Scribble: PLT Documentation Tool

Version 4.2

Matthew Flatt
and Eli Barzilay

June 1, 2009

Scribble is a collection of tools for creating prose documents, especially those that document
libraries, and especially for HTML and PDF (via LaTeX) output. More generally, it is useful
for cases where you need to deal with Scheme code that is rich in textual content: it has a
syntactic extension for writing almost free-form text and a tool for using the scribble syntax
for preprocessing text files.

This document itself is written using Scribble. At the time that it was written, its source was
available at http://svn.plt-scheme.org/plt/trunk/collects/scribblings/scribble/ starting with the
"scribble.scrbl" file.

Contents

T H Scribble D onl

II.1 Getting Started]

1.2 Document Syntax|

1.3 Scheme Typesetting and Hyperlinks|

|14 Section Hyperlinks|

|I1.5 Defining Scheme Bindings|

1.6 Showing Scheme Examples|.

1.7 Splhtting the Document Source|

1.8 Multi-Page Sections|. oo

I1.9 StyleGuide|

[1.9.1 Prose and Terminology|

11.9.2 TypesettingCode|

11.9.3 “lypesetting Prose|. L.

1.94 jon Titles|

2 Scribble Layers|

2.1 Typical Composition| e

22 lLayerRoadmap|

3 @-Reader!

3.1 Concrete Syntax|.

3.1.1 ~ The Scribble Syntax ataGlance|

B3.1.4 TheBodyPart|

3.3 Adding @-expressions to a Language] 34
B _Interface] o o o 34

4 Structures And Processing| 37
0 D 7 37

u gs| L eee 38
4.3 Collected and Resolved Information| 39
4.4 Structure Referencel 40

5 Renderer 52
.1 _BaseRendered. 52
B2 TextRendered 53
B3 _HIMLRenderen ovvve e e e e 54
B4 TatexRendered 54

|6 Decoding Text| 56
[7 Document Language| 59
8__Document Reader| 60
9__Basic Document Forms| 61
1__Documen e e e e 61

0. extStyles|. 64

9 d . 65

4 Tablesof Contents|, 66

10 _Scheme 68

(11 Manual Forms|

|12 Evaluation and Examples|

13 In-Source Documentation|

|13.2 Extracting Documentation from Source|

14 BNF Grammars

115 Literate Programming|

[15.1 scribble/lp Language|

|15.2 scribble/lp-include Module|.,

16 Cross-Referen 1liti

101

101

103

104

106

107

107

108

|17 Text Preprocessor|

II'7.1 Writing Preprocessor Files|

|[17.2 Defining Functionsand More|.

|1'7.3 Using Printouts| . .

|1'7.4 Indentation in Preprocessed outputf

|17.5 Using External Files|

118 Extending and Configuring Scribble Output|

|18.1 Adding a Style| . .

|18.2 Configuring Output|

Index

112

112

115

117

119

122

126

126

127

128

1 How to Scribble Documentation

Although the scribble command-line utility generates output from a Scribble document
(run scribble -h for more information), documentation of PLT Scheme libraries is nor-
mally built by setup-plt. This chapter emphasizes the setup-plt approach, which more

automatically supports links across documents. See §18 “Extending
and Configuring
Scribble Output”
for information on

1.1 Getting Started using the scribble
command-line
utility.

To document a collection or PLaneT package:

e Create a file in your collection or planet package with the file extension ".scrbl".
Beware that the file name you choose will determine the output directory’s name. The
remainder of these instructions assume that the file is called "manual .scrbl".

e Start "manual.scrbl" like this:

#lang scribble/doc
@(require scribble/manual)

@title{My Library}

Welcome to my documentation: @scheme[(list ’testing 1 2 3)].

The first line starts the file in “text” mode, and introduces the @ syntax to use Scheme
bindings. The second line introduces bindings like title and scheme for writing PLT
Scheme documentation. The title call (using @) produces a title declaration in the
text stream.

e Add the following entry to your collect or package’s "info.ss":

(define scribblings ’(("manual.scrbl" ())))

The () above is a list of options. When your document gets large enough that you
want it split into multiple pages, add the *multi-page option (omitting the quote,
since the whole right-hand side of the definition is already quoted).

If you do not already have an "info.ss" module, here’s a suitable complete module:

#lang setup/infotab
(define scribblings °’(("manual.scrbl" ())))

e Run setup-plt to build your documentation. For a collection, optionally supply -1
followed by the collection name to limit the build process to that collection. For a
PLaneT package, optionally supply -P followed by the package information to limit
the build process to that package.

e The generated documentation is normally "doc/manual/index.html" within the
collection or PLaneT package directory. If the collection is in PLT Scheme’s
main "collects" directory, however, then the documentation is generated as
"manual/index.html" in the installation’s main "doc" directory.

1.2 Document Syntax

Whether in “text” mode or Scheme mode, @ in a document provides an escape to Scheme
mode. The syntax of @ is

@ (cmd) [(datum)* 1 { (text-body) }

where all three parts after @ are optional, but at least one must be present. No spaces are
allowed between

e Q@and (cmd), [, or {
e (cmd) and [or {; or

e JandA.

A {cmd) or (datum) is a Scheme datum, while a (text-body) is itself in text mode.
The expansion of @({cmd) into Scheme code is

(cmd)
When either [] or { } are used, the expansion is

({cmd) (datum)* (parsed-body)*)

where (parsed-body)* is the parse result of the (text-body). The (parsed-body)* part often
turns out to be a sequence of Scheme strings.

In practice, the (cmd) is normally a Scheme identifier that is bound to a procedure or syntac-
tic form. If the procedure or form expects further text to typeset, then { I supplies the text.
If the form expects other data, typically [] is used to surround Scheme arguments, instead.
Sometimes, both [] and { } are used, where the former surround Scheme arguments that
precede text to typeset.

Thus,

Q@(require scribble/manual)

@title{My Library}

@scheme[(list ’testing 1 2 3)]
@section[#:tag "here"]{You Are Here}

7

means

(require scribble/manual)

(title "My Library")

(scheme (list ’testing 1 2 3))
(section #:tag "here" "You Are Here")

For more information on the syntax of @, see §3 “@-Reader”.

In a document that starts #lang scribble/doc, the top level is a text-mode sequence, as
the (fext-body) in a @ form. The parsed sequence is further decoded to turn it into a hierarchy
of sections and paragraphs. For example, a linear sequence of section declarations with
interleaved text is turned into a list of part instances with all text assigned to a particular
part. See §2 “Scribble Layers” for more information on these layers.

1.3 Scheme Typesetting and Hyperlinks

In the document source at the start of this chapter (§1.1 “Getting Started”), the Scheme
expression (list ’testing 1 2 3) is typeset properly, but the 1ist identifier is not hy-
perlinked to the usual definition. To cause 1ist to be hyperlinked, extend the require form
like this:

(require scribble/manual
(for-label scheme))

This require with for-label declaration introduces a document-time binding for each
export of the scheme module. When the document is built, the scheme form detects the
binding for 1ist, and so it generates a reference to the specification of 1ist. The setup
process detects the reference, and it finds the matching specification in the existing docu-
mentation, and ultimately directs the hyperlink to that specification.

Hyperlinks based on for-label and scheme are the preferred mechanism for linking to
information outside of a single document. Such links require no information about where
and how a binding is documented elsewhere:

#lang scribble/doc
Q@(require scribble/manual
(for-label scheme))

Otitle{My Library}

See also @scheme[list].

The scheme form typesets a Scheme expression for inline text, so it ignores the source
formatting of the expression. The schemeblock form, in contrast, typesets inset Scheme

code, and it preserves the expression’s formatting from the document source.

#lang scribble/doc
@(require scribble/manual
(for-label scheme))

@title{My Library}
Some example Scheme code:

@schemeblock[
(define (nobody-understands-me what)
(l1ist "When I think of all the"
what
"I’ve tried so hard to explain!"))
(nobody-understands-me "glorble snop")

]

1.4 Section Hyperlinks

A section declaration in a document can include a #:tag argument that declares a
hyperlink-target tag. The secref function generates a hyperlink, using the section name
as the text of the hyperlink. Use seclink to create a hyperlink with text other than the
section title.
The following example illustrates section hyperlinks:

#lang scribble/doc

@(require scribble/manual
(for-label scheme))

@title{My Library}
Welcome to my documentation: @scheme[(list ’testing 1 2 3)].

Q@table-of-contents[]

@section[#:tag "chickens"]{Philadelphia Chickens}

Dancing tonight!

@section{Reprise}

See @secref{chickens}.

Since the page is so short, the hyperlinks in the above example are more effective if you
change the "info.ss" file to add the *multi-file flag:

(define scribblings ’(("manual.scrbl" (multi-page))))

A section can have a tag prefix that applies to all tags as seen from outside the section. Such a
prefix is automatically given to each top-level document as processed by setup-plt. Thus,
referencing a section tag in a different document requires using a prefix, which is based on
the target document’s main source file. The following example links to a section in the PLT
Scheme reference manual:

#lang scribble/doc
@(require scribble/manual
(for-label scheme))
Q@(define ref-src
>(lib "scribblings/reference/reference.scrbl"))

@title{My Library}
See also @italic{@secref [#:doc ref-src]{pairs}}.

As mentioned in §1.3 “Scheme Typesetting and Hyperlinks”, however, cross-document
references based on (require (for-label)) and scheme are usually better than
cross-document references using secref.

1.5 Defining Scheme Bindings

Use defproc to document a procedure, defform to document a syntactic form, defstruct
to document a structure type, etc. These forms provide consistent formatting of definitions,
and they declare hyperlink targets for scheme-based hyperlinks.

To document a my-helper procedure that is exported by "helper.ss" in the "my-1lib"
collection that contains "manual.scrbl":

e Use (require (for-label "helper.ss")) to import the binding information
about the bindings of "helper.ss" for use when typesetting identifiers. A relative
reference "helper.ss" works since it is relative to the documentation source.

e Add a @defmodule [my-1lib/helper] declaration, which specifies the library that is
being documented within the section. The defmodule form needs an absolute module
name mylib/helper, instead of a relative reference "helper.ss", since the module
path given to defmodule appears verbatim in the generated documentation.

10

e Use defproc to document the procedure.

Adding these pieces to ""manual.scrbl"" gives us the following:

#lang scribble/doc
@(require scribble/manual
(for-label scheme
"helper.ss"))

@title{My Library}
@defmodule [my-1ib/helper]

@defproc[(my-helper [1st list?])
(listof
(not/c (one-of/c ’cow)))]{

Replaces each @scheme[’cow] in @scheme[lst] with
@scheme [’aardvark] .}

In defproc, a contract is specified with each argument to the procedure. In this example,
the contract for the 1st argument is 1ist?, which is the contract for a list. After the closing
parenthesis that ends the argument sequence, the contract of the result must be given; in this
case, my-helper guarantees a result that is a list where none of the elements are ’ cow.

Some things to notice in this example and the documentation that it generates:

e The 1ist?, listof, etc. elements of contracts are hyperlinked to their documenta-
tion.

e The result contract is formatted in the generated documentation in the same way as in
the source. That is, the source layout of contracts is preserved. (In this case, putting
the contract all on one line would be better.)

o In the prose that documents my-helper, Ist is automatically typeset in italic, match-
ing the typesetting in the blue box. The scheme form essentially knows that it’s used
in the scope of a procedure with argument 1st.

e If you hover the mouse pointer over my-helper, a popup reports that it is provided
from my-1lib/helper.

e If you use my-helper in any documentation now, as long as that documentation
source also has a (require (for-label)) of "helper.ss", then the ref-
erence is hyperlinked to the definition above.

See defproc*, defform, etc. for more information on forms to document Scheme bindings.

11

1.6 Showing Scheme Examples

The examples form from scribble/eval helps you generate examples in your documen-
tation. Warning: the examples form is especially likely to change or be replaced.

To use examples, the procedures to document must be suitable for use at documentation
time; in fact, examples uses bindings introduced into the document source by require.
Thus, to generate examples using my-helper from the previous section, "helper.ss" must
be imported both via require-for-label and require:

#lang scribble/doc
@(require scribble/manual
scribble/eval ; <-—- added
"helper.ss" ; <-—- added
(for-label scheme
"helper.ss"))

Otitle{My Library}

@defmodule [my-1ib/helper] {The @schememodname [my-1lib/helper]
module---now with extra cows!}

@defproc[(my-helper [lst list?])
(listof (mot/c (one-of/c ’cow)))]{

Replaces each @scheme[’cow] in @scheme[lst] with
@scheme [’ aardvark] .

Q@examples [
(my-helper ’())
(my-helper ’(cows such remarkable cows))

1}

1.7 Splitting the Document Source

In general, a " .scrbl" file produces a part. A part produced by a document’s main source
(as specified in the "info.ss" file) represents the whole document. The include-section
procedure can be used to incorporate a part as a sub-part of the enclosing part.

In "manual.scrbl"

#lang scribble/doc
Q@(require scribble/manual)

@title{My Library}

12

@defmodule [my-lib/helper] {The @schememodname [my-lib/helper]
module---now with extra cows!}

@include-section["cows.scrbl"]
@include-section["aardvarks.scrbl"]

In "cows.scrbl":

#lang scribble/doc
@(require scribble/manual)

Otitle{Cows}
Wherever they go, it’s a quite a show.

In "aardvarks.scrbl":

#lang scribble/doc
@(require scribble/manual
(for-label scheme
"helper.ss"))

@title{Aardvarks}

@defproc[(my-helper [1st list?])
(listof (not/c (one-of/c ’cow)))1{

Replaces each @scheme[’cow] in @scheme[lst] with
@scheme [’ aardvark] .}

1.8 Multi-Page Sections

Setting the *multi-page option (see §1.4 “Section Hyperlinks™) causes each top-level sec-
tion of a document to be rendered as a separate HTML page.

To push sub-sections onto separate pages, use the ’toc style for the enclosing section (as
started by title, section, subsection, etc.) and use local-table-of-contents to
generate hyperlinks to the sub-sections.

Revising "cows.scrbl" from the previous section:

#lang scribble/doc
@(require scribble/manual)

13

Qtitle[#:style ’(toc)]{Cows}
@local-table-of-contents[]

@section[#:tag "singing"]{Singing}
Wherever they go, it’s a quite a show.

@section{Dancing}
See @secref["singing"].

To run this example, remember to change "info.ss" to add the ‘multi-page style. You
may also want to add a call to table-of-contents in "manual.scrbl".

The difference between table-of-contents and local-table-of-contents is that the
latter is ignored for Latex output.

When using local-table-of-contents, it often makes sense to include introductory text
before the call of local-table-of-contents. When the introductory text is less important
and when when local table of contents is short, putting the introductory text after the call of
local-table-of-contents may be appropriate.

1.9 Style Guide
1.9.1 Prose and Terminology

In the descriptive body of defform, defproc, etc., do not start with “This ...” Instead, start
with a sentence whose implicit subject is the form or value being described. Capitalize the
first word. Thus, the description will often start with “Returns” or “Produces.” Refer to
arguments and sub-forms by name.

Do not use the word “argument” to describe a sub-form in a syntactic form; use the term
“sub-form” instead, reserving “argument” for values or expressions in a function call. Refer
to libraries and languages as such, rather than as “modules” (even though the form to typeset
a library or language name is called schememodname). Do not call an identifier (i.e., a
syntactic element) a “variable” or a “symbol.” Do not use the word “expression” for a form
that is a definition or might be a definition; use the word “form,” instead. Prefer “function”
to “procedure.”

Avoid cut-and-paste for descriptive text. If two functions are similar, consider documenting
them together with deftogether. To abstract a description, consider using explicit prose
abstraction, such as “x is like y, except that ...,” instead of abstracting the source and in-
stantiating it multiple times; often, a prose abstraction is clearer to the reader than a hidden
abstraction in the document implementation.

14

1.9.2 Typesetting Code

Use id or a name that ends —-id in defform to mean an identifier, not identifier, vari-
able, name, or symbol. Similarly, use expr or something that ends -expr for an expres-
sion position within a syntactic form. Use body for a form (definition or expression) in an
internal-definition position. Do not use expr for something that isn’t exactly an expression,
id for something that isn’t exactly an identifier, etc.; instead, use defform/subs to define a
new non-terminal.

Beware of using deftogether to define multiple variants of a syntactic form or procedure,
because each defform or defproc creates a definition point, but each form or procedure
should have a single definition point. (Scribble issues a warning when a binding has multiple
definition points.) Instead, use defproc* or defform*.

Pay attention to the difference between identifiers and meta-variables when using scheme,
especially outside of defproc or defform. Prefix a meta-variable with _; for example,

@scheme [(rator-expr rand-expr ...)]

would be the wrong way to refer to the grammar of a function call, because it produces
(rator-expr rand-expr ...), where rator-expr and rand-expr are typeset as vari-
ables. The correct description is

@scheme[(_rator-expr _rand-expr ...)]

which produces (rator-expr rand-expr ...),whererator-expr and rand-expr are
typeset as meta-variables. The defproc, defform, etc. forms greatly reduce this burden in
descriptions, since they automatically set up meta-variable typesetting for non-literal iden-
tifiers. In defform, be sure to include literal identifiers (i.e., those not meant as variables,
other than the form name being defined) in a #:1iterals clause.

To typeset an identifier with no particular interpretation—syntax, variable, meta-variable,
etc.—use schemeidfont (e.g., as in rand-expr above). Otherwise, use litchar, not
merely schemefont or verbatim, to refer to a specific sequence of characters.

When showing example evaluations, use the REPL-snapshot style:

@interaction[
(+12)
]

See also the scribble/eval library.

Use four dots,, in place of omitted code, since . . . means repetition.

15

1.9.3 Typesetting Prose

Refrain from referring to documentation “above” or “below,” and instead have a hyperlink
point to the right place.

(N4

In prose, use and ’’ quotation marks instead of ". Use --- for an em-dash, and do
not include spaces on either side, though it will typeset as an en-dash and spaces in HTML
output. Use American style for quotation marks and punctuation at the end of quotation
marks (i.e., a sentence-terminating period goes inside the quotation marks). Of course, this
rule does not apply for quotation marks that are part of code.

Do not use a citation reference (as created by cite) as a noun; use it as an annotation.

Do not start a sentence with a Scheme variable name, since it is normally lowercase. For
example, use “The thing argument is...” instead of “thing is...”

1.9.4 Section Titles

Capitalize all words except articles (“the,” “a,” etc.), prepositions, and conjunctions that are
not at the start of the title.

A manual title should normally start with a suitable keyword or key phrase (such as “Scrib-
ble” for this manual) that is in boldface. If the key word is primarily an executable name,
use exec instead of bold. Optionally add further descriptive text in the title after a colon,
where the text starting with the colon is not in boldface.

16

2 Scribble Layers

Scribble is made of independently usable parts. For example, the Scribble reader can be
used in any situation that requires lots of free-form text. You can also skip Scribble’s special
reader support, and instead use the document-generation structure directly.

2.1 Typical Composition

A Scribble document normally starts
#lang scribble/doc

Besides making the file a module, this declaration selects the Scribble reader (instead of the
usual Scheme reader), and it starts the body of the file in “text” mode. The reader layer
mostly leaves text alone, but @ forms escape to S-expression mode.

A module written as

#lang scribble/doc
@(require scribble/manual)

@(define to-be "To Be")
Otitle{@|to-bel or Not @|to-bel}

@bold{That} is the question.
Whether ’tis nobler...

reads as

(module (name) scribble/doc
(require scribble/manual)

ll\nll

(define to-be "To Be") "\n"

u\nn

(title to-be " or Not " to-be) "\n"
ll\nll

(bold "That") " is the question." "\n"
"Whether ’tis nobler..." "\n")

As shown in this example, the read result is a module whose content mingles text and def-
initions. The scribble/doc language lifts definitions, requires, and provides to the
beginning of the module, while everything else is collected into a document bound to the
provided identifier doc. That is, the module is transformed to something like this:

17

(module (name) scheme/base
(require scribble/decode
scribble/manual)
(define to-be "To Be")
(define doc

(decode

ll\n” ll\n” ll\n”

(title to-be " or Not " to-be) "\n"
ll\nll

(bold "That") " is the question." "\n"
"Whether ’tis nobler..." "\n"))

(provide doc))

The decode function produces a part structure instance that represents the document. To
build the part instance, it inspects its arguments to find a title-decl value created by
title to name the part, part-start values created by section to designate sub-parts,
etc.

A part is the input to a rendering back-end, such as the HTML renderer. All renderers
recognize a fixed structure hierarchy: the content of a part is a flow, which is a sequence of
flow elements, such as paragraphs and tables; a table, in turn, consists of a list of list of flows;
a paragraph is a list of elements, which can be instances of the element structure type, plain
strings, or certain special symbols.

The value bound to doc in the example above is something like

(make-part
(list "To Be" " or Not " "To Be") ; title
(make-flow
(list
(make-paragraph
(list (make-element ’bold (list "That"))
" is the question." "\n"

"Whether " ’rsquo "tis nobler..."))))
)

Notice that the ’ in the input’s ’ tis has turned into ’rsquo (rendered as a curly apostrophe).
The conversion to use ’rsquo was performed by decode via decode-flow via decode-
paragraph via decode-content via decode-string.

In contrast, (make-element ’bold (list "That")) was produced by the bold func-
tion. The decode operation is a function, not a syntactic form, and so bold has control over
its argument before decode sees the result. Also, decoding traverses only immediate string
arguments.

As it turns out, bold also decodes its argument, because the bold function is implemented

18

as

(define (bold . strs)
(make-element ’bold (decode-content strs)))

The verbatim function, however, does not decode its content, and instead typesets its text
arguments directly.

A document module can construct elements directly using make-element, but normally
functions like bold and verbatim are used to construct them. In particular, the scrib-
ble/manual library provides many functions and forms to typeset elements and flow ele-
ments.

The part structure hierarchy includes built-in element types for setting hyperlink targets
and references. Again, this machinery is normally packaged into higher-level functions and
forms, such as secref, defproc, and scheme.

2.2 Layer Roadmap

Working roughly from the bottom up, the Scribble layers are:

e scribble/reader: A reader that extends the syntax of Scheme with @-forms for
conveniently embedding a mixin of text and escapes. See §3 “@-Reader”.

e scribble/struct: A set of document datatypes and utilities that define the basic
layout and processing of a document. For example, the part datatype is defined in
this layer. See §4 “Structures And Processing”.

e scribble/base-render with scribble/html-render, scribble/latex-
render, or scribble/text-render: A base renderer and mixins that generate
documents in various formats from instances of the scribble/struct datatypes.
See §5 “Renderer”.

e scribble/decode: Processes a stream of text, section-start markers, etc. to produce
instances of the scribble/struct datatypes. See §6 “Decoding Text”.

e scribble/doclang: A language to be used for the initial import of a module; pro-
cesses the module top level through scribble/decode, and otherwise provides all of
scheme/base. See §7 “Document Language”.

e scribble/doc: A language that combines scribble/reader with scrib-
ble/doclang. See §8 “Document Reader”.

e scribble/basic: A library of basic document operators—such as title, section,
and secref—for use with scribble/decode and a renderer. See §9 “Basic Docu-
ment Forms”.

19

e scribble/scheme: A library of functions for typesetting Scheme code. See §10
“Scheme”. These functions are not normally used directly, but instead through scrib-
ble/manual.

e scribble/manual: A library of functions for writing PLT Scheme documentation;
re-exports scribble/basic. Also, the scribble/manual-struct library provides
types for index-entry descriptions created by functions in scribble/manual. See
§11 “Manual Forms”.

e scribble/eval: A library of functions for evaluating code at document-build time,
especially for showing examples. See §12 “Evaluation and Examples”.

e scribble/bnf: A library of support functions for writing grammars. See §14 “BNF
Grammars”.

e scribble/xref: A library of support functions for using cross-reference informa-
tion, typically after a document is rendered (e.g., to search). See §16 “Cross-Reference
Utilities”.

e scribble/text: A language that uses scribble/reader preprocessing text files.
The scribble command-line utility generates output with a specified renderer. More specif-
ically, the executable installs a renderer, loads the modules specified on the command line,

extracts the doc export of each module (which must be an instance of part), and renders
each—potentially with links that span documents.

20

3 @-Reader

The Scribble @-reader is designed to be a convenient facility for using free-form text in
Scheme code, where “@” is chosen as one of the least-used characters in Scheme code.

You can use the reader via Scheme’s #reader form:
#reader scribble/reader @foo{This is free-form text!}

or use the at-exp meta-language as described in §3.3 “Adding @-expressions to a Lan-
guage”.

Note that the Scribble reader reads @-forms as S-expressions. This means that it is up to
you to give meanings for these expressions in the usual way: use Scheme functions, define
your functions, or require functions. For example, typing the above into mzscheme is likely
going to produce a “reference to undefined identifier” error, unless foo is defined. You can
use string-append instead, or you can define foo as a function (with variable arity).

A common use of the Scribble @-reader is when using Scribble as a documentation system
for producing manuals. In this case, the manual text is likely to start with

#lang scribble/doc

which installs the @ reader starting in “text mode,” wraps the file content afterward into a
Scheme module where many useful Scheme and documentation related functions are avail-
able, and parses the body into a document using scribble/decode. See §8 “Document
Reader” for more information.

Another way to use the reader is to use the use-at-readtable function to switch the
current readtable to a readtable that parses @-forms. You can do this in a single command
line:

mzscheme -ile scribble/reader "(use-at-readtable)"

3.1 Concrete Syntax
3.1.1 The Scribble Syntax at a Glance

Informally, the concrete syntax of @-forms is
@ (cmd) [(datum)* 1 { (text-body)* }

where all three parts after @ are optional, but at least one should be present. (Note that spaces
are not allowed between the three parts.) Roughly, a form matching the above grammar is
read as

21

({cmd) {datum)* (parsed-body)*)

where (parsed-body) is the translation of each (fext-body) in the input. Thus, the initial
(cmd) determines the Scheme code that the input is translated into. The common case is
when (cmd) is a Scheme identifier, which reads as a plain Scheme form, with datum argu-
ments and/or string arguments.

@foo{blah blah blah} readsas (foo "blah blah blah")
@foo{blah "blah" (‘blah’?)} readsas (foo "blah \"blah\" (‘blah’?)")
@foo[1 2]{3 4} readsas (foo 1 2 "3 4")

@foo[1 2 3 4] readsas (foo 1 2 3 4)

@foo[#:width 2]{blah blah} readsas (foo #:width 2 "blah blah")

@foo{blah blah readsas (foo "blah blah" "\n"
yada yada} "yada yada")
@foo{ reads as (foo
blah blah "blah blah" "\n"
yada yada "yada yada")
}

(Note that these examples show how an input syntax is read as Scheme syntax, not what it
evaluates to.)

As seen in the last example, multiple lines and the newlines that separate them are parsed
to multiple Scheme strings. More generally, a (text-body) is made of text, newlines, and
nested @-forms, where the syntax for @-forms is the same whether it’s in a (text-body)
context as in a Scheme context. A (fext-body) that isn’t an @-form is converted to a string
expression for its (parsed-body); newlines and following indentations are converted to "\n"
and all-space string expressions.

@foo{bar @baz{3} readsas (foo "bar " (baz "3") "\n"
blah} "blah")

@foo{@b{@u[3] @u{4}} readsas (foo (b (u 3) " " (u "4")) "\n"
blah} "blah")

@C{while (*(p++)) readsas (C "while (*(p++))" "\n" " "
*p = J\nl;} n*p = J\\n);ll)

The command part of an @-form is optional as well, which is read as a list, usually a function
application, but also useful when quoted with the usual Scheme quote:

22

©@{blah blah} readsas ("blah blah")

@{blah @[3]} readsas ("blah " (3))

>@{foo readsas ’("foo" "\n"
bar llbarll ll\nll
baz} "baz")

But we can also drop the datum and text parts, which leaves us with only the command —
which is read as is, not within a parenthesized form. This is not useful when reading Scheme
code, but it can be used inside a text block to escape a Scheme identifier. A vertical bar (|)
can be used to delimit the escaped identifier when needed.

@foo reads as foo

@{blah @foo blah} readsas ("blah " foo " blah")
@{blah @foo: blah} readsas ("blah " foo: " blah")
@{blah @|fool: blah} readsas ("blah " foo ": blah")

Actually, the command part can be any Scheme expression, which is particularly useful with
such escapes since they can be used with any expression.

@foo{(+ 1 2) => @(+ 1 2)!} readsas (foo "(+ 1 2) -> " (+ 1 2) "1")
@foo{A @"string" escapel} reads as (foo "A string escape")

Note that an escaped Scheme string is merged with the surrounding text as a special case.
This is useful if you want to use the special characters in your string (but note that escaping
braces is not necessary if they are balanced).

@foo{eli@"@"barzilay.org} reads as (foo "eli@barzilay.org")

@foo{A @"{" begins a block} readsas (foo "A { begins a block")

@C{while (x(p++)) { readsas (C "while Cx(p++)) {" "\n" " "
*p = J\nJ; u*p = ;\\n;;n "\1’1"
}} u}u)

In some cases a @-rich text can become cumbersome to quote. For this, the braces have an
alternative syntax — a block of text can begin with a “|{” and terminated accordingly with
a “}|”. Furthermore, any nested @ forms must begin with a “[@”.

@foo|{bar}@{baz}| readsas (foo "bar}@{baz")
@fool|{bar |@x{X} baz}| readsas (foo "bar " (x "X") " baz")
@foo|{bar |@x|{@}| baz}| readsas (foo "bar " (x "@") " baz")

In cases when even this is not convenient enough, punctuation characters can be added be-

tween the | and the braces and the @ in nested forms. (The punctuation is mirrored for
parentheses and <>s.) With this, the Scribble syntax can be used as a here-string replace-

23

ment.

@foo|-—-{bar}@|{baz}--| readsas (foo "bar}@|{baz")
@foo|<<{bar}@|{baz}>>| readsas (foo "bar}@|{baz")

The flip side of this is: how can an @ sign be used in Scheme code? This is almost never
an issue, because Scheme strings and characters are still read the same, and because @ is set
as a non-terminating reader macro so it can be used in Scheme identifiers as usual, except
when it is the first character of an identifier. In this case, you need to quote the identifier like
other non-standard characters — with a backslash or with vertical bars:

(define \@email "foo@bar.com") readsas (define @email "foo@bar.com")
(define |@atchar| #\@) reads as (define @atchar #\@)

Note that spaces are not allowed before a [or a {, or they will be part of the following text
(or Scheme code). (More on using braces in body texts below.)

@foo{bar @baz[2 3] {4 5}} readsas (foo "bar " (baz 2 3) " {4 5}")

Finally, remember that the Scribble is just an alternate for S-expressions — identifiers still
get their meaning, as in any Scheme code, through the lexical context in which they appear.
Specifically, when the above @-form appears in a Scheme expression context, the lexical
environment must provide bindings for foo as a procedure or a macro; it can be defined,
required, or bound locally (with let, for example).

> (let* ([formatter (lambda (fmt)
(lambda args (format fmt (apply string-append args))))]
[bf (formatter "*~ax")]
[it (formatter "/~a/")]
[ul (formatter "_~a_")]
[text string-append])

@text{@it{Note}: @bf{This is @ul{not} a pipel}.})
"/Note/: *This is _not_ a pipex."

When you first experiment with the Scribble syntax, it is often useful to use Scheme’s quote
to inspect how some concrete syntax is being read.

> ’@foo{bar}
(foo "bar")

3.1.2 The Command Part

Besides being a Scheme identifier, the (cmd) part of an @-form can have Scheme punctua-
tion prefixes, which will end up wrapping the whole expression.

@‘’,@foo{blah} readsas ‘’,@(foo "blah")

24

When writing Scheme code, this means that @¢’ ,0foo{blah} is exactly the same as
‘@’ ,0foo{blah} and ¢’,@0foo{blah}, but unlike the latter two, the first construct can
appear in body texts with the same meaning, whereas the other two would not work (see
below).

After the optional punctuation prefix, the (cmd) itself is not limited to identifiers; it can be
any Scheme expression.

@(lambda (x) x){blah} readsas ((lambda (x) x) "blah")
Q¢ (unquote foo){blah} readsas ‘(,foo "blah")

In addition, the command can be omitted altogether, which will omit it from the translation,
resulting in an S-expression that usually contains, say, just strings:

@{foo bar readsas ("foo bar" "\n"
baz} "baz")

@’{foo bar readsas ’("foo bar" "\n"
baz} "baz")

If the command part begins with a ; (with no newline between the @ and the ;), then the
construct is a comment. There are two comment forms, one for arbitrary-text and possibly
nested comments, and another one for line comments:

©;{ (any)* }
@; (anything-else-without-newline)*

In the first form, the commented body must still parse correctly; see the description of the
body syntax below. In the second form, all text from the @; to the end of the line and all
following spaces (or tabs) are part of the comment (similar to %, comments in TeX).

@foo{bar @; comment readsas (foo "bar bazblah")
baz@;
blah}

Tip: if you're editing in a Scheme-aware editor (like DrScheme or Emacs), it is useful to
comment out blocks like this:

0;{
B
so the editor does not treat the file as having unbalanced parenthesis.

If only the (cmd) part of an @-form is specified, then the result is the command part only,
without an extra set of parenthesis. This makes it suitable for Scheme escapes in body texts.
(More on this below, in the description of the body part.)

25

@foo{x Qy z} readsas (foo "x " y " z")
@foo{x @(* y 2) z} readsas (foo "x " (x y 2) " z")
@{@foo bar} reads as (foo " bar")

Finally, note that there are currently no special rules for using @ in the command itself, which
can lead to things like:

@@foo{bar}{baz} readsas ((foo "bar") "baz")

3.1.3 The Datum Part

The datum part can contains arbitrary Scheme expressions, which are simply stacked before
the body text arguments:

@foo[1 (* 2 3)]{bar} readsas (foo 1 (x 2 3) "bar")
@foo[@bar{...}]{blah} readsas (foo (bar "...") "blah")

The body part can still be omitted, which is essentially an alternative syntax for plain (non-
textual) S-expressions:

@foo[bar] reads as (foo bar)
@foo{bar @f[x] baz} readsas (foo "bar " (f x) " baz")

The datum part can be empty, which makes no difference, except when the body is omitted.
It is more common, however, to use an empty body for the same purpose.

@foo[]{bar} readsas (foo "bar")

@fool] reads as (foo)
@foo reads as foo
@foo{} reads as (foo)

The most common use of the datum part is for Scheme forms that expect keyword-value
arguments that precede the body of text arguments.

@foo[#:style ’bigl{bar} readsas (foo #:style ’big "bar")

3.1.4 The Body Part

The syntax of the body part is intended to be as convenient as possible for free text. It can
contain almost any text—the only characters with special meaning is @ for sub-@-forms,
and } for the end of the text. In addition, a { is allowed as part of the text, and it makes the
matching } be part of the text too—so balanced braces are valid text.

@foo{f{o}o} readsas (foo "f{o}o")
Ofoo{{{}}{}} readsas (foo "{{}}{}")

26

As described above, the text turns to a sequence of string arguments for the resulting form.
Spaces at the beginning and end of lines are discarded, and newlines turn to individual "\n"
strings (i.e., they are not merged with other body parts); see also the information about
newlines and indentation below. Spaces are not discarded if they appear after the open {
(before the closing }) when there is also text that follows (precedes) it; specifically, they are
preserved in a single-line body.

@foo{bar} reads as (foo "bar")
@foo{ bar } readsas (foo " bar ")
@foo[1]{ bar } readsas (foo 1 " bar ")

If @ appears in a body, then it is interpreted as Scheme code, which means that the @-reader
is applied recursively, and the resulting syntax appears as part of the S-expression, among
other string contents.

@foo{a @bar{b} c} readsas (foo "a " (bar "b") " c")

If the nested @ construct has only a command—no body or datum parts—it will not appear
in a subform. Given that the command part can be any Scheme expression, this makes @ a
general escape to arbitrary Scheme code.

@foo{a @bar c} readsas (foo "a " bar " c")
@foo{a @(bar 2) c} readsas (foo "a " (bar 2) " c")

This is particularly useful with strings, which can be used to include arbitrary text.
@foo{A @"}" marks the end} readsas (foo "A } marks the end")

Note that the escaped string is (intentionally) merged with the rest of the text. This works
for @ too:

@foo{The prefix: @"@".} readsas (foo "The prefix: @.")
@foo{@"@x{y}" --> (x "y")} readsas (foo "Gx{y} --> (x \"y\")")

Alternative Body Syntax

In addition to the above, there is an alternative syntax for the body, one that specifies a new
marker for its end: use |{ for the opening marker to have the text terminated by a }|.

@fool{...}I| readsas (foo "...")
@foo|{"}" follows "{"}| readsas (foo "\"}\" follows \"{\"")
@foo|{Nesting |{is}| ok}| readsas (foo "Nesting |[{is}| ok")

This applies to sub-@-forms too—the @ must be prefixed with a |:

@foo|{Maze readsas (foo "Maze" "\n"
| @bar{is} (bar "is") "\n"
Life!}| "Life!")

27

Ot |{In |@i|{subl|@"@"s}| too}| readsas (t "In " (i "sub@s") " too")

Note that the subform uses its own delimiters, {...} or |{...}|. This means that you
can copy and paste Scribble text with @-forms freely, just prefix the @ if the immediate
surrounding text has a prefix.

For even better control, you can add characters in the opening delimiter, between the | and
the {. Characters that are put there (non alphanumeric ASCII characters only, excluding {
and @) should also be used for sub-@-forms, and the end-of-body marker should have these
characters in reverse order with paren-like characters ((, [, <) mirrored.

@foo | <<<{@x{foo} |@{bar}|.}>>>| readsas (foo "@x{foo} |@{bar}|.")
@foo|!!'{X |!'!1@b{Y}...}!!] readsas (foo "X " (b "Y") "...™)

Finally, remember that you can use an expression escape with a Scheme string for confusing
situations. This works well when you only need to quote short pieces, and the above works
well when you have larger multi-line body texts.

Scheme Expression Escapes

In some cases, you may want to use a Scheme identifier (or a number or a boolean etc.) in a
position that touches the following text; in these situations you should surround the escaped
Scheme expression by a pair of | characters. The text inside the bars is parsed as a Scheme
expression.

@foo{foo@bar.} reads as (foo "foo" bar.)
@foo{foo@|bar|.} readsas (foo "foo" bar ".")
@foo{f00@3.} readsas (foo "foo" 3.0)
@foo{foo@|3] .3} readsas (foo "foo" 3 ".")

This form is a generic Scheme expression escape, there is no body text or datum part when
you use this form.

@foo{foo@| (f 1) |{bar}} readsas (foo "foo" (f 1) "{bar}")
@foo{foo@|bar| [1]1{baz}} readsas (foo "foo" bar "[1]{bazl}")

This works for string expressions too, but note that unlike the above, the string is (intention-
ally) not merged with the rest of the text:

@foo{x@"y"z} readsas (foo "xyz")
@foo{x@|"y"|z} readsas (foo "x" "y" "z")

Expression escapes also work with any number of expressions,

@foo{x@|1 (+ 2 3) 4|y} readsas (foo "x" 1 (+ 2 3) 4 "y")

28

@foo{x@| * readsas (foo "x" *
*ly} * Ilyll)

It seems that @| | has no purpose—but remember that these escapes are never merged with
the surrounding text, which can be useful when you want to control the sub expressions in
the form.

@foo{Alice@| |Bob@| readsas (foo "Alice" "Bob"
|Carol} "Carol")

Note that @|{. . .} | can be parsed as either an escape expression or as the Scheme command
part of a @-form. The latter is used in this case (since there is little point in Scheme code
that uses braces.

@|{blah}| readsas ("blah")

Comments

As noted above, there are two Kinds of Scribble comments: @;{. ..} is a (nestable) com-
ment for a whole body of text (following the same rules for @-forms), and @; ... is a
line-comment.

@foo{First line@;{there is still a readsas (foo "First line"
newline here;} "\n"
Second line} "Second line")

One useful property of line-comments is that they continue to the end of the line and all
following spaces (or tabs). Using this, you can get further control of the subforms.

@foo{A long Q; readsas (foo "A long single-string arg.")
single-Q;
string arg.}
Note how this is different from using @| | s in that strings around it are not merged.

Spaces, Newlines, and Indentation

The Scribble syntax treats spaces and newlines in a special way is meant to be sensible for
dealing with text. As mentioned above, spaces at the beginning and end of body lines are
discarded, except for spaces between a { and text, or between text and a .

@foo{bar} readsas (foo "bar")

@foo{ bar } readsas (foo " bar ")

@fooq{ bar readsas (foo " bar" "\n"
baz } "baz n)

29

A single newline that follows an open brace or precedes a closing brace is discarded, unless
there are only newlines in the body; other newlines are read as a "\n" string

@foo{bar
}

@fooq{
bar

}

@fooq{

bar

@fooq{
bar

baz

@fooq{

@fooq{

i

@fooq{ bar
baz }

reads as

reads as

reads as

reads as

reads as

reads as

reads as

(foo "bar")
(foo

"bar”)
(foo

n \nll

llbarll ||\nll)
(foo

llbarll n \nll

u\nu

Ilbazll)
(fOO "\1’1")
(fOO u\nn

ll\nll)

(fOO n baru n\nu
"baz ll)

In the parsed S-expression syntax, a single newline string is used for all newlines; you can
use eq? to identify this line. This can be used to identify newlines in the original (fext-body).

> (let ([nl (car @’{
»Hh

(for-each (lambda (x) (display (if (eq? x nl) "\n... " x)))

@‘{foo

@,0(list "bar" "\n" "baz")
blah}})

(newline))

foo

. bar
baz

. blah

30

Spaces at the beginning of body lines do not appear in the resulting S-expressions, but the
column of each line is noticed, and all-space indentation strings are added so the result has
the same indentation. A indentation string is added to each line according to its distance
from the leftmost syntax object (except for empty lines). (Note: if you try these examples
on a mzscheme REPL, you should be aware that the reader does not know about the “> ”
prompt.)

@foo{ reads as (foo
bar llbarll Il\nll
baz "haz" n\nn
blah "blah")
J;
@fooq reads as (foo
begin llbeginll ll\nll n n
X++; "X++; n Il\nll
end} "end")
@foo{ readsas (foo " "
a ilall n \nll 1] n
b Hbll n \nll
C} n C n)

If the first string came from the opening { line, it is not prepended with an indentation
(but it can affect the leftmost syntax object used for indentation). This makes sense when
formatting structured code as well as text (see the last example in the following block).

@foo{bar readsas (foo "bar" "\n" " "
'baz llbazll Il\nll
bbb} llbbbll)

@foo{ bar readsas (foo " bar" "\n" " "

baz llbazll Il\nll n n
bbb} llbbbll)

@foo{bar readsas (foo "bar" "\n"
baz llbazll Il\nll
bbb} llbbbll)

@fooq{ bar readsas (foo " bar" "\n"
baz "baz" n\nu
bbb} llbbbll)

@fooq{ bar readsas (foo " bar" "\n"
baz llbazll Il\nll n 1]

bbb} llbbbll)

31

@text{Some @b{bold readsas (text "Some " (b "bold" "\n"
text}, a_nd "text")", andll n\nn
more text.} "more text.")

Note that each @-form is parsed to an S-expression that has its own indentation. This means
that Scribble source can be indented like code, but if indentation matters then you may need
to apply indentation of the outer item to all lines of the inner one. For example, in

@coded{
begin
i=1, r =1
@bold{while i < n do
T k= i++
done}
end
1

a formatter will need to apply the 2-space indentation to the rendering of the bold body.

Note that to get a first-line text to be counted as a leftmost line, line and column accounting
should be on for the input port (use-at-readtable turns them on for the current input
port). Without this,

@foo{x1
x2
x3}

will not have 2-space indentations in the parsed S-expression if source accounting is not on,
but

@foo{x1
x2
x3}

will (due to the last line). Pay attention to this, as it can be a problem with Scheme code, for
example:

@code{(define (foo x)
(+x 1))}

For rare situations where spaces at the beginning (or end) of lines matter, you can begin (or

9999

end) a line with a .

@fooq{ readsas (foo
@|| bar @] | " bar " "\n"
Q|| baz} " baz")

32

3.2 Syntax Properties

The Scribble reader attaches properties to syntax objects. These properties might be useful
in some rare situations.

Forms that Scribble reads are marked with a >scribble property, and a value of a list of
three elements: the first is ’ form, the second is the number of items that were read from
the datum part, and the third is the number of items in the body part (strings, sub-forms,
and escapes). In both cases, a 0 means an empty datum/body part, and #f means that the
corresponding part was omitted. If the form has neither parts, the property is not attached
to the result. This property can be used to give different meanings to expressions from the
datum and the body parts, for example, implicitly quoted keywords:

(define-syntax (foo stx)
(let ([p (syntax-property stx ’scribble)])
(printf ">>> ~s\n" (syntax->datum stx))
(syntax-case stx (O
[CCx ...
(and (pair? p) (eq? (car p) ’form) (even? (cadr p)))
(let loop ([n (/ (cadr p) 2)]
fas O]
[xs (syntax->list #’(x ...))])
(if (zero? n)
(with-syntax ([attrs (reverse as)]
[(x ...) xs])
#’(list ’foo ‘attrs x ...))
(loop (subl n)
(cons (with-syntax ([key (car xs)]
[val (cadr xs)])
#’ (key ,val))
as)

(cddr xs))))1)))

> @fool[x 1 y (* 2 3)]1{blah}
>>> (foo x 1 y (* 2 3) "blah")
(foo ((x 1) (y 6)) "blah")

In addition, the Scribble parser uses syntax properties to mark syntax items that are not phys-
ically in the original source — indentation spaces and newlines. Both of these will have a
’scribble property; an indentation string of spaces will have ’indentation as the value
of the property, and a newline will have a ’ (newline S) value where S is the original new-
line string including spaces that precede and follow it (which includes the indentation for the
following item). This can be used to implement a verbatim environment: drop indentation
strings, and use the original source strings instead of the single-newline string. Here is an
example of this.

33

(define-syntax (verb stx)
(syntax-case stx ()
[(_ cmd item ...)
#¢(cmd
#,0(let loop ([items (syntax->list #’(item ...))])
(if (null? items)
> O
(let* ([fst (car items)]
[prop (syntax-property fst ’scribble)]
[rst (loop (cdr items))])
(cond [(eq? prop ’indentation) rst]
[(not (and (pair? prop)
(eq? (car prop) ’newline)))
(cons fst rst)]
[else (cons (datum->syntax-object
fst (cadr prop) fst)
rst)1)))))1))

> @verb[string-append]{
foo
bar

}

"foo\n bar"

3.3 Adding @-expressions to a Language

#lang at-exp

The at-exp language installs @-reader support in the readtable, and then chains to the
reader of another language that is specified immediate after at-exp.

For example, #lang at-exp scheme/base adds @-reader support to scheme/base, so
that

#lang at-exp scheme/base

(define (greet who) @string-append{Hello, @|whol|.})
(greet "friend")

reports "Hello, friend.".

3.4 Interface

(require scribble/reader)

34

The scribble/reader module provides direct Scribble reader functionality for advanced
needs.

(read [in]) — any
in : input-port? = (current-input-port)

(read-syntax [source-name in]) — (or/c syntax? eof-object?)
source-name : any/c = (object-name in)
in : input-port? = (current-input-port)

These procedures implement the Scribble reader. They do so by constructing a reader table
based on the current one, and using that in reading.

(read-inside [in]) — any
in : input-port? = (current-input-port)

(read-syntax-inside [source-name in]) — (or/c syntax? eof-object?)
source-name : any/c = (object-name in)
in : input-port? = (current-input-port)

These -inside variants parse as if starting inside a @{...}, and they return a (syntactic) list.
Useful for implementing languages that are textual by default (see "docreader.ss" for
example).

(make-at-readtable [#:readtable readtable
#:command-char command-char
#:start-inside? start-inside?
#:datum-readtable datum-readtable
#:syntax-post-processor syntax-post-proc])
— readtable?
readtable : readtable? = (current-readtable)
command-char : character? = #\0@
start-inside? : any/c = #f
datum-readtable : (or/c readtable? boolean?
(readtable? . -> . readtable?))
syntax-post-proc : (syntax? . -> . syntax?) = values

#t

Constructs an @-readtable. The keyword arguments can customize the resulting reader in
several ways:

e readtable — areadtable to base the @-readtable on.

e command-char — the character used for @-forms.

35

e datum-readtable — determines the readtable used for reading the datum part. A
#t values uses the @-readtable, otherwise it can be a readtable, or a readtable-to-
readtable function that will construct one from the @-readtable. The idea is that you
may want to have completely different uses for the datum part, for example, introduc-
ing a convenient key=val syntax for attributes.

e syntax-post-proc — function that is applied on each resulting syntax value after
it has been parsed (but before it is wrapped quoting punctuations). You can use this to
further control uses of @-forms, for example, making the command be the head of a
list:

(use-at-readtable
#:syntax-post-processor
(lambda (stx)
(syntax-case stx (O
[(cmd rest ...) #’(list ’cmd rest ...)]
[else (error "@ forms must have a body")])))

e start-inside? — if true, creates a readtable for use starting in text mode, instead
of S-expression mode.

(use-at-readtable ...) — void?

Passes all arguments to make-at-readtable, and installs the resulting readtable using
current-readtable. It also enables line counting for the current input-port via port-
count-lines!.

36

4 Structures And Processing

(require scribble/struct)

A document is represented as a part, as described in §4.1 “Parts”. This representation is in-
tended to independent of its eventual rendering, and it is intended to be immutable; rendering
extensions and specific data in a document can collude arbitrarily, however.

A document is processed in three passes. The first pass is the collect pass, which globally
collects information in the document, such as targets for hyperlinking. The second pass
is the resolve pass, which matches hyperlink references with targets and expands delayed
elements (where the expansion should not contribute new hyperlink targets). The final pass
is the render pass, which generates the resulting document. None of the passes mutate the
document, but instead collect information in side collect-info and resolve-info tables.

4.1 Parts

A part is an instance of part; among other things, it has a title content, an initial flow, and a
list of subsection parts. An unnumbered-part is the same as a part, but it isn’t numbered.
A versioned-part is add a version field to part. There’s no difference between a part and
a full document; a particular source module just as easily defines a subsection (incorporated
via include-section) as a document.

A flow is an instance of f£1low; it has a list of blocks.

A block is either a table, an itemization, blockquote, paragraph, or a delayed block.

A table is an instance of table; it has a list of list of flows with a particular style. In
Latex output, each table cell is typeset as a single line.

e A itemization is an instance of itemization; it has a list of flows.

A blockquote is an instance of blockquote; it has list of blocks that are indented
according to a specified style.

A paragraph is an instance of paragraph; it has a content, which is a list of elements:

— An element can be a string, one of a few symbols, an instance of element (possi-
bly 1ink-element, etc.), a part-relative element, a delayed element, or anything
else allowed by the current renderer.

* A string element is included in the result document verbatim, except for
space, and unless the element’s style is ’hspace. In a style other than
’hspace, consecutive spaces in the output may be collapsed togther or
replaced with a line break. In the style *hspace, all text is converted to
uncollapsable spaces that cannot be broken across lines.

37

*

A symbol element is either ’mdash, ’ndash, ’ldquo, ’lsquo, ’rsquo,
’rarr, or ’prime; it is rendered as the corresponding HTML entity (even
for Latex output).

* An instance of element has a list of elements plus a style. The style’s
interpretation depends on the rendrer, but it can be one of a few special
symbols (such as ’bold) that are recognized by all renderers.

* An instance of 1ink-element has a tag for the target of the link.

* An instance of target-element has a tag to be referenced by link-
elements. An instance of the subtype toc-target-element is treated
like a kind of section label, to be shown in the “on this page” table for
HTML output.

* An instance of index-element has a tag (as a target), a list of strings for
the keywords (for sorting and search), and a list of elements to appear in the
end-of-document index.

* An instance of collect-element has a procedure that is called in the col-
lect pass of document processing to record information used by later passes.

* A part-relative element is an instance of part-relative-element, which
has a procedure that is called in the collect pass of document processing to
obtain content (i.e., a list of elements). When the part-relative element’s pro-
cedure is called, collected information is not yet available, but information
about the enclosing parts is available.

* A delayed element is an instance of delayed-element, which has a pro-
cedure that is called in the resolve pass of document processing to obtain
content (i.e., a list of elements).

* An instance of aux-element is excluded in the text of a link when it ap-
pears in a referenced section name.

* An instance of hover-element adds text to show in render HTML when
the mouse hovers over the elements.

* An instance of script-element provides script code (usually Javascript)
to run in the browser to generate the element; the element’s normal content
is used when scripting is disabled in the browser, or for rendering to other
formats.

* An instance of render-element has a procedure that is called in the render
pass of document processing.

o A delayed block is an instance of delayed-block, which has a procedure that is
called in the resolve pass of document processing to obtain a block.

4.2 Tags

A tag is a list containing a symbol and either a string, a generated-tag instance, or an
arbitrary list. The symbol effectively identifies the type of the tag, such as ’part for a tag

38

that links to a part, or *def for a Scheme function definition. The symbol also effectively
determines the interpretation of the second half of the tag.

A part can have a rag prefix, which is effectively added onto the second item within each
tag whose first item is *part or ’tech. The prefix is added to a string value by creating
a list containing the prefix and string, and it is added to a list value using cons; a prefix is
not added to a generated-tag instance. The prefix is used for reference outside the part,
including the use of tags in the part’s tags field. Typically, a document’s main part has a tag
prefix that applies to the whole document; references to sections and defined terms within
the document from other documents must include the prefix, while references within the
same document omit the prefix. Part prefixes can be used within a document as well, to help
disambiguate references within the document.

Some procedures accept a “tag” that is just the string part of the full tag, where the symbol
part is supplied automatically. For example, section and secref both accept a string “tag”,
where ’part is implicit.

4.3 Collected and Resolved Information

The collect pass, resolve pass, and render pass processing steps all produce information that
is specific to a rendering mode. Concretely, the operations are all represented as methods on
a render}, object.

The result of the collect method is a collect-info instance. This result is provided
back as an argument to the resolve method, which produces a resolve-info value that
encapsulates the results from both iterations. The resolve-info value is provided back to
the resolve method for final rendering.

Optionally, before the resolve method is called, serialized information from other docu-
ments can be folded into the collect-info instance via the deserialize-info method.
Other methods provide serialized information out of the collected and resolved records.

During the collect pass, the procedure associated with a collect-element instance can
register information with collect-put!.

During the resolve pass, collected information for a part can be extracted with part-
collected-info, which includes a part’s number and its parent part (or #£f). More gen-
erally, the resolve-get method looks up information previously collected. This resolve-
time information is normally obtained by the procedure associated with a delayed block or
delayed element.

The resolve-get information accepts both a part and a resolve-info argument. The
part argument enables searching for information in each enclosing part before sibling parts.

39

4.4 Structure Reference

(struct part (tag-prefix
tags
title-content
style
to-collect
flow
parts))
tag-prefix : (or/c false/c string?)
tags : (listof tag?)
title-content : (or/c false/c 1list?)
style : any/c
to-collect : list?
flow : flow?
parts : (listof part?)

The tag-prefix field determines the optional tag prefix for the part.
The tags indicates a list of tags that each link to the section.
The title-content field holds the part’s title, if any.

The style field is normally either a symbol or a list. The currently recognized style symbols
(alone or in a list) or other values (must be in a list) are as follows:

e ’toc — sub-parts of the part are rendered on separate pages for multi-page HTML
mode.

e ’non-toc — initial sub-parts of the part are not rendered on separate pages for multi-
page HTML mode; this style applies only to the main part.

e ’index — the part represents an index.

e ’reveal — shows sub-parts when this part is displayed in a table-of-contents panel
in HTML output (which normally shows only the top-level sections).

e ’hidden — the part title is not shown in rendered output.

e ’quiet — in HTML output and most other output modes, hides entries for sub-parts
of this part in a table-of-contents or local-table-of-contents listing except
when those sub-parts are top-level entries in the listing.

e ’no-toc — as a style for the main part of a document, causes the HTML output to
not include a margin box for the main table of contents; the “on this page” box that
contains toc-element and toc-target-element links (and that only includes an
“on this page” label for multi-page documents) takes on the location and color of the
main table of contents, instead.

40

e ‘(css ,path) — generated HTML refers to (a copy of) path as CSS.
e ‘(tex ,path) — generated Latex includes (a copy of) path in the document header.

e ‘(body-id ,string) — generated HTML uses string as the id attribute of the
body tag; this style can be set separately for parts that start different HTML pages,
otherwise it is effectively inherited by sub-parts; the default is "scribble-plt-
scheme.org", but setup-plt installs "doc-plt-scheme.org" as the id for any
document that it builds.

The to-collect field contains content that is inspected during the collect pass, but ignored
in later passes (i.e., it doesn’t directly contribute to the output).
The flow field contains the part’s initial flow (before sub-parts).

The parts field contains sub-parts.

(struct (unnumbered-part part) ())

Although a section number is computed for an “unnumbered” section during the collect pass,
the number is not rendered.

(struct (versioned-part part) (version))
version : (or/c string? false/c)

Supplies a version number for this part and its sub-parts (except as overridden). A #f version
is the same as not supplying a specific version.

The version number that is not " " may be used when rendering a document. At a minimum,
anon-"" version is rendered when it is attached to a part representing the whole document.
The default version for a document is (version).

(struct flow (paragraphs))
paragraphs : (listof flow-element?)

A flow has a list of blocks.

(struct paragraph (content))
content : 1list?

A paragraph has a list of elements.

(struct (omitable-paragraph paragraph) ())

41

Equivalent to a paragraph, except that when a table cell contains a single omitable-
paragraph, then when rendering to HTML, no p tag wraps the cell content.

(struct (styled-paragraph paragraph) (style))
style : any/c

The style can be

e A string that corresponds to a CSS class for HTML output or a macro for Latex output
(see §18.1 “Adding a Style”).

e An instance of with-attributes, which combines a base style with a set of addi-
tional HTML attributes.

e The symbol ’div, which generates <div> HTML output instead of <p>. For Latex
output, a string for a macro name is extracted from the ’class mapping of a with-
attributes wrapper, if one is present.

(struct table (style flowss))
style : any/c
flowss : (listof (listof (or/c flow? (one-of/c ’cont))))

A table has, roughly, a list of list of flows. A cell in the table can span multiple columns by
using ’cont instead of a flow in the following columns (i.e., for all but the first in a set of
cells that contain a single flow).

When a table cell’s flow has multiple paragraphs, the rendered output starts each paragraph
on its own line, but generally doesn’t insert space between the paragraphs (as it would at the
top level). For Latex output, individual paragraphs are not automatically line-wrapped; to
get a line-wrapped paragraph, use an element with a string style and define a corresponding
Latex macro in terms of parbox. For Latex output of blocks in the flow that are block-
quotes, itemizations, or delayed-blocks, the block is wrapped with minipage using
linewidth as the width.

The style can be any of the following:
e A string that corresponds to a CSS class for HTML output or an environment for Latex
output (see §18.1 “Adding a Style”).
e ’boxed to render as a definition.

e ’centered to render centered horizontally.

e ’at-left to render left-aligned (HTML only).

42

e ’at-right to render right-aligned (HTML only).

e An association list with the following optional mappings:

— ’style to a string for a CSS class for HTML output.

— ’alignment to a list of symbols and #fs (one for each column); each symbol
can be ’left, ’right, or ’center.

— ’valignment to a list of symbols and #fs (one for each column); each symbol
can be ’top, ’baseline, ’center, or *bottom.

— ’row-styles to a list of association lists, one for each row in the table. Each of
these nested association lists can map ’alignment and ’valignment to a list
of symbols and #f's (one for each column cell) and/or ’style to a list of strings
and #£fs (one for each column cell) for a CSS class in HTML output. Row-
specific ’valignment and ’alignment associations override row-independent
associations.

e An instance of with-attributes, which combines a base style with a set of addi-
tional HTML attributes.

(struct itemization (flows))
flows : (listof flow?)

A itemization has a list of flows.

(struct (styled-itemization itemization) (style))
style : any/c

The style can be

e A string that corresponds to a CSS class for HTML output or a macro for Latex output
(see §18.1 “Adding a Style”).

e The symbol ’ordered, which generates <o1l> HTML output instead of <1i> or an
Latex enumeration instead of an itemization.

(struct blockquote (style paragraphs))
style : any/c
paragraphs : (listof flow-element?)

A blockquote has a style and a list of blocks. The style field is normally a string that
corresponds to a CSS class for HTML output or Latex environment for Latex output where
a leading \ in the style name is treated specially (see §18.1 “Adding a Style”).

43

(struct delayed-block (resolve))
resolve : (any/c part? resolve-info? . -> . flow-element?)

The resolve procedure is called during the resolve pass to obtain a normal block. The first
argument to resolve is the renderer.

(struct element (style content))
style : any/c
content : 1list?

The style field is normally either

a string, which corresponds to a CSS class for HTML output and a macro name for
Latex output (see §18.1 “Adding a Style”);

one of the symbols that all renderers recognize: ’tt, italic, *bold, ’sf, ’sub-
script, ’superscript, ’hspace, or ’newline (which renders a line break inde-
pendent of the content);

a list of the form (list ’color name) or (list ’color byte byte byte)
to set the text color, where name is one of "white", "black", "red", "green",
"blue", "cyan", "magenta', or "yellow", or three bytes specify RGB values;

a list of the form (list ’bg-color name) or (list ’bg-color byte byte
byte) to set the text background color (with the same constraints and meanings as
for ’color);

an instance of target-url to generate a hyperlink;
an instance of image-file to support an inline image; or

an instance of with-attributes, which combines a base style with a set of addi-
tional HTML attributes.

The content field is a list of elements.

(struct (target-element element) (tag))
tag : tag?

Declares the content as a hyperlink target for tag.

(struct (toc-target-element target-element) ())

Like target-element, the content is also a kind of section label to be shown in the “on this

44

page” table for HTML output.

(struct (toc-element element) (toc—content))
toc-content : list?

Similar to toc-target-element, but with specific content for the “on this page” table
specified in the toc-content field.

(struct (link-element element) (tag))
tag : tag?

Hyperlinks the content to tag.

(struct (index-element element) (tag plain-seq entry-seq desc))
tag : tag?
plain-seq : (and/c pair? (listof string?))
entry-seq : list?
desc : any/c

The plain-seq specifies the keys for sorting, where the first element is the main key, the
second is a sub-key, etc. For example, an “night” portion of an index might have sub-
entries for “night, things that go bump in” and “night, defender of the”. The former would
be represented by plain-seq ’ ("night" "things that go bump in"), and the latter
by ’("night" "defender of the"). Naturally, single-element plain-seq lists are the
common case, and at least one word is required, but there is no limit to the word-list length.
The strings in plain-seq must not contain a newline character.

The entry-seq list must have the same length as plain-seq. It provides the form of each
key to render in the final document.

The desc field provides additional information about the index entry as supplied by the entry
creator. For example, a reference to a procedure binding can be recognized when desc is
an instance of procedure-index-desc. See scribble/manual-struct for other typical
types of desc values.

See also index.

(struct (aux-element element) ())

Instances of this structure type are intended for use in titles, where the auxiliary part of the
title can be omitted in hyperlinks. See, for example, secref.

(struct (hover-element element) (text))
text : string?

45

The text is displayed in HTML output when the mouse hovers over the element’s content.

(struct (script-element element) (type script))
type : string?
script : (or/c path-string?
(listof string?))

For HTML rendering, when scripting is enabled in the browser, script is used for the
element instead of its normal content—it can be either path naming a script file to refer to,
or the contents of the script. The type string is normally "text/javascript".

(struct delayed-element (resolve sizer plain))
resolve : (any/c part? resolve-info? . -> . 1list?)
sizer : (-> any/c)
plain : (-> any/c)

The render procedure’s arguments are the same as for delayed-block, but the result is
content (i.e., a list of elements). Unlike delayed-block, the result of the render proce-
dure’s argument is remembered on the first call for re-use for a particular resolve pass.

The sizer field is a procedure that produces a substitute element for the delayed element
for the purposes of determining the delayed element’s width (see element-width).

The plain field is a procedure that produces a substitute element when needed before the
collect pass, such as when element->string is used before the collect pass.

(struct part-relative-element (resolve sizer plain))
resolve : (collect-info? . -> . 1list?)
sizer : (-> any/c)
plain : (-> any/c)

Similar to delayed-block, but the replacement content is obtained in the collect pass by
calling the function in the resolve field.

The resolve function can call collect-info-parents to obtain a list of parts that enclose
the element, starting with the nearest enclosing section. Functions like part-collected-
info and collected-info-number can extract information like the part number.

(struct (collect-element element) (collect))
collect : (collect-info . -> . any)

Like element, but the collect procedure is called during the collect pass. The collect
procedure normally calls collect-put!.

46

Unlike delayed-element or part-relative-element, the element remains intact (i.e.,
it is not replaced) by either the collect pass or resolve pass.

(struct (render-element element) (render))
render : (any/c part? resolve-info? . -> . any)

Like delayed-element, but the render procedure is called during the render pass.

If a render-element instance is serialized (such as when saving collected info), it is re-
duced to a element instance.

(struct with-attributes (style assoc))
style : any/c
assoc : (listof (cons/c symbol? string?))

Used for an element’s style to combine a base style with arbitrary HTML attributes. When
the style field is itself an instance of with-attributes, its content is automatically flat-
tened into the enclosing with-attributes when it is used (when, e.g., rendering an ele-
ment or a styled paragraph).

(struct collected-info (number parent info))
number : (listof (or/c false/c integer?))
parent : (or/c false/c part?)
info : any/c

Computed for each part by the collect pass.

(struct target-url (addr style))
addr : path-string?
style : any/c

Used as a style for an element. The style at this layer is a style for the hyperlink.

(struct image-file (path scale))
path : (or/c path-string?
(cons/c ’collects (listof bytes?)))
scale : real?

Used as a style for an element to inline an image. The path field can be a result of path-
>main-collects-relative.

For Latex output, a ".gif" suffix on path is replaced with a " .png" suffix (because ani-
mated GIFs can be useful in HTML output, but Latex does not support GIFs). For HTML

47

output, a ".pdf" suffix on path is replaced with a " . png" suffix (because PDF line draw-
ings can be more appropriate for Latex output, but HTML output needs bitmaps).

(block? v) — boolean?

v : any/c

Returns #t if v is a paragraph, table, itemization, blockquote, or delayed-block,
#f otherwise.

(tag? v) — boolean?
v : any/c

Returns #t if v is acceptable as a link tag, which is a list containing a symbol and either a
string, a generated-tag instance, or a list (of arbitrary values).

(struct generated-tag ())

A placeholder for a tag to be generated during the collect pass. Use tag-key to convert a
tag containing a generated-tag instance to one containing a string.

(content->string content) — string?
content : list?
(content->string content renderer p info) — string?
content : list?
renderer : any/c
p @ part?
info : resolve-info?

Converts a list of elements to a single string (essentially rendering the content as “plain
text”).

If p and info arguments are not supplied, then a pre-“collect” substitute is obtained for
delayed elements. Otherwise, the two arguments are used to force the delayed element (if it
has not been forced already).

(element->string element) — string?
element : any/c
(element->string element renderer p info) — string?
element : any/c
renderer : any/c
p @ part?
info : resolve-info?

48

Like content->string, but for a single element.

(element-width element) — exact-nonnegative-integer?
element : any/c

Returns the width in characters of the given element.

(block-width e) — exact-nonnegative-integer?
e : block?

Returns the width in characters of the given block.

(struct collect-info (ht

ext-ht
parts
tags
gen-prefix
relatives
parents))

ht : any/c

ext-ht : any/c

parts : any/c

tags : any/c

gen-prefix : any/c

relatives : any/c

parents : (listof part?)

Encapsulates information accumulated (or being accumulated) from the collect pass. The
fields are exposed, but not currently intended for external use, except that collect-info-
parents is intended for external use.

(struct resolve-info (ci delays undef))
ci : any/c
delays : any/c
undef : any/c

Encapsulates information accumulated (or being accumulated) from the resolve pass. The
fields are exposed, but not currently intended for external use.

(info-key? v) — boolean?
v : any/c

Returns #t if v is an info key: a list of at least two elements whose first element is a symbol.

49

The result is #f otherwise.

For a list that is an info tag, the interpretation of the second element of the list is effectively
determined by the leading symbol, which classifies the key. However, a #f value as the
second element has an extra meaning: collected information mapped by such info keys is
not propagated out of the part where it is collected; that is, the information is available within
the part and its sub-parts, but not in ancestor or sibling parts.

Note that every tag is an info key.

(collect-put! ci key val) — void?
ci : collect-info?
key : info-key?
val : any/c

Registers information in ci. This procedure should be called only during the collect pass.

(resolve-get p ri key) — any/c
p : (or/c part? false/c)
ri : resolve-info?
key : info-key?

Extract information during the resolve pass or render pass for p from ri, where the informa-
tion was previously registered during the collect pass. See also §4.3 “Collected and Resolved
Information”.

The result is #£ if the no value for the given key is found. Furthermore, the search failure
is recorded for potential consistency reporting, such as when setup-plt is used to build
documentation.

(resolve-get/ext? p ri key) — any/c boolean?
p : (or/c part? false/c)
ri : resolve-info?
key : info-key?

Like render-get, but returns a second value to indicate whether the resulting information
originated from an external source (i.e., a different document).

(resolve-search dep-key p ri key) — void?
dep-key : any/c
p : (or/c part? false/c)
ri : resolve-info?
key : info-key?

50

Like resolve-get, but a shared dep-key groups multiple searches as a single request for
the purposes of consistency reporting and dependency tracking. That is, a single success
for the same dep-key means that all of the failed attempts for the same dep-key have
been satisfied. However, for dependency checking, such as when using setup-plt to re-
build documentation, all attempts are recorded (in case external changes mean that an earlier
attempt would succeed next time).

(resolve-get/tentative p ri key) — any/c
p : (or/c part? false/c)
ri : resolve-info?
key : info-key?

Like resolve-search, but without dependency tracking. For multi-document settings
where dependencies are normally tracked, such as when using setup-plt to build docu-
mentation, this function is suitable for use only for information within a single document.

(resolve-get-keys p ri pred) — list?
p : (or/c part? false/c)
ri : resolve-info?
pred : (info-key? . -> . any/c)

Applies pred to each key mapped for p in ri, returning a list of all keys for which pred
returns a true value.

(part-collected-info p ri) — collected-info?
p @ part?
ri : resolve-info?

Returns the information collected for p as recorded within ri.

(tag-key t ri) — tag?
t . tag?
ri : resolve-info?

Converts a generated-tag value with t to a string.

51

5 Renderer

A renderer is an object that provides two main methods: collect and render. The first
method is called to collect global information about the document, including information
that spans multiple documents rendered together; the collection pass tends to be format-
independent, and it usually implemented completely by the base renderer. The latter method
generates the actual output, which is naturally specific to a particular format.

5.1 Base Renderer

(require scribble/base-render)

The scribble/base-render module provides render, which implements the core of a
renderer. This rendering class must be refined with a mixin from scribble/text-render,
scribble/html-render, or scribble/latex-render.

The mixin structure is meant to support document-specific extensions to the renderers. For
example, the scribble command-line tool might, in the future, extract rendering mixins
from a document module (in addition to the document proper).

See the "base-render.ss" source for more information about the methods of the renderer.
Documents built with higher layers, such as scribble/manual, generally do not call the
render object’s methods directly.

render’, : class?
superclass: object’

Represents a renderer.

(new rendery
[dest-dir dest-dir]
[[refer-to-existing-files refer-to-existing-files]
[root-path root-path]])
— (is-a?/c render?,)
dest-dir : path-string?
refer-to-existing-files : any/c = #f
root-path : (or/c path-string? false/c) = #f
Creates a renderer whose output will go to dest-dir. For example, dest-dir
could name the directory containing the output Latex file, the HTML file for a
single-file output, or the output sub-directory for multi-file HTML output.

If root-path is not #£, it is normally the same as dest-dir or a parent of
dest-dir. It causes cross-reference information to record destination files rel-

52

ative to root-path; when cross-reference information is serialized, it can be
deserialized via deserialize-info with a different root path (indicating that
the destination files have moved).

(send a-render collect srcs dests) — collect-info?
srcs : (listof part?)
dests : (listof path-string?)

Performs the collect pass. See render for information on the dests argument.

(send a-render resolve srcs dests ci) — resolve-info?
srcs : (listof part?)
dests : (listof path-string?)
ci : collect-info?

Performs the resolve pass. See render for information on the dests argument.

(send a-render render srcs dests ri) — void?
srcs : (listof part?)
dests : (listof path-string?)
ri : resolve-info?

Produces the final output.

The dests provide names of files for Latex or single-file HTML output, or
names of sub-directories for multi-file HTML output. If the dests are relative,
they’re relative to the current directory; normally, they should indicates a path
within the dest-dir supplied on initialization of the rendery object.

(send a-render serialize-info ri) — any/c
ri : resolve-info?

Serializes the collected info in ri.

(send a-render deserialize-info v
ci
[#:root root-path]) — void?
v : any/c
ci : collect-info?
root-path : (or/c path-string? false/c) = #f
Adds the deserialized form of v to ci.

If root-path is not #£, then file paths that are recorded in ci as relative to
an instantiation-supplied root-path are deserialized as relative instead to the
given root-path.

5.2 Text Renderer

53

(require scribble/text-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render?,

Specializes a render’, class for generating plain text.

5.3 HTML Renderer

(require scribble/html-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render/,

Specializes a render, class for generating HTML output.

(send a-render set-external-tag-path url) — void?

url : string?
Configures the renderer to redirect links to external via url, adding a tag query
element to the end of the URL that contains the Base64-encoded, printed,
serialized original tag (in the sense of 1ink-element) for the link.

render-multi-mixin : (class? . -> . class?)
argument extends/implements: render?,

Further specializes a rendering class produced by render-mixin for generating multiple
HTML files.

5.4 Latex Renderer

(require scribble/latex-render)

54

render-mixin : (class? . -> . class?)
argument extends/implements: render?

Specializes a render? class for generating Latex input.

55

6 Decoding Text

(require scribble/decode)

The scribble/decode library helps you write document content in a natural way—more
like plain text, except for @ escapes. Roughly, it processes a stream of strings to produces
instances of the scribble/struct datatypes (see §4 “Structures And Processing”).

At the flow level, decoding recognizes a blank line as a paragraph separator. At the
paragraph-content level, decoding makes just a few special text conversions:

e ——-: converted to ’mdash, which the HTML render outputs as an en-dash surrounded
by space (so don’t put spaces around --- in a document)

e ——: converted to ndash

e ¢ “: converted to ’ 1dquo, which is fancy open quotes: “

e ’’: converted to ’rdquo, which is fancy closing quotes: ”

e ’: converted to ’rsquo, which is a fancy apostrophe: ’

Some functions decode a sequence of pre-flow or pre-content arguments using
decode-flow or decode-content, respectively. For example, the bold function accepts
any number of pre-content arguments, so that in

@bold{‘ ‘apple’’}

the ¢ ‘apple’’ argument is decoded to use fancy quotes, and then it is bolded.

(decode 1st) — part?
lst : list?

Decodes a document, producing a part. In Ist, instances of splice are inlined into the
list. An instance of title-decl supplies the title for the part, plus tag, style and version
information. Instances of part-index-decl (that precede any sub-part) add index entries
that point to the section. Instances of part-collect-decl add elements to the part that
are used only during the collect pass. Instances of part-tag-decl add hyperlink tags to
the section title. Instances of part-start at level O trigger sub-part parsing. Instances
of section trigger are used as-is as subsections, and instances of paragraph and other
flow-element datatypes are used as-is in the enclosing flow.

(decode-part 1st tags title depth) — part?
1st : list?

56

tags : (listof string?)
title : (or/c false/c list?)
depth : excat-nonnegative-integer?

Like decode, but given a list of tag string for the part, a title (if #f, then a title-decl
instance is used if found), and a depth for part-starts to trigger sub-part parsing.

(decode-flow 1st) — flow?
1st : list?

Decodes a flow. A sequence of two or more newlines separated only by whitespace counts
is parsed as a paragraph separator. In Ist, instances of splice are inlined into the list.
Instances of paragraph and other flow-element datatypes are used as-is in the enclosing
flow.

(decode-paragraph lst) — paragraph?
lst : list?

Decodes a paragraph.

(decode-content 1st) — list?
1st : list?

Decodes a sequence of elements.

(decode-elements Ist) — list?
Ist : list?

An alias for decode-content.

(decode-string s) — list?
s : string?

Decodes a single string to produce a list of elements.

(whitespace? s) — boolean?
s : string?

Returns #t if s contains only whitespace, #f otherwise.

(struct title-decl (tag-prefix tags version style content))
tag-prefix : (or/c false/c string?)

57

tags : (listof string?)

version : (or/c string? false/c)
style : any/c

content : list?

See decode and decode-part. The tag-prefix and style fields are propagated to the
resulting part.

(struct part-start (depth tag-prefix tags style title))
depth : integer?
tag-prefix : (or/c false/c string?)
tags : (listof string?)
style : any/c
title : list?

Like title-decl, but for a sub-part. See decode and decode-part.

(struct part-index-decl (plain-seq entry-seq))
plain-seq : (listof string?)
entry-seq : list?

See decode. The two fields are as for index-element.

(struct part-collect-decl (element))
element : element?

See decode.

(struct part-tag-decl (tag))
tag : tag?

See decode.

(struct splice (run))
run : list?

See decode, decode-part, and decode-flow.

(clean-up-index-string str) — string?
str : string?

Trims leading and trailing whitespace, and converts non-empty sequences of whitespace to
a single space character.

58

7 Document Language

#lang scribble/doclang

The scribble/doclang language provides everything from scheme/base, except that it
replaces the #/module-begin form.

The scribble/doclang #/%module-begin essentially packages the body of the module
into a call to decode, binds the result to doc, and exports doc.

Any module-level form other than an expression (e.g., a require or define) remains at the
top level, and the doc binding is put at the end of the module. As usual, a module-top-level
begin slices into the module top level.

59

8 Document Reader

#lang scribble/doc
The scribble/doc language is the same as scribble/doclang, except that read-

syntax-inside is used to read the body of the module. In other words, the module body
starts in Scribble “text” mode instead of S-expression mode.

60

9 Basic Document Forms

(require scribble/basic)

The scribble/basic library provides functions and forms that can be used from code
written either in Scheme or with @ expressions.

For example, the title and italic functions might be called from Scheme as

(title #:tag "how-to"
"How to Design " (italic "Great") " Programs")

or with an @ expression as
Qtitle[#:tag "how-to"]{How to Design @italic{Great} Programs}

Although the procedures are mostly design to be used from @ mode, they are easier to
document in Scheme mode (partly because we have scribble/manual).

9.1 Document Structure

(title [#:tag tag
#:tag-prefix tag-prefix
#:style style
#:version vers]
pre-content ...+) — title-decl?
tag : (or/c false/c string?) = #f
tag-prefix : (or/c false/c string? module-path?) = #f
style : any/c = #f
vers : (or/c string? false/c) = #f
pre-content : any/c

Generates a title-decl to be picked up by decode or decode-part. The decoded pre-
content (i.e., parsed with decode-content) supplies the title content. If tag is #f, a
tag string is generated automatically from the content. The tag string is combined with the
symbol ’part to form the full tag.

A style of ’toc causes sub-sections to be generated as separate pages in multi-page HTML
output. A style of ’ index indicates an index section whose body is rendered in two columns
for Latex output.

The tag-prefix argument is propagated to the generated structure (see §4.2 “Tags”). If
tag-prefix is a module path, it is converted to a string using module-path-prefix-
>string.

61

The vers argument is propagated to the title-decl structure. Use "" as vers to suppress
version rendering in the output.

The section title is automatically indexed by decode-part. For the index key, leading
whitespace and a leading “A”, “An”, or “The” (followed by more whitespace) is removed.

(section [#:tag tag
#:tag-prefix tag-prefix
#:style style]
pre-content ...+) — part-start?
tag : (or/c false/c string?) = #f
tag-prefix : (or/c false/c string? module-path?) = #f
style : any/c = #f
pre-content : any/c

Like title, but generates a part-start of depth O to be by decode or decode-part.

(subsection [#:tag tag
#:tag-prefix tag-prefix
#:style style]
pre-content ...+) — part-start?
tag : (or/c false/c string?) = #f
tag-prefix : (or/c false/c string? module-path?) = #f
style : any/c = #f
pre-content : any/c

Like section, but generates a part-start of depth 1.

(subsubsection [#:tag tag
#:tag-prefix tag-prefix
#:style style]
pre-content ...+) — part-start?
tag : (or/c false/c string?) = #f
tag-prefix : (or/c false/c string? module-path?) = #f
style : any/c = #f
pre-content : any/c

Like section, but generates a part-start of depth 2.

(subsubsub*section [#:tag tag
#:tag-prefix tag-prefix
#:style style]
pre-content ...+) — paragraph?
tag : (or/c false/c string?) = #f

62

tag-prefix : (or/c false/c string? module-path?) = #f
style : any/c = #f
pre-content : any/c

Similar to section, but merely generates a paragraph that looks like an unnumbered section
heading (for when the nesting gets too deep to include in a table of contents).

(itemize itm ... [#:style style]) — itemization?
itm : (or/c whitespace? an-item?)
style : any/c = #f

Constructs an itemization or (when style is not #f) styled-itemization given a
sequence of items constructed by item. Whitespace strings among the itms are ignored.

(item pre-flow ...) — item?
pre-flow : any/c

Creates an item for use with itemize. The decoded pre-flow (i.e., parsed with decode-
flow) is the item content.

(item? v) — boolean?
v : any/c

Returns #t if v is an item produced by item, #f otherwise.

(include-section module-path)

Requires module-path and returns its doc export (without making any imports visible to
the enclosing context). Since this form expands to require, it must be used in a module or
top-level context.

(author auth ...) — block?
auth : any/c

Generates a styled-paragraph to show the author(s) of a document, where each author is
represented by an element. Normally, this function is used after title for the beginning of
a document. See also author+email.

(author+email author email) — element?
author : elem
email : string?

Combines an author name with an e-mail address, obscuring the e-mail address slightly to

63

avoid address-harvesting robots.

(module-path-prefix->string mod-path) — string?
mod-path : module-path?

Converts a module path to a string by resolving it to a path, and using path->main-
collects-relative.

9.2 Text Styles

(elem pre-content ... [#:style style]) — element?
pre-content : any/c
style : any/c = #f

Wraps the decoded pre-content as an element with style style.

(aux-elem pre-content ...) — element?
pre-content : any/c

Like elem, but creates an aux-element.

(italic pre-content ...) — element?
b
pre-content : any/c

Like elem, but with style *italic.

(bold pre-content ...) — element?
pre-content : any/c

Like elem, but with style *bold.

(tt pre-content ...) — element?
pre-content : any/c

Like elem, but with style ’tt.

(subscript pre-content ...) — element?
pre-content : any/c

Like elem, but with style ’subscript.

64

(superscript pre-content ...) — element?
pre-content : any/c

Like elem, but with style ’superscript.

(smaller pre-content ...) — element?
pre-content : any/c

Like elem, but with style "smaller". When uses of smaller are nested, text gets progres-
sively smaller.

(hspace n) — element?
n : exact-nonnegative-integer?

Produces an element containing n spaces and style *hspace.

(span-class style-name pre-content ...) — element?
style-name : string?
pre-content : any/c

Wraps the decoded pre-content as an element with style style-name.

9.3 Indexing

(index words pre-content ...) — index-element?
words : (or/c string? (listof string?))
pre-content : any/c

Creates an index element given a plain-text string—or list of strings for a hierarchy, such as
> ("strings" "plain") fora “plain” entry below a more general “strings” entry. As index
keys, the strings are “cleaned” using clean-up-index-strings. The strings (without
clean-up) also serve as the text to render in the index. The decoded pre-content is the text
to appear inline as the index target.

Use index when an index entry should point to a specific word or phrase within the typeset
document (i.e., the pre-content). Use section-index, instead, to create an index entry
that leads to a section, instead of a specific word or phrase within the section.

(index* words word-contents pre-content ...) — index-element?
words : (listof string?)

65

word-contents : (listof 1ist?)
pre-content : any/c

Like index, except that words must be a list, and the list of contents render in the index (in
parallel to words) is supplied as word-contents.

(as-index pre-content ...) — index-element?
pre-content : any/c

Like index, but the word to index is determined by applying content->string on the
decoded pre-content.

(section-index word ...) — part-index-decl?
word : string?

Creates a part-index-decl to be associated with the enclosing section by decode. The
words serve as both the keys and as the rendered forms of the keys within the index.

(index-section [#:tag tag]) — part?
tag : (or/c false/c string?) = "doc-index"

Produces a part that shows the index the enclosing document. The optional tag argument is
used as the index section’s tag.

9.4 Tables of Contents

(table-of-contents) — delayed-block?

Returns a delayed flow element that expands to a table of contents for the enclosing sec-
tion. For LaTeX output, however, the table of contents currently spans the entire enclosing
document.

(local-table-of-contents [#:style style]) — delayed-block?
style : any/c = #f

Returns a delayed flow element that may expand to a table of contents for the enclosing
section, depending on the output type. For multi-page HTML output, the flow element is a
table of contents; for Latex output, the flow element is empty.

The meaning of the style argument depends on the output type, but ’immediate-only
normally creates a table of contents that contains only immediate sub-sections of the enclos-
ing section. See also the *quiet style of part, which normally suppresses sub-part entries

66

in the table of contents.

67

10 Scheme

(require scribble/scheme)

The scribble/scheme library provides utilities for typesetting Scheme code. The scrib-
ble/manual forms provide a higher-level interface.

(define-code id typeset-expr)

(define-code id typeset-expr uncode-id)

(define-code id typeset-expr uncode-id d->s-expr)

(define-code id typeset-expr uncode-id d->s-expr stx-prop-expr)

Binds id to a form similar to scheme or schemeblock for typesetting code. The form gen-
erated by define-code handles source-location information, escapes via unquote, preser-
vation of binding and property information, and element transformers.

The supplied typeset-expr expression should produce a procedure that performs the ac-
tual typesetting. This expression is normally to-element or to-paragraph. The argument
supplied to typeset-expr is normally a syntax object, but more generally it is the result of
applying d->s-expr.

The optional uncode-id specifies the escape from literal code to be recognized by id. The
default is unsyntax.

The optional d->s-expr should produce a procedure that accepts three arguments suitable
for datum->syntax: a syntax object or #f, an arbitrary value, and a vector for a source
location. The result should record as much or as little of the argument information as needed
by typeset-expr to typeset the code. Normally, d->s-expr is datum->syntax.

The stx-prop-expr should produce a procedure for recording a ’ paren-shape property
when the source expression uses with id has such a property. The default is syntax-
property.

(to-paragraph v) — block?
v : any/c

Typesets an S-expression that is represented by a syntax object, where source-location infor-
mation in the syntax object controls the generated layout.

Identifiers that have for-label bindings are typeset and hyperlinked based on defi-
nitions declared elsewhere (via defproc, defform, etc.). The identifiers code:line,
code:comment, and code:blank are handled as in schemeblock, as are identifiers that
start with _.

In addition, the given v can contain var-id, shaped-parens, just-context, or

68

literal-syntax structures to be typeset specially (see each structure type for details),
or it can contain element structures that are used directly in the output.

((to-paragraph/prefix prefixl
prefix
suffix)
V) — block?
prefixl : any/c
prefix : any/c
suffix : any/c
v : any/c

Like to-paragraph, but prefix1 is prefixed onto the first line, prefix is prefix to any
subsequent line, and suffix is added to the end. The prefixi, prefix, and suffix
arguments are used as elements, except that if suffix is a list of elements, it is added to the
end on its own line.

(to-element v) — element?
v : any/c

Like to-paragraph, except that source-location information is mostly ignored, since the
result is meant to be inlined into a paragraph.

(to-element/no-color v) — element?
v : any/c

Like to-element, but for-syntax bindings are ignored, and the generated text is uncol-
ored. This variant is typically used to typeset results.

(struct var-id (sym))
sym : (or/c symbol? identifier?)

When to-paragraph and variants encounter a var—id structure, it is typeset as sym in the
variable font, like schemevarfont—unless the var-id appears under quote or quasiquote,
in which case sym is typeset as a symbol.

(struct shaped-parens (val shape))
val : any/c
shape : char?

When to-paragraph and variants encounter a shaped-parens structure, it is typeset like
a syntax object that has a ’paren-shape property with value shape.

69

(struct just-context (val context))
val : any/c
context : syntax?

When to-paragraph and variants encounter a just-context structure, it is typeset using
the source-location information of val just the lexical context of ctx.

(struct literal-syntax (stx))
stx : any/c

When to-paragraph and variants encounter a 1iteral-syntax structure, it is typeset as
the string form of stx. This can be used to typeset a syntax-object value in the way that the
default printer would represent the value.

(element-id-transformer? v) — boolean?
v : any/c

Provided for-syntax; returns #t if v is an element transformer created by make-element-
id-transformer, #f otherwise.

(make-element-id-transformer proc) — element-id-transformer?
proc : (syntax? . -> . syntax?)

Provided for-syntax; creates an element transformer. When an identifier has a trans-
former binding to an element transformer, then forms generated by define-code (including
scheme and schemeblock) typeset the identifier by applying the proc to the identifier. The
result must be an expression whose value, typically an element, is passed on to functions
like to-paragraph .

(variable-id? v) — boolean?
v : any/c

Provided for-syntax; returns #t if v is an element transformer created by make-
variable-id, #f otherwise.

(make-variable-id sym) — variable-id?
sym : (or/c symbol? identifier?)

Provided for-syntax; like element-id-transformer for a transformer that produces
sym typeset as a variable (like schemevarfont)—unless it appears under quote or
quasiquote, in which case sym is typeset as a symbol.

70

11 Manual Forms

(require scribble/manual)

The scribble/manual library provides all of scribble/basic, plus additional functions
that are relatively specific to writing PLT Scheme documentation.

11.1 Typesetting Code

(schemeblock datum ...)

Typesets the datum sequence as a table of Scheme code inset by two spaces. The source
locations of the datums determine the generated layout. For example,

(schemeblock
(define (loop x)
(loop (mot x))))

produces the output

(define (loop x)
(loop (mot x)))

with the (loop (not x)) indented under define, because that’s the way it is idented the
use of schemeblock.

Furthermore, define is typeset as a keyword (bold and black) and as a hyperlink to de-
fine’s definition in the reference manual, because this document was built using a for-label
binding of define (in the source) that matches a definition in the reference manual. Simi-
larly, not is a hyperlink to the its definition in the reference manual.

Use unsyntax to escape back to an expression that produces an element. For example,

(schemeblock
(+ 1 #,(elem (scheme x) (subscript "2"))))

produces
(+ 1 xp)

The unsyntax form is regonized via free-identifier="?, so if you want to typeset code
that includes unsyntax, you can simply hide the usual binding:

(schemeblock
(let ([unsyntax #f])

71

(schemeblock
#(+ 1 #,x))))

Or use SCHEMEBLOCK, whose escape form is UNSYNTAX instead of unsyntax.

A few other escapes are recognized symbolically:

e (code:line datum ...) typesets as the sequence of datums (i.e., without the
code:line wrapper).

e (code:comment datum) typesets like datum, but colored as a comment and pre-
fixed with a semi-colon. A typical datum escapes from Scheme-typesetting mode
using unsyntax and produces a paragraph using t:

(code:comment #, @t{this is a comment})
e code:blank typesets as a blank space.

e _id typesets as id, but colored as a variable (like schemevarfont); this escape ap-
plies only if _id has no for-label binding and is not specifically colored as a subform
non-terminal via defform, a variable via defproc, etc.

See also scribble/comment-reader.

(SCHEMEBLOCK datum ...)

Like schemeblock, but with the expression escape UNSYNTAX instead of unsyntax.

(schemeblockO datum ...)

Like schemeblock, but without insetting the code.

(SCHEMEBLOCKO datum ...)

Like SCHEMEBLOCK, but without insetting the code.

(schemeinput datum ...)

Like schemeblock, but the datum are typeset after a prompt representing a REPL.

(schememod lang datum ...)

Like schemeblock, but the datum are typeset inside a #1ang-form module whose language

72

is 1ang. The source location of 1ang (relative to the body datums) determines the relative
positioning of the #lang line in the typeset output.

(scheme datum ...)

Like schemeblock, but typeset on a single line and wrapped with its enclosing paragraph,
independent of the formatting of datum.

(SCHEME datum ...)

Like scheme, but with the UNSYNTAX escape like schemeblock.

(schemeresult datum ...)

Like scheme, but typeset as a REPL value (i.e., a single color with no hyperlinks).

(schemeid datum ...)

Like scheme, but typeset as an unbound identifier (i.e., no coloring or hyperlinks).

(schememodname datum)
(schememodname (unsyntax expr))

Like scheme, but typeset as a module path. If datum is an identifier or expr produces a
symbol, then it is hyperlinked to the module path’s definition as created by defmodule.

(litchar str) — element?
str . string?

Typesets str as a representation of literal text. Use this when you have to talk about the
individual characters in a stream of text, as as when documenting a reader extension.

(verbatim [#:indent indent] str ...) — flow-element?
indent : integer? = 0O
str . string?

Typesets str as a table/paragraph in typewriter font with the linebreaks specified by newline
characters in str. “Here strings” are often useful with verbatim.

(schemefont pre-content ...) — element?
p
pre-content : any/c

73

Typesets decoded pre-content as uncolored, unhyperlinked Scheme. This procedure is
useful for typesetting things like #1ang, which are not readable by themselves.

(schemevalfont pre-content ...) — element?
pre-content : any/c

Like schemefont, but colored as a value.

(schemeresultfont pre-content ...) — element?
pre-content : any/c

Like schemefont, but colored as a REPL result.

(schemeidfont pre-content ...) — element?
pre-content : any/c

Like schemefont, but colored as an identifier.

(schemevarfont pre-content ...) — element?
p
pre-content : any/c

Like schemefont, but colored as a variable (i.e., an argument or sub-form in a procedure
being documented).

(schemekeywordfont pre-content ...) — element?
y p
pre-content : any/c

Like schemefont, but colored as a syntactic form name.

(schemeparenfont pre-content ...) — element?
P p
pre-content : any/c

Like schemefont, but colored like parentheses.

(schememetafont pre-content ...) — element?
pre-content : any/c

Like schemefont, but colored as meta-syntax, such as backquote or unquote.

(schemeerror pre-content ...) — element?
pre-content : any/c

74

Like schemefont, but colored as error-message text.

(procedure pre-content ...) — element?
pre-content : any/c

Typesets decoded pre-content as a procedure name in a REPL result (e.g., in typewriter
font with a #<procedure: prefix and > suffix.).

(var datum)

Typesets datum as an identifier that is an argument or sub-form in a procedure being docu-
mented. Normally, the defproc and defform arrange for scheme to format such identifiers
automatically in the description of the procedure, but use var if that cannot work for some
reason.

(svar datum)

Like var, but for subform non-terminals in a form definition.

11.1.1 Typesetting Comments

#reader scribble/comment-reader

As a reader module, scribble/comment-reader reads a single S-expression that con-
tains ;-based comment lines, and it wraps the comments with code : comment for use with
forms like schemeblock. More precisely, scribble/comment-reader extends the current
reader to adjust the parsing of ;.

For example, within a Scribble document that imports scribble/manual,

@#reader scribble/comment-reader
(schemeblock
;; This is not a pipe
(make-pipe)

)

generates

; This is not a pipe
(make-pipe)

The initial @ is needed above to shift into S-expression mode, so that #reader is recognized
as a reader declaration instead of literal text. Also, the example uses (schemeblock)
instead of @schemeblock[. . ..] because the @-reader would drop comments within the

75

schemeblock before giving scribble/comment-reader a chance to convert them.

11.2 Documenting Modules

(defmodule maybe-req id maybe-sources pre-flow ...)

maybe-req

#:require-form expr

maybe-sources =
| #:use-sources (mod-path ...)

Produces a sequence of flow elements (encaptured in a splice) to start the documentation
for a module that can be required using the path id. The decoded pre-flows introduce
the module, but need not include all of the module content.

Besides generating text, this form expands to a use of declare-exporting with id; the
#:use-sources clause, if provided, is propagated to declare-exporting. Consequently,
defmodule should be used at most once in a section, though it can be shadowed with def-
modules in sub-sections.

If a #:require-form clause is provided, the given expression produces an element to use
instead of (scheme require) for the declaration of the module. This is useful to suggest
a different way of accessing the module instead of through require.

Hyperlinks created by schememodname are associated with the enclosing section, rather than
the local id text.

(defmodulelang id maybe-sources pre-flow ...)

Like defmodule, but documents id as a module path suitable for use by either require or
#lang.

(defmodulereader id maybe-sources pre-flow ...)

Like defmodule, but documents id as a module path suitable for use with #reader.

(defmodule*x maybe-req (id ...+) maybe-sources pre-flow ...)
(defmodulelang* (id ...+) maybe-sources pre-flow ...)
(defmodulereader* (id ...+) maybe-sources pre-flow ...)

Like defmodule, etc., but introduces multiple module paths instead of just one.

76

(defmodule*/no-declare maybe-req (id ...) pre-flow ...)
(defmodulelang*/no-declare (id ...) pre-flow ...)
(defmodulereader*/no-declare (id ...) pre-flow ...)

Like defmodulex, etc., but without expanding to declare-exporting. Use this form
when you want to provide a more specific list of modules (e.g., to name both a specific mod-
ule and one that combines several modules) via your own declare-exporting declaration.

(declare-exporting mod-path ... maybe-sources)

maybe-sources =
| #:use-sources (mod-path ...)

Associates the mod-paths to all bindings defined within the enclosing section, except as
overridden by other declare-exporting declarations in nested sub-sections. The list of
mod-paths is shown, for example, when the user hovers the mouse over one of the bindings
defined within the section.

More significantly, the first mod-path plus the #:use-sources mod-paths determine the
binding that is documented by each defform, defproc, or similar form within the section
that contains the declare-exporting declaration:

e Ifno #:use-sources clause is supplied, then the documentation applies to the given
name as exported by the first mod-path.

e If#:use-sources mod-paths are supplied, then they are tried in order. The first one
to provide an export with the same symbolic name and free-label-identifier="7
to the given name is used as the documented binding. This binding is assumed to be the
same as the identifier as exported by the first mod-path in the declare-exporting
declaration.

The initial mod-paths sequence can be empty if mod-paths are given with #:use-
sources. In that case, the rendered documentation never reports an exporting module for
identifiers that are documented within the section, but the mod-paths in #:use-sources
provide a binding context for connecting (via hyperlinks) definitions and uses of identifiers.

The declare-exporting form should be used no more than once per section, since the
declaration applies to the entire section, although overriding declare-exporting forms
can appear in sub-sections.

11.3 Documenting Forms, Functions, Structure Types, and Values

71

(defproc prototype
result-contract-expr—-datum
pre-flow ...)

prototype = (id arg-spec ...)
| (prototype arg-spec ...)
arg-spec = (arg-id contract-expr-datum)
| (arg-id contract-expr-datum default-expr)
| (keyword arg-id contract-expr-datum)
| (keyword arg-id contract-expr-datum default-expr)
| ellipses
| ellipses+
ellipses = ...
ellipses+ = ...+

Produces a sequence of flow elements (encapsulated in a splice) to document a procedure
named id. Nesting prototypes corresponds to a curried function, as in define. The id
is indexed, and it also registered so that scheme-typeset uses of the identifier (with the same
for-label binding) are hyperlinked to this documentation.

A defmodule or declare-exporting form (or one of the variants) in an enclosing section
determines the id binding that is being defined. The id should also have a for-label binding
(as introduced by (require (for-label))) that matches the definition binding;
otherwise, the defined id will not typeset correctly within the definition.

Each arg-spec must have one of the following forms:

(arg-id contract-expr-datum)

An argument whose contract is specified by contract-expr-datum which is
typeset via schemeblockO.

(arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value. All arguments with a default
value must be grouped together, but they can be in the middle of required argu-
ments.

(keyword arg-id contract-expr-datum)

Like the first case, but for a keyword-based argument.

78

(keyword arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value.

Any number of the preceding argument. This form is normally used at the
end, but keyword-based arguments can sensibly appear afterward. See also the
documentation for append for a use of . .. before the last argument.

.+

One or more of the preceding argument (normally at the end, like . . .).
The result-contract-expr-datum is typeset via schemeblockO, and it represents a
contract on the procedure’s result.

The decoded pre-flow documents the procedure. In this description, references to arg-
ids using scheme, schemeblock, etc. are typeset as procedure arguments.

The typesetting of all information before the pre-flows ignores the source layout, except
that the local formatting is preserved for contracts and default-values expressions.

(defproc* ([prototype
result-contract-expr-datum] ...)
pre-flow ...)

Like defproc, but for multiple cases with the same id.

When an id has multiple calling cases, they must be defined with a single defproc*, so that
a single definition point exists for the id. However, multiple distinct ids can also be defined
by a single defprocx, for the case that it’s best to document a related group of procedures
at once.

(defform maybe-id maybe-literals form-datum maybe-contracts
pre-flow ...)

79

maybe-id
#:1d id

maybe-literals
#:literals (literal-id ...)

maybe-contracts =
| #:contracts ([subform-datum contract-expr-datum]

)

Produces a sequence of flow elements (encapsulated in a splice) to document a syntatic
form named by id whose syntax is described by form-datum. If no #:1id is used to specify
id, then form-datum must have the form (id . datum).

The id is indexed, and it is also registered so that scheme-typeset uses of the identifier (with
the same for-label binding) are hyperlinked to this documentation.

The defmodule or declare-exporting requirements, as well as the binding requirements
for id, are the same as for defproc.

The decoded pre-flow documents the form. In this description, a reference to any identi-
fier in form-datum via scheme, schemeblock, etc. is typeset as a sub-form non-terminal.
If #:1iterals clause is provided, however, instances of the 1iteral-ids are typeset nor-
mally (i.e., as determined by the enclosing context).

If a #:contracts clause is provided, each subform-datum (typically an identifier that
serves as a meta-variable in form-datum) is shown as producing a value that must satisfy
the contract described by contract-expr-datum.

The typesetting of form-datum, subform-datum, and contract-expr-datum preserves
the source layout, like schemeblock.

(defform* maybe-id maybe-literals [form-datum ...+] maybe-contracts
pre-flow ...)

Like defform, but for multiple forms using the same id.

(defform/subs maybe-id maybe-literals form-datum
([nonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)

Like defform, but including an auxiliary grammar of non-terminals shown with the id
form. Each nonterm-id is specified as being any of the corresponding clause-datums,
where the formatting of each clause-datum is preserved.

80

(defform*/subs maybe-id maybe-literals [form-datum ...]
maybe-contracts
pre-flow ...)

Like defform/subs, but for multiple forms for id.

(defform/none maybe-literal form-datum maybe-contracts
pre-flow ...)

Like defform, but without registering a definition.

(defidform id pre-flow ...)

Like defform, but with a plain id as the form.

(specform maybe-literals datum maybe-contracts
pre-flow ...)

Like defform, but without indexing or registering a definition, and with indenting on the
left for both the specification and the pre-flows.

(specsubform maybe-literals datum maybe-contracts
pre-flow ...)

Similar to defform, but without any specific identifier being defined, and the table and flow
are typeset indented. This form is intended for use when refining the syntax of a non-terminal
used in a defform or other specsubform. For example, it is used in the documentation for
defproc in the itemization of possible shapes for arg-spec.

The pre-flows list is parsed as a flow that documents the procedure. In this description, a
reference to any identifier in datum is typeset as a sub-form non-terminal.

(specsubform/subs maybe-literals datum
([nonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)

Like specsubform, but with a grammar like defform/subs.

(specspecsubform maybe-literals datum maybe-contracts
pre-flow ...)

81

Like specsubform, but indented an extra level. Since using specsubform within the body
of specsubform already nests indentation, specspecsubform is for extra indentation with-
out nesting a description.

(specspecsubform/subs maybe-literals datum
([nonterm-id clause-datum ...+] ...)
maybe-contracts

pre-flow ...)

Like specspecsubform, but with a grammar like defform/subs.

(defparam id arg-id contract-expr-datum pre-flow ...)

Like defproc, but for a parameter. The contract-expr-datum serves as both the result
contract on the parameter and the contract on values supplied for the parameter. The arg-id
refers to the parameter argument in the latter case.

(defboolparam id arg-id pre-flow ...)

Like defparam, but the contract on a parameter argument is any/c, and the contract on the
parameter result is boolean?.

(defthing id contract-expr-datum pre-flow ...)

Like defproc, but for a non-procedure binding.

(defstruct struct-name ([field-name contract-expr-datum] ...)
flag-keywords
pre-flow ...)

id
| (id super-id)

struct-name

flag-keywords
mutable
inspector #f

#:
#:
#:mutable #:inspector #f

Similar to defform or defproc, but for a structure definition.

(deftogether [def-expr ...] pre-flow ...)

82

Combines the definitions created by the def-exprs into a single definition box. Each def-
expr should produce a definition point via defproc, defform, etc. Each def-expr should
have an empty pre-flow; the decoded pre-flow sequence for the deftogether form
documents the collected bindings.

(schemegrammar maybe-literals id clause-datum ...+)

maybe-literals =
| #:1literals (literal-id ...)

Creates a table to define the grammar of id. Each identifier mentioned in a clause-datum
is typeset as a non-terminal, except for the identifiers listed as 1iteral-ids, which are
typeset as with scheme.

(schemegrammar* maybe-literals [id clause-datum ...+] ...)

Like schemegrammar, but for typesetting multiple productions at once, aligned around the
=and |.

(defidentifier id
[#:form? form?
#:index? index?
#:show-1ibs? show-1ibs?]) — element?
id : identifier?
form? : any/c = #f
index? : any/c = #t
show-1ibs? : any/c = #t

Typesets id as a Scheme identifier, and also establishes the identifier as the definition of a
binding in the same way as defproc, defform, etc. As always, the library that provides
the identifier must be declared via defmodule or declare-exporting for an enclosing
section.

If form? is a true value, then the identifier is documented as a syntactic form, so that uses of
the identifier (normally including id itself) are typeset as a syntactic form.

If index? is a true value, then the identifier is registered in the index.

If show-1ibs? is a true value, then the identifier’s defining module may be exposed in the
typeset form (e.g., when viewing HTML and the mouse hovers over the identifier).

11.4 Documenting Classes and Interfaces

83

(defclass id super (intf-id ...) pre-flow ...)

super = super-id
| (mixin-id super)

Creates documentation for a class id that is a subclass of super and implements each
interface intf-id. Each identifier in super (except object?) and intf-id must be doc-
umented somewhere via defclass or definterface.

The decoding of the pre-flow sequence should start with general documentation about the
class, followed by constructor definition (see defconstructor), and then field and method
definitions (see defmethod). In rendered form, the constructor and method specification are
indented to visually group them under the class definition.

(defclass/title id super (intf-id ...) pre-flow ...)

Like defclass, also includes a title declaration with the style hidden. In addition, the
constructor and methods are not left-indented.

This form is normally used to create a section to be rendered on its own HTML. The *hid-
den style is used because the definition box serves as a title.

(definterface id (intf-id ...) pre-flow ...)

Like defclass, but for an interfaces. Naturally, pre-flow should not generate a construc-
tor declaration.

(definterface/title id (intf-id ...) pre-flow ...)

Like definterface, but for single-page rendering as in defclass/title.

(defmixin id (domain-id ...) (range-id ...) pre-flow ...)

Like defclass, but for a mixin. Any number of domain-id classes and interfaces are
specified for the mixin’s input requires, and any number of result classes and (more likely)
interfaces are specified for the range-id. The domain-ids supply inherited methods.

(defmixin/title id (domain-id ...) (range-id ...) pre-flow ...)

Like defmixin, but for single-page rendering as in defclass/title.

(defconstructor (arg-spec ...) pre-flow ...)

84

arg-spec = (arg-id contract-expr-datum)
| (arg-id contract-expr-datum default-expr)

Like defproc, but for a constructor declaration in the body of defclass, so no return
contract is specified. Also, the new-style keyword for each arg-spec is implicit from the
arg-id.

(defconstructor/make (arg-spec ...) pre-flow ...)

Like defconstructor, but specifying by-position initialization arguments (for use with
make-object) instead of by-name arguments (for use with new).

(defconstructor*/make [(arg-spec ...) ...] pre-flow ...)

Like defconstructor/make, but with multiple constructor patterns analogous defprocx.

(defconstructor/auto-super [(arg-spec ...) ...] pre-flow ...)

Like defconstructor, but the constructor is annotated to indicate that additional initializa-
tion arguments are accepted and propagated to the superclass.

(defmethod maybe-mode (id arg-spec ...)
result-contract-expr-datum
pre-flow ...)

maybe-mode
:mode override

:mode override-final
:mode public-final
:mode augment

:mode augment-final
:mode pubment

:mode extend

:mode extend-final

H OH OH H H H HH

Like defproc, but for a method within a defclass or definterface body.

The maybe-mode specifies whether the method overrides a method from a superclass, and so
on. (For these purposes, use #:mode override when refining a method of an implemented
interface.) The extend mode is like override, but the description of the method should
describe only extensions to the superclass implementation.

85

(defmethod* maybe-mode
([(id arg-spec ...)
result-contract-expr-datum] ...)
pre-flow ...)

Like defprocx, but for a method within a defclass or definterface body. The maybe-
mode specification is as in defmethod.

(method class/intf-id method-id)

Creates a hyperlink to the method named by method-id in the class or interface named by
class/intf-id. The hyperlink names the method, only; see also xmethod.

For-label binding information is used with class/intf-id, but not method-id.

(xmethod class/intf-id method-id)

Like method, but the hyperlink shows both the method name and the containing
class/interface.

11.5 Documenting Signatures

(defsignature id (super-id ...) pre-flow ...)

Defines a signature id that extends the super-id signatures. Any elements defined in de-
coded pre-flows—including forms, procedures, structure types, classes, interfaces, and
mixins—are defined as members of the signature instead of direct bindings. These defini-
tions can be referenced through sigelem instead of scheme.

The decoded pre-flows inset under the signature declaration in the typeset output, so no
new sections, etc. can be started.

(defsignature/splice id (super-id ...) pre-flow ...)

Like defsignature, but the decoded pre-flows are not typeset under the signature decla-
ration, and new sections, etc. can be started in the pre-flows.

(signature-desc pre-flow ...) — any/c
pre-flow : any/c

Produces an opaque value that defsignature recognizes to outdent in the typeset form.

86

This is useful for text describing the signature as a whole to appear right after the signature
declaration.

(sigelem sig-id id)

Typesets the identifier id with a hyperlink to its definition as a member of the signature
named by sig-id.

11.6 Various String Forms

(emph pre-content ...) — element?
pre-content : any/c

Typesets the decoded pre-content with emphasis (e.g., in italic).

(defterm pre-content ...) — element?
p
pre-content : any/c

Typesets the decoded pre-content as a defined term (e.g., in italic). Consider using
deftech instead, though, so that uses of tech can hyper-link to the definition.

(onscreen pre-content ...) — element?
pre-content : any/c

Typesets the decoded pre-content as a string that appears in a GUI, such as the name of a
button.

(menuitem menu-name item-name) — element?
menu-name : string?
item-name : string?

Typesets the given combination of a GUI’s menu and item name.

(filepath pre-content ...) — element?
pre-content : any/c

Typesets the decoded pre-content as a file name (e.g., in typewriter font and in in quotes).

(exec pre-content ...) — element?
P
pre-content : any/c

87

Typesets the decoded pre-content as a command line (e.g., in typewriter font).

(envvar pre-content ...) — element?
pre-content : any/c

Typesets the given decoded pre-content as an environment variable (e.g., in typewriter
font).

(Flag pre-content ...) — element?
pre-content : any/c

Typesets the given decoded pre-content as a flag (e.g., in typewriter font with a leading

).

(DFlag pre-content ...) — element?
pre-content : any/c

Typesets the given decoded pre-content a long flag (e.g., in typewriter font with two
leading -s).

(PFlag pre-content ...) — element?
pre-content : any/c

Typesets the given decoded pre-content as a + flag (e.g., in typewriter font with a leading
+).

(DPFlag pre-content ...) — element?
pre-content : any/c

Typesets the given decoded pre-content a long + flag (e.g., in typewriter font with two
leading +s).

(math pre-content ...) — element?
p
pre-content : any/c

The decoded pre-content is further transformed:
e Any immediate ’rsquo is converted to ’prime.

e Parentheses and sequences of decimal digits in immediate strings are left as-is, but
any other immediate string is italicized.

88

Extensions to math are likely, such as recognizing _ and ~ for subscripts and superscripts.

11.7 Links

(secref tag

[#:doc module-path

#:tag-prefixes prefixes

#:underline? underline?]) — element?
tag : string?
module-path : (or/c module-path? false/c) = #f
prefixes : (or/c (listof string?) false/c) = #f
underline? : any/c = #t

Inserts the hyperlinked title of the section tagged tag, but aux-element items in the title
content are omitted in the hyperlink label.

If #:doc module-path is provided, the tag refers to a tag with a prefix deter-
mined by module-path. When setup-plt renders documentation, it automatically
adds a tag prefix to the document based on the source module. Thus, for example,
to refer to a section of the PLT Scheme reference, module-path would be ’(1ib
"scribblings/reference/reference.scrbl").

The #: tag-prefixes prefixes argument similarly supports selecting a particular section
as determined by a path of tag prefixes. When a #: doc argument is provided, then prefixes
should trace a path of tag-prefixed subsections to reach the tag section. When #:doc is not
provided, the prefixes path is relative to any enclosing section (i.e., the youngest ancestor
that produces a match).

If underline?is #f, then the hyperlink is rendered in HTML without an underline.

(seclink tag

[#:doc module-path

#:tag-prefixes prefixes

#:underline? underline?]

pre-content ...) — element?
tag : string?
module-path : (or/c module-path? false/c) = #f
prefixes : (or/c (listof string?) false/c) = #f
underline? : any/c = #t
pre-content : any/c

Like secref, but the link label is the decoded pre-content instead of the target section’s
name.

&9

(other-manual module-path
[#:underline? underline?]) — element?
module-path : module-path?
underline? : any/c = #t

Like secref for the document’s implicit "top" tag. Use this function to refer to a whole
manual instead of secref, in case a special style in the future is used for manual titles.

(schemelink id pre-content ...) — element?
id : symbol?
pre-content : any/c

The decoded pre-content is hyperlinked to the definition of id.

(link url
pre-content
[#:underline? underline?
#:style style]) — element?
url : string?
pre-content : any/c
underline? : any/c = #t
style : any/c = (if underline? #f "plainlink")

The decoded pre-content is hyperlinked to url. If style is not supplied, then
underline? determines how the link is rendered.

(elemtag t pre-content ...) — element?
t . tag?
pre-content : any/c

The tag t refers to the content form of pre-content.

(elemref t
pre-content
[#:underline? underline?]) — element?
t . tag?
pre-content : any/c
underline? : any/c = #t

The decoded pre-content is hyperlinked to t, which is normally defined using elemtag.

(deftech pre-content ... [#:style? style?]) — element?

90

pre-content : any/c
style? : any/c = #t

Produces an element for the decoded pre-content, and also defines a term that can be
referenced elsewhere using tech.

The content->string result of the decoded pre-content is used as a key for references,
but normalized as follows:

e A trailing “ies” is replaced by “y”.

e A trailing “s” is removed.

e Consecutive hyphens and whitespaces are all replaced by a single space.

These normalization steps help support natural-language references that differ slightly from
a defined form. For example, a definition of “bananas” can be referenced with a use of
“banana”.

If style?is true, then deftermis used on pre-content.

(tech pre-content

[#:doc module-path

#:tag-prefixes prefixes]) — element?
pre-content : any/c
module-path : (or/c module-path? false/c) = #f
prefixes : (or/c (listof string?) false/c) = #f

Produces an element for the decoded pre-content, and hyperlinks it to the definition of
the content as established by deftech. The content’s string form is normalized in the same
way as for deftech. The #:doc and #: tag-prefixes arguments support cross-document
and section-specific references, like in secref.

With the default style files, the hyperlink created by tech is somewhat quieter than most
hyperlinks: the underline in HTML output is gray, instead of blue, and the term and underline
turn blue only when the mouse is moved over the term.

In some cases, combining both natural-language uses of a term and proper linking can re-
quire some creativity, even with the normalization performed on the term. For example,
if “bind” is defined, but a sentence uses the term “binding,” the latter can be linked to the
former using @tech{bind}ing.

91

(techlink pre-content

[#:doc module-path

#:tag-prefixes prefixes]) — element?
pre-content : any/c
module-path : (or/c module-path? false/c) = #f
prefixes : (or/c (listof string?) false/c) = #f

Like tech, but the link is not a quiet. For example, in HTML output, a hyperlink underline
appears even when the mouse is not over the link.

11.8 Indexing

(indexed-scheme datum ...)

A combination of scheme and as-index, with the following special cases when a single
datum is provided:

e If datum is a quote form, then the quote is removed from the key (so that it’s sorted
using its unquoted form).

e If datum is a string, then quotes are removed from the key (so that it’s sorted using
the string content).

(idefterm pre-content ...) — element?
p
pre-content : any/c

Combines as-index and defterm. The content normally should be plural, rather than
singular. Consider using deftech, instead, which always indexes.

(pidefterm pre-content ...) — element?
pre-content : any/c

Like idefterm, but plural: adds an “s” on the end of the content for the index entry. Con-
sider using deftech, instead.

(indexed-file pre-content ...) — element?
pre-content : any/c

92

A combination of file and as-index, but where the sort key for the index iterm does not
include quotes.

(indexed-envvar pre-content ...) — element?
pre-content : any/c

A combination of envvar and as-index.

11.9 Images

(image filename-relative-to-source
pre-element ...) — flow-element?
filename-relative-to-source : string?
pre-element : any/c

Creates a centered image from the given relative source path. The decoded pre-content
serves as the alternate text for contexts where the image cannot be displayed.

The path is relative to the current directory, which is set by setup-plt and scribble to
the directory of the main document file.

When generating Latex output, if the filename has a " . gif" suffix, then the suffix is changed
to ".png" (so a PNG file must exist in addition to the GIF file).

(image/plain filename-relative-to-source
pre-element ...) — element?
filename-relative-to-source : string?
pre-element : any/c

Like image, but the result is an element to appear inline in a paragraph.

11.10 Bibliography

(cite key) — element?
key : string?

Links to a bibliography entry, using key both to indicate the bibliography entry and, in
square brackets, as the link text.

(bibliography [#:tag tag] entry ...) — part?

93

tag : string? = "doc-bibliography"
entry : bib-entry?

Creates a bibliography part containing the given entries, each of which is created with bib-
entry. The entries are typeset in order as given.

(bib-entry #:key key

#:title title

[#:is-book? is-book?

#:author author

#:location location

#:date date

#:url url]) — bib-entry?

key : string?
title : any/c

is-book? : any/c =
author : any/c = #f

#£

location : any/c = #f
date : any/c = #f
url : any/c = #f

Creates a bibliography entry. The key is used to refer to the entry via cite. The other
arguments are used as elements in the entry:

e title is the title of the cited work. It will be surrounded by quotes in typeset form if

is-book?is #f, otherwise it is typeset via italic.

author lists the authors. Use names in their usual order (as opposed to “last, first”),
and separate multiple names with commas using “and” before the last name (where
there are multiple names). The author is typeset in the bibliography as given, or it is
omitted if given as #f£.

location names the publication venue, such as a conference name or a journal with
volume, number, and pages. The location is typeset in the bibliography as given, or
it is omitted if given as #f£.

date is a date, usually just a year (as a string). It is typeset in the bibliography as
given, or it is omitted if given as #f.

url is an optional URL. It is typeset in the bibliography using tt and hyperlinked, or
it is omitted if given as #f.

(bib-entry? v) — boolean?

v o

any/c

94

Returns #t if v is a bibliography entry created by bib-entry, #f otherwise.

11.11 Miscellaneous

(t pre-content ...) — paragraph?
pre-content : any/c

Wraps the decoded pre-content as a paragraph.

PLaneT : string?

"PLaneT" (to help make sure you get the letters in the right case).

(hash-lang) — element?

Returns an element for #1ang that is hyperlinked to an explanation.

void-const : element?

Returns an element for #<void>.

undefined-const : element?

Returns an element for #<undefined>.

(centerline pre-flow ...) — table?
pre-flow : any/c

Produces a centered table with the pre-flow parsed by decode-flow.

(commandline pre-content ...) — paragraph?
pre-content : any/c

Produces an inset command-line example (e.g., in typewriter font).

(margin-note pre-content ...) — blockquote?
pre-content : any/c

Produces a blockquote to be typeset in the margin instead of inlined.

95

11.12 Index-Entry Descriptions

(require scribble/manual-struct)

The scribble/manual-struct library provides types used to describe index entries cre-
ated by scribble/manual functions. These structure types are provided separate from
scribble/manual so that scribble/manual need not be loaded when deserializing cross-
reference information that was generated by a previously rendered document.

(struct module-path-index-desc ())

Indicates that the index entry corresponds to a module definition via defmodule and com-
pany.

(struct exported-index-desc (name from-libs))
name :@ symbol?
from-1ibs : (listof module-path?)

Indicates that the index entry corresponds to the definition of an exported binding. The
name field and from-1ibs list correspond to the documented name of the binding and the
primary modules that export the documented name (but this list is not exhaustive, because
new modules can re-export the binding).

(struct (form-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a syntactic form via defform
and company.

(struct (procedure-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a procedure binding via def-
proc and company.

(struct (thing-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a binding via defthing and
company.

(struct (struct-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a structure type via defstruct
and company.

96

(struct (class-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a class via defclass and
company.

(struct (interface-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of an interface via definterface
and company.

(struct (mixin-index-desc exported-index-desc) ())

Indicates that the index entry corresponds to the definition of a mixin via defmixin and
company.

(struct (method-index-desc exported-index-desc) (method-name
class-tag))
method-name : symbol?
class-tag : tag?

Indicates that the index entry corresponds to the definition of an method via defmethod
and company. The name field from exported-index-desc names the class or interface
that contains the method. The method-name field names the method. The class-tag field
provides a pointer to the start of the documentation for the method’s class or interface.

97

12 Evaluation and Examples

(require scribble/eval)

The scribble/eval library provides utilities for evaluating code at document-build time
and incorporating the results in the document, especially to show example uses of defined
procedures and syntax.

(interaction datum ...)
(interaction #:eval eval-expr datum ...)

Like schemeinput, except that the result for each input datum is shown on the next line.
The result is determined by evaluating the quoted form of the datum using the evaluator
produced by eval-expr, if provided.

The eval-expr must produce a sandbox evaluator viamake-evaluator or make-module-
evaluator with the sandbox-output and sandbox-error-output parameters set to
’string. If eval is not provided, an evaluator is created using make-base-eval.

Uses of code: comment and code:blank are stipped from each datum before evaluation.

If a datum has the form (eval:alts show-datum eval-datum), then show-datum is
typeset, while eval-datum is evaluated.

(interaction-eval datum)
(interaction-eval #:eval eval-expr datum)

Like interaction, evaluates the quoted form of datum, but returns the empty string.

(interaction-eval-show datum)
(interaction-eval-show #:eval eval-expr datum)

Like interaction-eval, but produces an element representing the printed form of the
evaluation result.

(schemeblock+eval datum ...)
(schemeblock+eval #:eval eval-expr datum ...)

Combines schemeblock and interaction-eval.

(schememod+eval name datum ...)
(schememod+eval #:eval eval-expr name datum ...)

98

Combines schememod and interaction-eval.

(def+int defn-datum expr-datum ...)
(def+int #:eval eval-expr defn-datum expr-datum ...)

Like interaction, except the defn-datum is typeset as for schemeblock (i.e., no prompt)
and a line of space is inserted before the expr-datums.

(defs+int (defn-datum ...) expr-datum ...)
(defs+int #:eval eval-expr (defn-datum ...) expr-datum ...)

Like def+int, but for multiple leading definitions.

(examples datum ...)
(examples #:eval eval-expr datum ...)

Like interaction, but with an “Examples:” label prefixed.

(defexamples datum ...)
(defexamples #:eval eval-expr datum ...)

Like examples, but each definition using define or def ine-struct among the datums is
typeset without a prompt, and with line of space after it.

(make-base-eval) — (any/c . -> . any)

Creates an evaluator using (make-evaluator ’scheme/base), setting sandbox parame-
ters to disable limits, set the outputs to ’string, and not add extra security guards.

(close-eval eval) — (one-of/c "")
eval : (any/c . -> . any)

Shuts down an evaluator produced by make-base-eval. Use close-eval when garbage
collection cannot otherwise reclaim an evaluator (e.g., because it is defined in a module
body).

(scribble-eval-handler)

— ((any/c . -> . any) any/c boolean? . -> . any)
(scribble-eval-handler handler) — void?
handler : ((any/c . -> . any) any/c boolean? . -> . any)

A parameter that serves as a hook for evaluation. The evaluator to use is supplied as the first

99

argument to the parameter’s value, and the second argument is the form to evaluate. The last
argument is #t if exceptions are being captured (to display exception results), #f otherwise.

100

13 In-Source Documentation

The scribble/srcdoc and scribble/extract libraries support writing documentation
withing the documentation code along with an export contract, similar to using JavaDoc.
With this approach, a single contract specification is used both for the run-time contract and
the documentation of an exported binding.

The scribble/srcdoc library provides forms for exporting a binding with associated doc-
umentation. The scribble/extract library is used to pull scribble/srcdoc-based doc-
umentation into a Scribble document (perhaps for multiple libraries).

Although documentation is written with a library’s implementation when using scrib-
ble/srcdoc, the documentation creates no run-time overhead for the library. Similarly,
typesetting the documentation does not require running the library. The two phases (run
time versus documentation time) are kept separate in much the same way that the module
system keeps expansion-time code separate from run-time code.

For an example use, see the "file" collection’s "gif.ss" source file and the correspond-

ing extraction in "scribblings/gif.scrbl". As that example illustrates, prefixing the
module declaration with

#reader scribble/reader

enables the @-reader, which is handy for writing documentation expressions.

13.1 Source Annotations for Documentation

(require scribble/srcdoc)

(provide/doc spec ...)

Like provide or provide/contract, but each spec uses a documentation transformer to
describe the exported identifier and its contract.

The currently supported documentation transformers are proc-doc, proc-doc/names,
parameter-doc, and thing-doc.

(require/doc require-spec ...)

Like require, but for bindings that are needed at documentation time (and documentation-
expansion time, etc.) instead of run time (and expansion time, etc.). A require-doc form
has no effect on a normal use of the librarys; it affects only documentation extraction.

Typically, a library that uses scribble/srcdoc includes at least (require/doc scrib-

101

ble/base scribble/manual) to get core Scheme forms and basic Scribble functions to
use in documentation expressions.

(proc-doc/names id contract (arg-id ...) desc-expr)
(proc-doc/names id case-contract ((arg-id ...) ...) desc-expr)
contract = (-> arg ... result)
| (->x (mandatory ...) (optional ...) result)
case-contract = (case-> (-> arg ... result) ...)

When used in provide/doc, exports id with the contract described by contract or case-
contract, just like using provide/contract.

The arg-ids specify the names of arguments, which are not normally written as part of a
contract. They are combined with the contract expression to generate the description of the
binding in the documentation via defproc.

The desc-expr is a documentation-time expression that produces prose to describe the
exported binding—that is, the last part of the generated defproc, so the description can
refer to the arg-ids using scheme.

The normal requires of the enclosing library are effectively converted into for-label
requires when generating documentation, so that identifiers in the contracts are linked
to their corresponding documentation. Similarly, any binding that is available in the run-time
phase of of the enclosing library can be referenced in documentation prose using the scheme
form.

(proc-doc id contract desc-expr)

contract = (-> result)
| (->d (arg ...) () (values [id result] ...))
| (->d (arg ...) (O [id result])
| (->d (arg ...) () #:rest id rest [id result])

Like proc-doc, but supporting contract forms that embed argument names. Only a subset
of ->d forms are currently supported.

(thing-doc id contract-expr dec-expr)

Like proc-doc, but for an export of an arbitrary value.

(parameter-doc id (parameter/c contract-expr) arg-id desc-expr)

102

Like proc-doc, but for exporting a parameter.

13.2 Extracting Documentation from Source

(require scribble/extract)

(include-extracted module-path)

Expands to a sequence of documentation forms extracted from module-path, which is
expected to be a module that uses scribble/srcdoc.

(provide-extracted module-path)

Similar to include-extracted, but the documentation is packaged and exported as ex—
ported, instead of left inline.

Use this form in combination with include-previously-extracted when documenta-
tion from a single source is to be split and typeset among multiple documentation loca-
tions. The provide-extracted form extracts the documentation once, and then include-
previously-extracted form extracts documentation for specific bindings as needed.

(include-previously-extracted module-path regexp)

Similar to include-extracted, but instead of referring to the source that contains its own
documentation, module-path refers to a module that uses provide-extracted. The
include-previously-extracted form expands to documentation forms for all identi-
fiers whose string forms match regexp.

103

14 BNF Grammars

(require scribble/bnf)

The scribble/bnf library provides utilities for typesetting grammars.

See also schemegrammar.

(BNF prod ...) — table?
prod : (cons element? (listof element?))

Typesets a grammar table. Each production starts with an element (typically constructed
with nonterm) for the non-terminal being defined, and then a list of possibilities (typically
constructed with BNF-seq, etc.) to show on separate lines.

(nonterm pre-content ...) — element?
pre-content : any/c

Typesets a non-terminal: italic in angle brackets.

(BNF-seq elem ...) — element?
elem : element?

Typesets a sequence.

(BNF-group pre-content ...) — element?
pre-content : any/c

Typesets a group surrounded by curly braces (so the entire group can be repeated, for exam-
ple).

(optional pre-content ...) — element?
pre-content : any/c

Typesets an optional element: in square brackets.

(kleenestar pre-content ...) — element?
pre-content : any/c

Typesets a 0-or-more repetition.

104

(kleeneplus pre-content ...) — element?
P p
pre-content : any/c

Typesets a 1-or-more repetition.

(kleenerange n m pre-content ...) — element?
n : any/c
m : any/c

pre-content : any/c

Typesets a n-to-m repetition. The n and m arguments are converted to a string using (format
"~a" n) and (format "~a" m).

(BNF-alt elem ...) — element?
elem : element?

Typesets alternatives for a production’s right-hand side to appear on a single line. The result
is normally used as a single possibility in a production list for BNF.

BNF-etc : string?

A string to use for omitted productions or content.

105

15 Literate Programming

Programs written using scribble/1p are simultaneously two things: a program and a doc-
ument describing the program.

Programs in scribble/1p are viewed in two different ways, either by running the program
directly or by including it with 1p-include. When running the program, all of the chunk
expressions are collected and stitched together into a program, and the rest of the module is
discarded. When using 1p-include, the entire contents of the module are preserved and are
treated like an ordinary Scribble document, where chunks are typeset in a manner similar to
codeblock.

For example, consider this program:
#lang scribble/lp

Literate programs have chunks of code, like this omne:

@chunk [<f>
(define (f x)
<fs-body>)]

and this one:

@chunk [<fs-body>
(x x x)]

that, when assembled, produce a complete program, in this case:
@schemeblock[(define (f x)

(x x x))]

When this file is required in the normal manner, it defines a function f that squares its
argument, and the documentation is ignored. When it is included with 1p-include, it looks
like this:

Literate programs have chunks of code, like this one:
<f> =

(define (f x)
<fs-body>)

and this one:

106

<fs-body> ::=
(* x x)
that, when assembled, produce a complete program, in this case:

(define (f x)
(x x %))

15.1 scribble/lp Language

#lang scribble/lp

The scribble/1p language provides core support for literate programming.

(chunk id form ...)

Introduces a chunk, binding id for use in other chunks. Normally, id starts with < and ends
with >.

If id is <*>, then this chunk is used as the main chunk in the file. If <*> is never used, then
the first chunk in the file is treated as the main chunk.

15.2 scribble/lp-include Module

(require scribble/lp-include)

(1p-include filename)

Includes the source of filename as the typeset version of the literate program.

107

16 Cross-Reference Utilities

(require scribble/xref)

The scribble/xref library provides utilities for querying cross-reference information that
was collected from a document build.

(xref? v) — boolean?
v : any/c

Returns #t if v is a cross-reference record created by load-xref, #f otherwise.

(load-xref sources
[#:render’, using-rendery
#:root root-pathl]) — xref?
sources : (listof (-> any/c))
using-render), : (subclass?/c rendery)

= (render-mixin render?,)
root-path : (or/c path-string? false/c) =

#£

Creates a cross-reference record given a list of functions that each produce a serialized infor-
mation obtained from serialize-info in rendery. If a sources element produces #f,
its result is ignored.

Since the format of serialized information is specific to a rendering class, the optional
using-rendery, argument accepts the relevant class. It default to HTML rendering.

If root-path is not #f, then file paths that are serialized as relative to an instantiation-
supplied root-path are deserialized as relative instead to the given root-path.

Use load-collections-xref from setup/xref to get all cross-reference information for
installed documentation.

(xref-binding->definition-tag xref
binding
mode) — (or/c tag? false/c)
xref : xref?

108

binding : (or/c identifier?
(list/c (or/c module-path?
module-path-index?)
symbol?)
(listof module-path-index?
symbol?
module-path-index?
symbol?
(one-of/c 0 1)
(or/c exact-integer? false/c)
(or/c exact-integer? false/c)))
mode : (or/c exact-integer? false/c)

Locates a tag in xref that documents a module export. The binding is specified in one
of several ways, as described below; all possibilities encode an exporting module and a
symbolic name. The name must be exported from the specified module. Documentation is
found either for the specified module or, if the exported name is re-exported from other other
module, for the other module (transitively).

The mode argument specifies the relevant phase level for the binding. The binding is
specified in one of four ways:

e If binding is an identifier, then identifier-binding is used with mode to deter-
mine the binding.

e If binding is a two-element list, then the first element provides the exporting module
and the second the exported name. The mode argument is effectively ignored.

e If binding is a seven-element list, then it corresponds to a result from identifier-
binding using mode.

e If binding is a five-element list, then the first element is as for the two-element-list
case, and the remain elements are as in the last four elements of the seven-element
case.

If a documentation point exists in xref, a tag is returned, which might be used with xref-
tag->path+anchor or embedded in a document rendered via xref-render. If no defini-
tion point is found in xref, the result is #£.

(xref-tag->path+anchor xref
tag
[#:render’, using-rendery])
— (or/c false/c path?)
(or/c false/c string?)
xref : xref?
tag : tag?
using-renderj, : (subclass?/c renfioe9r%) = (render-mixin render?)

Returns a path and anchor string designated by the key tag according the cross-reference
xref. The first result is #£ if no mapping is found for the given tag. The second result is #£
if the first result is #£, and it can also be #f if the tag refers to a page rather than a specific
point in a page.

The optional using-renderyj argument is as for load-xref.

(xref-tag->index-entry xref tag) — (or/c false/c entry?)
xref : xref?
tag : tag?

Extract an entry structure that provides addition information about the definition (of any)
referenced by tag. This function can be composed with xref-binding->definition-
tag to obtain information about a binding, such as the library that exports the binding and
its original name.

(xref-render xref
doc
dest
[#:render’, using-rendery,
#:refer-to-existing-files? use-existing?])
— (or/c void? any/c)
xref @ xref?
doc : part?
dest : (or/c path-string? false/c)

using-render), : (subclass?/c render’) = (render-mixin rendery)
use-existing? : any/c = (not dest)

Renders doc using the cross-reference info in xref to the destination dest. For example,
doc might be a generated document of search results using link tags described in xref.

If dest is #£, no file is written, and the result is an X-expression for the rendered page.
Otherwise, the file dest is written and the result is #<void>.

The optional using-renderyj argument is as for load-xref. It determines the kind of
output that is generated.

If use-existing? is true, then files referenced during rendering (such as image files) are
referenced from their existing locations, instead of copying to the directory of dest.

(xref-transfer-info renderer ci xref) — void?
renderer : (is-a?/c render’)
ci : collect-info?
xref : xref?

110

Transfers cross-reference information to ci, which is the initially collected information from
renderer.

(xref-index xref) — (listof entry?)
xref : xref?

Converts indexing information xref into a list of entry structures.

(struct entry (words content tag desc))
words : (and/c (listof string?) cons?)
content : list?
tag : tag?
desc : any/c

Represents a single entry in a Scribble document index.

The words list corresponds to index-element-plain-seq. The content list corresponds
to index-element-entry-seq. The desc value corresponds to index-element-desc.
The tag is the destination for the index link into the main document.

111

17 Text Preprocessor

#lang scribble/text

The scribble/text language provides everything from scheme/base with a few changes
that make it suitable as a preprocessor language:

e It uses read-syntax-inside to read the body of the module, similar to §8 “Docu-
ment Reader”. This means that by default, all text is read in as Scheme strings; and
@-forms can be used to use Scheme functions and expression escapes.

e Values of expressions are printed with a custom output function. This function dis-
plays most values in a similar way to display, except that it is more convenient for a
preprocessor output.

17.1 Writing Preprocessor Files

The combination of the two features makes text in files in the scribble/text language be
read as strings, which get printed out when the module is required, for example, when a
file is given as an argument to mzscheme. (In these example the left part shows the source
input, and the right part the printed result.)

#lang scribble/text
Programming languages should
be designed not by piling
feature on top of feature, but
blah blah blah.

Programming languages should
be designed not by piling
feature on top of feature, but
blah blah blah.

Using @-forms, we can define and use Scheme functions.

#lang scribble/text
@(require scheme/list)
@(define Foo "Preprocessing")

@(define (3x . x) Preprocessing languages should
;; scheme syntax here be designed not by piling
(add-between (list x x x) " ")) feature on top of feature, but

@Foo languages should blah blah blah.

be designed not by piling
feature on top of feature, but
@3x{blah}.

As demonstrated in this case, the output function simply scans nested list structures recur-

sively, which makes them convenient for function results. In addition, output prints most
values similarly to display — notable exceptions are void and false values which cause no

112

output to appear. This can be used for convenient conditional output.

#lang scribble/text
@(define (errors n)
(list n
" error"
(and (not (=n 1)) "s")))
You have @errors[3] in your code,
I fixed G@errors[1].

You have 3 errors in your code,
I fixed 1 error.

Using the scribble @-forms syntax, you can write functions more conveniently too.

#lang scribble/text

@(define (errors n)
;; note the usg»of ‘unless’ You have 3 errors in your code,
@list{@n error@unless[(=n 1)]{s}}) I fixed 1 error.

You have Qerrors[3] in your code,

I fixed @errors[1].

Following the details of the scribble reader, you may notice that in these examples there are
newline strings after each definition, yet they do not show in the output. To make it easier to
write definitions, newlines after definitions and indentation spaces before them are ignored.

#lang scribble/text

Q(define (plural n)
(unless (= n 1) "s"))

. You have 3 errors in your code,
@(define (errors n) I fixed 1 error.
@list{@n error@plural[n]})

You have Qerrors[3] in your code,
Q@(define fixed 1)
I fixed Qerrors[fixed].

These end-of-line newline strings are not ignored when they follow other kinds of expres-
sions, which may lead to redundant empty lines in the output.

113

#lang scribble/text Start. ..

@(define (count n str) 1 Mississippi,
(for/list ([i (in-range 1 (addl n))]) 2 Mississippi,
@list{@i @str,@'\n"})) 3 Mississippi,
Start...
@count [3]{Mississippi}
and I’m done. ... and I’m done.

There are several ways to avoid having such empty lines in your output. The simplest way
is to arrange for the function call’s form to end right before the next line begins, but this is
often not too convenient. An alternative is to use a @; comment, which makes the scribble
reader ignore everything that follows it up to and including the newline. (These methods can
be applied to the line that precedes the function call too, but the results are likely to have
what looks like erroneous indentation. More about this below.)

#lang scribble/text Start. ..
@(define (count n str) 1 Mississippi,
(for/list ([i (in-range 1 (+ n 1))]) 2 Mississippi,
@list{@i @str,@"\n"})) 3 Mississippi,
Start... ... done once.
@count[S]{MississiBPi
}... done once.

Start again...
1 Massachusetts,

Start again... 2 Massachusetts,
@count [3] {Massachusetts}@; 3 Massachusetts,
and I’m done again. ... and I’m done again.

A better approach is to generate newlines only when needed.

#lang scribble/text
@(require scheme/list)
@(define (counts n str)
(add-between
(for/list ([i (in-range 1 (+ n 1))1)
@list{@i @str,})
“\n"))
Start...
@counts[3]{Mississippi}
and I’m done.

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,
and I’m done.

In fact, this is common enough that the scribble/text language provides a convenient
facility: add-newlines is a function that is similar to add-between using a newline string
as the default separator, except that false and void values are filtered out before doing so.

114

#lang scribble/text
@(define (count n str)
(add-newlines
(for/list ([i (in-range 1 (+ n 1))1)
@list{@i @str,})))
Start...
@count [3]{Mississippi}
and I’m done.

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,
and I’m done.

#lang scribble/text
@(define (count n str)
(add-newlines
(for/list ([i (inrrange 1 (+ n 1))1)
@(and (even? i) @list{@i @str,}))))
Start...
@count [6]{Mississippi}
. and I’m done.

Start...

2 Mississippi,

4 Mississippi,

6 Mississippi,
and I’m done.

The separator can be set to any value.

#lang scribble/text
@(define (count n str)
(add-newlines #:sep ",\n"
(for/list ([i (Eg—range 1 (+n 1)D
@list{@i @str})))
Start...
Qcount [3] {Mississippil}.
and I’m done.

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi.
and I’m done.

17.2 Defining Functions and More

(Note: most of the tips in this section are applicable to any code that uses the Scribble @-
form syntax.)

Because the Scribble reader is uniform, you can use it in place of any expression where it
is more convenient. (By convention, we use a plain S-expression syntax when we want a
Scheme expression escape, and an @-form for expressions that render as text, which, in the
scribble/text language, is any value-producing expression.) For example, you can use
an @-form for a function that you define.

#lang scribble/text
@(define @bold[text] @list{*@|text|*}) An *important* note.
An @bold{important} note.

This is not commonly done, since most functions that operate with text will need to accept

115

a variable number of arguments. In fact, this leads to a common problem: what if we want
to write a function that consumes a number of “text arguments” rathen than a single “rest-
like” body? The common solution for this is to provide the separate text arguments in the
S-expression part of an @-form.

#lang scribble/text
@(define (choose 1st 2nd)
©liSt{Eithe£> @lst, or ©@2nd@"."})
@(define who "us")
@choose[@list{you’re with @who}
@list{against @whol}]

Either you’re with us, or against us.

You can even use @-forms with a Scheme quote or quasiquote as the “head” part to make it
shorter, or use a macro to get grouping of sub-parts without dealing with quotes.

#lang scribble/text

@(define (choose 1st 2nd)
@list{Either @1st, or ©2nd@"."})

@(define who "us")

Qchoose[@list{you’re with @who} Either you’re with us, or against us.
@list{against @whol}] Shopping list:
@(define-syntax-rule {compare (x ...) ...) * apples
(add-newlines * oranges
(list (1ist " "' x ...) ...))) * 6 bananas
Shopping list:
@compare [@{apples}
@{oranges}

@{@(x 2 3) bananas}]
Yet another solution is to look at the text values and split the input arguments based on a

specific token. Using match can make it convenient — you can even specify the patterns
with @-forms.

116

#lang scribble/text

@(require scheme/match)

@(define (features . text)
(match text

[elist{@1sta@...
- >> Pros <<
@2nde. ..} fast,
_?list{>> Pros << reliable;
Q@1st; >> Cons <<
>> Cons << expensive,

@l2nd|.}1)) ugly.
@features{fast,
reliable
expensive,
ugly}

In particular, it is often convenient to split the input by lines, identified by delimiting "\n"
strings. Since this can be useful, a split-lines function is provided.

#lang scribble/text
@(require scheme/list)
@(define (features . text)

(add-between (split-lines text) red, fast, reliable.

II, Il))
@features{red
fast
reliable}.

Finally, the Scribble reader accepts any expression as the head part of an @-form — even an
@ form. This makes it possible to get a number of text bodies by defining a curried function,
where each step accepts any number of arguments. This, however, means that the number of
body expressions must be fixed.

#lang scribble/text
@(define ((choose . 1st) . 2nd)
@list{Either you’re>@lst, or ©@2nd@"."}) Either you’re with me, or against me.
Q@(define who '"me")
@@choose{with @who}{against @who}

17.3 Using Printouts

Because the preprocessor language simply displays each toplevel value as the file is run, it
is possible to print text directly as part of the output.

117

#lang scribble/text

. First
_9F1rst Second
@display{Second} Third

Third

Taking this further, it is possible to write functions that output some text instead of returning
values that represent the text.

#lang scribble/text

Q@(define (count n) Start...
(for ([i (in-range 1 (+ n 1))]1) 1 Mississippi,
(printf "~a-Mississippi,\n" i))) 2 Mississippi,
Start... 3 Mississippi,
Q@count [3]@; avoid an empty line ... and I’m done.

. and I’m done.

This can be used to produce a lot of output text, even infinite.

#lang scribble/text Start...
@(define (count n) 1 Mississippi,
(printf "~a Mississippi,\n" n) 2 Mississippi,
(count (addl n))) 3 Mississippi,
Start... 4 Mississippi,
Qcount [1] 5 Mississippi,

this line is never printed!

However, you should be careful not to mix returning values with printouts, as the results are
rarely desirable.

#lagg scribble/text

@list{l @display{two} 3} twol 3

Note that you don’t need side-effects if you want infinite output. The output function
iterates thunks and (composable) promises, so you can create a loop that is delayed in either
form.

#lang scribble/text
@(define (count n)
(cons @list{@n Mississippi,@"\n"}
(lambda ()
(count (addl n)))))

Start...

1 Mississippi,
2 Mississippi,
3 Mississippi,
4 Mississippi,
5 Mississippi,

Start...
Qcount [1]
this line is never printed!

118

17.4 Indentation in Preprocessed output

An issue that can be very important in many preprocessor applications is the indentation of
the output. This can be crucial in some cases, if you’re generating code for an indentation-
sensitive language (e.g., Haskell, Python, or C preprocessor directives). To get a better
understanding of how the pieces interact, you may want to review how the Scribble reader
section, but also remember that you can use quoted forms to see how some form is read.

#lang scribble/text
@(format "~s" ’@list{
— a (list "a" "\n" " " "b"
b
chH

The Scribble reader ignores indentation spaces in its body. This is an intentional feature,
since you usually do not want an expression to depend on its position in the source. But
the question is how can we render some output text with proper indentation. The output
function achieves that by assigning a special meaning to lists: when a newline is part of a
list’s contents, it causes the following text to appear with indentation that corresponds to the
column position at the beginning of the list. In most cases, this makes the output appear
“as intended” when lists are used for nested pieces of text — either from a literal list
expression, or an expression that evaluates to a list, or when a list is passed on as a value;
either as a toplevel expression, or as a nested value; either appearing after spaces, or after
other output.

#lang scribble/text

foo @list{1 foo 1
- 2
2 3

3}

#lang scribble/text
@(define (block . text) begin

@list{begin first
Qtext second
end}) begin
@btock{first third
second fourth
@block{ end
third last
fourth} end
last}

119

Il\nll "C")

#lang scribble/text
@(define (enumerate . items)
(add-newlines #:sep ";\n"

(for/list ([i (in-naturals 1)] Todo: 1. Install PLT Scheme;
[item €in-1list items)]) 2. Hack, hack, hack;
@list{@lil. @item}))) 3. Profit.

Todo: @enumerate[@list{Install PLT Scheme}
@list{Hack, hack, hack}
@list{Profit}].

There are, however, cases when you need more refined control over the output. The scrib-
ble/text provides a few functions for such cases. The splice function is used to group
together a number of values but avoid introducing a new indentation context.

#lang scribble/text
@(define (block . text)

@splice{{ St;zz()_
blah(@text); ’
155) loop:
if (something) {
start -
. blah(one,
@splice{foo();
two) ;
loop:} }
@list{if (something) @block{one,
end
twol}
end

The verbatim function disables all indentation printouts in its contents, including the inden-
tation before the verbatim value itself. It is useful, for example, to print out CPP directives.

#lang scribble/text
@(define (((IFFOO . var) . exprl) . expr2)
(define (array el e2)

@list{[Qel, function blah(something, something_ else)
©e2]1}) #include "stuff.inc"
@list{var @var; var i;
@verbatim{#ifdef FOO} #ifdef FOO
@var = Qarray[exprl expr2]; i = [something,
Qverbatim{#else} something_else];
@Qvar = Qarray[expr2 exprl]; #else
@verbatim{#endif}}) i = [something_else,
something] ;
#endif

function blah(something, something else) { 7
O@verbatim{#include "stuff.inc"}
Q@QQ@IFFO00{i}{something}{something_else}

}

120

If there are values after a verbatim value on the same line will, they will get indented to the
goal column (unless the output is already beyond it).

#lang scribble/text
Q(define (thunk name . body)
@list{function Gname() {
Q@body
139
@(define (ifdef cond then else)
@list{@verbatim{#}ifdef @cond

function do_stuff() {
init();
ifdef HAS_BLAH

Q@then
= blah();
@verbatim{#}else # elZ:r x ahO)
Qelse
. . function blah() {
Overbatim{#}endif}) # ifdef BLEHOS
R # include <bleh.h>
bleh();
@thunk[’do_stuff]{ eh()
initQ): # else
0ifdef ["HAS_BLAH" error("no bleh");
- # dif
@list{var x = blah();} } ends
@thunk [’blah]{ .
. # endif
@ifdef ["BLEHOS" more_stuff():
@list{@verbatim{#}include <bleh.h> } - ’

bleh();}
@list{error("no bleh");}]
}H
more_stuff();

}

There are cases where each line should be prefixed with some string other than a plain
indentation. The prefix function causes its contents to be printed using some given string
prefix for every line. The prefix gets accumulated to an existing indentation, and indentation
in the contents gets added to the prefix.

121

#lang scribble/text
Q(define (comment . body)

@prefix["// "]{@body})
Qcomment{add : int int -> string}
char *foo(int x, int y) {

Q@commentq{
skeleton:
allocate a string

// add : int int -> string
char *foo(int x, int y) {
// skeleton:
// allocate a string
// print the expression into it
print the expression into it // /] ...more work...
@comment{...more work...} char *buf = malloc(// FIXME!
} // This is bad

char *buf = malloc(@comment{FIXME! 1007

This is bad} ¥
100) ;

}

Trying to combine prefix and verbatim is more useful using an additional value: flush
is bound to a value that causes output to print the current indentation and prefix. It makes it
possible to get the “ignored as a prefix” property of verbatim but only for a nested prefix.

#lang scribble/text
@(define (comment . text)
(list flush
@Gprefix[" *"]1{
@verbatim{/*} Qtext */1}))
function foo(x) {

function foo(x) {
/* blah
* more blah
* yet more blah */

Qcomment{blah if (x < 0) {
more blah /* even more
' yet more blah} * blah here
if (x < 0) {
* /* even
Q@comment{even more
* % nested */ */
blah here
do_stuff();
@comment{even }
nested}?} 1
do_stuff();
}

}

17.5 Using External Files

Using additional files that contain code for your preprocessing is trivial: the preprocessor
source is still source code in a module, so you can require additional files with utility
functions

122

1temize.ss: #lang scheme

#lang scribble/text
Q(require "itemize.ss")
Todo:

Q@itemize[@list{Hack some}
@list{Sleep some}
@list{Hack some

morel}]

Todo:

* Hack some

* Sleep some

* Hack some
more

(provide itemize)
(define (itemize . items)
(add-between (map (lambda (item)
(1ist "x " item))
items)

n \nll))

Note that the at-exp language can often be useful here, since such files need to deal with
texts. Using it, it is easy to include a lot of textual content.

stuff.ss:

#lang scribble/text

@(require "stuff.ss")

Todo:

@itemize[@list{Hack some}
@list{Sleep some}
@list{Hack some

morel}] Todo:
@summary * Hack some
#lang at-exp scheme/base * Sleep some
(require schemeylist) * Hack some
(provide (all-defined-out)) more
(define (itemize . items) If that’s not enough,

(add-between (map (lambda (item) I don’t know what is.
@list{* @item})
items)
"\n"))
(define summary
@list{If that’s not enough,
I don’t know what is.})

Of course, the extreme side of this will be to put all of your content in a plain Scheme
module, using @-forms for convenience. However, there is no need to use the preprocessor
language in this case; instead, you can (require scribble/text), which will get all of
the bindings that are available in the scribble/text language. Using output, switching
from a preprocessed files to a Scheme file is very easy —- choosing one or the other depends
on whether it is more convenient to write a text file with occasional Scheme expressions or
the other way.

123

#lang at-exp scheme/base
Q@Q(require scribble/text scheme/list)
(define (itemize . items)
(add-between (map (lambda (item)
@list{* @item})

items)
"\n")) Todo:
(define summary * Hack some
@list{If that’s not enough, * Sleep some
I don’t know what is.}) * Hack some
@(output more
@list{ If that’s not enough,
Todo: I don’t know what is.

@itemize[@list{Hack some}
@list{Sleep some}
@list{Hack some

morel}]

Osummary

b

However, you might run into a case where it is desirable to include a mostly-text file from a
preprocessor file. It might be because you prefer to split the source text to several files, or
because you need to preprocess a file without even a #1lang header (for example, an HTML
template file that is the result of an external editor). For these cases, the scribble/text
language provides an include form that includes a file in the preprocessor syntax (where
the default parsing mode is text).

124

#lang scribble/text
@(require scheme/list)
@(define (itemize . items)
(list
""
(add-between
(map (lambda (item)
@list{<1li>@|item|</1i>})

it
) items) <html>
ne/als"Y) <head><title>Todo</title></head>
. . " " <body>
@(define title "Todo") <h1>Todo</hi>

@(define summary
@list{If that’s not enough,
+don’t know what is.})

Hack some</1li>
<1i>Sleep some</1li>
Hack some
more
<p><i>If that’s not enough,

@include["t late.html"
include["template.html"] I don’t know what is.</i></p>

template.html: <html> </body>
<head><title>|title|</title></hdad> y
</html>
<body>
<hi1>@|titlel|</h1>
@itemize[@list{Hack some}
@list{Sleep some}
@list{Hack some

morel}]
<p><i>@|summary|</i></p>
</body>
</html>

(Using require with a text file in the scribble/text language will not work as intended:
using the preprocessor language means that the text is displayed when the module is invoked,
so the required file’s contents will be printed before any of the requiring module’s text does.
If you find yourself in such a situation, it is better to switch to a Scheme-with- @-expressions
file as shown above.)

125

18 Extending and Configuring Scribble Output

Sometimes, Scribble’s primitives and built-in styles are insufficient to produce the output
that you need. The cases in which you need to extend or configure Scribble fall into two
groups:

e You may need to drop into the back-end “language” of CSS or Tex to create a spe-
cific output effect. For this kind of extension, you will mostly likely attach a ‘ (css
,file) or ‘(tex ,file) style to a section and then use a string defined in the
file as an element or block style. This kind of extension is described in §18.1
“Adding a Style”.

e You may need to produce a document whose page layout is different from the PLT
Scheme documentation style. For that kind of configuration, you will most likely run
the scribble command-line tool and supply flags like ——prefix or ++style. This
kind of configuration is described in §18.2 “Configuring Output”.

18.1 Adding a Style

When a string is uses as a style in an element, styled-paragraph, table, styled-
itemization, or blockquote, it corresponds to a CSS class for HTML output or a Tex
macro/environment for Latex output. In Latex output, the string is used as a command
name for a styled-paragraph and an environment name for a table, itemization,
or blockquote, except that a blockquote style name that starts with \ is used (sans \)
as a command instead of an environment. In addition, for an itemization, the style string is
suffixed with "Item" and used as a CSS class or Tex macro name to use for the itemization’s
items (in place of item in the case of Latex).

Scribble includes a number of predefined styles that are used by the exports of scrib-
ble/manual, but they are not generally intended for direct use. For now, use them or rede-
fine them at your own risk.

To add a mapping from your own style name to a CSS configuration, add a ‘ (css ,file)
style (in a list of styles) to an enclosing part. To map a style name to a Tex macro (or Latex
environment), add a (tex ,file) style to an enclosing part.

To avoid collisions with future additions to Scribble, start your style name with an uppercase
letter that is not S. An uppercase letter helps to avoid collisions with macros defined by
Latex packages, and future styles needed by scribble/manual will start with S.

For example, a Scribble document

#lang scribble/doc
@(require manual)

126

@title[#:style ‘((css "inbox.css") (tex "inbox.tex"))]{Quantum Pet}

Do not open: @elem[#:style "InBox"]{Cat}
combined with an "inbox.css" that contains

.inbox {

padding: 0.2em;

border: 1px solid #000000;
3

and an "inbox.tex" that contains

\newcommand{\InBox} [1]{\fbox{#1}}

generates

Quantum Pet

Do not open:

18.2 Configuring Output

Scribble’s output is configured in two layers:

e A prefix determines the DOCTYPE line for HTML output or the documentclass
configuration (and perhaps some addition package uses or other configuration) for
Latex output. The default prefix is "scribble-prefix.html" or "scribble-
prefix.tex" in the "scribble" collection.

e Style definitions for all of the “built-in” styles used by scribble/manual (as de-
scribed in §18.1 “Adding a Style”). The default style definitions are "scribble.css"
or "scribble.tex" in the "scribble" collection.

When using the scribble command-line utility:

e Replace the prefix using the —-prefix flag.
e Replace the style definitions using the --style flag.

o Add style definitions (that can override earlier ones) using the ++style flag.
For now, reading the default files is the best way to understand how they interact.

127

Index

++style,
--prefix,
--style,
@-Reader,

Adding @-expressions to a Language, [34]
Adding a Style, [126]
as-index, [66]

at-exp, @

author, [63]
author+email,[63|
aux-elem,[64]
aux-element, 43
aux-element?, 3]
Base Renderer, 52

Basic Document Forms, [61]
bib-entry,
bib-entry?,[04
Bibliography,
bibliography, 93|
block,[B7]|
block-width, 9]
block?,
blockquote, 43|
blockquote,
blockquote—paragraphs,@
blockquote-style, 3]
blockquote?, 3]
BNF,[104]

BNF Grammars, [104]
BNF-alt,[T03]
BNF-etc,[T103]
BNF-group, @
BNF-seq, rﬂ_ﬂl

bold,[64]

centerline,[93]

chunk,

cite,03
class-index-desc,[97]
class-index-desc?,[07]

clean—up—index—string,lS_gl

close-eval,[99

collect,[3

collect pass,[37]
collect-element, 46|
collect-element-collect,[q
collect-element?, 46|
collect-info,[9]
collect-info-ext-ht,[d9
collect-info-gen-prefix,[d9
collect-info-ht,[9
collect—info—parents,@l
collect—info—parts,@l
collect-info-relatives, {9
collect—info—tags,@l
collect-info?, 49
collect-put! ,|3_U|

Collected and Resolved Information, 39
Collected-info,m
Collected—info—info,m
collected-info-number, 7]
collected—info—parent,@
collected-info?,[#7]
commandline, 03

Concrete Syntax, 21]
Configuring Output, [127]
content,[37]
content->string, 4§
Cross-Reference Utilities, [T0§]
declare-exporting,[77]
decode, 56|

decode,[56]
decode-content,[57]
decode-elements,[57]
decode-flow,[57]
decode-paragraph,
decode-part,[56|
decode-string,[57]

Decoding Text,
def+int,[99]
defboolpara.m,@
defclass,[84
defclass/title,[84]

128

defconstructor, delayed element, 38|

defconstructor*/make,@ delayed—block,@
defconstructor/auto-super, @ delayed-block-resolve, @l
defconstructor/make, @ delayed-block?, @
defexamples,[99 delayed-element,[46]
defform, delayed-element-plain, {6]
defformx,[80] delayed-element-resolve, ||
defform*/subs,l@ delayed—element—sizer,@l
defform/none,@ delayed—element?,@l
defform/subs,[30] deserialize-info,[53]
defidentifier,[83 DFlag,[89|

defidform,[8T] Document Language, |3_§|
define-code,[6§| Document Reader,

Defining Functions and More, [T13] Document Structure, [61]
Defining Scheme Bindings, [T0] Document Syntax, [7]
definterface, @ documentation transformer, @
definterface/title, Documenting Classes and Interfaces, [83]
defmethod, @ Documenting Forms, Functions, Structure
defmethod, [86] Types, and Values, [77]
defmixin,[84] Documenting Modules, [76]
defmixin/title, Documenting Signatures, [36]
defmodule, [76 DPFlag, 88]

defmodulex,[76] elem,[64]
defmodule*/no-declare, element,[44]

defmodulelang, [76] element,[37]
defmodulelang*,[70| element transformer,
defmodulelang*/no-declare, element->string, 48]
defmodulereader, |7_3| element-content, @l
defmodulereader,[76] element-id-transformer?,
defmodulereader*/no-declare, element-style,[#4]

defparam, [82] element-width,[d9|
defproc,[T§| element?,[d4]

defprocx,[79 elemref,[90]

defs+int,[99| elemtag, [00]
defsignature,[36] emph,
defsignature/splice,[86| entry,[T1]]

defstruct,[82] entry-content, [I1]]
deftech,[90] entry-desc,[T1]]

defterm, entry-tag, [[T]]

defthing, [82] entry-words,[T1]]
deftogether, @ entry?, IT_H-l

delayed block, [3§] envvar, 38

129

Evaluation and Examples, 98]

examples, 99

exec,[87]

exported-index-desc,
exported-index-desc-from-1libs,
exported-index-desc-name,
exported-index-desc?,[96]

Extending and Configuring Scribble Output,

126)

Extracting Documentation from Source, [103]

filepath, |§_7|

Flag, @

flow, [1]

flow, 37

flow-paragraphs, @
flow?, 1]
form-index-desc, @
form-index-desc?,[96]
generated-tag, fg]
generated-tag?,{g

Getting Started, [6]

hash-lang,
hover-element, 43
hover-element-text, 3]
hover-element?, 43

How to Scribble Documentation, [6]
hspace,[63]

HTML Renderer, 54]
idefterm,[92]

image,

image-file,
image-file-path,
image-file-scale,
image-file?,
image/plain,[93]

Images, [93]

In-Source Documentation, @
include-extracted,[103
include-previously-extracted, I-K_Bl
include-section, |6_3|
Indentation in Preprocessed output, [TT9]
index,

indexx,[63]
index-element, 43
index-element-desc, @3]
index-element-entry-segq, @3
index-element-plain-segq, 43|
index-element-tag, @3]
index-element?, {3
Index-Entry Descriptions,
index-section,
indexed-envvar, D3|
indexed-file,[02]
indexed-scheme, 02|
Indexing, [63]

Indexing, [92]

info key,[49]

info-key?, @l
interaction,[08
interaction-eval,[9§]
interaction-eval-show, 08|
Interface, 34]
interface-index-desc,[97]
interface-index-desc?,[07]
italic,[64]

item,

item?,[63|

itemization, 43|

itemization, [37]
itemization-flows, 43|
itemization?, 3]
itemize,[63

JavaDoc, [T0]]

Javascript, [38]
just-context,[70]
just-context-context,
just-context-val,
just-context?,[/0
kleeneplus,|[I03]

kleenerange,l@
kleenestar,[104]

Latex Renderer, [54]
Layer Roadmap, [T9]
link,

130

link-element, 43
link-element-tag, 43|
link-element?,[d3]

Links, [§9]

litchar,[73
literal-syntax,[70|
literal-syntax-stx,[70]
literal-syntax?,

Literate Programming, [T06]
load-xref,[T0§]
local-table-of-contents,
lp-include,
make-at-readtable, 3]
make-aux-element, 43
make-base-eval, 09|
make-blockquote, @
make-class-index-desc,[97]
make—collect—element,@
make-collect-info, 9]
make—collected—info,ml
make-delayed-block, 4]
make-delayed-element,[46|
make-element, [44]
make-element-id-transformer,[70]
make-entry, [IT]]
make-exported-index-desc,
make-flow, [{]]
make-form-index-desc,[96]
make-generated-tag, @g]
make-hover-element, [43]
make-image-file,[#7]
make-index-element, [43]
make-interface-index-desc,
make-itemization, 43
make-just-context,[70]
make—link—element,@
make-literal-syntax,[/(|
make-method-index-desc,[07]
make-mixin-index-desc,[07]
make-module-path-index-desc, @
make-omitable—paragraph,@
make-paragraph, @

make-part,
make-part-collect-decl,[5§
make-part-index-decl,[5§|
make-part-relative-element, @l
make-part-start, [5§|
make-part-tag-decl,[5§|
make-procedure-index-desc,[96]
make-render-element,
make-resolve-info, 9
make—script—element,@
make—shaped—parens,l@l
make—splice,@
make-struct-index-desc,
make-styled-itemization, @I
make-styled—paragraph,@
make-table, 2]
make-target-element, @l
make—target—url,@
make—thing—index—desc,m
make—title—decl,|3_7|
make-toc-element, 43
make-toc-target-element, 4]
make-unnumbered-part, #]]
make-var-id,[69]
make-variable-id, [70]
make-versioned-part,[#]]
make-with-attributes,[d7]
Manual Forms, [71]
margin-note,[93]

math,

menuiten,[§7]

method, [86]
method-index-desc,[07]
method-index-desc-class-tag,
method-index-desc-method-name,
method-index—-desc?, 97
Miscellaneous, 93]
mixin-index-desc,[07]
mixin-index-desc?,[07]
module-path-index-desc,
module-path-index-desc?,
module-path-pref ix—>string,|6_2f|

131

Multi-Page Sections, [[3]
nonterm,[T04]
omitable-paragraph, 1]
omitable-paragraph?, 1]
onscreen, [§7]

optional,[T04]

other-manual,[90]

paragraph, @]

paragraph,
paragraph—content,@
paragraph?, @
parameter—doc,

part, 0|

part,[37]

part—collect—decl,lg_gl
part-collect-decl-element, |3_§|
part—collect—decl?,lS_EI
part-collected-info, EI
part-f low,

part-index-decl, |3_'8'|
part-index-decl-entry-seq, |3_§|
part-index-decl-plain-seq,[5§|
part-index-decl?,[58]
part-parts,

part-relative element, @
part-relative-element, 6]
part-relative-element-plain, @
part-relative-element-resolve, @
part-relative-element-sizer, @l
part-relative-element?, 4]
part-start,[58]
part-start-depth, 58]
part-start-style,[5§]
part-start-tag-prefix,[5§|
part-start-tags,[5§]
part-start-title,[5§]
part-start?,[5§|

part-style,
part—tag—decl,lg_gl
part-tag—decl—tag,lg_-gl
part-tag—decl?,lg_gl
part-tag-prefix,

part-tags,
part-title-content, 0|
part-to-collect, 0]
part?, |40

Parts, [37]

PFlag, [8§|

pidefterm,

PLaneT,[93]

proc-doc, [102]
proc-doc/names, [102]
procedure, @
procedure—index—desc,l%l
procedure—index—desc?,@
Prose and Terminology, [T4]
provide—extracted,rﬂ_y_;l
provide/doc,[T0]]
read,@

read-inside, 33|
read—syntax,@
read—syntax—inside,@
render,lﬂ

render pass, [37]
render%,[52]
render-element,[47]
render—element—render,m
render-element?,[47]
render-mixin,[54
render-mixin,[53]
render-mixin,[54
render-multi-mixin, |54
Renderer, 2]
require/doc,[T0]]
resolve,[33

resolve pass,
resolve-get,[50|
resolve-get-keys,[5]]
resolve-get/ext?,[50]
resolve—get/tentative,lg_-fl
resolve-info, {9
resolve-info-ci,[d9
resolve—info—delays,@l
resolve-info-undef, 9|

132

resolve-info?,[d9|
resolve-search,
Scheme, [63]

scheme,[73|

SCHEME,

Scheme Typesetting and Hyperlinks, [§]
SCHEMEBLOCK,
schemeblock,
schemeblock+eval,[98]
schemeblockO,
SCHEMEBLOCKO,
schemeerror,
schemefont,
schemegrammar, @
schemegrammar*, @
schemeid, [73]
schemeidfont, [74]
schemeinput, |7_7|
schemekeywordfont, |7_7f|
schemelink,
schememetafont, [74]
schememod,
schememod+eval,
schememodname, [73]
schemeparenfont,[74]
schemeresult,[73]
schemeresultfont,[74]
schemevalfont,[74]
schemevarfont,[74]

Scribble Layers, [T7]
scribble-eval-handler,[99
scribble/base-render,[52
scribble/basic,[6]]
scribble/bnf,[T04]
scribble/comment-reader, [73]
scribble/decode,[56]
scribble/doc,
scribble/doclang,[59
scribble/eval,[0§]
scribble/extract,[T03]
scribble/html-render, 54|
scribble/latex-render,[34]

scribble/1p,[107]
scribble/1p Language, [107]
scribble/lp-include,
scribble/1p-include Module,
scribble/manual, [71]
scribble/manual-struct, 06
scribble/reader,[34]
scribble/scheme, [68]
scribble/srcdoc, [T0]]
scribble/struct,[37]
scribble/text,[12]
scribble/text-render, 53|
scribble/xref,[10§|
Scribble: PLT Documentation Tool, [T]
script-element, @l
script—element—script,@l
script-element-type, @
script—element?,@
seclink,[§9]

secref,[§9

section,[62]

Section Hyperlinks,

Section Titles, [T6]
section-index,[66]
serialize-info,[53|
set-external-tag-path,[54]
shaped-parens, [69]
shaped-parens-shape, @
shaped-parens-val,[69
shaped-parens?, 69

Showing Scheme Examples,
sigelem,[87]
signature-desc,[36]
smaller,[63]

Source Annotations for Documentation, [T01]

span-class, [63]
specform,[8]]
specspecsubform, [§]]
specspecsubform/subs, @
specsubform,@
specsubform/subs, [§]]

splice,lg_gl

133

splice-

run, 58]

splice?,[58]
Splitting the Document Source,

struct-
struct-
struct:

struct

struct:
struct:
:collect-info, {9
:collected-info,[d7]
:delayed-block,Eﬂ
:delayed-element,Eﬂ
element, 44
:entry,EIﬂ

:exported—index—desc,E@

struct
struct
struct
struct
struct
struct
struct

struct:

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

struct
struct
struct
struct
struct
struct
struct
struct
struct
struct

struct:

index-desc,[96
index-desc?,|96
aux-element, 43

:blockquote, 43|

class-index-desc,[07]
collect-element, 4§

£1ow, [4T]

:form-index-desc,[06]
:generated—tag,Eﬂ
:hover—element,Eﬂ
:image-file, 7]
:index-element, 43
:interface-index-desc,[07]
:itemization, 43|

: just-context, [70|
:link-element, 3]
:literal-syntax,[70
:method-index-desc,
:mixin-index-desc,[97]
:module-path-index-desc,
struct:

omitable-paragraph, #1]

:paragraph, @]

:part, 40|
:part-collect-decl,
:part-index-decl, 58]
:part-relative-element,
:part-start,[5§
:part—tag—decl,EE
:procedure—index—desc,EQ
:render-element, [47]
:resolve-info, 9

script—element,Eﬂ

struct:shaped-parens, [69]

splice, 58]
struct-index-desc,[96]
styled-itemization, 3]
struct:styled—paragraph,Ez
struct:table, 2]
struct:target—element,Eﬂ
struct:target-url, 7]
struct:thing-index-desc,
struct:title-decl,[57]
struct:toc-element, 3]
struct:toc—target—element,Eﬂ

struct:
struct:
struct:

struct:unnumbered—part,Eﬂ
struct:var-id,[69)
struct:versioned—part,Ey
struct:with-attributes, 7]
Structure Reference,
Structures And Processing, [37]
Style Guide, [T4]
styled—itemization,EE
styled—itemization—style,Eﬂ
styled-itemization?,[3]
styled-paragraph, {2
styled-paragraph-style, 2]
styled-paragraph?, 42|
subscript,
subsection,[62]
subsubsection,[62]
subsubsub*section,[62]
superscript, [63]

svar,[73]

Syntax Properties, [33]

+.03

table,[42]

table,

table-flowss,[d2]
table-of-contents,[66]
table—style,Ez

table?,[d2]

Tables of Contents, [66]

tag, 38}

tag prefix, 39|

134

tag-key,[5]]

tag?, (g

Tags, [38]
target-element, 4]
target-element-tag, 44
target-element?,[44]
target-url,
target-url-addr,
target-url-style,[d7]
target—url?,

tech,[01]

techlink,[02]

Text Preprocessor, [112]

Text Renderer, 53]

Text Styles, [64]

The Body Part, [26]

The Command Part, 24]

The Datum Part, 26]

The Scribble Syntax at a Glance, @
thing—doc,l@
thing-index-desc,[96]
thing-index-desc?,[06]
title,

title-decl,[57]
title-decl-content,[57]
title-decl-style,[57]
title-decl-tag-prefix,[57]
title-decl-tags,[57]
title-decl-version,[57]
title-decl?,[57]
to-element,[69]
to-element/no-color,[69
to-paragraph, 68|
to-paragraph/prefix,[69]
toc-element, 3]
toc—element—toc—content,@l
toc-element?,[d3]
toc—target—element,@
toc—target—element?,@
tt,[64]

Typesetting Code, [13]
Typesetting Code,

Typesetting Comments, [73]
Typesetting Prose,

Typical Composition,[T7]
undefined-const, 93]
unnumbered-part, §1]
unnumbered-part?,4]]
use-at-readtable,[36]

Using External Files, [122]

Using Printouts,

var,[73]

var-id,[69]

var-id-sym, |6_g|

var-id?,[69]
variable-id?,[70]

Various String Forms, [87]
verbatim, [73]
versioned-part, @
versioned-part-version, @
versioned-part?, @
void-const, @
whitespace?,[57]
with-attributes, 7]
with-attributes-assoc,[d7|
with-attributes-style, {7]
with-attributes?,[d7]
Writing Preprocessor Files, [T12]
xmethod, [36]
xref-binding->definition-tag, [T0§|
xref-index, [TT]]
xref-render, [T10]
xref-tag->index-entry,
xref-tag->path+anchor, [I09
xref-transfer-info,[110

xref?,[108]

135

	1 How to Scribble Documentation
	1.1 Getting Started
	1.2 Document Syntax
	1.3 Scheme Typesetting and Hyperlinks
	1.4 Section Hyperlinks
	1.5 Defining Scheme Bindings
	1.6 Showing Scheme Examples
	1.7 Splitting the Document Source
	1.8 Multi-Page Sections
	1.9 Style Guide
	1.9.1 Prose and Terminology
	1.9.2 Typesetting Code
	1.9.3 Typesetting Prose
	1.9.4 Section Titles

	2 Scribble Layers
	2.1 Typical Composition
	2.2 Layer Roadmap

	3 @-Reader
	3.1 Concrete Syntax
	3.1.1 The Scribble Syntax at a Glance
	3.1.2 The Command Part
	3.1.3 The Datum Part
	3.1.4 The Body Part

	3.2 Syntax Properties
	3.3 Adding @-expressions to a Language
	3.4 Interface

	4 Structures And Processing
	4.1 Parts
	4.2 Tags
	4.3 Collected and Resolved Information
	4.4 Structure Reference

	5 Renderer
	5.1 Base Renderer
	5.2 Text Renderer
	5.3 HTML Renderer
	5.4 Latex Renderer

	6 Decoding Text
	7 Document Language
	8 Document Reader
	9 Basic Document Forms
	9.1 Document Structure
	9.2 Text Styles
	9.3 Indexing
	9.4 Tables of Contents

	10 Scheme
	11 Manual Forms
	11.1 Typesetting Code
	11.1.1 Typesetting Comments

	11.2 Documenting Modules
	11.3 Documenting Forms, Functions, Structure Types, and Values
	11.4 Documenting Classes and Interfaces
	11.5 Documenting Signatures
	11.6 Various String Forms
	11.7 Links
	11.8 Indexing
	11.9 Images
	11.10 Bibliography
	11.11 Miscellaneous
	11.12 Index-Entry Descriptions

	12 Evaluation and Examples
	13 In-Source Documentation
	13.1 Source Annotations for Documentation
	13.2 Extracting Documentation from Source

	14 BNF Grammars
	15 Literate Programming
	15.1 blueIdentifierColorscribble/lp Language
	15.2 blueIdentifierColorscribble/lp-include Module

	16 Cross-Reference Utilities
	17 Text Preprocessor
	17.1 Writing Preprocessor Files
	17.2 Defining Functions and More
	17.3 Using Printouts
	17.4 Indentation in Preprocessed output
	17.5 Using External Files

	18 Extending and Configuring Scribble Output
	18.1 Adding a Style
	18.2 Configuring Output

	Index

