
Readline: Terminal Interaction
Version 4.2.5

April 2, 2010

The "readline" collection (not to be confused with MzScheme’s read-line function)
provides glue for using GNU’s Readline library with the MzScheme read-eval-print-

loop.

1



1 Normal Use of Readline

(require readline)

(require readline/rep-start)

The readline library installs a Readline-based input port, and hooks the prompt-and-read
part of MzScheme’s read-eval-print-loop to interact with it

You can start MzScheme with

mzscheme -il readline

or evaluate

(require readline)

in the MzScheme read-eval-print-loop to load Readline manually. You can also put
(require readline) in your "∼/.mzschemerc", so that MzScheme automatically loads Read-
line support in interactive mode.

If you want to enable Readline support only sometimes—such as only when you use an
xterm, and not when you use an Emacs shell—then you can use dynamic-require, as in
the following example:

(when (regexp-match? #rx"xterm"

(getenv "TERM"))

(dynamic-require 'readline #f))

The readline library automatically checks whether the current input port is a terminal, as
determined by terminal-port?, and it installs Readline only to replace terminal ports. The
readline/rep-start module installs Readline without a terminal check.

By default, Readline’s completion is set to use the visible bindings in the current namespace.
This is far from ideal, but it’s better than Readline’s default filename completion which is
rarely useful. In addition, the Readline history is stored across invocations in MzScheme’s
preferences file, assuming that MzScheme exits normally.

(install-readline!) → void?

Adds (require readline/rep) to the result of (find-system-path 'init-file),
which is "∼/.mzschemerc" under Unix. Consequently, Readline will be loaded when-
ever MzScheme is started in interactive mode. The declaration is added only if it is not
already present, as determined by reading and checking all top-level expressions in the file.

For more fine-grained control, such as conditionally loading Readline based on an environ-
ment variable, edit "∼/.mzschemerc" manually.

2



2 Interacting with the Readline-Enabled Input Port

(require readline/pread)

The readline/pread library provides customization, and support for prompt-reading after
readline installs the new input port.

The reading facility that the new input port provides can be customized with the following
parameters.

(current-prompt) → bytes?

(current-prompt bstr) → void?

bstr : bytes?

A parameter that determines the prompt that is used, as a byte string. Defaults to #"> ".

(show-all-prompts) → boolean?

(show-all-prompts on?) → void?

on? : any/c

A parameter. If #f, no prompt is shown until you write input that is completely readable.
For example, when you type

(foo bar) (+ 1

2)

you will see a single prompt in the beginning.

The problem is that the first expression can be (read-line), which normally consumes the
rest of the text on the same line. The default value of this parameter is therefore #t, making
it mimic plain I/O interactions.

(max-history) → exact-nonnegative-integer?

(max-history n) → void?

n : exact-nonnegative-integer?

A parameter that determines the number of history entries to save, defaults to 100.

(keep-duplicates) → (one-of/c #f 'unconsecutive #t)

(keep-duplicates keep?) → void?

keep? : (one-of/c #f 'unconsecutive #t)

A parameter. If #f (the default), then when a line is equal to a previous one, the previous one

3



is removed. If it set to 'unconsecutive then this happens only for an line that duplicates
the previous one, and if it is #f then all duplicates are kept.

(keep-blanks) → boolean?

(keep-blanks keep?) → void?

keep? : any/c

A parameter. If #f (the default), blank input lines are not kept in history.

(readline-prompt) → (or/c false/c bytes? (one-of/c 'space))

(readline-prompt status) → void?

status : (or/c false/c bytes? (one-of/c 'space))

The new input port that you get when you require readline is a custom port that uses
Readline for all inputs. The problem is when you want to display a prompt and then read
some input, Readline will get confused if it is not used when the cursor is at the beginning
of the line (which is why it has a prompt argument.) To use this prompt:

(parameterize ([readline-prompt some-byte-string])

...code-that-reads...)

This expression makes the first call to Readline use the prompt, and subsequent calls will use
an all-spaces prompt of the same length (for example, when you’re reading an S-expression).
The normal value of readline-prompt is #f for an empty prompt (and spaces after the
prompt is used, which is why you should use parameterize to restore it to #f).

A proper solution would be to install a custom output port, too, which keeps track of text that
is displayed without a trailing newline. As a cheaper solution, if line-counting is enabled for
the terminal’s output-port, then a newline is printed before reading if the column is not 0.
(The readline library enables line-counting for the output port.)

Warning: The Readline library uses the output port directly. You should not use it
when current-input-port has been modified, or when it was not a terminal port when
MzScheme was started (eg, when reading input from a pipe). Expect some problems if you
ignore this warning (not too bad, mostly problems with detecting an EOF).

4



3 Direct Bindings for Readline Hackers

(require readline/readline)

(readline prompt) → string?

prompt : string?

Prints the given prompt string and reads a line.

(readline-bytes prompt) → bytes?

prompt : bytes?

Like readline, but using raw byte-strings for the prompt and returning a byte string.

(add-history str) → void?

str : string?

Adds the given string to the Readline history, which is accessible to the user via the up-arrow
key.

(add-history-bytes str) → void?

str : bytes?

Adds the given byte string to the Readline history, which is accessible to the user via the
up-arrow key.

(history-length) → exact-nonnegative-integer?

Returns the length of the history list.

(history-get idx) → string?

idx : integer?

Returns the history string at the idx position. idx can be negative, which will make it count
from the last (i.e, -1 returns the last item, -2 returns the second-to-last, etc.)

(history-delete idx) → string?

idx : integer?

Deletes the history string at the idx position. The position is specified in the same way as
the argument for history-get.

5



(set-completion-function! proc [type ]) → void?

proc : ((or/c string? bytes?)

. -> . (listof (or/c string? bytes?)))

type : (one-of/c _string _bytes) = _string

Sets Readline’s rl_completion_entry_function to proc . The type argument, whose
possible values are from scheme/foreign, determines the type of value supplied to the
proc .

6



4 License Issues

GNU’s Readline library is covered by the GPL, and that applies to code that links with it.
PLT Scheme is LGPL, so this code is not used by default; you should explicitly enable it if
you want to. Also, be aware that if you write code that uses this library, it will make your
code link to the Readline library when invoked, with the usual GPL implications.

7


	1 Normal Use of Readline
	2 Interacting with the Readline-Enabled Input Port 
	3 Direct Bindings for Readline Hackers
	4 License Issues

