (i.e., a array of colors, expressed as a byte string)

• a colormap

• either #f or a color index for the transparent “color”

The conversion treats alpha values less than 128 as transparent pixels, and other alpha values
as solid.

13



The quantization process uses Octrees [Gervautz1990] to construct an adaptive palette for all
(non-transparent) colors in the image. This implementation is based on an article by Dean
Clark [Clark1996].

To convert a collection of images all with the same quantization, simply append them for the
input of a single call of quantize, and then break apart the result bytes.

14



Bibliography

[Gervautz1990] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: Octree quantization,” Graphics Gems, 1990.

[Clark1996] Dean Clark, “Color Quantization using Octrees,” Dr. Dobbs Journal, Jan-
uary 1, 1996. http://www.ddj.com/184409805

15

http://www.ddj.com/184409805


Index
color?, 10
deflate, 3
dimension?, 10
empty-gif-stream?, 9
file/gif, 9
file/gunzip, 4
file/gzip, 3
file/md5, 8
file/tar, 7
file/zip, 6
File: PLT File Format Libraries, 1
GIF File Writing, 9
gif-add-comment, 13
gif-add-control, 12
gif-add-image, 11
gif-add-loop-control, 12
gif-colormap?, 9
gif-end, 13
gif-start, 10
gif-state, 10
gif-stream?, 9
gunzip, 4
gunzip-through-ports, 4
gzip, 3
gzip Compression and File Creation, 3
gzip Decompression, 4
gzip-through-ports, 3
image-or-control-ready-gif-

stream?, 9
image-ready-gif-stream?, 9
inflate, 4
md5, 8
MD5 Message Digest, 8
quantize, 13
tar, 7
tar File Creation, 7
tar->output, 7
tar-gzip, 7
zip, 6
zip File Creation, 6

zip->output, 6
zip-verbose, 6

16


	1 gzip Compression and File Creation
	2 gzip Decompression
	3 zip File Creation
	4 tar File Creation
	5 MD5 Message Digest
	6 GIF File Writing
	Index

